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A longitudinal cohort study uncovers plasma
protein biomarkers predating clinical onset
and treatment response of rheumatoid
arthritis
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% Check for updates Rheumatoid arthritis (RA) is a systemic inflammatory condition posing chal-
lenges in identifying biomarkers for onset, severity and treatment responses.
Here we investigate the plasma proteome in a longitudinal cohort of 278 RA
patients, alongside 60 at-risk individuals and 99 healthy controls. We observe
distinct proteome signatures in at-risk individuals and RA patients, with pro-
tein levels alterations correlating with disease activity, notably at DAS28-CRP
thresholds of 3.1, 3.8 and 5.0. The combination of methotrexate (MTX) and
leflunomide (LEF) modulates proinflammatory pathways, whereas MTX plus
hydroxychloroquine (HCQ) impact energy metabolism. A machine-learning
model is trained for predicting responses, and achieves average receiver
operating characteristic (ROC) scores of 0.88 (MTX + LEF) and 0.82 (MTX +
HCQ) in the testing sets. The efficiency of these models is further validated in
independent cohorts using enzyme-linked immunosorbent assay data. Over-
all, our study unveils distinct plasma proteome signatures across various
stages and subtypes of RA, providing valuable biomarkers for predicting dis-
ease onset and treatment responses.

Rheumatoid arthritis (RA) is a persistent and progressive bundle of elevated autoantibody levels*°. Studying this at-risk phase is essential
systemic inflammatory diseases mainly affecting joints. There are for unraveling the disease’s developmental nuances and identifying
considerable challenges in understanding its etiology, subtype het- interventions to prevent or mitigate its impact.

erogeneity, diagnostic biomarkers, and optimal treatment targets' The management of RA pivots on a protocolized treat-to-target
with different pathogenic characteristics at different disease stages*. A strategy, where conventional synthetic disease-modifying antirheu-
crucial prelude to RA onset is the “at-risk” phase, characterized by = matic drugs (csDMARDs) play a central role’. A substantial proportion
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of patients (30-60%) exhibit suboptimal responses to csDMARDs
combinations’. Previous studies have investigated the influence of
clinical parameters such as sex, disease duration, disease activity, and
rheumatoid factor levels on the prediction of patient response to
csDMARDs®’. Additionally, a range of clinical measures, including
ultrasound, T-cell subset, and patient-reported outcome measures,
have been utilized to predict sustained remission rates for patients
treated with csDMARDs".

Plasma proteomics has emerged as a powerful and promising tool
for assessing human health and disease conditions . However, the
majority of current proteomic studies in RA predominantly employ
cross-sectional designs to identify disease risk factors or
biomarkers™'°. There is a growing need for longitudinal studies to
investigate the clinical onset and treatment response in RA patients via
omics strategies. Unfortunately, progress in this area has been impe-
ded by restricted cohort sizes, underscoring the critical requirement
for large-scale cohort studies”°.

In this study, we compare the plasma proteomic profiles of healthy
persons, at-risk individuals, and RA patients, identifying key protein
patterns associated with disease progression and anti-citrullinated
peptide autoantibodies (ACPAs) status. We further monitor RA patients
longitudinally under csDMARDs treatment and uncover distinct pro-
tein markers predictive of therapeutic response to methotrexate (MTX)
combined with leflunomide (LEF) or hydroxychloroquine (HCQ). These
findings support the development of protein-based tools for early
disease monitoring and treatment optimization in RA.

Results

Proteomic characterization in at-risk, ACPA-positive and ACPA-
negative RA individuals

We recruited 278 RA patients from the western region of China; among
them, 231 were females (83%) (Fig. 1a, b and Supplementary Data 1).
The average age of RA patients was 51 years, ranging from 16 to 77
years. The disease activity score in 28 joints with C-reactive protein
(DAS28-CRP) varied from 1.24 to 8.39, with an average value of 3.53.
The ACPA-negative individuals were slightly older, with an average age
of 52 (vs 51 for ACPA-positive RA patients) and lower DAS28-CRP scores
of 3.07 (vs 3.71 for ACPA-positive RA patients) (Supplementary Table 1).
Patients included in the study had not received csDMARDs treatment
for at least 6 months prior to the collection of plasma samples. Among
the 206 RA patients with follow-up data, 140 had one follow-up sample
at 3-6 months, and 59 had two follow-up samples at 6-9 months after
receiving MTX monotherapy or csDMARDs combination treatments.
In addition, we recruited 60 at-risk individuals, 38 of whom were fol-
lowed up for 5-7 years, and 99 healthy controls for comparative ana-
lysis. The average age of healthy controls was 51 years, with a range of
38-76 years (79 females and 20 males). The average age of 60 at-risk
individuals was 48 years (32 females and 28 males), ranging from 29 to
74 years (Supplementary Table 1).

Next, we performed tandem mass tag (TMT)-based proteomics
analysis of these plasma samples (Fig. 1a and Supplementary Data 2).
Correlation analysis of quality control samples (Supplementary
Fig. 1a), common reference samples (Supplementary Fig. 1b), and
replicate samples revealed the high quality of our mass spectrometry
(MS) data (Supplementary Fig. 1c). The observed stability in the dis-
tribution of normalized protein abundance also indicated minimal
batch effects (Fig. 1c). A total of 2504, 2022, and 1924 proteins were
identified from RA, at-risk individuals and healthy individuals,
respectively (Fig. 1d). Proteins quantified in more than 50% of the
samples in each group of individuals, totaling 996 plasma proteins,
were used for the subsequent data analysis.

Plasma proteome fluctuations from health to RA onset
We initially performed hierarchical clustering on plasma proteome
data from 182 ACPA-positive RA, 67 ACPA-negative RA, 60 at-risk

individuals, and 99 healthy controls (Fig. 2a), revealing clear distinc-
tions between these groups (Fig. 2b). Comparative analyses identified a
number of differentially expressed proteins (DEPs) and pathways
between ACPA-positive RA patients, ACPA-positive RA patients, at-risk
individuals and healthy controls (two-sided Student’s ¢ test, p < 0.05)
(Fig. 2c and Supplementary Fig. 1d,e). Then, we combined proteins that
differed between healthy and other groups and performed pathway
enrichment analysis (Fig. 2c). This analysis revealed the upregulation
of proteins associated with neutrophil degranulation, cellular stress
responses, and cross-presentation of soluble exogenous antigens in
both ACPA-positive RA patients and at-risk individuals*>>. However,
ACPA-positive RA patients presented more intense immune and acute-
phase responses (Fig. 2c). In contrast, the downregulated proteins
were primarily involved in metabolic dysregulation, redox processes
such as hydrogen peroxide catabolism, and protein processing, sug-
gesting increased endoplasmic reticulum stress**~°. Notably, proteins
specifically elevated in at-risk individuals were linked to RNA meta-
bolism, which is recognized for its connection to inflammation®.
Additionally, we observed the upregulation of ROBO receptor signal-
ing, which inhibits osteogenic differentiation, and axon guidance
pathways, both of which are known to be upregulated in
RA*? (Fig. 2¢).

