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A data-to-forecast machine learning system
for global weather

Xiuyu Sun 1,12, Xiaohui Zhong 2,12, Xiaoze Xu 1,3,4, Yuanqing Huang1,
Hao Li 1,2 , J. DavidNeelin 5 , DeliangChen 6,7, Jie Feng1,8,Wei Han 4 ,
Libo Wu 1,9,10,11 & Yuan Qi1,2

Weather forecasting traditionally relies on numerical weather prediction
(NWP) systems that integrate global observations, data assimilation (DA), and
physics-based models. However, further advances are increasingly con-
strained by high computational costs, the underutilization of vast observa-
tional datasets, and challenges in obtaining finer resolution. Recent advances
in machine learning present a promising alternative, but still depend on the
initial conditions generated by NWP systems. Here, we introduce FuXi
Weather, a machine learning-based global forecasting system that assimilates
multi-satellite data and is capable of cycling DA and forecasting. FuXi Weather
generates reliable 10-day forecasts at 0.25° resolution using fewer observa-
tions than conventional NWP systems. It demonstrates the value of back-
ground forecasts in constraining the analysis during DA. FuXi Weather
outperforms the European Centre for Medium-RangeWeather Forecasts high-
resolution forecasts beyond day one in observation-sparse regions such as
central Africa, highlighting its potential to improve forecasts where observa-
tional infrastructure is limited.

Accurate weather forecasting is essential for informed decision-
making and serves as the foundation of early warning systems1,2 that
help to mitigate the impacts of extremeweather events and save lives.
Since the first successful numerical weather prediction (NWP)3 using
the ENIAC computer in 19504, forecast accuracy has steadily
improved5, driven by advances in data assimilation (DA), spatial reso-
lution, computational power, observational infrastructure, and physi-
cal parameterizations. However, substantial global disparities remain,
with wealthier nations benefiting from better resources and more
accurate forecasting6, while many low-income countries, particularly
in Africa, continue to struggle with forecasts only marginally better

than climatology7. These disparities are especially concerning as many
low-income countries are particularly vulnerable to the impacts of
climate change and extreme weather8.

Expanding observational infrastructure couldhelp to alleviate this
issue, but the financial investment required is prohibitive for many
poorer nations. Additionally, the further enhancement of traditional
NWP systems is increasingly challenging owing to high computational
costs and the complexities of parallelizing models on modern
supercomputers9. Meanwhile, recent advances in machine learning
present a promising alternative, offering more efficient and accurate
forecasts using the same initial conditions as traditional NWP9,10. State-
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of-the-art machine learning models, such as Pangu-Weather, Graph-
Cast, FuXi, and AIFS11–15, have demonstrated forecasting skills that rival
or even surpass traditional high-resolution forecasts (HRES) from the
European Centre for Medium-Range Weather Forecasts (ECMWF)16.
While early machine learning applications focused primarily on
deterministic forecasts, recent developments have shown their
potential for ensemble forecasting as well17–19. Nevertheless, NWP
models and DA systems remain indispensable because they provide
the initial conditions necessary for both traditional and machine
learning forecasting models20: this raises the question of whether
machine learning-based DA could further improve forecast accuracy.

DA is a complex, nonlinear process that incorporates vast, multi-
source, and multi-resolution observational data, often plagued by
noise andmissing values21, involving challenges such as distinguishing
the effects of clouds on satellite radiance from those of temperature
and moisture, while ensuring consistency with dynamic models to
minimize error growth. Leading weather centers employ sophisticated
DAmethods22,23, such as hybrid four-dimensional ensemble-variational
approaches24–26, which leverage ensembles of short-range forecasts to
incorporate flow-dependent background error covariances and
enhance forecast accuracy27–29. These methods, though effective, are
computationally expensive and typically use only 5%–10%5 of available
observational data to deliver timely analyses. This limited usage is
partly due to constraints related to observation error correlations.
Although progress has been made in all-sky radiance assimilation for
microwave sounders, challenges remain in fully leveraging satellite
data across all grids, surfaces, and channels. With the volume of
observational data projected to exceed 100 terabytes per day in the
coming decade30 and higher model resolutions further exacerbating
computational demands31, more efficient DA systems are urgently
required32.

The mathematical similarities between machine learning and DA,
particularly in variational methods, have inspired efforts to improve
DA efficiency through machine learning33. Early attempts focused on
simplified dynamical systems, such as the Lorenz6334,35 and
Lorenz9636,37 models, which are far less complex than NWP models.
However, extending these approaches to operational NWP models is
challenging owing to the markedly higher dimensionality of such
models (on the order of 109)38. Recent studies have demonstrated the
potential of machine learning for specific tasks within the DA work-
flow, such as developing linear and adjoint models for parameteriza-
tions through automatic differentiation39. The rise ofmachine learning
forecasting models40 has reignited interest in developing fully inte-
gratedmachine learning-basedDA frameworks for end-to-endweather
prediction.

