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Spectral signature of high-order photon
processes enhanced by Cooper-pair pairing

W. C. Smith1,3,4 , A. Borgognoni1,4, M. Villiers1, E. Roverc’h1, J. Palomo1,
M. R. Delbecq 1, T. Kontos1, P. Campagne-Ibarcq 1, B. Douçot2 &
Z. Leghtas 1

Inducing interactions between individual photons is key for photonic
quantum information and studying many-body photon states. Super-
conducting circuits are well suited to combine strong interactions with low
losses. Typically, microwave photons are stored in an LC oscillator shunted
by a Josephson junction, where the zero-point phase fluctuations across the
junction determine the strength and order of photon interactions. Most
superconducting nonlinear oscillators operate with small phase fluctuations,
where two-photon Kerr interactions dominate. In our experiment, we shunt
a high-impedance LC oscillator with a dipole element favoring the tunneling
of paired Cooper pairs. This leads to large phase fluctuations of 3.4, acces-
sing a regime where transition frequencies shift non-monotonically with
excitation number. From spectroscopy, we extract two-, three-, and four-
photon interaction energies, all of similar strength and exceeding the pho-
ton loss rate. Our results open a new regime of high-order photon interac-
tions in microwave quantum optics.

Photons do not interact with each other in free space. In the quantum
optical domain, they are typically brought into interaction by coupling
them to atoms1. Recent advances have realized two- and three-photon
interactions mediated by a dense gas of Rydberg atoms, demonstrat-
ing photon dimers and trimers2, and photonic vortices3. Reaching
processes of higher order would find applications in multi-photon
quantum logic4 and the study of many-body photon states5–7, but has
remained out of reach since it requires inducing even stronger inter-
actions between photons.

In the field of microwave quantum optics with superconducting
circuits8–10, the nonlinearity of the Josephson junction is employed to
mediate interactions between photons. These photons are typically
stored in an LC circuit11 of angular frequencyΩ= 1=

ffiffiffiffiffiffi
LC

p
(L andC are the

circuit inductance and capacitance, respectively). Superconductivity
endows these circuits with low photon loss, and quality factors
exceeding one million are routinely observed12–14. When such a circuit

is shunted by a Josephson junction, interactions between photons
appear (Fig. 1). The Hamiltonian takes the form

Ĥideal =ℏΩâyâ� EJ cosðϕ̂� ϕextÞ
ϕ̂=ηðâ+ âyÞ,

ð1Þ

where ℏ is the reduced Planck constant and â is the photon annihila-
tion operator. The interaction energy stems from the Josephson cosine
potential with Josephson energy EJ , and ϕ̂ is the phase drop across the
junction with η its zero-point fluctuations. The loop formed by the
oscillator inductance and the junction is threaded by external
magnetic flux denotedϕext. Expanding the cosine into its Taylor series

reveals the various interaction processes. For example, the ½ηðâ+ âyÞ�4

term yields a two-photon interaction term ây2 â2 corresponding to the
Kerr effect. A celebrated success ofmicrowave quantumopticswas the
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first realization of a Kerr interaction that exceeded the photon loss
rate, demonstrating the collapse of a coherent state into multi-
component Schrödinger cat states15. In this work, we address the

problem of inducing higher-order processes of the form âyn ân where
n = 3, 4, and beyond.

The relative strength of multi-photon processes is governed by

the dimensionless quantity η. It can be expressed as η=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πZ=RQ

q
,

where Z =
ffiffiffiffiffiffiffiffiffi
L=C

p
is the LC circuit impedance, and RQ ≈ 6.4 kΩ is the

superconducting resistance quantum16. The n-photon process âyn ân

has a strength Jn that scales as ηn=n!
� �2. Going beyond the Kerr effect

requires that ∣J3/J2∣ = η/3 ≳ 1, or equivalently Z ≫ RQ. However, fabri-
cating an LC oscillator with a characteristic impedance far exceeding
the superconducting resistance quantum is challenging. A successful
strategy has been to fabricate the resonator inductance from an array
of 40 to 100 Josephson junctions17,18 or a high kinetic inductance
material such as granular aluminum19. Values of η ≈ 1.8 have been
achieved, giving rise to the fluxonium qubit. More recently, arrays of
460 Josephson junctions have been suspended above the substrate,
achieving η ≈ 3.8, and giving rise to the quasicharge qubit20. Another
strategy has been to fabricate the resonator out of a planar coil of thin
superconducting wire. Fluctuations of η ≈ 1 were achieved, and emis-
sions of k-photon bunches (k = 1 to 6) were observed by activating the

process âk + âyk with a voltage-biased junction21. Values as large as
η = 2.4 were reported by suspending such a planar coil on a thin
substrate22, leading to the observation of phase delocalization with an
uninterrupted wire.