The differences in proteome profiles between ACPA-positive and
ACPA-negative RA patients remain poorly understood, despite varia-
tions in clinical characteristics, disease progression, and treatment
response. We observed a stronger inflammatory response in ACPA-
positive RA patients, which remained significant even after adjusting
for the DAS28-CRP between the two subsets. These findings suggest
that increased inflammation is an intrinsic effect of the ACPA-positive
phenotype, independent of disease activity (Supplementary Fig. 1f).

Autoimmune disorders may share common pathogenic mechan-
isms. Therefore, we studied whether the top enriched proteins in RA
patients also showed abnormal expression in patients with other
autoimmune diseases, including primary Sjogren’s syndrome, sys-
temic sclerosis, idiopathic inflammatory myopathy, and systemic
lupus erythematosus, compared with healthy controls. The results
confirmed the RA specificity of these DEPs, as most did not sig-
nificantly differ between the patients with other autoimmune diseases
and healthy controls (Supplementary Fig. 1g).

Age and sex can significantly impact proteome analysis®. How-
ever, we did not observe significant age differences between healthy
controls, at-risk individuals, and RA patients (Supplementary Fig. 1h).
Consequently, we analyzed proteomic differences stratified by sex
(Supplementary Fig. 1d, e). Compared with those in the other groups,
most DEPs in the ACPA-positive RA group were consistent regardless
of sex, showing a common trend of increased neutrophil degranula-
tion, complement cascade regulation, and acute-phase response.
Compared with RA patients, at-risk individuals presented higher levels
of ROBO receptor signaling and RNA metabolism, with RNA metabo-
lism being more elevated in males. In contrast, axon guidance was
more pronounced in male RA patients, indicating increased bone
remodeling pressure®. ACPA-negative RA patients exhibited a distinct
increase in lipid metabolism, with elevated fatty acid p-oxidation
specifically in males (Supplementary Fig. 1e).

The preclinical phase of RA is a crucial period for identifying
pathogenic mechanisms and potential prevention targets. We fol-
lowed up 38 at-risk individuals, of whom 8 developed RA (con-
verters). These converters exhibited significantly lower complement
component levels, suggesting depletion due to immune complex
formation during the transition to RA*. Additionally, metabolism-
related proteins such as PSMB7 were upregulated, indicating
immunoproteasome activation® (Fig. 2d, e). For 3 of these con-
verters, we collected plasma samples to compare proteomic differ-
ences before and after disease onset (Fig. 2f). Commonly identified
proteins between converters and non-converters, as well as before
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Fig. 1| Proteomic analysis workflow and quality control. a Schematic design of
the study (created with BioRender.com. Sun, R. (2025) https://BioRender.com/
6iee3nb). b Bar plot (left) and pie charts (right) depicting the age and sex group
distribution across different clinical subgroups. ¢ Distribution of log2-transformed
protein (n=996) intensities normalized to those of common reference samples.

Box plots showing the median (center line), the 25th and 75th percentiles (bounds
of box), and the minimum and maximum values (whiskers). d Cumulative number
of identified proteins for healthy controls (blue, n=99), at-risk individuals (violet,
n=60), and RA patients (red, n=278). ACPA" indicates ACPA-positive, and ACPA”
indicates ACPA-negative. Source data are provided as a Source Data file.

and after RA onset, included APOE, HIST2H3A, and TF. These findings
highlight the roles of lipid metabolism dysregulation, neutrophil
extracellular trap formation, and iron homeostasis in RA
development®,

IgG has dual roles in the pathogenesis of RA**%, We identified
specific IgG segments with varying levels in the disease groups com-
pared with those in the healthy controls. Specifically, IGKV3D-20,
IGKV4-1, and IGHV4-61 increased in ACPA-positive RA or at-risk indi-
viduals, whereas IGHV3-15, IGKV3D-15, and IGKC decreased. Addi-
tionally, all the differential IgG segments were the lowest in ACPA-
negative RA patients (Fig. 2g).

Identification of proteins associated with disease activity

Next, we investigated the proteins associated with disease activity. We
observed significant sex differences in the DAS28-CRP scores among
ACPA-positive RA patients, with higher disease activity in males than in
females. In contrast, ACPA-negative RA did not show such sex-related
differences (Fig. 3a, b). Owing to disease activity increasing with age,
specifically in ACPA-positive females (Fig. 3c, d and Supplementary
Fig. 2a), differentially expressed sliding window analysis (DE-SWAN)
was conducted exclusively on female ACPA-positive RA patients. This
analysis revealed a rapid decrease in the number of age-associated
proteins after the age of 45 in females (Fig. 3e). In our study, this age
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categorization further revealed disparities in DAS28-CRP, where
females younger than 45 years presented reduced disease activity
relative to their counterparts older than 45 years (Fig. 3f). In terms of
clinical indicators, both the tender joint count (TJC) and CRP level
exhibited similar trends, with both increasing in females over 45 years
of age (Fig. 3f).

To reduce the influence of sex and age on protein calculations
associated with disease activity, we adjusted for age and sex in sub-
sequent analyses. Through multiple linear modeling, we initially
identified the proteins associated with DAS28-CRP. Among these
proteins, more were negatively correlated with DAS28-CRP (Fig. 3g).
Proteins positively correlated with DAS28-CRP, such as CRP, LRGI,
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Fig. 2 | Plasma proteomic heterogeneity during RA development. a Number of
individuals in different clinical subgroups. b Dendrogram illustrating hierarchical
clustering of proteomic data across samples. ¢ Heatmap displaying unsupervised
k-means clustering of proteins across healthy individuals, at-risk individuals, ACPA-
positive RA patients and ACPA-negative RA patients (two-sided Student’s ¢ test,

p <0.05 and 1.5-fold change). The top enriched pathways for each cluster are shown
(two-sided Fisher’s exact test, p < 0.05). d Volcano plot of differentially expressed
proteins (DEPs) between at-risk individuals who converted to RAs (converters) and
non-converters (two-sided Student’s ¢ test, p < 0.05 and 1.5-fold change). The red
and blue dots represent upregulated and downregulated proteins, respectively.

e Bar plot displaying the top enriched pathways of DEPs between converters and
non-converters (two-sided Fisher’s exact test). f Schematic (left) of proteomic

analysis design for samples collected from three at-risk individuals before and after
RA onset (created with BioRender.com. Sun, R. (2025) https://BioRender.com/
6iee3nb). Venn diagram (middle) showing overlapped DEPs in two comparisons:
red circle includes DEPs between converter and non-converter; blue circle includes
DEPs before and after RA onset in three converters. Scatter plot (right) displaying
the intensity of the overlapped DEPs before and after RA onset (two-sided Student’s
t test). g Violin plot displaying the intensity of antibody segments across four
clinical groups (two-sided Student’s ¢ test). Box plots inside showing the median
(center line), the 25th and 75th percentiles (bounds of box), and the minimum and
maximum values (whiskers). ACPA" indicates ACPA-positive, and ACPA" indicates
ACPA-negative. Significance is indicated as follows: *p <0.05, **p <0.01 and