One such attempt is FengWu-4DVar41, which uses a simplified
FengWu42 model to assimilate ERA5 data43. However, its reliance on
simulated observations and lower dimensionality limits its effective-
ness in real-world scenarios. Aardvark Weather44 processes raw
observations for forecasts but falls short of the accuracy achieved by
ECMWF HRES. These cases highlight the difficulties in developing
machine learning-based DA systems for real-world forecasts using
actual observational data. FuXi-DA45, a machine learning-based DA
framework, has shown promise by assimilating raw Fengyun-4B satel-
lite data alongside background forecasts, but its limited spatial cov-
erage constrains its global and cycling DA capabilities.

To address these challenges, we present FuXi Weather, an end-to-
end machine learning-based weather forecasting system capable of
running cycling DA and forecasting every 6 h using raw observations.
FuXi Weather integrates a substantially enhanced version of FuXi-DA45

with fine-tuned FuXi. Both FuXi-DA and FuXi are trained using ERA5
reanalysis data at a spatial resolution of 0.25° as the reference. Key
updates to FuXi-DA include variable- and instrument-specific encoders
for diverse satellite data and a modified PointPillars46 approach for
processing sparse observations. The FuXi-Short model is fine-tuned

using FuXi-DA analysis for initial conditions, while a replay-based
incremental learning strategy updates FuXi-DA monthly, ensuring the
system’s stability as satellite data quality and availability evolve.

FuXi Weather assimilates raw brightness temperature data from
three polar-orbiting meteorological satellites (FengYun-3E (FY-3E),
Meteorological Operational Polar Satellite-C (Metop-C), and National
Oceanic and Atmospheric Administration (NOAA)-20), along with the
radio occultation (RO) data from the Global Navigation Satellite Sys-
tem (GNSS), across all grids, surfaces, and channels under all weather
conditions. This represents the first realization of all-grid, all-surface,
all-channel, and all-sky DA capability. FuXi Weather demonstrates
comparable 10-day forecast performance to that of ECMWF HRES,
extending the skillful lead time for key variables while using con-
siderably less observational data compared with that used by ECMWF
HRES. Furthermore, FuXi Weather consistently outperforms ECMWF
HRES in regions with sparse land-based observations, such as Africa,
demonstrating its potential to provide more accurate forecasts and
enhance climate resilience. To the best of our knowledge, FuXi
Weather is the first system to successfully perform cycling DA and
weather forecasting over a continuous 1-year testing period47. This
achievement challenges the prevailing view that standalone machine
learning-based weather forecasting systems are not viable for
operational use.

Results
FuXi Weather operates in a cycling analysis and forecasting mode,
utilizing the full range of available satellite data. Because DA is
inherently an ill-posed problem38,48 requiring background forecasts
to improve analysis accuracy, we developed a variant of FuXi-DA
without these forecasts to evaluate their contribution to the DA
process. This variant, which relies exclusively on observations,
represents a direct-from-observation prediction approach. Perfor-
mancewas assessed by comparing the accuracy of analysis fields and
forecasts globally and in specific regions such as central Africa and
northern South America, using ERA5 as the reference. The perfor-
mance of FuXi Weather was compared with that of ECMWF HRES,
which was evaluated using the time series of its 0-h lead time ana-
lysis, HRES-fc0 (see Section “Evaluation method”). This comparison
inherently favors HRES at early lead times, since by definition it
starts with a low root mean square error (RMSE) and a high anomaly
correlation coefficient (ACC). Consistent with the commonpractices
in the NWP community, FuXi Weather was also evaluated against its
analyses. Statistical significance testingwas conducted following the
methodology outlined by Geer49. Single observation tests validated
DA responses against theoretical expectations while data denial
experiments (see Supplementary Information Section 5) evaluated
the impact of excluding certain observations.

Global analysis fields
This subsection evaluates the performance of FuXi Weather analyses
and 42-h FuXi forecasts (initialized with ERA5), against ERA5 as the
reference. Figure 1 presents the globally-averaged and latitude-
weighted RMSE for two FuXi Weather configurations: one incorpor-
ating background forecasts and one without. Performance varied
markedly across different variables and pressure levels. The RMSE of
analysis fields relative to forecasts is higher at 850hPa than 300 and
500 hPa, likely owing to the lower information content from satellite
observations at lower altitudes.

For relative humidity (R), the analyses of FuXi Weather outper-
form forecasts at 300 and 500hPa, but have slightly higher RMSE
values at 850hPa. For temperature (T), geopotential (Z), and wind
components (U and V), the RMSE values are comparable to those of
forecasts at higher altitudes but were consistently higher at 850hPa.
Although satellite data primarily capture temperature and moisture
information, their assimilation also improves wind fields through the
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dynamic relationship between wind, temperature, andmoisture. Wind
can be inferred from temperature gradients (geostrophic balance) and
the movement of atmospheric constituents, such as humidity, known
as the “generalized tracer effect”23.

Incorporating background forecasts yields statistically significant
improvements in the accuracy of FuXi Weather analysis fields, as
demonstrated by systematically lower RMSE values. This highlights the
crucial role of background forecasts in DA, which is ill-posed without
prior information (as detailed in Supplementary Information Sec-
tion 9). Both configurations of FuXi Weather show similar trends over
time, but the analyses without background forecasts exhibit more
pronounced error peaks, especially when some satellite data were
missing (see Supplementary Figs. 1 and 2), underscoring the stabilizing
effect of background forecasts.

