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Causal disentanglement for single-cell
representations and controllable
counterfactual generation

YichengGao1,2,3,4,5,6, KejingDong 1,2,6,CaihuaShan 4 ,DongshengLi 4 &
Qi Liu 1,2,3,5

Conducting disentanglement learning on single-cell omics data offers a pro-
mising alternative to traditional black-box representation learning by separ-
ating the semantic concepts embedded in a biological process. We present
CausCell, which incorporates the factual information about causal relation-
ships amongdisentangled conceptswithin a diffusionmodel to generatemore
reliable disentangled cellular representations, with the aim of increasing the
explainability, generalizability and controllability of single-cell data, including
spatial-temporal omics data, relative to those of the existing black-box
representation learning models. Two quantitative evaluation scenarios, i.e.,
disentanglement and reconstruction, are presented to conduct the first
comprehensive single-cell disentanglement learning benchmark, which
demonstrates that CausCell outperforms the state-of-the-art methods in both
scenarios. Additionally, CausCell can implement controllable generation by
interveningwith the concepts of single-cell data when given a causal structure.
It also has the potential to uncover biological insights by generating coun-
terfactuals from small and noisy single-cell datasets.

Single-cell technologies have revolutionised the field of biology by
enabling analyses to be conducted at the individual cell resolution1.
This granular perspective has revealed the vast heterogeneity within
cell populations, leading to new insights into cellular functions,
development processes, and diseases2. Single-cell omics data, such as
gene expression data obtained by technologies like scRNA-seq, is
commonly used to represent the state of individual cells. In addition,
each cell also contains information about its properties, such as cell
type, batch effects, and other biological factors. In this study, we refer
to these properties as concepts. Although single-cell data canmeasure
gene expression levels, important concept information often remains

hidden within the data. Therefore, the complexity of single-cell omics
data, which is characterised by high dimensionality and the presence
of entangled concepts (interdependent biological factors embedded
in the data), poses great challenges for data interpretation tasks. The
process of disentangling these data, i.e., separating complex, inter-
twined signals into distinct, interpretable components, has therefore
emerged as a critical task3. It alsopresented to be an alternative path to
build the virtual cell4, which is advocating for the use of artificial
intelligence (AI) technology to build computational cell models that
can simulate, predict and steer cell behaviour, ultimately providing
deeper insights into cellular processes.
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Disentangled representation learning seeks to capture and sepa-
rate the underlying concepts embedded in intertwined data, such as
images5. Unlike traditional end-to-end black-box representation
learning methods, which often directly learn to predict human-
annotated labels or reconstruct observable data, disentangled repre-
sentation learning mimics the human understanding process by
leveraging hidden semantic concepts to guide predictions or data
generation6. However, this is very challenging for single-cell data, as
sequencing technology often introduces noise, such as dropout
effects, and the underlying biological concepts cannot be directly
observed, unlike in image data. In addition, these latent concepts –

such as parasite infection and cell status - in single-cell data are often
causally connected, making it hard to clearly separate them with
existing disentanglement methods. It requires more advanced tech-
niques to capture latent concepts with causal structure and subse-
quently establish accuratemappings between the data and concepts in
single-cell data.

Several studies have attempted to apply disentangled repre-
sentation learning to obtain interpretable and manipulable repre-
sentations of single-cell data. These methods can be categorised into
two main groups. (1) Statistical methods: Methods such as factor
analysis or nonnegative matrix factorisation are used to identify var-
ious biological programmes on the basis of statistical patterns7,8.
However, thesemethods operate purely at a correlational level and do
not account for causal relationships between biological concepts. In
addition, they cannot support controlled manipulation of these con-
cepts or perform counterfactual generation. (2) Learning-based
methods: These approaches are generative and often utilise varia-
tional autoencoder (VAE)-based methods to learn hidden concepts by
reconstructing single-cell data3,9–11. For example, CPA decouples per-
turbation responses11, scDisInFact removes batch effects9, and Biolord
disentangles the concepts contained in single-cell data3. However,
these methods operate under the assumption of independence
between concepts and cannot guarantee the causality of concepts. In
addition, most methods rely on latent optimisation12, which can result
in a loss of fine-grained concept representations at the single-cell
resolution level. Notably, prior studies have failed to design and
implement comprehensive quantitative benchmarking to rigorously
evaluate these disentanglement methods. Collectively, a comprehen-
sive benchmarking of existing disentanglement methods, along with
the development of a causal disentanglement technique for single-cell
omics data, is lacking and urgently needed.

Herein, we introduce CausCell, the first deep generative frame-
work for conducting causal disentanglement and counterfactual gen-
eration on single-cell omics data (Fig. 1a). By leveraging factual
information about causal structures, CausCell generates more reliable
disentangled cellular representations. Specifically, CausCell combines
a structural causal model13,14 (SCM) with a diffusion model, offering
unprecedented advantages in three aspects for obtaining disentangled
single-cell data representations, including for spatial-temporal omics
data: (1) Explainability: CausCell leverages an SCM to recover latent
concepts with semantic meanings and their causal relationships via a
causal directed acyclic graph (cDAG), substantially enhancing the
interpretability of the model. (2) Generalisability: Unlike previously
developed VAE-based methods, CausCell uses a diffusion model as its
backbone, which provides strong generative and generalisation cap-
abilities, ensuring a high-quality sample generation process15. (3)
Controllability: CausCell enables controllable generation by manip-
ulating disentangled representations in the latent space while preser-
ving their consistencywith theunderlying causal structure. In addition,
to disentangle single-cell data into various concepts, we assume that
each cell is generated by two types of concepts, i.e., observed and
unexplained concepts. For example, observed concepts may involve
the cancer type related to single-cell tumour omics data or spatial-
domain loci derived from spatial single-cell data, while unexplained