**p <0.001, ns means p > 0.05. Source data are provided as a Source Data file.

ORM]1, SERPINA4, and C9, were primarily associated with the acute-
phase response and immune system. Conversely, the proteins that
were negatively correlated with DAS28-CRP were involved mainly in
biosynthesis and metabolism (Fig. 3h and Supplementary Fig. 2b). We
further performed correlation analysis based on specific DAS28-CRP
parameters (Fig. 3i). Among the proteins most significantly correlated
with the clinical parameters, SERPINA3, LRG1 and HP were positively
correlated with CRP, whereas ACOX1 and LRG1 were positively corre-
lated with the swollen joint count (SJC). Moreover, HSD17B10 and
RPL23A were negatively correlated with visual analogue scale (VAS)
and TJC, respectively (Fig. 3i). ACPA-negative RA exhibited a consistent
positive correlation between an intensified immune response and
DAS28-CRP. Unexpectedly, almost no proteins were negatively corre-
lated with DAS28-CRP or its four parameters (Supplementary
Fig. 2c-f).

Due to differences in DAS28-CRP scores between ACPA-positive
females under and over 45 years old, we investigated the impact of age
on disease activity in this group. Overlap analysis of proteins asso-
ciated with both age and DAS28-CRP was conducted (Fig. 3j). We found
that CRP, SERPINA3, SAA2, and HP levels increased with age and were
positively correlated with disease activity. Conversely, A2M, AHSG, and
TF decreased with age and were negatively related to disease activity,
highlighting the specific impact of aging on disease progression.
Additionally, APOC3, RBP4, FN1 and NCL increased with age but were
negatively correlated with disease activity. The age-related increase in
these protective proteins warrants further investigation to understand
the underlying mechanisms involved.

Decipher nonlinear proteomic fluctuations across DAS28-CRP
The relationship between plasma proteins and DAS28-CRP is intricate,
extending beyond linear associations. To decode the complexity of
proteomic dynamics fluctuating with DAS28-CRP, the most important
parameter for assessing disease activity, two strategies have been
applied.

First, to investigate proteomic differences based on clinical clas-
sification, we divided ACPA-positive RA patients into four groups
based on DAS28-CRP: (I) remission (<2.6), (I) low (2.6-3.2), (IlI) mod-
erate (3.2-5.1), and (IV) high (>5.1)*°. To reduce the complexity inher-
ent in the proteome, we used unsupervised hierarchical clustering to
group proteins with similar trajectories, resulting in six distinct clus-
ters (Fig. 4a). Proteins associated with acute-phase responses, innate
immunity, and neutrophil activity displayed increasing trends as dis-
ease activity increased in Clusters3. In Cluster6, proteins involved in
carbon metabolism, IGF transport, and glycolysis consistently
decreased with increasing DAS28-CRP. Proteins in Cluster5 and Clus-
ter2, which are involved in pyruvate metabolism, ROBO signaling, and
translation-related processes, initially increased from remission to low
activity and then decreased. Notably, the fluctuations in complement
in Clusterl and Cluster4 suggest a dynamic balance between the acti-
vation and consumption of complement components as disease
activity levels change. A similar analysis of ACPA-negative RA patients

revealed differences from ACPA-positive RA patients. ACPA-negative
RA patients generally presented increased innate immune activity that
decreased with increasing disease activity, weakened adaptive
immune responses such as antigen presentation and T-cell receptor
signaling, and a notable increase in amino acid metabolism and axon
guidance (Supplementary Fig. 3). Overall, these results indicate that
some plasma protein changes with increasing DAS28-CRP are
nonlinear.

Second, given the nonlinear trends of most proteins across
DAS28-CRP, as visualized by locally estimated scatterplot smoothing
(LOESS)-estimated trajectories (Fig. 4b), we used DE-SWAN analysis to
capture localized fluctuations at a smaller scale*. We analyzed protein
levels within a 40-sample window, comparing two groups within seg-
ments of 20 samples and incrementally sliding the window by 0.1
DAS28-CRP values from low to high disease activity. This analysis
identified three key peaks at DAS28-CRP scores of 3.1, 3.8, and 5.0,
revealing waves of protein level changes corresponding to these
DAS28-CRP values (Fig. 4c, d). The peaks were related to distinct sets of
proteins. At a DAS28-CRP score of 3.1, upregulated innate immune
functions, such as complement activation and neutrophil degranula-
tion, were observed, alongside inhibited anterograde transport. At a
DAS28-CRP score of 3.8, inflammatory pathways were further upre-
gulated, with impaired glucose metabolism. A DAS28-CRP score of 5.0
indicated elevated oxidative stress, with reduced ROBO signaling and
protein metabolism (Fig. 4e). These dynamic and nonlinear changes in
DAS28-CRP-associated proteins suggest that treatment strategies
should be tailored to target specific proteins at different levels of
disease activity.

Moreover, we assessed the correlations between the four com-
ponents of DAS28-CRP and the proteins identified at the three peaks.
Proteins correlated with the VAS significantly overlapped with DEPs at
DAS28-CRP 3.8 and 5.0, while proteins related to other parameters
showed greater overlap with DEPs at DAS28-CRP 5.0 (Fig. 4f). These
findings suggest that the DAS28-CRP-related proteome exhibits dis-
tinct associations with different disease activity parameters.

Proteomic signatures for predicting treatment response via
machine learning

MTX-based csDMARDs therapy is the first-line treatment, but the
response rates to various combinations are not consistent. An in-depth
analysis of the treatment response of longitudinal cohorts to
csDMARD:s is essential but remains unexplored. To address this issue,
we used follow-up data from 206 patients treated with various
csDMARDs. Subsequent assessments, following the European League
Against Rheumatism (EULAR) criteria, were conducted after a period
of more than three months* (Supplementary Fig. 4a, b). We focused on
the MTX +LEF (n=89) and MTX+HCQ (n=64) groups because of
their adequate sample sizes for statistical analysis. RA patients with
clinical remission and low disease activity were excluded because
those with moderate to high disease activity were more likely to
respond to treatment (Supplementary Fig. 4c, d). The age and sex
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Fig. 3 | Impact of sex and age on disease activity and the proteome. Violin chart
of the DAS28-CRP scores grouped by sex in ACPA-positive (a) or ACPA-negative (b)
RA patients (two-sided Student’s ¢ test). Scatter plot with fitted regression lines
illustrating Spearman’s correlation (two-sided p value) between age and DAS28-
CRP grouped by sex in ACPA-positive (c) or ACPA-negative RA (d). Gray band
represents 95% confidence interval estimated using standard error of the mean
(SEM). e DE-SWAN analysis of proteins across age in ACPA-positive females, with a
peak at age 45 indicated by the red line. f Violin plot illustrating age-specific dif-
ferences in DAS28-CRP and 4 clinical indicators (VAS, SJC, TJC and CRP) in ACPA-
positive females aged above and below 45 years (two-sided Student’s ¢ test).