The shaded area in Fig. 1 represents variations across initialization
times; this ismore pronounced in forecasts. Forecasts initialized at00/
12 UTC consistently outperform those at 06/18 UTC, likely because the
12-h observation windows of ERA5 (09-21 UTC and 21-09 UTC)43 pro-
vide 9 h of look-ahead time for 00/12 UTCbut only 3 h for 06/18 UTC13.
In contrast, the analysis fields of FuXi Weather demonstrate more
consistent accuracy across initialization times, likely due to its fixed
8-h assimilation window, and its use of cycled background fields
initialized from previous analyses. Additional evaluations, including
the analysis activity and mean bias error (MBE), are provided in Sup-
plementary Information Section 6.

Global weather forecasts
Theprimary criterion for evaluating an end-to-endweather forecasting
system is its ability to provide reliable and accurate forecasts in a
cycling analysis and forecasting mode. This subsection evaluates the
performance of 6-h cycle forecasts generated by FuXi Weather, initi-
alized using two types of FuXi-DA analysis fields: one incorporating
background forecasts and one without. The forecasts are compared
with those from ECMWF HRES.

Figure 2 shows the globally-averaged and latitude-weighted RMSE
as a function of forecast lead times over 10 days. FuXi Weather fore-
casts are initialized using FuXi-DA analysis fields either with (red solid
and green dashed lines) or without (black lines) background forecasts.
Forecasts depicted by red and black lines are evaluated against ERA5,
while the green dashed lines represent forecasts assessed against the
FuXi-DA analyses. Statistically significant improvements in FuXi
Weather forecasts (red lines) over ECMWF HRES are indicated by red
dots, based on t-test at the 95% confidence level. When validated
against ERA5, FuXi Weather forecasts initialized with background-
inclusive analyses (red lines) consistently demonstrate lower RMSE
values than those without, aligning with results in Fig. 1. Regardless of
the evaluation reference (ERA5 or FuXi-DA analyses), the performance
gap between forecasts (red and green dashed lines) diminishes over
lead time and becomes negligible by day 10.

When evaluated against their respective analyses, both FuXi
Weather and ECMWF HRES show small initial errors. Against ERA5,

Fig. 1 | Comparison of analysis fields produced by FuXi Weather and 42-h FuXi
forecasts over a 1-year testing period from July 03, 2023 to June 30, 2024. The
time series shows the globally-averaged and latitude-weighted root mean square
error (RMSE) relative to ERA5 for: the analysis fields of FuXiWeather with (solid red
lines) and without (solid black lines) background (bg) forecasts, along with 42-h
FuXi forecasts initialized using ERA5 (dashed blue lines). The comparison includes
five variables: relative humidity (R), temperature (T), geopotential (Z), u

component ofwind (U), and v component ofwind (V), at threepressure levels (300,
500, and 850 hPa). The five rows and three columns correspond to five variables
and three pressure levels, respectively. To improve clarity, the original data are
shownwith reducedopacity, while solid lines represent smoothedvalues using a 12-
point moving average. Both FuXi Weather analyses (black and red) and 42-h FuXi
forecasts (blue) are evaluated against ERA5.

Article https://doi.org/10.1038/s41467-025-62024-1

Nature Communications |         (2025) 16:6658 3

www.nature.com/naturecommunications


FuXi Weather initially shows higher RMSE values than ECMWF HRES,
but outperforms ECMWF HRES after a lead time of 2–8 days,
depending on the variable and pressure level. For R, FuXi Weather
outperforms ECMWFHRES at lead timesof 2.00, 3.25, and2.25 days for
300, 500, and 850 hPa, respectively. For T, Z, U, and V, the critical lead
times are later owing to the lower accuracy of their corresponding
analysis fields. For Z, these times are 8.00, 7.75, and 7.50 days at 300,
500, and 850hPa, respectively. The performance discontinuity on day

4 reflects the transition between FuXi-Short and FuXi-Medium forecast
components.

Figure 3 shows similar trends for the globally-averaged and
latitude-weighted ACC. FuXi Weather forecasts initialized without
background forecasts perform worse, as expected. However, FuXi
Weather forecasts initialized with analyses incorporating background
forecasts, though initially less accurate than ECMWF HRES, improve
over time and eventually achieve higher ACC values across all

Fig. 2 | Comparison of 10-day forecast performance acrossmodels over a 1-year
testing period from July 03, 2023, to June 30, 2024. The figure presents the
globally-averaged and latitude-weighted root mean square error (RMSE) for fore-
casts generated by the FuXi model and ECMWF HRES (blue) in 10-day forecasts.
FuXi forecasts are initialized using analysis fields produced by FuXi-DA with (red
solid and green dashed lines) and without (black) background forecasts. The eva-
luation includes 5 variables: relative humidity (R), temperature (T), geopotential
(Z), u component of wind (U), and v component of wind (V), at three pressure levels
(300, 500, and 850hPa). The five rows and three columns correspond to five

