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Foundation neural-networks quantum states
as a unified Ansatz formultiple hamiltonians

Riccardo Rende 1,6 , Luciano Loris Viteritti2,6 , Federico Becca3,
Antonello Scardicchio4,5, Alessandro Laio 1,4 & Giuseppe Carleo 2

Foundation models are highly versatile neural-network architectures capable
of processing different data types, such as text and images, and generalizing
across various tasks like classification and generation. Inspired by this success,
we propose Foundation Neural-Network Quantum States (FNQS) as an inte-
grated paradigm for studying quantum many-body systems. FNQS leverage
key principles of foundationmodels to define variational wave functions based
on a single, versatile architecture that processes multimodal inputs, including
spin configurations and Hamiltonian physical couplings. Unlike specialized
architectures tailored for individual Hamiltonians, FNQS can generalize to
physical Hamiltonians beyond those encountered during training, offering a
unified framework adaptable to various quantum systems and tasks. FNQS
enable the efficient estimation of quantities that are traditionally challenging
or computationally intensive to calculate using conventional methods, parti-
cularly disorder-averaged observables. Furthermore, the fidelity susceptibility
can be easily obtained to uncover quantum phase transitions without prior
knowledge of order parameters. These pretrained models can be efficiently
fine-tuned for specific quantum systems. The architectures trained in this
paper are publicly available at https://huggingface.co/nqs-models, along with
examples for implementing these neural networks in NetKet.

The field of machine learning has undergone a fundamental transfor-
mation with the emergence of foundation models1. Built upon the
Transformer architecture2, these models have transcended their ori-
gins in language tasks3,4 to establish new paradigms across domains,
from image generation5 to protein structure prediction6,7. Their effi-
cacy emerges from a profound empirical observation: the scaling of
models to hundreds of billions of parameters enables task-agnostic
learning that achieves parity with specialized approaches while gen-
erating solutions for arbitrary problems defined at inference time8.
These models exhibit remarkable generalization capabilities, enabling
them to adapt to an extensive variety of tasks and domains without
requiring task-specific fine-tuning. Another essential feature is their
multimodality: they are trained on datasets comprising various

formats, including text, images, videos, and audio, allowing them to
process and generate outputs that combine these different forms.
Foundation models have led to an unprecedented level of homo-
genization: almost all state-of-the-art natural language processing
models are now adapted from a few foundation models. This homo-
genization produces extremely high leverage since enhancements to
foundation models can directly and broadly improve performance
across various applications.

In parallel, the study of quantum many-body systems has been
significantly impacted by neural-network architectures employed as
variational wave functions9. Neural-Network Quantum States (NQS)
have emerged as a powerful framework for describing strongly-
correlated models with unprecedented accuracy10–14. Recent advances
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in Stochastic Reconfiguration15–17 have enabled the stable optimization
of variational states with millions of parameters18,19, while the adapta-
tion of the Transformer architecture for NQS parametrization20–25 has
achieved state-of-the-art performance in challenging systems19,21.
Despite this progress, NQS are typically conceived in a system-specific
fashion, and studying different Hamiltonians requires significant
efforts both in design and numerical optimization strategies.

To address these limitations, we present here Foundation Neural-
Network Quantum States (FNQS), a theoretical framework that syn-
thesizes these advances by training neural-network-based variational
wave functions capable of integrating as input not only the “standard”
basis on which the wave function is represented, but also detailed
information about the Hamiltonian (see Fig. 1). Our architecture is
designed to achieve three key characteristics of foundation models in
the quantum context: multimodality, through the ability to process
multiple input types such as spin configurations and physical cou-
plings; homogenization, by applying a single architecture across dif-
ferent Hamiltonians from simple to disordered systems; and
generalization to physical Hamiltonians beyond the training dataset.

Previous efforts to construct foundation model-inspired wave
functions have been reported in refs. 26–30. However, these approa-
ches exhibit several limitations that are addressed in the present work.
Specifically, some studies have been constrained to simple physical
systems, achieving limited accuracy compared to specialized
approaches26, while others have employed ad hoc optimization stra-
tegies for chemical systems27–29.

In contrast, our work demonstrates applications that are unpre-
cedented in both the diversity and complexity of physical models
tackled by a single foundation model. We systematically explore sys-
tems of increasing complexity, including two-dimensional frustrated
magnets with multiple couplings and disordered systems. This is
enabled by the introduction of a suitably designed neural-network
wave function based on the Transformer architecture2,5, combined
with an optimization strategy that extends the Stochastic Reconfi-
guration method15,16 to simultaneously optimize across multiple sys-
tems. This generalized optimization procedure is essential to
achieving accurate results in the variational Monte Carlo framework.

Most notably, our framework enables simultaneous optimization
of wave functions formultiple systemswith computational complexity
equivalent to single-system optimization, with no performance
degradation as the number of systems increases. In addition, the

framework enables efficient estimation of the fidelity susceptibility31

(see Methods), providing rigorous, unsupervised detection of quan-
tum phase transitions without prior knowledge of the order
parameters32,33. Refer to Fig. 1 for a pictorial representation of the
different applications.

In this work, we develop the theoretical framework for simulta-
neous training of variational wave functions across multiple quantum
systems, adapting both Stochastic Reconfiguration for multi-system
optimization and the Transformer architecture for multimodal quan-
tum state parametrization. We present systematic validation on the
exactly solvable transverse field Ising model in one dimension, fol-
lowed by an investigation of the J1-J2-J3 Heisenberg model on a square
lattice through fidelity susceptibility analysis. We conclude with an
examination of disordered Hamiltonians, demonstrating the frame-
work’s capacity for efficient estimation of disorder-averaged
quantities.