Another route towards large phase fluctuations is to replace the
Josephson junction, that allowsCooper-pair tunneling, by a dipole that
only allows pairs of Cooper pairs to tunnel23,24. In the basis of tunneled
Cooper-pair number N, the tunneling operator is transformed as
1
2

P
N ∣Ni N + 1h ∣+ ∣N + 1i Nh ∣ð Þ ! 1

2

P
N ∣Ni N +2h ∣+ ∣N + 2i Nh ∣ð Þ.

Equivalently, in the conjugate phase representation φ,
cos φ̂ ! cos 2φ̂. Shunting such an element by an LC oscillator (Fig. 1a),

and denoting ϕ̂= 2× φ̂, we see that phase fluctuations are effectively

doubled: η= 2×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πZ=RQ

q
25. In the extreme regime of η ≳ 3, we further

require that EJ≪ℏΩ (Fig. 1b), so that the Josephson cosine potential

primarily induces n-photon interaction processes âyn ân (Fig. 1c).

In this experiment, we implement a superconducting LC
oscillator shunted by an approximate two-Cooper-pair tunneling
element. We place ourselves in the unexplored regime where the
tunneling energy is smaller than the oscillator transition energies,
and photon-photon interactions of order larger than two (Kerr)
dominate, or equivalently zero-point phase fluctuations exceed 3.
We achieve EJ=ℏΩ=0:28 and η = 3.4. We probe our circuit through
microwave spectroscopy, which is better suited than correlation
measurements to the regime where interactions exceed the
oscillator linewidth. We measure the first four transition energies
of our device, and find that unlike a Kerr resonator, they do
not follow a monotonic trend. Instead, we observe an alternation
of the sign of the oscillator frequency shift for each added
photon. From this spectroscopic signature, we extract two-,
three-, and four-photon interaction processes of amplitudes
greater than 70 MHz, that alternate in sign, and far exceed the
transition linewidths of 200 kHz. Entering the regime of strong
high-order photon interactions opens many possibilities in
microwave quantum optics such as multi-photon quantum logic4,
the study of many-body photon states6, or the processing of
protected qubits26.

Results
We proceed to the analysis of the ideal Hamiltonian in Eq. (1) in the
regime EJ≪ℏΩ and η > 1 (Fig. 1), and for simplicity, we set ϕext = 0.
Note that the cosine in Eq. (1) may be decomposed as cos½ηðâ+ âyÞ�

Fig. 1 | Principle of high-order photon processes. a Electrical circuit depicting a
superconducting LC oscillator (black) shunted by a generalized Josephson junction
(grey) thatonly permits Cooper-pair tunneling in pairs. The circuit is threadedby an
external flux denoted ϕext. b Potential and energy levels (solid lines) of this non-
linear oscillator [Eq. (1) with parameters

Ω=2π = 2:86 GHz , EJ=h=0:795 GHz ,η= 3:4] and its linear equivalent (dashed
lines) as a function of the superconducting phase difference at ϕext = π. Crucially,
the adjacent transition frequency shift δn from the bare frequency ω0 alternates in
sign when ascending the ladder. c Photon process diagrams for the first four
interaction orders and corresponding interaction energies Jn.
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= 1
2 ðD̂η + D̂�ηÞ, where D̂η = exp½iηðâ+ âyÞ� is the displacement evolution

operator. Remarkably, this evolution operator that usually results from
the integration of a linear Hamiltonian / â+ ây over time enters the
Hamiltonian directly. As a consequence, even at short times, a quan-
tum state evolving under the Hamiltonian in Eq. (1) will be displaced
across phase-space by ± η. The effect is particularly striking when
initializing the system in a coherent state of amplitude α = η/226, so that
∣±αi, that are distant by 2α in phase-space, are directly coupled
through cos½ηðâ+ âyÞ� (Fig. 2b). This is qualitatively different from the
familiar diffusive-like evolutions resulting from low-order photon
interactions15 (Fig. 2a).