variables and threepressure levels, respectively. FuXi forecasts (red andblack lines)
are verified against ERA5, and also against FuXi-DA analyses (green dashed lines).
When FuXi (green dashed lines) and ECMWF HRES (blue) forecasts are evaluated
against their respective initialization time series, they inherently exhibit lower
RMSE at early lead times. Red dots indicate time steps where FuXi Weather sig-
nificantly outperforms ECMWF HRES, based on the t-test at the 95% confidence
level. Theperformance changeonday4 arises from themodel transition fromFuXi-
Short to FuXi-Medium.
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examined variables. Using an ACC threshold of 0.6 to define a skillful
forecast, Fig. 4 compares skillful lead times. FuXi Weather extends
skillful lead times for 7 out of 15 variables,matching ECMWFHRES for6
others. For example, for Z500, FuXi Weather extends the skillful lead
time from the ECMWF HRES value of 9.25 days to 9.50 days for fore-
casts initialized with background forecasts (forecasts initialized with-
out background forecasts show a skillful lead time of only 8.25 days).
Additional forecast comparisons, including spatial RMSE distributions,
are provided in the Supplementary Information Section 7.

Forecast performance in central Africa
Operational evaluations of NWP systems routinely assess both global
and regional performancemetrics16, covering geographical areas such
as Europe, North America, East Asia, and Australia. However, forecast
accuracy tends to be lower in low-income countries, largely due to
limited investment in weather observation infrastructure. This issue is
especially concerning for many low-income countries, where agri-
culture is a major economic sector that relies heavily on accurate
weather forecasts. Climate change further exacerbates weather-

Fig. 3 | Comparison of 10-day forecast performance acrossmodels over a 1-year
testing period, spanning July 03, 2023–June 30, 2024. The figure presents the
globally-averaged and latitude-weighted anomaly correlation coefficient (ACC) for
forecasts generated by the FuXi model and ECMWF HRES in 10-day forecasts. FuXi
forecasts are initialized using analysis fields produced by FuXi-DA with (red solid
and green dashed lines) and without (black) background (bg) forecasts. The ana-
lysis includes five variables: relative humidity (RH), temperature (T), geopotential
(Z), u component of wind (U), and v component of wind (V), at three pressure levels

(300, 500, and 850hPa). FuXi forecasts (red and black lines) are verified against
ERA5, and also against FuXi-DA analyses. The five rows and three columns corre-
spond to five variables and three pressure levels, respectively. When FuXi (green
dashed lines) and ECMWF HRES (blue) forecasts are evaluated against their
respective initialization time series, they inherently exhibit higher ACC in early lead
times. Red dots indicate time steps where FuXi Weather significantly outperforms
ECMWF HRES, based on the t-test at the 95% confidence level. The performance
change on day 4 arises from themodel transition from FuXi-Short to FuXi-Medium.
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related risks, disproportionately affecting vulnerable populations with
low adaptive capacities in these countries. Therefore, improving
forecast accuracy in underserved regions, especially Africa, is crucial
for enhancing climate resilience50,51.

This subsection compares the performance of FuXi Weather and
ECMWF HRES in underserved regions, with a particular focus on cen-
tral Africa. Similar to Fig. 2, FuXi Weather forecasts are evaluated
against both ERA5 (red lines) and its analyses (green dashed lines).
Figure 5 illustrates that, when verified against their respective analyses,
FuXi Weather (green dashed lines) consistently outperforms ECMWF
HRES (blue lines) in forecasting the850hPauwind component (U850),
2-meter temperature (T2M), and mean sea level pressure (MSLP),
throughout the 10-day forecast period. When evaluated against ERA5,
FuXi Weather (red lines) has nontrivial initial error, but the magnitude
and growth of this error are sufficiently modest that ECMWF HRES—

even compared to its own analyses, so with inherently zero initial error
—exhibits larger error after two days. In particular, FuXi Weather (red
lines) achieves lower RMSE and higher ACC, with ACC values for T2M
consistently exceeding 0.6 across the 10-day forecasts, indicating
meaningful predictive skill. In contrast, ECMWFHRESmaintains skillful
T2M forecasts for approximately two days.

Forecast errors are further decomposed into systematic and
random components by calculating the MBE and the standard devia-
tion (std) of errors (STDERROR). Supplementary Fig. 22 reveals that FuXi
Weather (red lines) exhibits both lower MBE and smaller STDERROR

across all five evaluated variables: U850, 850 hPa temperature (T850),
T2M, MSLP, and total precipitation (TP). These results suggest that
FuXi Weather more effectively reduces both systematic bias and ran-
dom errors compared to ECMWF HRES, contributing to its overall
superior forecast performance. Improvements relative to HRES in TP

Fig. 4 | Skillful forecast lead time comparisons with an anomaly correlation
coefficient (ACC) value of 0.6 as the threshold. Skillful forecast lead times of
ECMWF HRES and FuXi Weather for five variables: relative humidity (R), tempera-
ture (T), geopotential (Z), u component of wind (U), and v component of wind (V),

at three pressure levels (300, 500, and 850 hPa), using all testing data over a 1-year
testing period, spanning July 03, 2023–June 30, 2024. The five rows and three
columns correspond to five variables and three pressure levels, respectively.