Results
Theoretical framework
Thefirst step in developing foundationmodels to approximate ground
states of quantummany-bodyHamiltonians is to establish a theoretical
framework that enables training a single NQS to approximate the
ground states ofmultiple systems simultaneously. Consider a family of
Hamiltonians, denoted by Ĥγ, where γ is a set of parameters that
characterize each specific Hamiltonian, such as the physical couplings.
Our goal is to find an approximation of the ground state of the
ensemble of Hamiltonians Ĥγ using a variational wave function jψθðγÞi
which explicitly depends on the physical couplings γ and on a shared
set of variational parameters θ for all the Hamiltonians. To this end, we
define the following loss function:

LðθÞ=
Z

dγPðγÞ hψθðγÞjĤγjψθðγÞi
hψθðγÞjψθðγÞi

, ð1Þ

where PðγÞ is a normalized probability density over the couplings, i.e.,R
dγPðγÞ= 1. We denote expectation values with respect to the varia-

tional state jψθðγÞi as 〈⋯ 〉γ. This loss function represents an ensemble
average of the energy expectation value hĤγiγ, weighted by the dis-
tribution PðγÞ. For each value of γ, the variational energy hĤγiγ is
bounded frombelow by the exact ground state energy E0(γ), such that
hĤγiγ ≥ E0ðγÞ. Consequently, the loss function in Eq. (1) is bounded as

Fig. 1 | Pictorial representation and applications of Foundation Neural-
Network Quantum States. The panel (a) shows a pictorial representation of Foun-
dation Neural-Network Quantum States (FNQS), which, unlike traditional NQS, pro-
cess multimodal inputs by incorporating both physical configurations and
Hamiltonian couplings to define a variational wave function amplitude over their joint
space. FNQS enable a range of applications, including the efficient simulation of

disordered systems [see panel (b)] and the estimation of the quantum geometric
tensor in coupling space, also known as thefidelity susceptibility, for the unsupervised
detection of quantum phase transitions [see panel (c)]. Moreover, FNQS combined
with the public availability of the architectures allows users to leverage pretrained
models to explore coupling regimes beyond those encountered during training [see
panel (d)].
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LðθÞ≥L0, where L0 =
R
dγPðγÞE0ðγÞ is the average ground state

energy over the distribution PðγÞ.
The loss function in Eq. (1) can equivalently be written in a form

amenable for Monte Carlo averages:

LðθÞ=
Z

dγPðγÞ
X
σ

jψθðσjγÞj2
hψθðγÞjψθðγÞi

ELðσ, γÞ : ð2Þ

Here, we have introduced the local energy
ELðσ, γÞ= hσjĤγjψθðγÞi=hσjψθðγÞi and the wave function
〈σ∣ψθ(γ)〉 = ψθ(σ∣γ). The latter is parametrized by a neural network and
is the core variational object in our framework. Importantly, the
explicit dependence of the many-body wave function amplitude
ψθ(σ∣γ) on theHamiltonian couplings γ is amajor difference compared
to traditionalNQS and alignswith the principles of foundationmodels,
where the capability to handle multiple data modalities, commonly
referred to as multimodality, plays a central role (see Fig. 1). The
expectation value of any generic operator which is written in the form
of Eq. (1) can be stochastically estimated using the Variational Monte
Carlo framework17, as discussed in Methods. In what follows, we
denote by M the number of physical configurations used for the
stochastic estimation of observables acrossR systems. Assuming that
the samples are equally distributed across the systems, the number of
samples per system is M=R.

The structure of the probability distribution PðγÞ depends on the
specific application. In disordered systems, a set of couplings
fγ1, . . . , γRg can be directly sampled from PðγÞ, which may have con-
tinuous or discrete support. Conversely, in non-disordered
systems, the probability distribution can be defined as
PðγÞ= 1=RPR

k = 1δðγ � γkÞ, where γk denotes the specific instances of
the R Hamiltonians under study.

Foundation neural-network architecture
To parametrize the FNQS, we adapt the Vision Transformer (ViT)
Ansatz introduced in ref. 21 to process multimodal inputs, defined by
the physical configurations σ and the Hamiltonian couplings γ.

The traditional ViT architecture processes the physical config-
uration σ in three main steps (see ref. 21 for a detailed description):

1. Embedding. The input configuration σ is split into n patches,
where the specific shape of the patches depends on the structure
of the lattice and its dimensionality, see for example refs. 20,21,23.
Then, the patches are embedded in Rd through a linear trans-
formation of trainable parameters, defining a sequence of input
vectors (x1, x2, …, xn).

2. Transformer Encoder. The resulting input sequence is processed
by a Transformer Encoder, which produces another sequence of
vectors (y1, y2, …, yn), with yi 2 Rd for all i.

3. Output layer. These vectors are summed to produce the hidden
representation z =

Pn
i= 1 yi, which is finally mapped through a

fully-connected layer to a single complex number representing
the amplitude corresponding to the input configuration. Only the
parameters of this last layer are taken to be complex-valued.

The generalization of the architecture to include as inputs the
couplings γ is performed by modifying only the Embedding step
described above. In particular, we adopt two different strategies,
which cover the systems studied in this work, depending on whether
the parameter vector γ consists of O(1) or O(N) real numbers, with N
indicating the total number of physical degrees of freedom of the
model. We stress that the property of having a single, versatile archi-
tecture that can be adapted to study physical systems with distinct
characteristics, such as a different number of couplings, is a key
property of foundationmodels, also called homogenization. In the first
scenario where the auxiliary parameters are O(1), we concatenate the

values of the couplings to each patch of the physical configuration
before the linear embedding. Then the usual linear embedding pro-
cedure in Rd is performed. Instead, in the second scenario with O(N)
external parameters, we split the vector of the couplings into patches
using the same criterion used for the physical configuration. We then
use two different embedding matrices to embed the resulting
patches of the configuration and of the couplings, generating two
sequences of vectors: (x1, x2, …, xn) with xi 2 Rd=2 for the physi-
cal degrees of freedom and ð~x1, ~x2, . . . , ~xnÞ with ~xi 2 Rd=2 for the
couplings. The final input to the Transformer is constructed by
concatenating the embedding vectors, forming the sequence
ðConcat ðx1, ~x1Þ, . . . , Concat ðxn, ~xnÞÞ, with Concat ðxi, ~xiÞ 2 Rd .
Notice that after the first layer, the representations of the configura-
tions and of the couplings are mixed by the attentionmechanism. The
Embedding step can be generalized to any general parameterized
Hamiltonian represented as a graph34.