concepts are the potential unknown concepts contained in the given
data, such as noise residual and unobserved biological variation,
enabling control over individual information for each cell during
generation. Therefore, such a framework enables us to effectively
distinguish and explore the concepts hidden in the latent space. To
train our model, we propose a new loss function that incorporates a
new evidence lower bound (ELBO) loss and an independence con-
straint for the unexplained concepts. As a result, two quantitative
evaluation scenarios, i.e., disentanglement and reconstruction, are
presented to conduct the first comprehensive single-cell disentangle-
ment learning benchmark, which demonstrates that CausCell outper-
forms the state-of-the-art tools in both scenarios. Furthermore, we
validate the effectiveness of the cDAG inourmodel, showing that it can
generate gene expression profiles for cells that are consistent with the
underlying causal structure when performing interventions on con-
cepts. In this study, we refer to this process as generating cells for
brevity. Finally, we show that CausCell can uncover biological insights
when the input experimental single-cell omics dataset is small and
noisy. Collectively, CausCell presents an unprecedented perspective
and method for obtaining causal disentanglement representations of
single-cell data compared with traditional black-box representation
learning, and it can uncover interpretable biological insights from
single-cell data by controllable counterfactual generation.

Results
Overview of CausCell
CausCell is a novel deep generative framework designed to perform
causal disentanglement and counterfactual generation on single-cell
omics data. In this framework, CausCell combines a structural causal
model (SCM) with a diffusion model to achieve a high level of
explainability, generalisability, and controllability for analysing com-
plex, high-dimensional biological data. It assumes that each cell’s data
is generated by two types of concepts: observed concepts (e.g., cancer
types or spatial domain loci) and unexplained concepts, which may
represent unknown biological factors. Given gene expression data,
factual information of causal structure between different biological
concepts and these biological concepts labels, CausCell outputs dis-
entangled concept embeddings for each cell and enables the coun-
terfactual generation of cells by interventions on these concepts.

CausCell consists of twomain modules: a causal disentanglement
module and a diffusion-based generative module (Fig. 1a). The causal
disentanglement module is central to the framework and learns latent
concept representation from gene expression data. Specifically, it
encodes input gene expression profiles into a set of exogenous
embeddings, which are subsequently passed through an SCM layer.
This layer models the causal relationships between various concepts,
producing the endogenous embeddings that capture biological con-
cepts in a causally structured latent space. These endogenous
embeddings are thenmapped to predict concept labels using separate
predictors for each concept, enforced by supervised constraints (see
“Methods” section). In the generative module, CausCell employed a
diffusionmodel to progressively transform random noise to a realistic
gene expression profile through a series of denoising steps. Each step
is conditioned on learned latent concept embeddings via a cross-
attention mechanism, ensuring that the generative process is guided
bymeaningful biological concepts. Previous study has showed that the
cross-attention mechanism serves as an effective inductive bias for
disentangling complex data in the diffusion model. To train CausCell,
we propose a novel loss function that integrates a new evidence lower
bound (ELBO) with an independence constraint to ensure that the
separation of observed concepts and unexplained concepts, as well as
a supervised constraint to ensure the biological interpretability of
learned concept embeddings. Therefore, by combining the inter-
pretable latent space from the causal disentanglement module with
the powerful sample generation capabilities of the diffusion model,

Article https://doi.org/10.1038/s41467-025-62008-1

Nature Communications |         (2025) 16:6775 2

www.nature.com/naturecommunications


CausCell allows the disentanglement of complex biological concepts
and makes controllable generation by manipulating specific latent
concepts (Fig. 1b, c).

Evaluation of CausCell on disentanglement performance
A comprehensive quantitative disentanglement model benchmark is
critical for establishing the reliability of suchmodels, and this step was
overlooked in previous studies. Evaluating the effectiveness of a dis-
entanglement model involves the evaluation of two key aspects: (1)
concept disentanglement and (2) reconstruction. The first aspect
reflects the ability of the tested model to accurately capture and
separate underlying semantic concepts, whereas the second aspect
determines the quality and fidelity of the generated counterfactual
samples by manipulating concepts for further biological analysis.
Properly evaluating these aspects is essential for ensuring the practical
applicability and robustness of the developed model.

To conduct comprehensive benchmarking, we collected five dis-
tinct single-cell datasets spanning different biological domains16–20,
each with various causal relationships among different concepts,
including ICI_response dataset19, Immune_atlas dataset16, MERFISH_-
Brain dataset17, Spatiotemporally_Liver dataset18, Limb_development
dataset20 (Fig. 2a, Supplementary Note 1 and 2, Supplementary Fig. 1
and Supplementary Table 1). We also included two experimental

settings, in-distribution (ID) and out-of-distribution (OOD) settings, on
the basis of whether the different combinations of concept labels were
presentedduring training (Fig. 2b andSupplementaryNote 3). In the ID
setting, themodel hadseen all possible combinationsof concept labels
during training, providing a direct assessment of its ability to operate
within the same data distribution. The more challenging OOD setting
involved cases where the model encountered unseen combinations of
concept labels, and this task aimed to assess the ability of themodel to
transfer complex relationships among concept representations and
examine its generalisability. Furthermore, we defined five types of
metrics to evaluate various aspects of disentanglement and recon-
struction performance (Supplementary Note 4). Disentanglement
performance was evaluated by determining whether the learned con-
cept representation contained sufficient information for predicting
the concept labels. Therefore, we defined (1) the predictive ability of
the concept embeddings and (2) the clustering consistency of the
embeddings when the label granularity was varied (Supplemen-
tary Note 5).