g-i Multiple linear regression analysis (adjusted for age and sex, two-sided p
value < 0.05) between DAS28-CRP indicators and proteins in ACPA-positive RA
patients (n =175). Bar plot showing the number of proteins significantly correlated
with DAS28-CRP indicators (g), bubble plot displaying the regression analysis

N Female, 2 45 years old (n = 109)

between proteins and DAS28-CRP (h), and dot plot visualizing the regression
analysis between proteins and VAS, TJC, SJC and CRP (i). j Venn diagram showing
the overlap of proteins that exhibit significant changes between ACPA-positive
females below and above 45 years or are significantly correlated with DAS28-CRP
(left). Boxplots (right upper) displaying the normalized intensity of overlapped
proteins across ACPA-positive females below and above 45 years (two-sided Stu-
dent’s t test). Scatter plots (right below) showing regression analysis between
proteins and DAS28-CRP (adjusted for age and sex, two-sided p value). Gray band
represents 95% confidence interval estimated using SEM. ACPA" indicates ACPA-
positive, and ACPA™ indicates ACPA-negative. Significance is indicated as follows:
*p < 0.05 and **p < 0.01. For box plots shown in (a, b, f, j), the center line represents
the median; the bounds of the box indicate the 25th and 75th percentiles; and the
whiskers extend to the minimum and maximum values. Source data are provided as
a Source Data file.
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Fig. 4 | In-depth exploration of disease activity-related protein dynamics.

a Unsupervised k-means clustering analysis of DEPs across four disease activity
groups (two-sided Student’s ¢ test, p < 0.05). The expression patterns of disease-
related proteins in distinct clusters are shown on the left, with enriched pathways
(more than 5 proteins) for each cluster on the right (two-sided Fisher’s exact test).
Box plots inside showing the median (center line), the 25th and 75th percentiles
(bounds of box), and the minimum and maximum values (whiskers). b Heatmap
visualizing protein trajectories across DAS28-CRP. The trajectories of 996 proteins
are estimated using LOESS. ¢ The number of DEPs across disease activity levels. DE-
SWAN identified three local peaks at DAS28-CRP values of 3.1, 3.8, and 5.0.

Protein rank with SIC Protein rank with CRP

d Overlap of proteins with significant differential expression at the three local
peaks. e Bubble plot visualizing the enriched pathways of significant proteins
identified through linear regression with DAS28-CRP and at three peaks in DE-
SWAN (two-sided Fisher’s exact test, p < 0.05). f Line plot visualizes the results of
the linear regression analysis of proteins (significant at DAS28-CRP values of 3.1, 3.8,
and 5.0 in DE-SWAN) with VAS, TJC, SJC, and CRP. The cumulative number of
overlapped proteins that are significant either at DE-SWAN points or in relation to
the four parameters is shown, with proteins ranked based on significance from the
linear regression models (adjusted for age and sex, two-sided p value < 0.05).
Source data are provided as a Source Data file.

differences between responders and non-responders were not sig-
nificant in either group (Supplementary Fig. 4e, f). Initially, we con-
ducted differential analyses between responders and non-responders
without considering sex and age effects. In patients responsive to

MTX + LEF treatment, there were increased proteins related to
immunity and energy metabolism, alongside decreased proteins rela-
ted to lipid oxidation (Fig. 5a-c). In patients responsive to MTX + HCQ
treatment, we detected elevated protein levels associated with
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metabolism, immunity, and toll-like receptor cascades, and reduced
protein levels associated with transport pathways (Fig. 5d-f). Fur-
thermore, we analyzed these differences between responders and non-
responders in the ACPA-positive RA group, which had a sufficient
sample size for statistical analysis. MTX +LEF responders showed
increased complement activation, fibrinolysis, and autophagy, with
downregulated metabolic and glycolytic pathways (Supplementary
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Fig. 5a, b), while MTX+HCQ responders exhibited upregulated
immune activation and downregulated mitochondrial transport path-
ways (Supplementary Fig. 5¢, d). Given that sex may affect treatment
response*’, we also examined its impact on response-related pro-
teomics. In female responders to MTX +LEF, we observed elevated
protein transport and inflammatory pathways, while male responders
showed increased endocytosis (Supplementary Fig. 5a, b). Among the
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Fig. 5 | Machine learning-driven discovery of key proteins for predicting the
response to csDMARDs treatment. a Volcano plot of DEPs between response and
no response to MTX + LEF treatment (two-sided Student’s ¢ test, p < 0.05). Y =
response, N = no response. Enrichment analysis of upregulated (b) and down-
regulated (c) proteins in response vs no response to MTX + LEF treatment (two-
sided Fisher’s exact test, p < 0.05). d Volcano plot of DEPs between response and no
response to MTX + HCQ treatment (two-sided Student’s ¢ test, p <0.05). Y =
response, N = no response. Enrichment analysis of upregulated (e) and down-
regulated (f) proteins in response vs no response to MTX + HCQ treatment (two-

sided Fisher’s exact test, p < 0.05). LASSO regression analysis showing the con-
tribution of DEPs to treatment response prediction in the MTX + LEF (g) and
MTX +HCQ (h) groups. ROC curves illustrating the predictive performance of the
LASSO model for MTX + LEF (i) and MTX + HCQ (j) responses, using the top 5 or 2
proteins, respectively, in both the training (left) and testing (right) sets, with 10-fold
cross-validation repeated 100 times. k ROC curve showing model performance
after integrating protein levels measured by ELISA. The confusion matrix displays
sensitivity and specificity at the optimal cutoff for the MTX + LEF (left) and

MTX +HCQ (right) groups. Source data are provided as a Source Data file.

MTX+HCQ responders, females presented increased nonsense-
mediated decay and decreased amino acid metabolism (Supplemen-
tary Fig. 5c, d).