Regarding the lattice symmetries encoded in the architecture, for
non-disordered Hamiltonians we employ a translationally invariant
attention mechanism that ensures a variational state invariant under
translations among patches21,23. In contrast, for disordered models, we
do not impose constraints on the attention mechanism.

Transverse field Ising chain
In the first place, we test the framework on the one-dimensional Ising
model in a transverse field, an established benchmark problem of the
field. The system is described by the following Hamiltonian (with
periodic boundary conditions):

Ĥ = � J
XN
i = 1

Ŝ
z
i Ŝ

z
i + 1 � h

XN
i = 1

Ŝ
x
i , ð3Þ

where Ŝ
x
i and Ŝ

z
i are spin-1/2 operators on site i. The ground-state wave

function, for J, h≥0, is positive definite in the computational basis, with
a known exact solution. In this case, the Hamiltonian depends on a
single coupling, specifically the ratio h/J.

In the thermodynamic limit, the ground state exhibits a second-
order phase transition at h/J = 1, from a ferromagnetic (h/J < 1) to
a paramagnetic (h/J > 1) phase. In finite systems with N sites, the
estimation of the critical point can be obtained from the long-
range behavior of the spin-spin correlations, that is,

m2ðγÞ= 1=NPN
i = 1hŜ

z
i Ŝ

z
i+N=2iγ. The quantum phase transition at h/J = 1 is

in the universality class of the classical two-dimensional Ising model35.

Here, we first demonstrate the ability to train a FNQS across
multiple Hamiltonians, and even across quantumphase transitions. To
achieve this, we train a FNQS on a chain of N = 100 sites across five
different values of the external field (R= 5), including values repre-
sentative of both the disordered (h/J = 1.2, 1.1) and the magnetically
ordered phase (h/J = 0.9, 0.8), as well as the transition point (h/J = 1.0).
As shown in Fig. 2a, this single neural network describes all five ground
states with high accuracy. The learning speed is only moderately dif-
ferent in the different states. In particular, the state with a value of h/J
close to the transitionpoint is the one that converges last. For the same
architecture, we systematically vary the value of R 2 ½5, 2000�,
choosing the transverse field equispaced within the interval
h/J ∈ [0.8, 1.2]. We keep the total batch size fixed to M = 10000,
assigning an equal number of samples M=R across the R different
systems. In the inset of panel (a), we show the relative error of the total
energy accuracy as a function ofR. Remarkably, despite the number of
systems increasing, the network’s performance remains constant, with
no observable degradation in accuracy. Crucially, this robustness is
achieved at a computational cost independent of the total number of
systems, as it depends solely on the neural network architecture and
the fixed total batch size M. This result is a first illustration of the
accuracy, scalability, and computational efficiency of our approach.
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Then, we investigate the generalization properties of the FNQS. In
panel (b) of Fig. 2, we use the architecture trained with R= 5 and
evaluate its performance on external field values not included in the
training set. In particular, we compute the square magnetization for
other intermediate values of h/J, showing robust generalization cap-
abilities of the network across the entire phase diagram. The inset of
the same plot explores a more restricted scenario in which training is
performed using only two points: one in the disordered phase
(h/J = 1.2) and another in the ordered phase (h/J = 0.8). This analysis
shows that, even with minimal training data, the network avoids
overfitting the ground state at these twopoints and learns a sufficiently
smooth description of the magnetization curve.

Finally, in panel (c) of Fig. 2, we use a FNQS trained on R=6000
different points equispaced in the interval h/J∈ [0.85, 1.15] to calculate
the fidelity susceptibility χ(γ) [see Eq. (21) in Methods], comparing the
FNQS results to the exact solution that is available in this case36,37. In
the inset of the same panel, we present a data collapse analysis of the
fidelity susceptibility. Specifically, we show the scaled fidelity sus-
ceptibility χN−2/ν versus (h/J − hc/J)N1/ν according to the scaling laws of
refs. 31,32,38,39. The data collapses well under hc/J = 1.00(1) and the
critical exponent ν = 1.00(2) corresponding to the classical two-
dimensional Ising universality class40.

This first benchmark example highlights the ability of the FNQS to
interpolate meaningfully between different phases, even when trained
on a limited set of Hamiltonians. We attribute this capability to the
properties of the ViT architecture employed. In particular, the multi-
head attentionmechanism could play a crucial role. For example, each
attention head can, in principle, specialize in capturing features asso-
ciated with distinct phases of the system. Moreover, the all-to-all
connectivity intrinsic to the attention mechanism allows the network
to flexibly describe long-range correlations, which are essential for
accurately describing critical phenomena.