To evaluate the disentanglement performance of the proposed
approach, scDisInFact was selected as the baseline model because it
uniquely maintains a single-cell resolution in concept representation
tasks. Most existing disentanglement models rely on latent optimisa-
tion, wherein cells sharing the same concept label are represented by
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schematic diagramof the disentanglement representation for the cells in CausCell.
Each cell can be represented as multi-concept embeddings. c The schematic dia-
gram of counterfactual generation in CausCell. CausCell can generate new single-
cell omics data for the unseen concept combinations. Credit: all of these concept-
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identical concept representations12. These approaches compromise
the single-cell resolution, thereby hindering the disentanglement
performance assessment. Preserving concept representations at the
single-cell level is crucial, as doing so captures the heterogeneity
inherentwithin cell populations. For example, within the T-cell lineage,
distinct subtypes, such as exhausted T cells and effector T cells, exhibit
unique functional states. Utilising a uniform representation for all
T cells would obscure these subtle biological distinctions. Our results
showed that CausCell outperformed scDisInFact in terms of various
predictive metrics, including accuracy, precision, weighted F1 scores
and weighted recall scores (Fig. 2c, d and Supplementary Figs. 2–5). In
addition, we benchmarked CausCell against a multi-task baseline

model. For a fair comparison, we used the same multi-classifier archi-
tecture employed in CausCell. In this baseline model, each cell’s gene
expression was the input, and each cell was represented by a single
compressed embedding, which was then fed into the multi-task clas-
sifier. Our results show that CausCell also outperforms this baseline
model, highlighting the effectiveness of representing cell with multi-
concept embeddings (Supplementary Figs. 6 and 7).

To evaluate the concept embedding generalisation capabilities of
the models, we varied the granularity of their concept labels by
training the models on coarse-grained cell type information and sub-
sequently assessing their performance in terms of fine-grained cell
subtype consistency (Supplementary Note 6). This task is challenging

a

c ID

0.0

0.2

0.4

0.6

A
C

C

0.0

0.2

0.4

0.6
P

re
ci

si
o
n

0.0

0.2

0.4

0.6

R
ec

al
l

0.0

0.2

0.4

0.6

F
1

Model

scDisInFact

CausCell

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

d OOD

0.0

0.2

0.4

0.6

0.8

A
C

C

0.0

0.2

0.4

0.6

0.8

P
re

ci
si

o
n

0.0

0.2

0.4

0.6

0.8
R

ec
al

l

0.0

0.2

0.4

0.6

0.8

F
1

Model

scDisInFact

CausCell

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

Batch

Cancerty
pe

Cellty
pe

Response

Treatm
ent

e fID OOD

0.0

0.2

0.4

A
R

I

0.0

0.2

0.4

0.6

N
M

I

Model

scDisInFact

CausCell

    
 ID

OOD ID OODUmap 1

U
m

ap
 2

Coarse-grained cell type

Umap 1

U
m

ap
 2

Fine-grained  cell type

Umap 1

U
m

ap
 2

Coarse-grained cell type

Umap 1

U
m

ap
 2

Fine-grained cell type

Treatment

Celltype

Cancertype

Response

Batch

Unexplained

ICI_Response b

In-distribution splitting (ID)
Training set Testing set

Concept 1

Concept 2

Concept labels

Experimental setting 1

Out-of-distribution splitting (OOD)
Training set Testing set

Concept 1

Concept 2

Concept labels

Experimental setting 2

Fig. 2 | The disentanglement performance of different models in ICI_response
dataset. a. The causal structure of various concepts in the ICI_Response dataset.
b The two experimental settings for benchmarking the disentanglement and
reconstruction capabilities of the tested model. c The results of a disentanglement
performance comparison conducted under experimental setting 1 (ID) for each
concept contained in the ICI_response dataset. d The results of a disentanglement
performance comparison conducted under experimental setting 2 (OOD) for each
concept contained in the ICI_response dataset. e UMAPs of the cell type embed-
dings produced with coarse-grained and fine-grained cell type annotations across

the two experimental settings. Here, each cell was represented by its cell type-
associated concept embedding. fNMI and ARImetrics attainedby differentmodels
for evaluating their fine-grained geometric property preservation capabilities
across the two experimental settings. For all the bar charts, the data are presented
as mean values, with each error bar representing the standard deviation based on
n = 5 (fivefold cross-validation). Source data are provided as a Source Data file.
Credit: all of these concept-related icons in (b), except for cell icons, https://smart.
servier.com/.

Article https://doi.org/10.1038/s41467-025-62008-1

Nature Communications |         (2025) 16:6775 4

https://smart.servier.com/
https://smart.servier.com/
www.nature.com/naturecommunications


because it requires the model to preserve the underlying fine-grained
geometry of the cells, despite being trained only on coarse labels. This
test assesses the model’s ability to retain subtle biological distinctions
and ensure meaningful separations between cell subtypes. CausCell
also demonstrated superior performance across several clustering
consistencymetrics, such as the normalisedmutual information (NMI)
and adjusted Rand index (ARI) scores (Fig. 2e, f and Supplementary
Note 7). This result highlights the potential of CausCell in capturing
fine-grained structures in the concept embedding space, even when
trained with coarse-grained labels.