Central
Africa

Fig. 5 | Comparison of forecast performance over central Africa during the
1-year testing period from July 03, 2023 to June 30, 2024. Central Africa is
defined as the region spanning 15° E to 35° E in longitude and 10° N to 10° S in
latitude. Rows 1 and 2 show the root mean square error (RMSE), and anomaly
correlation coefficient (ACC) for forecasts generated by FuXi Weather (red solid
and green dashed lines) and ECMWF HRES (blue). FuXi Weather is initialized using
analysis fields produced by FuXi-DA incorporating background forecasts. This fig-
ure includes three variables: 850hPa u wind component (U850), 2-meter

temperature (T2M), and mean sea level pressure (MSLP). FuXi forecasts (red) are
verified against ERA5, and also against FuXi-DA analyses (green dashed lines).When
FuXi (green dased lines) and ECMWF HRES (blue) forecasts are evaluated against
their respective initialization time series, they inherently exhibit lower RMSE and
higher ACC in early lead times. Red dots indicate time steps where FuXi Weather
significantly outperforms ECMWF HRES, as paired difference passed the 95%-con-
fidence-level the t-test of significance.
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forecasts are of note due to precipitation’s socioeconomic importance
in central Africa, although with the caveat that HRES performance is
relatively poor for TP in this region. Forecast behavior is further
characterized using forecast activity40, defined as the std of forecast
anomalies relative to climatological means and normalized by ECMWF
HRES forecast activity. As shown in Supplementary Fig. 22, FuXi
Weather normalized forecast activity values indeed drop below 1,
suggesting smoother predictions relative to ECMWF HRES. This
reduction in forecast activity may partially account for FuXi Weather’s
improved performance. However, FuXi Weather’s superior forecast
skill (red lines) over ECMWF HRES becomes evident as early as day 1,
prior to any considerable reduction in forecast activity. The forecast
activity of FuXi Weather decreases gradually until around day 2 and
then stabilizes, indicating that FuXi Weather’s enhanced accuracy
arises earlier than the substantial reduction in forecast activity and
cannot be fully attributed to it.

Notably, FuXi Weather achieves superior forecasts for surface
variables without assimilating surface-based observations, pointing to
its strength in utilizing satellite data in regions with limited in-situ
observational infrastructure. Further analysis (see Supplementary
Information Section 7) reveals that FuXi Weather also outperformed
ECMWFHRES in other data-sparse regions, such as tropical oceans and
South America, although it is less competitive in areas with dense
surface observations. In central Africa, where observational networks
are sparse, the efficient use of satellite data by FuXiWeather closes the
performance gap with ECMWF HRES, resulting in superior forecasts.

Supplementary Fig. 23 illustrates two 10-day forecast time series
for two randomly selected initialization times, while Supplementary
Fig. 24 presents forecasts at a fixed 3-day lead time. Both figures
confirm that FuXiWeathermore closely alignswith its benchmark than
ECMWF HRES, reinforcing the results in Fig. 5. Additionally, Supple-
mentary Fig. 25 shows FuXi Weather’s superior performance, particu-
larly for T2M, MSLP, and TP over northern South America, where
observational coverage is also sparse relative to Europe or North
America. However, the reduction in forecast activity may partially
contribute to these improvements. A detailed discussion on the trade-
offs between forecast accuracy and activity is provided in Supple-
mentary Information Section 12. While incorporating generative
models or differentiable solvers for atmospheric dynamics could
potentially enhance forecast activity without compromising
accuracy18,52,53, an in-depth investigation of these approaches is beyond
the scope of this study.

Due to substantial biases in TP data from ERA554, the Integrated
Multi-satellite Retrievals for the Global Precipitation Measurement
(GPM) (IMERG)55,56 is used to evaluate TP forecasts over central Africa
and northern South America, respectively. As shown in Supplementary
Fig. 26, FuXiWeather achieves lower RMSE than ECMWFHRES, relative
to IMERG. However, both FuXi Weather and ECMWF HRES exhibit
undesirably low ACC and substantial MBE when evaluated against
IMERG. In FuXi Weather, this deficiency is likely inherited from its
training with ERA5, underscoring the potential advantages of training
with more accurate observational datasets, such as IMERG, to further
improve FuXi Weather’s precipitation forecasts.

Overall, these preliminary results suggest that FuXi Weather can
produce forecasts of comparable or potentially improved accuracy
relative to traditional NWP systems, despite relying on substantially
fewer observations. The superior performance of FuXi Weather rela-
tive to ECMWF HRES may be attributed to two primary factors: (1)
enhanced ability to mitigate both systematic biases and random
errors, and (2) reduced forecast activity. While further advancements,
such as improving forecast activity, are necessary, FuXi Weather
represents a promising and cost-effective alternative for regions with
limited observational infrastructure. Future work will include further
validation against independent observational datasets to better eval-
uate its performance advantages.

Physical consistency of analysis changes
FuXi Weather, as a data-driven machine learning system, does not
inherently encodeprior physical knowledgeof atmospheric processes.
This subsection examines the impact of assimilating a single obser-
vation on background fields and assesses whether the resulting
changes align with theoretical expectations.