Furthermore, we developed models using plasma proteins to
predict treatment response. By employing least absolute shrinkage
and selection operator (LASSO) feature selection on characteristic
proteins, we constructed linear regression models and calculated the
contribution scores of these proteins to the models. Proteins with
absolute contribution values greater than 1 were ultimately selected
for model construction (Fig. 5g, h). We ensured equal numbers of
responders and on-responders in both the training and testing sets.
After 10-fold cross-validation to determine the optimal regularization
parameter, we performed 100 iterations to generate an average
receiver operating characteristic (ROC) curve, ensuring stable and
reliable predictions (Supplementary Fig. 6a). In the model for pre-
dicting the MTX + LEF treatment response, five proteins were used,
with LGALS3BP and MYH9 increased in responders, while ECI2,
COL1Al, and CBRI1 decreased in responders. For the MTX+HCQ
treatment, RPL27A was a positive predictor and GGT1 was a negative
predictor. The LASSO-selected proteins predictors all ranked within
the top 10 across multiple other feature selection methods (random
forest, recursive feature elimination combined with support vector
machine, XGBoost, stability selection and elastic net), supporting their
robustness (Supplementary Fig. 6b). Cross-validation yielded an
average ROC of 0.96 for the training set and 0.88 for the testing set in
MTX + LEF treatment groups (Fig. 5i). The predictive ROC values were
0.92 for training and 0.82 for testing in MTX + HCQ treatment groups
(Fig. 5j). SHAP analysis was performed to interpret the contribution of
individual proteins to the predictive models, confirming that their
effect directions were consistent with those identified by feature
selection (Supplementary Fig. 6c). In addition, we built prediction
models with random forest and XGBoost using LASSO-identified fea-
tures, but their median ROC values remained lower than those from
LASSO (Supplementary Fig. 6d, e). These findings consistently high-
light the superior predictive performance of LASSO. Furthermore,
incorporating DAS28-CRP parameters (VAS, SJC, TJC, and CRP) into the
protein features slightly improved the predictive performance, with
median ROC values of 0.90 (vs. 0.88) for MTX + LEF and 0.84 (vs. 0.82)
for MTX + HCQ in the testing sets (Supplementary Fig. 6f).

We validated our model performance in an independent cohort of
46 RA patients receiving MTX + HCQ and 19 patients receiving MTX +
LEF. The enzyme-linked immunosorbent assay (ELISA) results revealed
consistent biomarker changes with proteomic data between respon-
ders and non-responders (Supplementary Fig. 6g). Integrating these
protein levels into our model maintained strong classification effi-
ciency, with ROC values of 0.90 for MTX + LEF and 0.86 for MTX +
HCQ. Using a confusion matrix to determine the optimal cutoff, the
MTX + LEF model successfully identified 9 out of 11 responders with no
false negatives. In contrast, the MTX + HCQ model exhibited a sensi-
tivity of 0.63 and specificity of 1.0, which may be influenced by the
smaller discovery cohort size (Fig. 5k). Overall, both LASSO models
demonstrated robust predictive performance and can accurately
predict treatment responses for the two most common MTX

combination therapies, offering valuable insights for personalized
treatment strategies.

Proteomic changes after treatment in RA patients who respond
To investigate the proteomic changes after MTX + LEF or MTX + HCQ
treatment in RA patients who responded, differential analyses were
performed (Fig. 6a, b). We found that retinol metabolism and cyto-
plasmic translation increased, whereas actin cytoskeleton and acute-
phase responses decreased in responders after MTX + LEF treatment
(Fig. 6a, c). In contrast, mMRNA metabolism, retinol metabolism and cell
adhesion increased, while the complement pathway decreased in
responders after MTX + HCQ treatment (Fig. 6b, d). Notably, these
pathways did not show pronounced changes in non-responders fol-
lowing either treatment (Fig. 6e, f and Supplementary Fig. 7a, b).

To identify pivotal factors contributing to pharmacological effi-
cacy, we performed overlapping analysis between proteins associated
with treatment response and those significantly changed after
csDMARDs treatment. In the MTX + LEF group, eight common proteins
involved in the acute response, actin cytoskeleton organization,
mitochondrial biogenesis activation and metabolism were identified
(Fig. 6g). In the MTX+HCQ group, six overlapping proteins were
identified (Fig. 6h). These proteins may serve as potential targets for
these two csDMARDs therapies.

Besides, we explored the effects of sex and ACPAs status on
treatment-induced proteomic changes. Due to the limited number of
ACPA-negative RA patients receiving both treatments and the limited
number of males receiving MTX + HCQ treatment, these patients were
not included in the analysis. In ACPA-positive RA patients receiving
MTX + LEF, translation, amino acid metabolism, and axon guidance
were increased. After MTX + LEF treatment, female responders pre-
sented elevated protein and RNA metabolism, whereas male respon-
ders showed increased actin cytoskeleton regulation (Supplementary
Fig. 7c-e). In contrast, after MTX + HCQ treatment, RNA metabolism
and axon guidance increased in ACPA-positive responders (Supple-
mentary Fig. 7f, g). Our analysis indicates that sex has a certain impact
on csDMARDs therapy-induced proteomic changes.

Discussion
Owing to the complexity and heterogeneity of the mechanisms
underlying RA, as well as the inefficacy and various adverse reactions
to medications, proteomics-driven precision medicine plays a crucial
role in the personalized treatment of RA. This work yields several key
findings. First, our study delineates the characteristic molecular pro-
files of each RA subtype, revealing potential therapeutic targets for
interventions in the preclinical stages of RA, as well as in ACPA-
negative RA. Second, we explore proteins that underwent linear and
nonlinear changes with DAS28-CRP, identifying fluctuation peaks at
scores of 3.1, 3.8, and 5.0. Third, treatment response-related proteins
differ between the MTX +LEF and MTX +HCQ therapies, aiding in
predictive model development and revealing potential molecular
mechanisms to enhance treatment efficacy.

RA is characterized by aberrantly activated autoimmune respon-
ses. Recent studies have uncovered cellular dysfunctions in RA and
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dysregulation of energy and nutrient metabolism*™*, as well as pro- Heterogeneity in RA is evident across different clinical phases and

tein processing*®. Our research reveals how these functions are affec-  serological statuses*”*. In our study, we find notable proteomic fea-
ted at the protein level and their implications for RA progression and  tures related to these factors, which might help achieve better perso-
therapeutic interventions. The acute-phase response-related proteins nalized precision medicine. First, we observe a notable increase in RNA
not only showed significant associations with disease activity but also  metabolism in at-risk individuals, especially in males, along with the
emerged as primary factors elucidating sex or age disparities in the upregulation of the ROBO receptor signaling pathway, which inhibits
DAS28-CRP. osteogenic differentiation””. Compared with those in both the RA and
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Fig. 6 | Plasma protein signatures in csDMARDs-treated RA patients with dif-
ferent responses. a Volcano plots showing DEPs before and after MTX + LEF
treatment, stratified by treatment response (response, n=12; no response, n=23)
(paired two-sided Student’s ¢ test, p < 0.05). b Volcano plots showing DEPs before
and after MTX + HCQ treatment, stratified by treatment response (response, n= 6;
no response, n =13) (paired two-sided Student’s ¢ test, p < 0.05). ¢ Pathway
enrichment analysis of DEPs before and after MTX + LEF treatment in response
(two-sided Fisher’s exact test). d Pathway enrichment analysis of DEPs before and
after MTX + HCQ treatment in response (two-sided Fisher’s exact test). e Heatmap

of the relative abundance of DEPs before and after MTX + LEF treatment, separated
by response. f Heatmap of the relative abundance of DEPs before and after