To evaluate CausCell’s ability to preserve biological signals while
mitigating batch effects –modelled as an independent concept in our
causal framework –we quantified performance using two key metrics:
biological conservation and batch correction scores (calculated via the
scIB21 benchmarking toolkit). We tested the model on three datasets
(Immune_atlas, ICI_response and Limb_development dataset), all of
which include explicit batch annotations. When benchmarked against
scDisInFact, CausCell’s concept embedding demonstrated superior
biological signal preservation and stronger batch effect separation
(Supplementary Figs. 8–13). Our results suggest that CausCell’s con-
cept embeddings can preserve more biological signals while more
effectively separating batch effects compared to the existing
disentanglement model.

Evaluation of CausCell on reconstruction performance
To evaluate the reconstruction performance of the models, we defined
three key metric categories to assess the consistency between the
generated single-cell data with the realistic single-cell data distribution:
(1) Trend matching, (2) Geometric structure consistency, and (3) Fine-
grained score. These metrics were selected to capture different aspects
of the quality of the generated data. Specifically, for the trend matching
category, we used the Pearson correlation coefficient (PCC) and mean
squared error (MSE) to measure the consistency of the overall trends
between the generated data and the original data, which are commonly
used in single-cell data evaluation. PCC quantifies the linear relationship
between trends, while MSE provides a measure of the average squared
difference. In the geometric structure consistency category, Normalised
mutual information (NMI) and the Adjusted rand index (ARI) were
employed to assess the preservation of geometric structures. These two
metrics evaluate how well the clusters of the generated cells align with
the clusters of the realistic cells, which are essential for ensuring that the
generated data preserves the inherent grouping structures that is vital in
single-cell analysis. Then, we introduced a fine-grained score to evaluate
the maintenance of marker genes in the generated cells. This score is
critical for assessing the biological relevance of the generated data, as
marker genes are key indicators of cell identity and functional state.
Ensuring that these genes are preserved in the generated data helps
validate the biological accuracy and utility of the model in representing
real cellular behaviours.

Then, CausCell was benchmarked against six baseline models,
including four mainstream disentanglement-based models (Biolord3,
scDisInFact9, CPA11 and MichiGAN10) and two generative models with-
out disentanglement (scVI22 and scGen23) across all the above evalua-
tion metrics (Fig. 3a). Theoretically, a trade-off exists between
disentanglement and reconstruction performance in VAE-based
models24,25. The regularisation term in its loss function, such as the
KL divergence, promotes latent concept independence but can reduce
reconstruction accuracy, as it forces themodel to separate factors that
are often dependent in real data. CausCell can mitigate this trade-off
through three strategies: (1) causal structure constraints, which ensure
dependencies between concepts, (2) supervised constraints, which
guide the model to learn meaningful, biologically relevant concept
embeddings, and (3) cross-attention mechanism, which provides an
effective inductive bias for disentanglement in the diffusion model26.
Benefit from these strategies, our results demonstrated that CausCell

not only surpassed all disentanglement-based models but also
achieved reconstruction performance that was on parwith or superior
to that of the mainstream generative models (Fig. 3b and Supple-
mentary Figs. 2–5). The exceptional performance of CausCell in both
disentanglement and reconstruction tasks provided a solid foundation
for various downstream analyses. These included generating cells that
adhered to causal structures and producing reliable cell data, thereby
facilitating the discovery of biological insights.

Counterfactual generation and causal consistency in CausCell
Counterfactual generation plays a critical role in generating simulated
versions of single-cell data by intervening in one or several concepts,
and it aims to investigate how scientific conclusions change and
explore the reasons behind these changes, presenting to be an
important task to build a virtual cell4 (Fig. 4a). However, the existing
disentanglement models exhibit a critical limitation because they
intervene in concepts without considering their causal relationships
with other concepts, resulting in the generation of unrealistic or
erroneous samples. To illustrate this point, we compared the quality of
the samples generated by CausCell and a modified version, CausCel-
l_IND,which lacks the causal structure and treats concept relationships
as independent by removing the SCM layer from the model (Fig. 4b).
We used the Spatiotemporally_liver dataset18, which comes from a
study which investigate the host and parasite temporal expression
programmes after injection of Plasmodium at single-cell resolution.
This dataset includes the “Time” concept, indicating the time elapsed
after injection with Plasmodium; the “Inject” concept, indicating whe-
ther the hostwere injectedwith Plasmodium; and the “Infect” concept,
indicating whether the host cells were infected. In addition, the PBA-
GenesScore, proposed in the original study, was used to quantify the
infection status of cells.

We applied both CausCell and CausCell_IND to this dataset and
using the “Control” cells (i.e., thosewithout Plasmodium injection) as the
basis for counterfactual generation. Specifically, we performed inter-
ventions on the “Inject,” “Time,” and “Infect” concepts by modifying
their concept labels and generating cells. We then assessed the infection
status of these generated cells, quantified by their PBAGenesScore18

values (Supplementary Note 8). In the case of CausCell_IND, which lacks
causal structure, we observed that the cells generated with the “Inject”
intervention presented the highest PBAGenesScore values across all
timepoints, regardless ofwhether the cellswere infected, evenwhen the
time value was set to 0 (Fig. 4c and Supplementary Fig. 14). This
unrealistic behaviour highlighted the limitation of ignoring causal
dependencies among concepts. In contrast, CausCell by incorporating
the causal structure mitigate this phenomenon, allowing the model to
generatemore realistic samples thatwere consistentwith theunderlying
causal relationships, where the injected and infected cells presented
higher scores than other conditions did (Fig. 4d and Supplementary
Fig. 14). These results demonstrate the CausCell can enhance the plau-
sibility and consistency of the counterfactual generation process by
aligning with the underlying causal structure.