Two FuXi-DA runs were conducted: the first using a 6-h forecast
with original observations, and the second with a perturbation intro-
duced to raw satellite data from individual channels at a specific
observation location. The differences between these two runs reflec-
ted the changes in analysis fields caused by the perturbation (details in
Supplementary Information Section 4.1). The first run, initialized at 06
UTC on July 24, 2023, assimilated all available data to generate the
analysis. In the second run, a +5 Kperturbationwas introduced into the
NOAA-20 ATMS raw observation at 19.9° N, 125.5° E (marked as a
purple dot in Supplementary Fig. 9), near Typhoon Doksuri over the
ocean. The impact of this perturbation was evaluated by comparing
outputs fromboth runs. The satellite observationswere independently
perturbed for each channel.

Figure 6 shows the horizontal and vertical distributions of chan-
ges in the analysis fields resulting from three separate perturbations,
each applied to a different humidity channel. The spatial patterns of
these changes in analysis fields aligned with the radiative transfer
theory: an increase in brightness temperature corresponds to a
decrease in humidity, resulting in less radiation absorption57. The
vertical distribution showed progressive increases in the peak heights
of the Jacobian functions for channels 18, 19, and 20, matched by
corresponding increases in the peak heights of the humidity incre-
ments. This pattern suggests that the DA system effectively captures
the varying detection altitudes of these channels. Additionally, flow-
dependent characteristics were observed in the humidity field. The
perturbation introduced at 05 UTC, 1 h before the analysis, generated
changes in analysis fields mainly localized near the perturbation loca-
tion, with a moderate eastward extension along the prevailing flow,
consistent with downwind propagation. Supplementary Fig. 10 illus-
trates the changes in wind vector analysis fields, overlaid with relative
humidity analysis fields. The perturbation results in increased north-
erly flow near the perturbed location. This change enhances the
advection of drier air, characterized by lower relative humidity, into a
more humid region. Consequently, the perturbation leads to a loca-
lized reduction in relative humidity, consistent with the results shown
in Fig. 6.

In summary, FuXiWeather effectively captures the horizontal and
vertical dependencies of analysis changes on satellite observations
without explicitly incorporating prior knowledge. Data denial experi-
ments (Supplementary Information Section 5) further confirm FuXi
Weather’s physical consistency with satellite observations, while
additional tests demonstrate the robustness of its performance.

Discussion
In this paper, we introduce FuXi Weather, an end-to-end machine
learning-based weather forecasting system that performs global-scale
DA and forecasting on a 6-h cycle through processing raw satellite
observations across all grids, surfaces, channels, and sky conditions.
The system matches the global forecasting performance of state-of-
the-art ECMWFHRES and outperforms it in observation-sparse regions
such as central Africa and northern South America. Moreover, FuXi
Weather extends the skillful forecast lead time achieved by ECMWF
HRES in many regions, despite using considerably fewer observations.
Single observation tests confirm that DA responses align with theore-
tical expectations, and data denial experiments demonstrate the sys-
tem’s robustness, with only moderate error growth when specific
observations are excluded. Notably, FuXi Weather performs con-
tinuous cycling DA andweather forecasting over a full one-year testing
period. Due to its computational efficiency and reduced complexity
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compared to traditional NWP systems, FuXi Weather offers a cost-
effective alternative for improving operational forecasts in regions
with limited land-based observations, thus enhancing climate
resilience.

Despite these promising results, several challenges remain. While
FuXi Weather extends lead times for multiple variables, its short-term
forecast accuracy requires further improvement. This limitation is
likely due to its reliance on a limited subset of satellite observations,
whereas the ECMWF system assimilates observations from approxi-
mately 90 satellite instruments operationally58. Furthermore, FuXi
Weather learns the relationship between satellite observations and
background forecasts entirely in latent space, without relying on tra-
ditional DA components such as observation operators, adjoint mod-
els, or explicit estimation of observation and background error
covariance matrices. This design dramatically simplifies model devel-
opment and reduces computational demands and domain-specific
expertise requirements. However, extending FuXi Weather to inte-
grate conventional observations, such as radiosonde soundings, and
surface, marine, and radar measurements, remains challenging due to
their spatial and temporal sparsity, inhomogeneity, and varying qual-
ity. To address these challenges, tailored preprocessing pipelines and
observation-specific quality control algorithms59must be developed to
identify and remove outliers. In addition, like many machine learning

weather forecasting models, FuXi Weather exhibits reduced forecast
activity, which partially accounts for its improved forecast skill. The
system outperforms ECMWF HRES at longer forecast lead times, par-
ticularly where its forecasts become smoother. Potential solutions
include integrating generative models or enforcing physical con-
straints to better capture atmospheric variability. Incorporating
ensemble-based19,60 DA methods offers further potential to enhance
model performance. By lowering technical barriers, such as eliminat-
ing reliance on legacy Fortran-based NWP infrastructures61,62, systems
like FuXi Weather, could pave the way for closer interdisciplinary
collaborationbetweenmeteorologists andmachine learning scientists.