MTX + HCQ treatment, separated by response. Venn diagrams displaying overlap of
treatment- and response-related proteins for MTX + LEF (response, n=12; no
response, n=23) (g) and MTX + HCQ (response, n = 6; no response, n=13) (h)
therapies, grouped by response, with corresponding dot plots illustrating the dif-
ferential expression of these proteins among groups (paired two-sided Student’s ¢
test). Significance is indicated as follows: *p < 0.05, **p < 0.01, ns means p > 0.05.
Source data are provided as a Source Data file.

healthy groups, some proteins even reach their highest or lowest levels
in the at-risk group. Although at-risk individuals are clinically con-
sidered to be in an intermediate stage, we believe that this represents a
distinct biological stage with a unique protein expression profile rather
than merely a transitional phase. These divergent proteins could serve
as early biomarkers or therapeutic targets, potentially altering the
disease course before clinical RA onset. Second, we reveal that lipid
metabolism was elevated in ACPA-negative RA patients, suggesting
increased metabolic demand or a modification in energy metabolism,
which could present potential treatment targets. Moreover, IgG
sequence diversity in autoimmune diseases has been demonstrated in
studies of BCR sequences®®. We discover serum IgG segments with
different levels among the clinical groups, indicating that autoantigen-
driven antibody gene rearrangements underlie the transition from
healthy to disease’".

Notably, our research demonstrates nonlinear changes in proteins
associated with DAS28-CRP. We identified three protein dynamics
peaks using DE-SWAN analysis, corresponding to DAS28-CRP scores of
3.1, 3.8, and 5.0. The 3.1 point closely approaches the widely used low
disease activity point at 3.2. At this crest, we note an enhanced innate
immune response. These changes are notably linked to the VAS score.
Considering that the proteins at this stage may reflect the transition
from moderate to mild disease activity, studying their molecular
mechanisms may provide insights into the pathogenesis of patients
with low disease activity, which will further help achieve remission, in
line with the treat-to-target strategy>. A continued intensification of
inflammation is observed at point 3.8, along with inhibited glucose
metabolism. The limited correlation identified between the DAS28-
CRP parameters and protein changes at 3.8 suggests a promiscuous
mechanism in the moderate disease activity group. Notably, the 5.0
crest, which is close to the high disease activity cutoff, exhibits the
strongest associations with the TJC and SJC. The protein changes
include increased biological oxidation and decreased amino acid
metabolism, translation, and ROBO signaling. These findings provide
potential insights into the underlying mechanisms of severe disease
status.

According to the recommendations, csDMARDs serve as the first
line for treating RA*, even though patients face challenges related to
adverse reactions and suboptimal responsiveness. In this context,
identifying distinct characteristics and predictive signatures for treat-
ment response to these traditional drugs is crucial. Our analysis reveals
the proteomic changes of commonly used therapies, including
MTX + LEF, whose safety has been previously validated in Chinese
cohorts®*** and MTX + HCQ. These combinations effectively regulate
immune functions, including complement activation, acute phase
responses, and neutrophil degranulation, and they restore RNA
metabolism. After identifying the characteristic proteins in the
responsive population, we construct prediction models for MTX + LEF
and MTX+HCQ treatment response. These models demonstrate
promising efficacy and were subsequently validated in independent
cohorts.

While this study provides valuable insights into both the patho-
genic mechanisms and pharmacological strategies in RA, it is impor-
tant to acknowledge several limitations, particularly the relatively

small sample sizes in certain subgroups, including those at risk before
and after disease onset, as well as in the cohort used to validate the
drug response prediction model. The limited sample sizes may be
partially attributable to the small number of at-risk individuals who
progress to clinical disease. Previous studies have shown that ACPA-
positive individuals with arthralgia have an approximately 28% risk of
developing RA*. Although our at-risk individuals are asymptomatic,
our follow-up data reveal that 8 out of 38 individuals (21.1%) pro-
gressed to RA, reflecting a consistent progression rate. Long-term
follow-up (5-7 years) results in a limited number of samples available
for comparison between converters and non-converters. Our focus on
plasma proteomics within the circulatory system may have overlooked
nuances present in the synovium?®, a critical site in the pathology of RA.
These considerations provide avenues for future research to refine and
expand our understanding of this complex bundle of autoimmune
diseases.

Methods

Study design and ethics approval

Plasma samples were obtained from 99 healthy controls, 60 at-risk
individuals, and 278 patients with RA. These samples were collected at
West China Hospital of Sichuan University, following the approval of
the Research Ethics Committee of West China Hospital at Sichuan
University (Permission number: 2021(790)), and informed consent was
obtained from all participants. Patients were diagnosed with RA by
meeting the 2010 American College of Rheumatology / EULAR criteria.
According to the EULAR, at-risk individuals can be defined by the
presence of one or more of the following criteria: (a) genetic risk fac-
tors for RA, (b) environmental risk factors for RA, (c) systemic auto-
immunity associated with RA, (d) symptoms without clinical arthritis,
and (e) unclassified arthritis. In the context of our study, the at-risk
individuals specifically corresponded to those in phase (c), char-
acterized by systemic autoimmunity associated with RA®. Healthy
controls were age- and sex-matched individuals with no history or
clinical evidence of autoimmune or rheumatic diseases*. All partici-
pants were enrolled randomly without prior sex-based selection or
stratification. Sex of participants was determined based on self-report.
Blood collection adhered to standard venipuncture protocols, utilizing
anticoagulant tubes. After centrifugation to obtain the supernatant,
the samples were stored at —80 °C until analysis. ACPAs levels were
measured via the Elecsys anti-CCP assay (Roche Diagnostics, Man-
nheim, Germany) on the Cobas® e 801 modules, with results classified
as either positive (217.0 U/mL) or negative (<17.0 U/mL). The human
tissues used for common reference samples were from distant normal
tissues of cancer patients, with approval from the Research Ethics
Committee of West China Hospital, Sichuan University (approval
numbers: 2019(538) for liver, 2019(539) for lung, and 2020(374) for
intestine). Normal kidney tissue was obtained from renal transplant
donors with approval number 2019(748).

Protein extraction and digestion

The plasma samples were first thawed and then diluted 10-fold with
precooled phosphate-buffered saline containing protease and phos-
phatase inhibitors. From each diluted plasma sample, a 16.7 L aliquot
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(100 pg of protein) was further diluted to 100 pL with 100 mM trie-
thylammonium bicarbonate (Sigma-Aldrich, Cat. No. T7408) buffer.
The resulting samples were reduced at 56 °C for 1 h with 10 mM Tris (2-
carboxyethyl) phosphine (Sigma-Aldrich, Cat. No. C4706), followed by
alkylation with 17 mM iodoacetamide (Sigma-Aldrich, Cat. No. 16125) at
room temperature in the dark for 35 minutes. Next, ~100 pg of protein
from each sample was digested for 14 h at 37 °C with trypsin (Promega,
Cat. No. V5117) at a ratio of 1:50 (w/w) (2 ug/uL). A C18 solid-phase
extraction column (TECAN, CEREX 10 mg, Cat. No. 417-0101R) was
used to desalt the tryptic peptides, and the samples were dried in a
vacuum concentrator before isobaric labeling.