Revealing biological insights from small data by counterfactual
generation with CausCell
Single-cell data are often confounded by latent concepts, which
may obscure critical biological signals, especially when the sample
size is small. As a result, wet-lab experiments typically require large
sample sizes and significant costs for high-throughput sequencing.
The controllable counterfactual generation process conducted by
CausCell offers a promising solution for augmenting data when the
number of data samples is small. To illustrate this point, we analysed
another spatial-temporal dataset, i.e., the mouse ageing dataset
(MERFISH_brain)17, which includes 3 mice aged 4 weeks (4wk), 3 mice
aged 24 weeks (24wk), and 5 mice aged 90 weeks (90wk). A previous
study17 revealed that the expressions of 3 genes in oligodendrocytes

Article https://doi.org/10.1038/s41467-025-62008-1

Nature Communications |         (2025) 16:6775 5

www.nature.com/naturecommunications


(Oligo), 2 genes inmicroglia (Micro), 2 genes in astrocytes (Astro), and
1 gene in endothelial cells (Endo) increased with age, whereas the
expression of one gene (Gpc5) in Astro decreased. However, when the
sample sizes were reduced (by selecting only 2 mice with the highest
cell counts from each age group), these gene expression trends were
no longer observed (Fig. 5a and Supplementary Fig. 15).

We subsequently used this smaller dataset to train CausCell and
performed controllable counterfactual generation on the 4-week-old
mice by intervening in the age concept to simulate mice at 24 and 90
weeks of age. By using these generated cells, we replicated the analysis
and found that 6 out of the 9 genes presented the same expression
trends as previous study17 (Fig. 5b and Supplementary Fig. 15). In
addition, the abundance of cells with high degrees of expression for 2
of the remaining 3 genes also increased (Supplementary Fig. 16). To
further illustrate the robustness of model to individual differences, we
repeated the analysis using 2 mice with lowest cell counts from each
group – a more challenging scenario. Despite the further reduced
sample size, 5 out of 9 genes retained consistent expression trends
with the previous study (Supplementary Fig. 17).

Furthermore, we statistically analysed the number of age-related
differential genes contained in different cell types across various spatial
domains, which yielded results similar to those of a previous study17

(Supplementary Fig. 18 and Supplementary Note 9). Notably, we
obtained a new finding: the age-upregulated genes in Micro were enri-
ched in the striatumdomain, which has never been reported in previous
studies17. A GO enrichment analysis27 revealed that these age-related,
upregulated genes were predominantly involved in the regulation of
adaptive immunity, particularly pathways related to T cell activation,
differentiation, and cell–cell adhesion (Fig. 5c and Supplementary
Note 10). Notably, genes such as Apln, C4b, Cd47, Cd74, Il2ra,Gata3, and
Lilrb4a were elevated with age, indicating that aging Micro in the stria-
tum adopt a complex, mixed phenotype. This phenotype is char-
acterised by enhanced capacity to recruit and activate peripheral T cells,

drive neuroinflammatory responses, and simultaneously suppress pro-
tective Type 2 immune response28–31. Given that neuroinflammation
increases risks to neurodegenerative diseases32,33, and the Type 2
immunity plays a crucial role in mitigating aging-related decline34, these
findings suggest that striatal Micro may contribute to brain aging
through a multifaceted and region-specific immune remodelling.

We then counted the number of enriched pathways for each gene
and identified Lilrb4a as the gene with the most enriched pathways,
including T-cell activation, leucocyte adhesion and type 2 immune
response. Further analysis showed its expression increases with age in
almost all glial cells, which were not highlighted in earlier work and
couldnot be identified in the original data (Fig. 5d, e). Although LILRB4,
the homologue of Lilrb4a, is widely studied as an immunosuppressive
receptor in cancer research35, recent study36 have shown that ApoE
proteinwithin amyloid plaques canbind to LILRB4 onMicro, leading to
Micro inactivation. Targeting LILRB4 has been shown to reduce the
extracellular amyloid plaque burden and alleviate neuronal dystrophy.
In addition, its family gene LilrB3 can specifically bind to APOE4 and
activatemicroglia into a proinflammatory state37. This finding suggests
the potential role of Lilrb4a in influencing brain ageing by regulating
the immune states of glial cells and participating in processes such as
binding to amyloid plaques. Finally, we assessed the expression of
Lilrb4a across different cell types and spatial domains and found that
its expression increased with age in both neuronal and nonneuronal
cells, with spatial specificity (Fig. 5f, g). These findings suggest that
Lilrb4amay be a common regulator of ageing across various cell types
in the brains of mice. These results show the potential of CausCell on
revealing biological insights even from small and noisy single-cell
datasets via controllable counterfactual generation.

Discussion
In conclusion, we presented comprehensive evaluation metrics that
demonstrate the superior disentanglement and reconstruction
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performance ofCausCell in single-cell disentanglement representation
tasks. In addition, by leveraging causal structures and diffusion mod-
els, CausCell has the potential to generate more realistic samples and
uncover meaningful biological insights through the generation of
counterfactuals, particularly when the given sample size is small. The
primary contribution of this work lies in the first proposal to efficient
integration of causal structures in single-cell representation learning.