J1-J2-J3 Heisenberg model
We now proceed to analyzing the J1-J2-J3 Heisenberg model on a two-
dimensional L × L square lattice with periodic boundary conditions:

Ĥ = J1
X
hr, r0 i

Ŝr � Ŝr0 + J2
X

hhr, r0 ii
Ŝr � Ŝr 0 + J3

X
hhhr, r 0iii

Ŝr � Ŝr 0 , ð4Þ

where Ŝr = ðŜ
x
r , Ŝ

y
r , Ŝ

z
r Þ represents the spin-1/2 operator localized at site

r; in addition, J1, J2, and J3 are first-nearest-, second-nearest-, and
third-nearest-neighbor antiferromagnetic couplings, respectively. The
ground-state properties of this frustrated model have been extensively

studied using various numerical and analytical approaches. However,
a complete characterization of its phase diagram remains
challenging41–48. It is well established that antiferromagnetic order
dominates in extended regions for J1≫ J2, J3 [with pitch vector k = (π,π)]
and for J2≫ J1, J3 [with pitch vectors k= (π, 0) or k= (0,π)]. In contrast, in
the intermediate region, frustration suppressesmagnetic order, leading
to valence-bond solid and, as recently suggested, spin-liquid states47,48.
The study of this model using FNQS aims to demonstrate that a single
architecture can learn to effectively combine input spin configurations
andHamiltonian couplings, constructing a compact representation that
captures and differentiates between distinct phases.

First, we aim for an initial characterization of the phase diagram in
a fully unsupervised manner, aiming to distinguish regions with
valence-bond ground states from those with magnetic order using the
generalizedfidelity susceptibility (seeMethods). To this end, we train a
FNQS on a 10 × 10 lattice over a broad region of parameter space,
setting a dense grid of R=4000 evenly spaced points in the plane
defined by J2/J1 ∈ [0, 1.0] and J3/J1 ∈ [0, 0.6]. Having two couplings J2/J1
and J3/J1, the quantum geometric tensor in the couplings space χ(γ)
[see Eq. (22) of Methods] is a 2 × 2matrix. For each point γ = (J2/J1, J3/J1)
we diagonalize χ(γ) and in Fig. 3a we visualize the direction of the
eigenvector corresponding to the maximum eigenvalue using lines,
whose colors are associated with the leading eigenvalues and indicate
the intensity of maximum variation of the variational wave function.
We note that the lines of maximal variation partition the plane into
three distinct regions, in agreement with the three different phases
identifiedby the order parameters (seebelow). Remarkably,within this
approachwe are able to identify the existence of two phase transitions
without any prior knowledge of the physical properties of the system.
Furthermore, by analyzing the behavior of the eigenvectors, we can
infer the nature of these phase transitions. For example, on the left
branch of maximum variation, the eigenvectors exhibit no significant
change in direction before and after the transition, which is indicative
of a continuous phase transition. In contrast, the right branch shows a
pronounced change in the eigenvector directions across the transi-
tion, suggesting a first-order phase transition. To the best of our
knowledge, this is the first calculation of fidelity susceptibility for a
systemwith more than one coupling. Indeed, without our approach, it
would be highly computationally expensive to optimize thousands of
systemswith different coupling values, usingfinite differencemethods
to estimate the geometric tensor in the couplings space [see Eq. (22) in
Methods].

To further analyze the physical property of the model, we com-
pute the order parameters in each region of the phase diagram by

Fig. 2 | Transverse field Ising on a chain. a Simultaneous ground state energy
optimization ofR= 5 systems on a chain of N = 100 sites, with h/J = 0.8, 0.9, 1.0, 1.1
and 1.2. The relative error with respect to the exact ground state energy of each
system is shown as a function of the optimization steps. The inset displays the
relative error of the total energy as a function of the number of systemsR, defined
by equispaced values of h/J in the interval h/J∈ [0.8, 1.2], with a fixed batch size of
M = 10000. b Square magnetization evaluated with a FNQS trained at

h/J =0.8, 0.9, 1.0, 1.1 and 1.2 (red diamonds) and testedon previously unseen values
of the external field (blue circles). The inset shows the square magnetization pre-
dictions of an architecture trained exclusively on h/J = 0.8 and 1.2, evaluated at
intermediate externalfield values. c Fidelity susceptibility per site [see Eq. (22)] as a
function of the external field for a FNQS trained onR=6000 equispaced values of
h/J in the interval h/J∈ [0.85, 1.15] for a cluster ofN = 100 sites. The inset shows the
data collapse of the same quantity for N = 40, 80, and 100.
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examining spin-spin and dimer-dimer correlations. Specifically, for
fixed values of the Hamiltonian couplings γ = (J2/J1, J3/J1), the anti-
ferromagnetic orders are detected by analyzing the spin structure
factor

Cðk; γÞ=
X
r

eik�r Ŝ0 � Ŝr

D E
γ
, ð5Þ

where r runs over all the lattice sites of the square lattice. On the
one side, the antiferromagnetic Néel order is detected by
measuring m2

N�eelðγÞ=Cðπ,π; γÞ=N49,50 with N = L2. On the other
side, the stripe antiferromagnetic order is identified by
m2

stripeðγÞ= ½Cð0,π; γÞ+Cðπ, 0; γÞ�=ð2NÞ. Furthermore, the valence-
bond solid order is detected by the dimer-dimer correlations:

Dαðr; γÞ=9 Ŝ
z
0Ŝ

z
α Ŝ

z
r Ŝ

z
r +α

D E
γ
� Ŝ

z
0Ŝ

z
α

D E
γ

Ŝ
z
r Ŝ

z
r +α

D E
γ

� �
, ð6Þ

where α = x̂, ŷ. Notice that the previous definition involves only the z
component of the spin operators, which is sufficient to detect the
dimer order20,51; however, since we consider only one component, we
include a factor of 9 in Eq. (6) to account for this52. Then, the corre-
sponding structure factor is expressed as Dαðk; γÞ=

P
re

ik�rDαðr; γÞ.
The order parameter to detect the valence-bond order is defined
as d2ðγÞ= ½Dxðπ, 0; γÞ+Dyð0,π; γÞ�=ð2NÞ.