We now express Ĥideal in Eq. (1) in terms of n-photon interaction
processes (Fig. 1c). We start by expanding the cosine into a normal
ordered Taylor expansion. Since EJ≪ℏΩ, by virtue of the rotating wave
approximation (RWA), we neglect non-particle number conserving
terms. We arrive at (see Supplementary Information):

Ĥideal � ℏω0â
yâ+

X
n≥ 2

Jnâ
yn ân, ð2Þ

where the n-photon interaction energy takes the form Jn =
�EJe

�η2=2ð�1Þn ηn=n!
� �2, and the renormalized frequency isω0 =Ω + J1/ℏ.

Note that Jn/Jn−1 = − (η/n)2, and hence the interaction strength is maximal
for the integer order closest to η. The eigenstates of Hamiltonian (2) are
Fock states with eigenenergies En =nℏω0 +

Pn
k = 2

n!
ðn�kÞ! Jk , and the

experimentally accessible quantities are the transition frequencies
ωn = (En+1 − En)/ℏ. We introduce the transition frequency shift in the
presence of n photons as δn = ωn − ω0 (Fig. 1b) and we find:

δn =
Xn + 1

k = 2

k
n!

ðn+ 1� kÞ! Jk=ℏ : ð3Þ

In the familiar situation of the Kerr oscillator where η≪ 1, J2 � �EJη
4=4

is half the Kerr shift per photon and Jn≥3 can be neglected. Hence
ωn ≈ ω0 + 2nJ2/ℏ and the transition frequency monotonically shifts for
each added photon (Fig. 2c, e). This is in stark contrast with the regime
of extreme phase fluctuations explored in this work where the transi-
tion frequency shift may alternate in sign for each added photon
(Fig. 2d, f). This resembles the oscillatory nonlinearity predicted in a
resonator containing a phase-slip element27.

Our circuit implementation of Ĥideal in Eq. (1) is depicted in
Fig. 3a, b. It consists of a high impedance LC oscillator. The induc-
tance, which we aim to maximize, is formed by a chain of 109

Fig. 2 | Signatures of higher-order photon processes. a, b Simulated Wigner
quasiprobability distribution representing the initial time evolution of the coherent
state ∣αi with α = 1.7 for small and large quantum phase fluctuations. This value of α
waschosen tomatchη/2 forη=3.4 (see text). Asquantumphasefluctuations increase,
the evolution remarkably transitions from diffusive to nondiffusive. c–f Simulated
transition frequency shifts δn =ωn −ω0, whereωn is the transition frequency between

energy levels n and n + 1, represented versus photon number at the starred external
flux value (c, d), and versus external flux (e, f). We observe the transition from an
ordered to an alternating arrangement that asymptotically approaches a Bessel
function (dashed lines). Simulations correspond to numerical diagonalization and
time propagation of Eq. (1) with parametersΩ=2π = 2:86 GHz , EJ=h=0:795 GHz and
η = 0.34 for (a), (c), (e) and η = 3.4 for (b), (d), (f) as indicated by the top axis.
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Josephson junctions, 19 of which are shared with a readout resonator
(inductive energy ELS/h = 11.91 GHz) and 90 unshared junctions
(inductive energy EL/h = 0.57 GHz). Note that approximating the
junction chain inductance by a single inductor is only valid at fre-
quencies lower than the first chain mode (that we estimate above 10
GHz). The capacitance, which we aim to minimize, has multiple
contributions. The first one is the self capacitances of the small
junctions in the tunneling element (described below) attached to the
chain of junctions. The second one arises from the capacitance
between the two wires linking the chain of junctions to the tunneling
element, resulting in a charging energy ϵC/h = 3.24 GHz (estimated
from finite-element simulations). Other sources of capacitive load-
ing, not accounted for in our model, are from the self capacitance
and capacitance to ground of the chain junctions28.

Tunneling occurs through a so-called Kinetic Interference
coTunneling Element (KITE)25,29. It consists of two parallel arms that
form a loop threaded by an externalflux θext. Each arm contains a small
junction of Josephson energy E ±

J = EJð1 ± ϵÞ and charging energy

E ±
C = EC=ð1 ± ϵÞ, with EJ/h = 3.98GHz, EC/h = 10.40GHz and fabrication

uncertainty results in a small asymmetry factor ϵ = 0.033. Each small
junction is placed in series with 6 large junctions of a total inductive
energy ϵL/h = 6.16GHz. Additionally, our chip contains a lumped LC
readout resonator composed of two planar capacitor pads (not shown
in Fig. 3b) and an array of 29 junctions, 19 of which are shared with the
main circuit, and 10 unshared junctions (inductive energy ELR/
h = 18.03GHz). Through the small KITE junctions, this inductive cou-
pling induces a dispersive interaction between the circuit and its
readout resonator30. Finally, our circuit hosts a “parasitic” mode, visi-
ble in electromagnetic simulations, where current flows symmetrically
through both halves of the junction chain (with minimal current in the
shared junctions), charging and discharging a capacitor (not repre-
sented in Fig. 3a) formed between the readout pads and the con-
necting leads to the KITE.