The current version of CausCell is that it relies on a predefined
causal structure to guide the disentanglement process and demon-
strate the benefits of incorporating causality into single-cell repre-
sentation learning. However, in practical scenarios, the true causal
relationships between biological concepts are often unknown. As the
number of concepts increases, manually constructing a causal graph
becomes increasingly time-consuming. To address this, causal dis-
covery algorithms, which aim to learn causal structure directly from
data, offer a potential solution. For example, the Peter-Clark (PC)
algorithm38, one of the most classical approaches, begins with obser-
vational data, constructs a fully connected undirected graph, and
iteratively removes edges based on conditional independence tests to
produce a sparse causal graph. However, the PC algorithm cannot
always determine the direction of causal links, often resulting in par-
tially oriented edges. Other advanced causal discovery approaches,
such as Greedy Equivalence Search39 or Bayesian network-based
approaches40,41, may suffer from local optima, while models like the
Linear Non-Gaussian Acyclic Model (LiNGAM)42 require strong

assumptions, such as linearity and non-Gaussian distribution. Given
these challenges, a promising future direction of CausCell is to adopt a
hybrid approach: integrating automated causal discoverywith domain
expert refinement, where learned causal graphs are further reviewed
and adjusted by biological experts to ensure alignmentwith real-world
knowledge. This would allow CausCell to remain both data-driven and
biologically grounded, enhancing its robustness and applicability
across different single-cell omics datasets.

In addition, other future extensions of CausCell are expected: (1)
While our focus was on evaluating the performance of the disen-
tanglement model and demonstrating the benefits of the causal prior
in the counterfactual generation task, many potential applications of
thismodel remain tobe explored. The currentCausCell framework can
be naturally extended to model more modalities in single-cell data,
even a foundational disentanglementmodel in the future. (2) Although
CausCell exhibited superior performance in preserving the underlying
fine-grained geometry of the cells, its overall performance remains
relatively low. Achieving more effective disentanglement still further
dedicated model design to address this challenging task.

Methods
Overview of CausCell
Consider the input data a single-cell sequencing dataset of N cells
D= f xi, yi

� �gNi = 1, where xi represents the gene expression vector for cell
i and yi consists of M observed concept labels for that cell. The
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disentanglement process involves learning a series of latent concept
embeddings zi = oi1,o

i
2, . . . ,o

i
m,u

i
� �

, where each oij is a low-dimensional
vector corresponding to the label yij, and ui serves as an extra captured
embedding of the unobserved concepts. These embeddings zi are
then employed during the generative process to achieve a better
reconstruction effect. Previously, VAEs were implemented as gen-
erative modules, but they tend to produce lower-quality samples,
especially when addressing high-dimensional data such as high-
resolution image data43. In contrast, diffusion models have been
demonstrated to produce high-quality samples by generating samples
in a step-by-stepmanner. However, their lack of an interpretable latent
spacemakes them less suitable for disentanglement and explainability
purposes. To address these issues, we propose CausCell to learn a
causal disentanglement module F for concept embeddings and then
integrate them into the diffusion process G. Both modules are incor-
porated into a unified network, which is end-to-end trained via a newly
derived ELBO loss.

Causal disentanglement module F
The goal is to learn causal representations of concepts zi. The disen-
tanglement learningmethods used in previous single-cell studies were
constrained by the assumption of concept independence. However,
concepts are not necessarily independent in practice. Instead, an
underlying causal structure is present and renders these concepts
dependent. Therefore, we introduce an SCM layer to construct causal
relationships among the concepts. In this study, the causal structure
between concepts is predefined. Specifically, the observed concepts oij
are connected through a DAG, which is represented by an adjacency
matrix A. We apply a linear version of the SCM, which satisfies the
following equation:

z =ATz + ϵ= I � AT
� ��1

ε, ε � N 0, Ið Þ ð1Þ

where ε represents the exogenous variables and z denotes the endo-
genous variables for capturing the latent concepts. We first learn a
function (amultilayer perceptron (MLP)) for extracting the exogenous
concept embeddings ε from the gene expression x0 and then leverage
ε to transform it into z via a closed-form solution.

To ensure the semanticmeanings of the concept embeddings and
to enforce causal disentanglement, we employ m discriminators
D= fD1,D2, . . . ,Dmg, each of which corresponds to an observed con-
cept. Thesediscriminators are trained to predict the observed concept
labels from the embeddings oij via the cross-entropy loss (supervised
constraints), while encouraging independence between the observed
concepts o and the unexplained concept u:

LF =Ex0

Xm
i = 1

L Di oi
� �

, yi
� ��Xm

i= 1

L Di uð Þ, yi
� �" #

ð2Þ

where L is the cross-entropy loss function.

Generative module G
We use a diffusion model as our generative backbone in CausCell
because of its powerful generative capabilities. A diffusion model
defines a latent variable distribution p x0:T

� �
over a gene expression

vector x0 sampled from a single-cell distribution, as well as noisy gene
expression vectors x1:T : = x1, x2, . . . , xT that represent a gradual
transformation of x0 into random Gaussian noise xT . The reverse dif-
fusion process is modelled as a Markov chain:

p x0:T

� �
=p xT
� �

ΠT�1
t =0pθ xt jxxt + 1

� �
ð3Þ

where pθ is a learned denoising distribution parameterised by a neural
network with a parameter θ.

The forward diffusion process q adds Gaussian noise to x0 at each
step:

q x1:T jx0

� �
=ΠT

t = 1q xt jxt�1

� � ð4Þ

with a predefinednoise schedule fαtgTt = 1. Themarginal distribution can
be directly computed as shown below:

q xt jx0

� �
=N xt ;

ffiffiffi
�α

p
x0, 1� �αð ÞI

� �
ð5Þ

where �α =ΠT
t = 1αt .