In panels (b, c, d) of Fig. 3, we present the order parameters
m2

N�eelðγÞ, m2
stripeðγÞ, and d2(γ), which respectively characterize the

antiferromagnetic Néel, antiferromagnetic stripe, and valence bond
solid phases, as functions of the couplings J2/J1 ∈ [0, 1.0] and
J3/J1 ∈ [0, 0.6]. Comparing the different panels in Fig. 3, we observe a
strong correspondence between the phase transition boundaries
predicted by fidelity susceptibility and those identified through order
parameters. This agreement validates our approach to the unsu-
pervised detection of quantum phase transitions, even in systemswith
multiple couplings.

Finally, to assess the accuracy of the FNQS, we focus on the line
J3/J1 = 0, allowing comparison with other techniques. In panel (a) of
Fig. 4, we show the results for a 6 × 6 lattice, where the FNQS predic-
tions of the order parameters m2

N�eel and m2
stripe are in excellent agree-

ment with exact diagonalization results. In panel (b) of Fig. 4, we
extend this analysis to a 10 × 10 lattice. Since exact diagonalization is
infeasible at this system size, we benchmark FNQS predictions against
Quantum Monte Carlo (QMC) data at the unfrustrated point
J2/J1 = 0.050 and against results from a state-of-the-art ViT architecture
trained from scratch at J2/J1 = 0.519, demonstrating the reliability of the
FNQS architecture.

Random transverse field Ising model
A natural extension of this method involves exploring Hamiltonians
with quenched disorder, by optimizing a single FNQS across distinct
disorder realizations. Disordered systems are a very vast and ramified
topic of research and are at the basis of a theory of complexity53. When
quantum effects are also included, disordered systems become even
more compelling, with recent works highlighting the extension of
Anderson localization to a complete ergodicity breaking in interacting
quantum systems54. These systems are notoriously resilient to
numerical approaches55 and optimizing a single FNQS across many
realizations of disordermakes the averaging of the physical quantities,
a necessary step for treating disordered systems, muchmore efficient.

A compelling candidate for study is the random transverse field
Ising chain, defined by the following Hamiltonian (assuming periodic
boundary conditions):

Ĥ = � J
XN
i = 1

Ŝ
z
i Ŝ

z
i + 1 �

XN
i= 1

hiŜ
x
i , ð7Þ

where hi is the on-site transverse magnetic field at the i-th site. In the
disordered case, hi varies randomly along the chain, drawn indepen-
dently and identically from the uniform distribution on the interval
[0, h0]. When setting J = 1/e, the model exhibits a quantum phase
transition between ordered (ferromagnetic) and disordered (para-
magnetic) phases for h0 = 156–59. Although this disordered model
cannotbe solved analytically due to the lackof translational symmetry,
the eigenstates can be found efficiently for each realization of disorder
by exploiting the mapping to free fermions58. Therefore, relatively
large clusters may be considered, just requiring diagonalizations of
N × N matrices58. This model is deceptively simple, since for a large
region going from the critical point inside the disordered phase, it is
affected by Griffiths-McCoy singularities56,57.

From a numerical perspective, unlike in previous cases, the cou-
pling distribution PðγÞ is a uniform distribution for the N transverse
fields hi in Eq. (7). Consequently, for each realization of disorder, the
number of couplings is equal to the number of sites of the lattice. This
scenario provides an opportunity to assess the generalization cap-
abilities of the neural network, particularly in its ability to accurately
predict properties for new disorder realizations beyond those con-
sidered during the training.

In Fig. 5a, we optimize a single FNQS on a cluster of N = 64 sites.
Training is carried out onR distinct disorder realizations, sampled by
fixing h0 = 1. The left (right) panel presents the relative error of the
variational energy for seven different training (test) seeds as a function
of the number of training realizations, namely R=8, 20, 100, 1000,
while keeping in all cases the total batch size of spin configurations

Fig. 3 | Fidelity susceptibility and order parameters of the J1-J2-J3 Heisenberg
model. a Fidelity susceptibility of the J1-J2-J3 Heisenberg model on a 10 × 10 square
lattice [see Eq. (4)]. For each point of the phase diagram of the system, we visualize
the direction of the leading eigenvector of the quantum geometric tensor χ(γ) [see
Eq. (22)]. The colour associated to each line is related to corresponding eigenvalue
clipped in the interval [0.0, 0.5] for visualization purposes. b The order parameter

m2
N�eelðγÞ characterizing the Néel antiferromagnetic order. c The order parameter

m2
stripeðγÞ identifying the antiferromagnetic phase with stripe order. d The order

parameterd2(γ) probing the valencebondphase. In all panels, the order parameters
are computed over a dense grid of R=4000 uniformly distributed points in the
parameter space defined by J2/J1 ∈ [0, 1.0] and J3/J1 ∈ [0, 0.6].
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constant atM = 10000. The analysis reveals that increasingR does not
compromise the accuracy on the training seeds. In fact, even with an
increase in training points to R= 1000, we achieve highly accurate
energy predictions while keeping the number of configurations per
system relatively low, specifically M=R= 10. More importantly, the
generalization error on the test seeds (disorder realizations not
encountered during training) systematically decreases when increas-
ingR. Notably, forR= 1000, the relative errors of the training and test
accuracies show the same order of magnitude, indicating that the
FNQS has successfully learned how to combine the disorder couplings
with the spin configurations to generate accurate amplitudes in the
space of both physical configurations and couplings. We emphasize
that the relative error for each disorder realization achieved
by the FNQS is comparable to that obtained by training the same
architecture on a single disorder realization (not reported here). This
highlights the remarkable efficiency of the proposed method.