FuXi Weather, built upon the foundation of traditional NWP sys-
tems and ERA5 reanalysis, developed over several decades, inherently
inherits both their strengths and limitations63. Although ERA5 provides
a consistent, high-quality dataset, this dependency may cap the ulti-
mate performance gains achievable by machine learning approaches.
For instance, documented discrepancies between ERA5 precipitation
data andobservations54 suggest that ERA5precipitationmaynot be the
most appropriate target for training precipitation forecasts in FuXi
Weather. Instead, more accurate observational datasets, such as
IMERG precipitation, could be used as reference data to enhance
themodel’s predictive skill. Currently, FuXiWeather retains an explicit
DA step and forecasts meteorological variables rather than raw

Fig. 6 | Changes in analysis fields resulting from a 5K perturbation to the
NOAA-20 ATMS observation at a selected location, based on the background
field for 06 UTC on July 24, 2023. The perturbation, located over the ocean near
Typhoon Doksuri at 19.9° N, and 125.5° E (red dot), is introduced at 05 UTC, 1 h
before the analysis time. The two rows show, in the left panel, the horizontal spatial
distribution of the analysis changes for channels 18–20 at 600, 500, and 400hPa,
with wind fields overlaid, as well as the corresponding vertical distribution along

the same west-east cross-section. The dashed lines on the second row indicate the
pressure levels for the horizontal spatial distribution. The right panel shows the
Jacobian functions for three humidity channels derived from ATMS aboard NOAA-
20. The atmospheric profile is basedon theUSStandardAtmosphere, and radiative
transfer calculations are performed using RTTOV version 13.2. In the wind vector
plots, a long barb represents 4m/s, a short barb 2m/s, and a pennant indicates
20m/s.
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observations (e.g., brightness temperature), enabling rigorous eva-
luation against reanalysis and direct comparisons with ECMWF HRES.
Recent advances inArtificial IntelligenceDirectObservationPrediction
(AI-DOP) frameworks have demonstrated the feasibility of bypassing
explicit DA entirely59,64. Unlike NWP systems, which require initial
conditions to solve partial differential equations, machine learning
models can generate forecasts directly from observations. However,
the success of AI-DOP demands two prerequisites: (1) sufficient spa-
tiotemporal observational coverage and (2) long-termandhigh-quality
historical records. For instance, ECMWF’s AI-DOP model is trained on
18 years of observational data (2004–2021) encompassing primary
observation categories used in NWP systems59, whereas FuXi Weather
has thus far leveraged only one year. Explicit DA approaches benefit
from pretrained forecasting models (often trained using decades of
ERA5), enhancing temporal consistency when observational data are
limited. In contrast, implicit DA requires substantially more data to
learn these relationships from scratch and resolve inconsistencies in
historical observational datasets. With sufficiently extensive and high-
quality observational datasets, we expect the performance gap
between explicit and implicit approaches to close. Future iterations of
FuXiWeathermay eliminate the explicit DA stepby learning to forecast
directly from sequences of past and present observations, reducing
dependence on reanalysis data and advancing toward a fully inde-
pendent and robust forecasting system.

As the volume of assimilated observations grows, scaling FuXi
Weather to accommodate larger models and datasets will be essential.
Optimal hybrid parallelization strategies65–67 that combine pipeline
parallelism and data parallelism, could enable efficient training with
increased observations. The flexible, multi-branch architecture of FuXi
Weather supports scalable implementation for additional observa-
tional data. Data denial experiments also suggest that selectively
excluding less informative satellite data could improve efficiency
without compromising accuracy.

Methods
FuXi Weather
Figure 7 illustrates FuXi Weather, which generates global weather
forecasts every 6 h. It has three main components: satellite data pre-
processing (detailed in Supplementary Information Section 2.1), DA via
FuXi-DA, and forecasting using the FuXi model. A complete list of
variables and abbreviations is provided in Table 1.

The preprocessing step addresses the heterogeneity in satellite
data across space and time (see Fig. 8).While FuXiWeather candirectly
process raw observational data, the data are interpolated to a regular
0.25° grid using nearest-neighbor interpolation for simplicity. This
approach enhances the system’s scalability and ensures consistent
integration across diverse observation types. This study utilized
brightness temperature from five microwave instruments aboard
three polar-orbiting satellites (FY-3E, Metop-C, and NOAA-20) and
GNSS-RO data68 (see Supplementary Table 1), processed using a
modified PointPillars46 approach initially designed for three-
dimensional point clouds69. Missing data are handled using a mask-
ing technique, assigning a value of 1 where data are available and 0
otherwise. Further details are provided in Supplementary Information
Sections 1.2 and 2.1.

FuXi-DA assimilates the preprocessed data with background
forecasts within 8 h to produce analysis fields. Key improvements
include separate processing of different upper-air and surface vari-
ables, and a refinement module for improved accuracy (see Sup-
plementary Information Section 2.2). The multi-branch architecture
handles satellite data and meteorological variables in background
forecasts separately, allowing for flexible integration of additional
observations. DA is performed four times per day (at 00, 06, 12, and
18 UTC), using observations from 3 h before to 4 h after forecast
initialization, generating global analysis fields at 0.25° resolution.

The FuXi-Short produces 0–4 day forecasts, which serve as initial
conditions for the FuXi-Medium model to generate 4–10 day
predictions.

FuXi Weather is trained through joint optimization of analyses
and forecasts, using ECMWFERA5 reanalysis data at0.25° resolution as
the reference. While both the DA and forecasting components rely on
ERA5 during training, the operational system operates independently
of ERA5 during inference. To mimic varying operational conditions,
FuXi forecasts (initialized with ERA5 data) are randomly sampled
across lead times of 6 h to 5 days and used as background forecasts to
train FuXi-DA. Owing to the limited amount of satellite data, FuXi-DA is
trained on a 1-year dataset (June 1, 2022–June 30, 2023); this contrasts
with the 37-year dataset used to train FuXi models14. A replay-based
incremental learning strategy adapts the system to changes in satellite
data quality and availability70,71 (see Supplementary Figs. 1 and 2),
retraining FuXi-DA monthly with data from the previous year. Further
details are in the Supplementary Information Section 3.2.