The denoising network gθ in the diffusion model is an ϵ predictor
inmost cases. However, single-cell data often exhibit extreme sparsity,
and the corrupted input at a time step t ismostly pure noise. Under this
setting, the model is likely to learn to reverse the noise schedule
instead of the true data posterior. Therefore, we adopt the
x0-predictor

44 in this study, and a simplified training loss for the gen-
erative module is defined as follows:

LG =Ex0, z, t
jjx0 � gθ

ffiffiffiffiffi
�αt

p
x0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ξ , z, t

� �
jj
2

� �
ð6Þ

where ξ is the noise sampled from N � 0, Ið Þ and t is the time step.

Integration causal disentanglement module F with a diffusion
process G
The causal disentanglement module takes a single-cell expression
profile as its input to obtain a set of concept embeddings zi under the
guarantee of a causal structure. We then use these concept embed-
dings as the condition information for the generative module. Speci-
fically, we incorporate these concept embeddings into the reverse
diffusion process of the generative model through a cross-attention
mechanism. By conditioning this process on the concept embeddings,
the model can generate gene expression profiles that are consistent
with specific biological concepts, allowing for a controlled and inter-
pretable data generation procedure. The cross-attention mechanism45

facilitates this conditioning task by enabling themodel to focus on the
relevant parts of the concept embeddings during the generation
phase. The noisy input xt 2 Rdx (i.e., corrupted gene expression at
timestep t) is projected to a query vector Q, and the concept embed-
ding z 2 Rn×dz (i.e., concept embeddings of sizen) are projected to key
and value matrices K and V, respectively:

Q=WQxt ,K =WKz,V =WVz ð7Þ

The attention output is then computed as:

Attention Q,K,Vð Þ= softmax
QKTffiffiffiffiffiffi
dh

p
 !

� V ð8Þ

In multi-head attention, this is extended over multiple parallel
attention heads and followedby a feed-forwardprojectionWo 2 RH ×dx

(H =m×dh):

MultiHead xt , z
� �

=Concat head1, . . . , headm

� �
Wo ð9Þ

Each head is computed as above, with different learned projection
weights. dh is the scaling vector, which is used to ensure numerical
stability in the softmax function, and its value is set as the dimensionality
of the head. Then, this multi-head attention output is used to guide the
denoising step, allowing themodel to generate gene expression profiles
that are consistent with the specific concept embeddings.
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Evidence lower bound of CausCell
We formulate the training objective via a variational inference
approach to derive the ELBO for optimising themodel parameters. We
treat both z and ϵ as latent variables. Consider the following condi-
tional generative model:

p x, z, ϵ jyð Þ=p xjz, ϵ, yð Þp ϵ, zjyð Þ ð10Þ

We define pϵ ϵð Þ=N 0, Ið Þ and the joint prior p ϵ, z, j, yð Þ for latent
variables z and ϵ as follows14:

p ϵ, zjyð Þ=pϵ ϵð Þp zjyð Þ ð11Þ

We define CausCell as a causal disentanglement-based diffusion
model represented by the conditional probability distribution
p x0:T , z, ϵjy
� �

, which can be factorised as follows:

p x0:T , z, ϵjy
� �

=p xT

� �
p z, ϵjyð ÞΠT

t = 1pθ xt�1jxt , z, ϵ, y
� � ð12Þ

This model implements a reverse diffusion process
pθ xt�1jxt , z, ϵ, y
� �

over x0:T , which is conditioned on the endogenous
variables z, the exogenous variables ϵ and the concept labels y. All of these
variables are independentof thediffusionprocessbecause these variables
are properties of the input, not control variables of the diffusion process.

To optimise themodel parameters, we apply variational inference
twice to impose a variational lower bound on the conditional log-
likelihood of the concept labels logp xo, j, y

� �
:

Proposition 1: The ELBO of CausCell can be derived as follows
(Proof: Supplementary Note 11):

logp x0jy
� �

≥ ELBO

= � KL qϕ z, ϵjx0, y
� �jjp z, ϵjyð Þ

� �
� KL q xT x0

� �jjp xT
� �� �

+Eq x1 jx0ð Þ Eqϕ z, ϵjx0, yð Þ p x0jx1, z, ϵ, y
� �	 
h i

�
XT
t =2

Eq xt jx0ð Þ Eqϕ z, ϵjx0, yð Þ KLðqðxt�1jxt , x0Þjp xt�1jxt , z, ϵ, y
� �	 
h i

ð13Þ

The above equation is intractable in general. Given an SCM with
latent exogenous independent variables ϵ and the latent endogenous
variables z, we have z =ATz + ϵ= ðI � AT Þ�1

ϵ. For simplicity, we denote
C = ðI � AT Þ�1

. Leveraging the one-to-one correspondence between ϵ
and z, we can simplify the variational posterior as follows:

qϕ ϵ, zjx0, y
� �

=qϕ ϵjx, yð Þδ z =Cϵð Þ
=qϕ zjx, yð Þδ ϵ=C�1z

� � ð14Þ

where δ �ð Þ is the Dirac delta function. According to the model assump-
tions introduced above, we can further simplify the ELBO as follows:

Proposition 2: The ELBO of CausCell can be rewritten as follows
(Proof: Supplementary Note 12):

ELBO= � KL qϕ ϵjx0, y
� �jjpϵ ϵð Þ

� �
� KL qϕ zjx0, y

� �jjp zð Þ
� �

+ Eqϕ zjx, yð Þ p yjzð Þ½ � � Eqϕ zjx0, yð Þ p yð Þ½ � � KL q xT jx0
� �jjp xT

� �� �
+Eq x1 jx0ð Þ Eqϕ zjx0, yð Þ p x0jx1, z

� �	 
h i

�
XT
t = 2

Eq xt jx0ð Þ Eqϕ zjx0, yð Þ KL qðxt�1jxt , x0Þjjp xt�1jxt , z
� ��	 
h i

ð15Þ

In practical scenarios, the latent factors z consist of observed
variables o and unobserved variables u such that z = o,u½ �. Assuming
independence between o and u, we augment the ELBO with a term
�γ
Pm

i KL qϕ oi,u
� �jjqϕ oi

� �
qϕ uð Þ

� �
that encourages this independence,

and it is implemented via an adversarial debiasing strategy46 using
discriminators. Therefore, the overall training objective is tomaximise
the ELBO, leading to the following combined loss function (Supple-
mentary Note 14):