To assess the ability of FNQS to accurately predict disorder-
averaged observables beyond energy, in Fig. 5b we show the average
spin-spin correlation function at criticality:

CavðrÞ=
1
N

XN
i = 1

Z
dγPðγÞ Ŝ

z
i Ŝ

z
i + r

D E
γ
: ð8Þ

The average correlation function Cav(r) is stochastically estimated by
samplingR= 1000 disorder realizations ath0 = 1. Refer toMethods for

further details. We find good agreement with the theoretical critical
scaling, characterized by the critical exponent η= ð3�

ffiffiffi
5

p
Þ=2 � 0:382,

which is depicted as a dashed line in Fig. 5b. In Fig. 5c we measure the
order parameter of the system as a function of h0. In particular, for a
fixed value of h0, ranging from h0 = 0.4 to h0 = 1.6, we train a single
FNQSoverR= 1000 distinct disorder realizations sampled for each h0.
After training, we estimate the square magnetization, defined as
m2

h0
= 1=N

PN
r = 1CavðrÞ. The variational results are in excellent agree-

mentwith numerically exact calculations across different system sizes,
namely N = 16, 32, 64. Remarkably, achieving similar results with
standard methods would require the optimization of 1000 indepen-
dent simulations for each value of h0, highlighting the efficiency and
scalability of our approach. To provide a more stringent test of the
accuracy of the predicted observables, in Fig. 6 we analyze the dis-
tribution of the square magnetization m2

h0
over a set of 1000 test dis-

order realizations not encountered during training. The comparison
with exact results demonstrates excellent agreement for the different
values of h0 = 0.4, 1.0 and 1.6, capturing not only the regions of high
probability density but also the tails of the distributions with remark-
able accuracy. In the inset of each panel of Fig. 6, we present correla-
tion plots comparing the exact square magnetization with the FNQS
predictions for disorder realizations not encountered during training.
These plots further highlight the excellent agreement between the
predictions and exact results, even for the most extreme and
improbable values of the square magnetization.

Fig. 5 | Random transverse field Ising model on a chain. a Relative error of the
variational energy on a cluster of N = 64 sites, fixing h0 = 1.0 on different train (left)
and test (right) disorder realizations increasing the number of systems R. The
integer numbers (seeds) shown on the x-axis label different disorder realizations.
Specifically, integers from 0 to 6 correspond to a set of seven different training
disorder realizations, while those from 10 to 16 correspond to a set of test

realizations. b Spin-spin correlation function averaged overR = 1000 disorder
realizations ath0 = 1. Thedashed line represent the theoretical power lawbehaviour
with exponent η ≈0.382. c Squaremagnetizationm2

h0
as a function ofh0. Atfixedh0

order parameter is obtained by averaging overR = 1000 different disorder reali-
zations. The numerically exact results are reported as comparison with solid lines.

Fig. 4 | Benchmarking FNQS on the J1-J2-J3 Heisenbergmodel along the axis J3 =
0. a FNQS results for the square magnetization corresponding to the Néel (m2

N�eel)
and stripe (m2

stripe) order parameters are compared at J3/J1 = 0 with exact diag-
onalization calculations (solid and dashed black lines) on a 6 × 6 cluster.

b Variational estimates of the magnetic order parameters are compared with
QuantumMonte Carlo (QMC, blue circles) at J2/J1 = 0, and with Vision Transformer
architecture (ViT, red stars) at J2/J1 = 0.5 on a 10 × 10 lattice.

Article https://doi.org/10.1038/s41467-025-62098-x

Nature Communications |         (2025) 16:7213 6

www.nature.com/naturecommunications


Out of distribution generalization
In this section, we investigate whether a FNQS trained on a restricted
coupling domain can generalize to couplings outside this domain,
namely for γ=2Dom fPðγÞg. In general, we do not expect this type of
out of distribution generalization to succeed, as in any other machine
learning approach. Nonetheless, we report here an example where this
type of unconventional generalization is effective with some
limitations.

Specifically, we consider the following Hamiltonian defined by
generalizing the J1-J2 Heisenberg model on a L × L square lattice (with
periodic boundary conditions)10,60:

Ĥ = J1
X
i

Ŝi � Ŝi + ŷ + Ŝi � Ŝi + x̂

� �
+
X
i

J2R Ŝi � Ŝi+ x̂ + ŷ + J2L Ŝi � Ŝi+ x̂�ŷ

� �

ð9Þ

which depends on two distinct couplings, J2L/J1 and J2R/J1. When
J2L = J2R = 0, the model reduces to the unfrustrated Heisenberg model
on a square lattice50. Increasing J2L/J1 introduces frustration exclusively
along the left diagonals of the square lattice, while increasing J2R/J1
does so along the right diagonals (see Fig. 7a). In the limiting cases
where either J2L ≠ 0 and J2R = 0, or vice versa, the model in Eq. (9)

corresponds to the Heisenberg model on the anisotropic triangular
lattice61–63.

To probe the generalization capability of the FNQS model, we
design the following experiment (illustrated in Fig. 7a): the archi-
tecture is trained solely on Hamiltonians where frustration is present
on only one diagonal at a time and then evaluated on Hamiltonians in
which both diagonals are simultaneously frustrated. Specifically, the
training data are sampled from a coupling distribution PðγÞ defined
exclusively on points of the form (J2L/J1, 0) or (0, J2R/J1), where only
oneof the twonext-nearest-neighbor couplings is active, with J2L/J1 and
J2R/J1 harvested from a uniform distribution defined on the interval
[0.0, 0.6]. We then assess whether the resulting model can generalize
to coupling configurations with J2L = J2R, which recover the J1-J2 Hei-
senberg model on a square lattice10,60, where frustration is introduced
symmetrically along both diagonals. Importantly, such test points lie
outside the support of the training distribution PðγÞ, challenging the
model’s ability to extrapolate beyond its training regime. In Fig. 7b, we
consider a 6 × 6 lattice and plot the spin-spin correlation function at
two in-distribution points, (J2L/J1, J2R/J1) = (0.0, 0.3) and (0.3, 0.0), as
well as at theout-of-distributionpoint (0.3, 0.3). Remarkably, the FNQS
accurately captures the enhanced frustration in the latter case, pro-
ducing correlation functions that have lower amplitudes than in the

Fig. 6 |Distributionsof the squaremagnetizationm2
h0

of the randomtransverse
field Ising model. The FNQS is trained on R= 1000 independent disorder reali-
zations and tested on a separate set of 1000 unseen realizations. The reported
distributions correspond to the latter, with results presented on a chain of length

N = 32 for three distinct disorder strengths: h0 = 0.4, h0 = 1.0, and h0 = 1.6. For
comparison, numerically exact results are included asblack dashed lines. The insets
of each panel illustrate the correlation between the exact squared magnetizations
and the variational values predicted by the FNQS for unseen disorder realizations.