The circuit parameters quoted above are extracted by fitting a five-
mode circuit model (see Supplementary Information) (including the
readout and parasitic modes) to two-tone spectroscopy data at various
flux biases (θext, φext) (Fig. 4a–d). This five-mode Hamiltonian is 2π
periodic in (θext, φext) and its spectrum possesses inversion symmetry
about (θext,φext) = (0, 0), (0,π), (π, 0), and (π, π)31. Therefore, these four
points are the vertices of a plaquette that constitutes the primitive cell
of the circuit spectrum as a function of external flux. We acquire the
circuit spectrum along the edges of this plaquette [diagrams in
Fig. 4a–d. At each bias point, we start by acquiring the reflection spec-
trumof the readout resonator (Fig. 4e–h).We then set the readout tone
on resonance, and sweep a probe tone over a broad spectral range
(Fig. 4a–d). When the probe hits a circuit transition from the low lying
states to the n-th excited state, the reflected readout signal is affected.
We identify several transitions that are captured by a five-mode circuit
model (see Supplementary Information) (semi-transparent lines). The
features near 5.1 GHz and 4.4GHz correspond to the readout and
parasitic modes, respectively. The circuit parameters we extract from
this fit are summarized in Table 1.

We now delve into explaining how our circuit emulates the
Hamiltonian of Eq. (1). Here, we will provide an intuitive understanding
of this circuit, and refer the reader to the appendices for amore rigorous
analysis. We start by discarding the readout mode, the parasitic mode,
and the two KITE self-resonant high-frequency modes, and focus on the
LC oscillator. Since ELS ≫ EL, the total oscillator inductive energy is
approximately EL. The total oscillator charging energy is ϵC,tot = 1/(2/
EC + 1/ϵC) = h × 2.0GHz. The resonant frequency of this oscillator is
Ω � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ELϵC, tot
p

=ℏ. In the regime ϵL≫ EJ, the potential energy of one arm

of the KITE traversed by a phase drop of φ takes the form U ± ðφÞ �

�E ±
J cosφ+

E ±
J

2

4ϵL
cos 2φ and higher harmonics have been neglected (see

Supplementary Information). Biasing the circuit at θext = 0, bothCooper-
pair tunneling and cotunneling across both arms interfere con-
structively. Indeed, the potential energy of the KITE is

U + ðφÞ+U�ðφÞ � �2EJ cosφ+ EJ
2

2ϵL
cos 2φ. Biasing the circuit at θext = π,

Cooper-pair tunneling across both arms interferes destructively, while
cotunneling interferes constructively. Indeed, the potential energy of

the KITE is U + ðφÞ+U�ðφ+πÞ � �2ϵEJ cosφ+
E2
J

2ϵL
cos 2φ. In summary,

this yields an effective Hamiltonian for our circuit of the form (see
Supplementary Information):

ĤcircuitðθextÞ=ℏΩâyâ� EJ1ðθextÞ cosðφ̂� φextÞ
+ EJ2 cos½2ðφ̂� φextÞ�,

ð4Þ

where φext is the flux threading the loop formed by the KITE and the

oscillator inductance and the phase operator verifies φ̂=φzpf ðâ+ âyÞ,
where φzpf = ð2ϵC, tot=ELÞ1=4 is the zero-point phase fluctuations.

Fig. 3 | Experimental implementation. a Lumped element circuit of the LC
oscillator (blue) shunted by the KITE (green) and coupled through a shared
inductance (purple) to a readout mode (red). The two small junctions have slightly
different Josephson energies E ±

J = ð1 ± εÞEJ and charging energies E ±
C = EC=ð1 ± εÞ,

with ε ≪ 1, due to junction fabrication variation. b Optical micrograph of the phy-
sical device, with false color indicating the constituent Josephson junctions and
their respective scanning electron microscope images (from a nominally identical
sample). Aluminum and niobium electrodes appear in white and grey, respectively.
(Green frame) one of the two small KITE junctions. (Blue frame) 14 of the array
junctions that form both the internal KITE inductance and the inductive shunt.
(Purple frame) 12 of the array junctions that form the shared inductance between
the circuit and the readout resonator, as well as the self-inductance of the readout.
All junctions are fabricated in one step using Dolan bridges.