TMT labeling

TMT (Thermo Scientific, Product catalog number: 90066; Lot number:
RJ236348) reagents were employed for isobaric labeling. To minimize
cross-isotope contamination between the common internal reference
and experimental samples, TMT-126 was used to label the common
reference sample. The experimental samples were labeled with TMT-
129 or TMT-131, and empty channels were strategically placed between
them. Equal amounts of proteins derived from pooled plasma, liver,
lung, kidney, and intestine tissues were combined to create reference
samples. The utilization of this reference sample serves two main
purposes. (I) It acts as a reference sample, reducing batch effects
during the analysis of MS data. (II) It acts as a carrier protein to increase
the composite intensity of low-abundance proteins in plasma and thus
increases the likelihood of their detection by MS®*"®2, This strategy
allows for high-throughput identification and quantification of plasma
proteins without the need to remove high-abundance plasma proteins.
The excess TMT reagents were subsequently quenched, and the sam-
ples labeled with TMT-129 or TMT-131 as well as the reference sample
were mixed, desalted and then dried via a speed-vacuum system.

LC-MS/MS analysis

Peptide samples were analyzed via a Q Exactive HF high-resolution MS
coupled with an EASY-nLC 1200 nanoflow high-performance liquid
chromatograph system (both Thermo Fisher Scientific). The samples
were redissolved in loading buffer (2% ACN, 0.1% FA) and loaded onto a
75 pm x 2.5 cm homemade trap column (Spursil C18, 5 pum particle size,
DIKMA, Cat. No. 85251) and coupled to a homemade capillary column
(25cm  length-X-75-uminner.diameter, Reprgsil-PurC18-AQ-1.9 ym:
particle size, Dr.Maisch, Cat. No. rl119.aq.0001). Separation was
achieved via a gradient of 8-100% HPLC buffer B (0.1% formic acid, 2%
DMSO in 80% acetonitrile) in buffer A (0.1% formic acid, 2% DMSO in
98% water). The gradient flow rate was set at 330 nL/min for 90 min,
following this pattern: 0-3min, 8-8% B; 3-20min, 8-12% B;
20-80 min, 12-25% B; 80-85 min, 25-95% B; and 85-90 min, 100% B.
Data-dependent acquisition (DDA) was configured in positive ion
mode for a full mass spectrometry survey scan spanning from 350 to
1600 m/z, with a resolution of 60,000, a maximum injection time of
100 ms, and an automatic gain control (AGC) target value of 1e6. The
top 20 MS precursors were chosen with a 0.4 m/z isolation window and
fragmented with 30% normalized collision energy. The MS2 scans were
carried out at a resolution of 30,000, an AGC target of 5e5, and a
maximum injection time of 120 ms. Unassigned ions or those with a
charge state of z=1 or 3-8 were excluded from MS/MS, and the
intensity threshold was set to 2.8e5.

Database searching

For data analysis, the raw MS data were searched against the human
UniProt sequence database via MaxQuant®® (version 1.6.1.0). The first
search mass tolerance, the main search peptide tolerance and the
fragment ion mass tolerance were set at 10 ppm, 4.5 ppm and 0.02 Da,
respectively. The database search included cysteine carbamido-
methylation as a fixed modification, as well as methionine oxidation,
TMTé6-plex (Lys), and protein N-terminal acetylation as variable

modifications. Trypsin was selected as the protease, and two missing
cleavages were allowed. A minimum peptide length of 6 amino acids
was applied, and the peptide false discovery rate was set to 1%. Proteins
with at least one unique peptide were preserved.

MS data processing

The protein levels within each TMT batch were normalized to their
levels in the TMT-126-labeled internal reference. The datasets from all
TMT batches were combined into an expression matrix, and a log2
transformation was applied to the merged data. To ensure reliable
plasma protein identification in our study, we created a plasma protein
database that incorporates proteins from Human Plasma Protein
Project®* and Human Protein Atlas®*®, as well as those identified in
previous plasma proteomes'>*””", Following an overlapping analysis
between the identified proteins in this work and the proteins in the
plasma protein databases, any uncertain plasma proteins identified by
this strategy were excluded. Only proteins detected in more than 50%
of the samples in each disease group were preserved, and the resulting
matrix was imputed via the random forest function from the
R-randomForest package version 4.6-14. This imputed matrix was used
for subsequent data analyses.

Bioinformatics and statistical analysis
Differential expression analysis among various groups was tested by
two-sided Student’s ¢ test. Spearman’s correlation coefficients were
employed to calculate the correlations between common internal
references or between experimental samples. Gene Ontology term
analysis”> and Reactome enrichment analysis were conducted via the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) Bioinformatics Resources. The p values for pathway enrich-
ment analysis were calculated using the DAVID tool based on two-
sided Fisher’s exact test. The enrichment scores of various pathways in
each sample were assessed via the ssGSEA algorithm’ from the GSVA
package (version 1.48.3).

To assess the impact of the DAS28-CRP score on protein expres-
sion, a linear regression model was applied, incorporating age and sex
as covariates as follows:

Protein level ~ a - DAS28 — CRP + f51 - sex + 52 - age

The proteins exhibiting significant positive or negative linear
correlations (p<0.05) were subsequently subjected to pathway
enrichment analyses via DAVID.

DE-SWAN

To discern and quantify alterations in the plasma proteome concern-
ing DAS28-CRP and age in females, the DE-SWAN method from the R
package DE-SWAN (version 0.0.0.9001) was employed*°. The center of
the analysis window was shifted in increments of 0.1 DAS28-CRP
values, spanning from low to high, and the protein levels of the
20 samples closest to the window’s center on each side were com-
pared. The analysis was conducted via the following linear model:

Protein level ~ & - DAS28 — CRP,pyign + B1 - s€x + B2 - age

Proteins exhibiting statistical significance (p<0.05) within the
peaks with the most substantial fluctuations (3.1, 3.8, 5.0) were selec-
ted for pathway enrichment analysis via DAVID.

Machine learning for treatment response

To prevent overfitting of the prediction model, we imposed feature
penalties on the protein characteristics. We applied LASSO via the
glmnet package™ (version 4.1-4) in R to construct linear regression
models for the MTX + LEF and MTX + HCQ treatment groups, which
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were used to assess the contribution of the DEPs to the treatment
response””’.

First, we standardized the proteomics data via scale normal-
ization. We subsequently performed 10-fold cross-validation on the
basis of the mean squared error (MSE) criterion to select the optimal
lambda value (minimum MSE plus one standard deviation), with each
observation assigned a weight of 1. (Parameters: alpha=1, nfold =10
family = “binomial”, type.measure = “mse”, s =“lambda.lse”, weights =
1 and alignment = “lambda”). Finally, to establish a reliable drug pre-
diction model, we selected the most stable feature proteins through 50
random loops. The contribution value of each predictor (protein) in
each prediction model was derived by averaging the coefficients
across the 50 iterations, as expressed by the following formula:

Contribution = average (coefficient;)

i: Number of random loops in the linear model

Proteins with absolute contribution values exceeding 1 were
chosen as features for the formal prediction analysis. The protein
features utilized included CBR1, LGALS3BP, MYH9, COL1A1 and ECI2
(MTX + LEF), along with GGT1 and RPL27A (MTX + HCQ).