Fig. 7 | Out of distribution generalization on the generalized J1-J2 Heisenberg
model. a Generalized J1-J2 Heisenberg model on a square lattice, with two cou-
plings, J2L/J1 and J2R/J1. When J2L = J2R, the model reduces to the standard J1-J2 Hei-
senbergmodel. The FNQS is trained on configurations with frustration on only one
diagonal and tested on configurations where both diagonals are frustrated. b Spin-
spin correlation function on a 6 × 6 lattice of a FNQS trained onR = 1000 different
realizations of frustration affecting only one of the two diagonals of a square lattice
(see Fig. 7 for a schematic representation). The model is tested on two in-

distribution points (J2L/J1, J2R/J1) = (0.0, 0.3) and (0.3, 0.0), and on the out-of-
distribution point (J2L/J1, J2R/J1) = (0.3, 0.3), where both diagonals are frustrated. For
reference, the exact results of the J1-J2 Heisenberg model at J2/J1 = 0.3 are also
shown. Inset: The red line shows how the spin-spin correlations are ordered in the
panel (b). c Out of distribution generalization of the square magnetization asso-
ciated with Néel antiferromagnetic order for the FNQS (green circles) as a function
of the frustration ratio J2/J1 on a 6 × 6 cluster. Exact results (blue line) are shown for
reference.
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case with only one frustrated diagonal at a time, and in close agree-
ment with exact results. This demonstrates the model’s surprising
ability to generalize beyond the support of the training distribution.
However, it is important to emphasize that the accuracy of such gen-
eralization decreases as the distance from the training axis (J2L = 0 or
J2R = 0) increases. Specifically, along the diagonal direction (J2L = J2R),
the relative error on the ground-state energy remains very small in the
Néel antiferromagnetic phase of the J1-J2 Heisenberg model, on the
order of 10−5 for J2 = 0.1, 10−4 for J2 = 0.3, but increases substantially to
order 10−2 for J2 = 0.5 and 10−1 for J2 = 0.6. This degradation in gen-
eralization performance is illustrated in Fig. 7c, which shows the
behaviour of the Néel antiferromagnetic order parameter
m2

N�eel =Cðπ,πÞ=N, where CðkÞ=Pre
ik�rhŜ0 � Ŝri is the spin structure

factor and N is the total number of sites in the J1-J2 Heisenberg model
(J2L = J2R).

Discussion
We have demonstrated that a single neural-network architecture can
be efficiently trained on multiple many-body quantum systems,
yielding a variational state that generalizes to previously unseen cou-
pling parameters. This approach enables the use of pre-trained states
as starting points for specific investigations25, similar to current prac-
tices in machine learning. To facilitate the adoption of this metho-
dology, we have made FNQS models available through the Hugging
Face Hub at https://huggingface.co/nqs-models, integrated with the
transformers library64 and providing simple interfaces for NetKet65.

Several research directions emerge from this work. Specifically,
we believe that in the near future, it will be possible to develop FNQS
capableof treating all spinmodelswith arbitrary two-body interactions
in one and twodimensions. Achieving this ambitious goal will require a
step-by-step approach and forms part of a broader long-term research
program. Moreover, the extension to fermionic systems in second
quantization66,67 requires adapting the architecture while maintaining
the core methodology. For molecular systems68, the multimodal
structure of FNQS could enable efficient computation of energy deri-
vatives with respect to geometric parameters, providing access to
atomic forces and equilibrium configurations. Beyond ground states,
these foundation models could potentially facilitate the study of
quantumdynamics by introducing explicit time-dependent variational
states69,70, particularly in large systems where traditional methods
become intractable. These developments, combined with the public
availability of pre-trained models, represent a step toward making
advanced quantum many-body techniques more accessible to the
broader physics community.

Methods
Expectation values
Given a set of operators Âγ parametrized by the couplings γ, its
ensemble average over the distribution PðγÞ is expressed as:

AðθÞ=
Z

dγPðγÞ hψθðγÞjÂγjψθðγÞi
hψθðγÞjψθðγÞi

: ð10Þ

This expectation value can be stochastically evaluated using a set ofR
couplings fγ1, . . . , γRg sampled from the probability distribution PðγÞ
as:

AðθÞ � 1
R

XR
k = 1

hψθðγkÞjÂγk
jψθðγkÞi

hψθðγkÞjψθðγkÞi
: ð11Þ

Each term in the sum of Eq. (11) can be rewritten as:

hψθðγkÞjÂγk
jψθðγkÞi

hψθðγkÞjψθðγkÞi
=
X
σ

pθðσjγkÞ
hσjÂγk

jψθðγkÞi
hσjψθðγkÞi

: ð12Þ

where we have defined the probability distribution
pθ(σ∣γk) = ∣ψθ(σ∣γk)∣2/〈ψθ(γk)∣ψθ(γk)〉. In the Variational Monte Carlo
(VMC) framework17, this expectation value can be further estimated
stochastically over a set of Mk physical configurations fσ1, . . . ,σMk

g
sampled according to the probability distribution pθ(σ∣γk):

�Ak =
1
Mk

XMk

j = 1

hσ jjÂγk
jψθðγkÞi

hσ jjψθðγkÞi
: ð13Þ

In the calculations performed in this work, we set an equal number of
samples for each system,Mk =M=R, independent of k, whereM is the
total number of samples in the extended space of all systems. See to
ref. 17 for further details on the VMC framework.