The FuXi-Shortmodel is fine-tuned with FuXi-DA analysis fields to
reconcile accuracy differences with ERA5 (Supplementary Information
Section 3.3). During testing, FuXiWeather is initializedwith zero values
for cycling DA and forecasting, using one year of data spanning from
July 1, 2023 to June 30, 2024.

Evaluation method
Forecasts are evaluated against benchmark datasets at corresponding
forecast times. For FuXimodel forecasts, whether initializedwith ERA5
or analysis fields generated by FuXi-DA, ERA5 is used as the bench-
mark. Consistent with standard practices in NWP, FuXi Weather is also
evaluated against its analyses. In evaluating the performance of
ECMWF high-resolution (HRES) forecasts, the time series of HRES-fc0
data used to initialize these forecasts at time t0 is also used as the
benchmark at the evaluation time t0 + τ. When FuXi and ECMWF HRES
forecasts are evaluated against their respective initialization time ser-
ies, both systems inherently exhibit higher accuracy at shorter
lead times.

Deterministic forecasts are evaluated using established metrics,
including the RMSE and ACC, defined as follows:
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where, t0 denotes the forecast initialization time within the testing
dataset (D), and τ is the forecast lead time. The climatological mean
(M), calculated from ERA5 over the period 1993–2016, reflects the
average conditions over these years. To better distinguish forecast
performance between models with minor differences, the normalized
RMSE difference between model A and baseline model B is calculated
as (RMSEA–RMSEB)/RMSEB. Similarly, the normalized ACCdifference is
calculated as (ACCA–ACCB)/(1–ACCB). A negative RMSE difference and
positive ACC difference indicate that model A outperforms model B.

Furthermore, RMSE can be decomposed into systematic and
random error components through calculation of the MBE and stan-
dard deviations of errors (STDERROR). These metrics distinguish whe-
ther forecast errors originate from consistent bias or random
variations around observed values. The MBE and STDERROR are
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calculated as follows:
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Machine learning-based weather forecasting models often pro-
duce excessively smooth predictions as lead time increases. We
quantify this forecast smoothness using two complementary activity

metrics: (1) the standard deviation (std) of forecast anomalies relative
to climatological means40, and (2) the RMSE between forecasts and
climatologicalmeans44. For bothmetrics, lower activity values indicate
smoother fields. The std-based activity metric measures spatial varia-
bility in forecast anomalies with respect to the climatological meanM:

ActSTDðc, τÞ= 1
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Fig. 7 | Schematic of the FuXiWeather system. Satellite radiance observations are brought in throughmachine learning data assimilation (DA) coordinatedwith the FuXi
forecast model.

Table 1 | Summary of all input and output variables of the FuXi model

Type Full name Abbreviation Role

Upper-air variables Geopotential Z Input and Output

Temperature T Input and Output

u component of wind U Input and Output

v component of wind V Input and Output

Relative humidity R Input and Output

Single-level variables 2-meter temperature T2M Input and Output

Mean sea-level pressure MSLP Input and Output

10-meter u wind component U10 Input and Output

10-meter v wind component V10 Input and Output

Total precipitation TP Input and Output

Geographical Orography OR Input

Latitude LAT Input

Longitude LON Input

Temporal Hour of day HOUR Input

Day of year DOY Input

Step STEP Input

The “Type” indicateswhether the variable is a time-varying variable, includingupper-air, single-level, geographical variable, or temporal variable. The “Full name” and “Abbreviation” columns refer to
thecomplete nameof eachvariable and their correspondingabbreviations in thispaper. The “Role”columnclarifieswhether each variable serves asbothan input andanoutput, or is solelyutilized as
input by our model.
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The RMSE-based activity metric directly measures forecast
deviations from climatological means:

ACTRMSEðc, τÞ=
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To assess the quality of analysis fields, we calculate the
RMSE and MBE using the same formulations as for forecast
evaluation. Furthermore, we introduce analysis activity, which is
defined as the ratio of the std to the climatological mean. This
metric quantifies the degree to which analyses deviate from
the climatological average state. The analysis activity is calculated
as follows:
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Data availability
The ERA5 reanalysis data are accessible through the Copernicus Cli-
mate Data Store at https://cds.climate.copernicus.eu/. ECMWF HRES
forecasts can be retrieved from https://apps.ecmwf.int/archive-
catalogue/?type=fc&class=od&stream=oper&expver=1. Satellite data
can be obtained from the portal of the National Satellite Meteor-
ological Center at http://satellite.nsmc.org.cn/DataPortal/en/home/
index.html. The IMERG precipitation data are available at https://
gpm.nasa.gov/data/imerg.

Code availability
The FuXimodel is available at https://zenodo.org/records/1040160272.
The model for FuXi Weather used in this study is available at https://
zenodo.org/records/1576298573.
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