Article https://doi.org/10.1038/s41467-025-62047-8

Nature Communications |         (2025) 16:8359 4

www.nature.com/naturecommunications


Let us now analyze the case where θext = 0 (Fig. 5a, c). From the
simple theory sketched above, we expect EJ1(θext = 0) ≈ 2EJ and
EJ2ðθext = 0Þ � E2

J =2ϵL. In the regime of this experimentwhere EJ≪ ϵL, we
have EJ2 ≪ EJ1, and so the dominant term in the potential is the regular
Cooper-pair tunneling energy. Recall that the term in Ωâyâ may be
equivalently recast as 4ϵC, totN̂

2
+ 1

2 ELφ̂
2, where N̂ is the Cooper-pair

number operator conjugate to φ̂. Interestingly, our experiment is in the
regime where EJ1 ≳ ϵC,tot ≫ EL, which is typical of a fluxonium17. The
fluxonium is nothing like an anharmonic oscillator. Indeed, the flux-
onium eigenstates include fluxon states pinned in Josephson wells
(Fig. 5a), and that therefore strongly disperse with flux (Fig. 5c), and
plasmon states that are weakly flux-dependent. An anharmonic oscilla-
tor only has weakly flux-sensitive plasmon states. Consequently, the
language of interacting photons is not adapted to describe a fluxonium.

We now turn to the case where θext = π (Fig. 5b, d). From the
simple theory sketched above, we expect EJ1(θext = π) ≈ 2ϵEJ and

EJ2ðθext =πÞ � E2
J =2ϵL. Conveniently, for sufficiently symmetrical

junctions and adequately choosing EJ ≪ ϵL, we may enter the regime
where EJ1 ≪ EJ2 ≪ Ω. In this regime, the potential is dominated by
Cooper-pair cotunneling, while regular tunneling may be considered
an undesired perturbation. In addition, these nonlinear terms are
smaller than the linear oscillator termΩâyâ. Consequently, this system
is well described by a nonlinear oscillator of quasi-equally spaced
photonic Fock states that couple through Cooper-pair cotunneling
(Fig. 5b, d). The extent of the zero-point phase fluctuations is visible
through the number of Josephson corrugations covered by the ground
state wave-function. Wemay now establish a correspondence with the
ideal Hamiltonian of Eq. (1). Note that Ĥcircuitðθext =πÞ corresponds to
Ĥideal up to the perturbative term in EJ1, with the correspondence
EJ = EJ2, ϕ̂= 2φ̂ and hence η = 2 ×φzpf andϕext = 2φext + π. Additionally,
the Jn obtained from Eq. (4) depend on external flux and contain an
added contribution from the term in EJ1.

The ability to switch our device in-situ from a familiar fluxonium-
like circuit to an original nonlinear oscillator endowed with high-order
interactions is convenient to benchmark our system. We extract the
parameters of the one-mode Hamiltonian in Eq. (4) by fitting this
model to the measured φext-dependent transition energies at θext = 0
and π (Fig. 5). The resulting parameters are displayed in Table 2. For
each φext-dependent dataset, we perform a four-parameter fit
(Ω, EJ1, EJ2,φzpf). The fits converge on two values ofΩ that are within 3%
of each other, EJ2 within 20% andφzpf within 2%. This is consistent with
the prediction that these parameters should be the sameat θext = 0 and

Fig. 4 | Spectroscopy measurements. a–d Two-tone reflection spectroscopy
(background subtracted) of the lowest transitions of the circuit along the four
edges of the primitive cell in the two-dimensional external flux landscape (inset
diagrams), and (e–h) accompanying readout spectroscopy. Theoretical transition
frequencies from the ground state (semi-transparentwhite lines) are obtained from
numerical diagonalization of the five-mode circuit model with seven fitted

Hamiltonian parameters (see Table 1). Additionally, transition frequencies from the
first excited state (semi-transparent blue lines) are shown when the first excited
state has a transition frequency that falls below 2.5 GHz and is therefore thermally
occupied. Note that this model includes the nearly harmonic readout and parasitic
modes [labeled in (a)]. Scans around the ∣0i ! ∣ni transitions for n = 1 − 4 [labeled
in (d)] are enlarged in Fig. S8.