To optimize the LASSO model, we used the cv.glmnet function to
perform 10-fold cross-validation and identify the optimal regulariza-
tion parameter (A). A,in, Which minimizes the cross-validation error, is
selected as the optimal parameter. The function is run with the para-
meters nfolds =10, family = “binomial”, and alpha=1 to apply LASSO
regularization. This step ensures a balance between model complexity
and predictive performance, preventing overfitting while maintaining
accuracy. Once A, is determined, it is used to build the final LASSO
regression model, with lambda = A;;;, and alpha =1, enforcing sparsity
in the selected features. For model construction, samples are ran-
domly divided into training and testing sets, ensuring equal numbers
of responders and non-responders in each random sampling. The
trained model is applied to predict response probabilities using the
parameter type =“response”, producing robust and reliable prob-
ability estimates for drug response outcomes. Hyperparameter tuning
ensures that the LASSO model is optimized for the dataset, improving
its generalizability and predictive reliability. Finally, we used the mul-
tipleROC function from the pROC package’® (version 1.18.5) to calcu-
late the ROC curve. To estimate the confidence interval for each ROC,
we performed 100 iterations and calculated the median ROC curve’.

In addition to LASSO, feature selection was performed using
random forest, recursive feature elimination combined with support
vector machine (REF + SVM), XGBoost, stability selection, and elastic
net. Random forest and XGBoost were also used for model prediction.
For REF +SVM, the model iteratively removed the least important
features and evaluated performance across feature subsets using
5-fold cross-validation, yielding a stable subset of informative features
via the caret package’ (version 7.0-1) in R. Stability selection was
performed by repeatedly fitting LASSO models on subsampled data-
sets. We used the stabsel function combined with the lars.lasso fitting
method, performing 100 subsampling iterations (sampling.type =
“MB”) and setting the per-family error rate to 1. Features with selection
frequencies exceeding 0.75 were considered stable and retained for
downstream analysis via the stabs package®® (version 0.6-4) in R. For
elastic net, the optimal regularization strength (A) was determined via
10-fold cross-validation, and features with non-zero coefficients at the
lambda.lse value were retained as selected features via the glmnet
package® (version 4.1-4) in R. For Random Forest, we used the fol-
lowing settings: 500 trees, the square root of the number of features
for splits (mtry), and a minimum node size of 1 via the randomForest®
package (version 4.7-1.1) in R. For XGBoost, we set the maximum tree
depth to 4, the learning rate to 1, 10 boosting rounds, and 2 threads.
The objective was binary logistic regression via the xgboost package®
(version 1.7.8.1) in R.

To enhance the interpretability of the treatment response pre-
diction models, we employed SHapley Additive exPlanations (SHAP) to

quantify the contribution of each feature to model outputs. Specifi-
cally, we used the fastshap package®* (version 1.18.5) to compute SHAP
values based on 50 simulations of a custom logistic regression pre-
diction function (predict.median_logistic). The computed SHAP
values, along with the original feature matrix, were used to construct a
shapviz object for downstream visualization and interpretation.

Enzyme-linked immunosorbent assays

Serum concentrations of protein features, including COL1A1 (Solarbio,
China, Cat. No. SEKH-0401), MHY9 (Signalway Antibody, Pearland,
USA, Cat. No. EK15634), ECI2 (EIAab, Wuhan, China, Cat. No. E1626%h),
LGALS3BP (Boster Biological Technology, Wuhan, China, Cat. No.
EK1240), and CBR1 (COIBO BIO, China, Cat. No. CB16353-Hu) for
MTX+LEF, GGT1 (Signalway Antibody, Pearland, USA, Cat. No.
EK14228) and RPL27A (ElAab, Wuhan, China, Cat. No. E5486h) for
MTX +HCQ, were quantified via a commercially available ELISA kit.
The detailed protocols for each assay are accessible on the manu-
facturer’s website (Supplementary Table 2), and all procedures were
conducted in strict accordance with the manufacturer’s instructions.
The plasma samples were prepared at various concentrations to meet
the required protein levels. Following the manufacturer’s protocol,
300 pL of wash buffer was added to each well and incubated for
30 seconds. After the wash buffer was removed, the microplate was
gently tapped dry on absorbent paper; this washing step was repeated
twice. Then, 100 pL of 2-fold serially diluted standards was added to
the standard wells, and 100 pL of sample was added to the sample
wells. The plate was incubated at room temperature (25 +2 °C). Sub-
sequently, 100 pL of biotinylated antibody solution was added to each
well. The plate was sealed and incubated at room temperature for
90 min. Next, 100 pL of the prepared avidin-biotin-peroxidase com-
plex was added to each well, and the plate was covered with a plate
sealer and incubated for 40 min at room temperature. Next, 90 pL of
tetramethyl benzidine dihydrochloride (TMB, NEOBIOSCIENCE, Cat.
No. TMS.600) substrate solution was added to each well, and the plate
was incubated in the dark at room temperature for 30 min. Finally,
100 pL of stop solution was added to each well, ensuring that the stop
solution was added in the same order as the TMB substrate. The optical
density values were measured within 5 min via a microplate reader at a
dual wavelength of 450 nm. Alternatively, the mean absorbance for
each standard was plotted against the concentration. Four-parameter
logistic regression was used on the standard curve generated with
curve fitting software to interpolate the concentration of the sample.

Validation of the treatment response prediction model

On the basis of the results of the previous 100 training iterations using
the proteomic data, the average coefficient for each protein feature
was taken as the final coefficient for the drug prediction model. The
protein concentrations detected by ELISA were standardized and then
input into the model. ROC curve analysis was then performed to
evaluate the sensitivity and specificity of the model’s classification. To
further investigate the model’s sensitivity and specificity, a confusion
matrix was constructed using the predicted probabilities from the test
set. The probability threshold was estimated via the coords function in
the pROC package”® (version 1.18.5) and the Youden index, with the
cutoff value determined via the Youden method®*°. Differences in
each biomarker between the responder and non-responder groups
were assessed using a two-sided Mann-Whitney U test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw mass spectrometry proteomics data have been deposited in
the ProteomeXchange Consortium via the iProX partner repository®
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with the dataset identifier PXD048245. All data are included in the
Supplementary Information or available from the authors, as are
unique reagents used in this Article. The raw numbers for charts and
graphs are available in the Source Data file whenever possible. Source
data are provided with this paper.

Code availability

The source code, including differential computation, feature selection,
prediction models and plotting, is publicly available on Zenodo at
https://doi.org/10.5281/zen0do.15717981%.
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