L = LF + LG +KL qϕðϵ
��x0Þ

��jpϵ ϵð Þ
� �

+KL qϕðu
��x0Þ

��jp uð Þ
� �

+KL qϕ o
��x0, y� ���jp oð Þ

� � ð16Þ

Benefit of disentanglement in the diffusion model
We show that the reverse diffusion process introduces an information
bottleneck effect, promoting disentanglement by dynamically allo-
cating information to the latent concepts as the time steps increases26.
This is reflected in the ELBO term for the reverse diffusion process,
which can be formulated as follows.

Proposition 3: The reverse diffusion process term in the ELBO can
be rewritten as shown below (Proof: Supplementary Note 13):

XT
t = 2

Eq xt jx0ð Þ Eqϕ o,ujx0ð Þ KLðqðxt�1jxt , x0Þjp xt�1jxt , o,u
� �	 
h i

=
XT
t = 2

Eq xt jx0ð Þ Eqϕðo,ujx0Þ Ct � KLðpðxt�1jxt ,o,uÞjjpðxt�1ÞÞÞ
	 
h i ð17Þ

where Ct denotes the Kullback-Leibler (KL) divergence between the
determined distribution q xt�1jxt , x0

� �
and the standard Gaussian

distribution p xt�1

� �
: =N 0, Ið Þ.

Therefore, optimising the model encourages the KL divergence
KL p xt�1jxt ,o,u

� �jjp xt�1

� �� �
to approximate a constant Ct , effectively

regulating the information content of xt�1. The larger the KL diver-
gence is, the more information xt�1 carries. By promoting
KL p xt�1jxt ,o,u

� �jjp xt�1

� �� �
to approximate Ct , an information bot-

tleneck effect is added to it and thus transferred to the latent factors
o,u. Therefore, the diffusion model has a natural information bottle-
neck and is a good inductive bias for disentanglement representation
purposes26. As different concepts to be disentangled may contain
different amounts of information, the diffusionmodel candynamically
allocate this information to the latent concepts in the reverse diffusion
step, where the information decreases as the number of time steps
increases. This optimisation objective is then similar to that of
AnnealVAE47.

Single-cell counterfactual generation via the do operator
CausCell performs interventions on individual cells bymodifying their
associated concepts, enabling the generation of counterfactual gene
expression profiles. The causal disentanglement module of CausCell
maps the concept representations of all N cells to a concept repre-
sentation space Ω. In this space, each concept oi has a representation
for every cell, resulting in a total of N representations per concept. For
each concept oi, there exist m distinct concept labels labelled
a1,a2, . . . ,am, each of which is associated with a subset of cells such
that the total number of cells across all concept labels equals N.

To perform a concept intervention on a specific cell c that ori-
ginally had a concept label of a1 for concept oi, we apply the do
operator to set the concept to a new value ak , which is denoted as
do oi =ak

� �
. This intervention is implemented in three steps. (1) Ran-

domly select a concept representation from the set of representations
associatedwith the concept label ak for the concept oi. (2) Replace the
original concept representation of the cell c with the selected repre-
sentation. (3) Keep the representations of all other concepts oj≠i,
including any unexplained concepts, unchanged for the cell c. The
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postintervention distribution is formally represented as follows:

P x0jdo oi =ak

� �
, oj≠i =a

c
j ,u=u

c
� �

ð18Þ

where oj≠i =a
c
j denotes that all other concepts oj (for j≠i) retain their

original concept labels ac
j , as in the original cell c. Utilising these

intervened concept representations, the generative diffusion module
of CausCell generates a counterfactual gene expression profile ĉ by
sampling from the postintervention distribution:

ĉ � P x0jdo oi =ak

� �
,oj≠i =a

c
j ,u=u

c
� �

ð19Þ

This process allowsus to simulate how thegene expressionprofile
of a cell cwould appear under an interventiondo oi =ak

� �
, isolating the

causal effect of changing concept oi from a1 to ak while controlling for
all other concepts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets utilised by CausCell for training, testing, and application
examples were obtained from publicly accessible databases. Specifi-
cally, the Immun_atlas dataset16 is available at [https://www.
tissueimmunecellatlas.org], the MERFISH_Brain dataset17 at [https://
cellxgene.cziscience.com/collections/31937775-0602-4e52-a799-
b6acdd2bac2e], and the Spatiotemporally_Liver dataset18 at [https://
zenodo.org/records/7081863]. The ICI_Response dataset19 is available
in the Gene Expression Omnibus (GEO) under accession number
GSE123814, while the Limb_development dataset20 is available from
ArrayExpress under accession ID E-MTAB−10514. These benchmark
datasets can also be obtained from Zenodo [https://zenodo.org/
records/15242547]48. Source data are provided in this paper.

Code availability
CausCell is publicly available on GitHub [https://github.com/bm2-lab/
CausCell], under the GPL-3.0 license, together with a usage doc-
umentation and comprehensive example testing datasets. The specific
version of the code associated with the publication is archived in
Zenodo and is accessible via [https://zenodo.org/records/15242547]48.
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