Table 1 | Device parameters corresponding to the five-mode
circuit in Fig. 3a

EJ/h EC/h EL/h ϵL/h ε ELR/h ELS/h ϵC/h
3.98 10.40 0.57 6.16 0.033 18.03 11.91 3.24

The first seven parameters are found by fitting the spectral lines in Fig. 4a–h to the circuit
Hamiltonian, with all capacitances (except junction capacitances) fixed to values from finite-
element simulations (see Supplementary Information). The final parameter—the oscillator
charging energy in the absence of the junctions—is computed from the full device capacitance
matrix and is not found from the fit.
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π. On the other hand, the fit converges on two very different values for
EJ1. Indeed, its value at θext = π is 20 times smaller than the one at
θext = 0. This is consistent with our understanding that regular Cooper-
pair tunneling constructively interferes at θext = 0, while it destruc-
tively interferes at θext = π.

Finally, we focus on the case θext = π in order to extract multi-
photon interaction strengths from the measured transition fre-
quencies (Fig. 6). Two notable features are visible in the data. First, as
previously discussed, these transition frequencies vary in a
± 500MHz window—a ± 17% fraction of the central frequency Ω/
2π = 2.86 GHz. This confirms that the flux-dependent tunneling
amplitude is a perturbation to the LC oscillator frequency, i.e.
EJ1, EJ2 < ℏΩ. In particular, we find EJ2/h = 0.795GHz and the pertur-
bation EJ1/h = 0.27 GHz. Second, the transition frequencies ωn

between levels n and n + 1 are not ordered in n. Instead, they interlace
as a function of φext, indicating that we have entered the regime of
large phase fluctuations. For example, at φext/2π = 0.2, ω0 > ω1,
ω1 < ω2, and ω2 > ω3 (Fig. 6b). From this measured spectrum, we
compute the n-photon interaction strengths Jn for n = 2, 3, and 4
(Fig. 6c) by inverting Eq. (3). Notice that J1 is experimentally inac-
cessible since it corresponds to the shift between the measured
transition frequencyω0 and the LC resonanceΩ in the absence of the
tunneling element. Notably, we find that ∣J2∣ ≈ ∣J3∣, which is consistent
with the extracted 2φzpf = 3.4.

Discussion
In conclusion, this experiment explores a new regime of nonlinear
microwave quantum optics where interactions between photons are
so strong that second-, third-, and fourth-order processes are of
comparable amplitude and largely exceed the photon decay rate. We
access this regime with photons stored in a high impedance LC
oscillator that is shunted by a two-Cooper-pair tunneling element,
effectively boosting phase fluctuations. Two technical challenges
must be met: the tunneling energy EJ2 must be weaker than the
oscillator energy ℏΩ, and the boosted phase fluctuations 2φzpf across
the tunneling element must exceed 3. We measure the first four
transition frequencies of our circuit, and observe their interlacing

Fig. 5 | Switching our circuit between a fluxonium and an oscillator with high
order interactions. a, b Potential energy UðφÞ= 1

2 ELφ
2 � EJ1 cosðφ� φextÞ+ EJ2

cos½2ðφ� φextÞ� as a function of superconducting phase at φext = 0.9π [starred in
(c, d)], for (a) θext = 0 and (b) θext = π. c, d Transition frequencies from the ground

state as a function of externalflux. The data points (open circles) correspond to the
average of resonances visible in scans such as Fig. 4(c, d). Theoretical transition
energies (solid lines) are obtained from Hamiltonian (4) with fitted parameters
reported in Table 2.

Table 2 | Extracted one-mode model parameters found by
fitting the measured transition frequencies at θext = 0, π
(Fig. 5) to the effective one-mode Hamiltonian in Eq. (4)

θext Ω/2π EJ1/h EJ2/h φzpf 2φzpf

0 2.95 5.31 0.658 1.67 3.34

π 2.86 0.27 0.795 1.70 3.40

All energy scales are given in gigahertz.
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versus flux. From these spectra, we extract EJ2/ℏΩ = 0.28 and
2φzpf = 3.4.

This experiment could be extended in multiple ways. First, one
could improve the quantitative analysis by improving the spectro-
scopic data (larger frequency spans, denser flux sweeps and more
averaging). Another direction could be the study of the quantum
dynamics and scattered radiation correlations of this systemunder the
action of drives anddissipation27.Moreover, coupling our two-Cooper-
pair tunneling element to an array of resonators could induce high-
order interactions between multiple modes, useful for the study of
many-body photon states5,6. Finally, applications are envisioned to
process quantum information that is encoded non-locally over the
phase space of an oscillator26.

Data availability
The data that support the findings of this work are available from the
corresponding author upon request.

Code availability
The code used for data acquisition, analysis and visualization is avail-
able from the corresponding author upon request.
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