Stochastic reconfiguration for multiple systems
A contribution of this work is the generalization of the Stochastic
Reconfiguration (SR) method15–17 to optimize a variational wave func-
tion that approximates ground states of an ensemble of Hamiltonians,
thus minimizing the loss in Eq. (1). Unlike the standard single-system
setting, the SR equation here is obtained by minimizing the ensemble-
averaged fidelity between the exact imaginary-time evolution and its
variational approximation, employing theTime-Dependent Variational
Principle (TDVP)71.

In the single-system case, characterized by the coupling para-
meters γ, the fidelity between the state evolved in imaginary time
under the exact Hamiltonian for a time-step ε, namely e�εĤγ jψθðτÞðγÞi,
and the corresponding variationally evolved state jψθðτÞ+ ε _θðτÞðγÞi is
defined as:

f 2ðγÞ= jhψθðγÞje�εĤγ jψθ+ ε _θðγÞij2

hψθðγÞje�2εĤγ jψθðγÞihψθ+ ε _θðγÞjψθ+ ε _θðγÞi
: ð14Þ

Here, _θαðτÞ denotes the derivative of the α-th variational parameter
with respect to imaginary time τ, withα = 1,…, P and P the total number
of parameters. For simplicity in the notation, in the following, we omit
the explicit time dependence of the variational parameters. To gen-
eralize to an ensemble of systems, we define the global fidelity as the
ensemble average of the fidelity over the distribution PðγÞ as
F 2 =

R
dγPðγÞf 2ðγÞ. Assuming real-valued variational parameters and

expanding to second order in ε, we obtain:

F 2 � 1� ε2 _θ
TG + _θ

TS _θ+
Z

dγPðγÞVar ðĤγÞ
� �

, ð15Þ

where Gα = ∂LðθÞ=∂θα is the gradient of the loss and is defined as the
ensemble average Gα =

R
dγPðγÞGαðγÞ, with GαðγÞ=∂hĤγiγ=∂θα which

can be rewritten as:

GαðγÞ=2< hĤγÔγ,αiγ � hĤγiγhÔγ,αiγ
n o

: ð16Þ

In the last equation, Ôγ,α is a diagonal operator in the computational
basis of the system characterized by couplings γ, whose matrix ele-
ments are defined as hσjÔγ,αjσ 0i = δσ, σ0∂ Log ½ψθðσjγÞ�=∂θα . Analo-
gously, the matrix S is defined as Sα, β =

R
dγPðγÞSα, βðγÞ, with S(γ)

being the real part of the quantum geometric tensor defined as:

SαβðγÞ=< hÔy
γ,αÔγ, βiγ � hÔy

γ,αiγhÔγ,βiγ
n o

: ð17Þ

Importantly, thematrix S is constructed as an ensemble average of the
matrices Sαβ(γ) of the individual systems, weighted by the probability
distribution PðγÞ. In the absence of this weighting, S would reduce to
an unweighted integral, leading to large statistical fluctuations as the
number of systems increases and potentially diverging variances in its
elements.
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The TDVP equations for the ensemble are obtained by max-
imizing the global fidelity in Eq. (15) with respect to _θ, leading to the
linear system S _θ= � 1

2G. This differential equation can then be inte-
grated numerically. In ground-state applications, it is common to
employ the simple Euler scheme, which approximates the time
derivative as _θαðτÞ � θðτ + ηÞ � θðτÞ½ �=η. Here, τ denotes the imaginary
time parameterizing the dynamics, and η is the integration time step
used to discretize the evolution. Based on these results, the
SR updates are conventionally defined by removing the factor of
1/272,73 leading to δθ= � ηS�1G, where we have defined
δθα = θα(τ + η) − θα(τ). It is important to consider that the matrix
S may possess extremely small or even negligible eigenvalues. As a
result, directly computing its inverse can lead to numerical
instabilities17. To mitigate these potential issues, we adopt a reg-
ularized update scheme of the form:

δθ= � η S + λIP
� ��1G , ð18Þ

where η acts as a learning rate controlling the update magnitude
during the optimization process, and λ > 0 is a regularization para-
meter introduced to ensure the invertibility and numerical stability of
the matrix S matrix17,19. The same linear algebra formula introduced in
ref. 19 can be employed to enhance efficiency when the number of
variational parameters P significantly exceeds the number of samples
M used for stochastic estimations, as is typical for FNQS.

Generalized fidelity susceptibility
A rigorous approach for the unsupervised detection of quantumphase
transitions involves measuring the fidelity susceptibility31. Consider a
systemdescribed by theHamiltonian Ĥγ characterized byNc couplings
γ = ðγð1Þ, γð2Þ, . . . , γðNcÞÞ. First, we introduce the fidelity defined as:

F2ðγ, εÞ= jhψθðγÞjψθðγ + εiÞj2
hψθðγÞjψθðγÞihψθðγ + εÞjψθðγ + εÞi

: ð19Þ

It quantifies the overlap between two quantum states on the manifold
of the couplings γ and it shows a dip in correspondence with a quan-
tum phase transition31–33. Expanding the fidelity in a Taylor series
around ε = 0, we have:

F2ðγ, εÞ= 1�
XNc

i, j = 1

εiεjχ ijðγÞ+Oðjεj3Þ , ð20Þ

where the generalized fidelity susceptibility χij(γ), a Nc × Nc symmetric
positive-definite matrix, represents the leading non-zero contribution.
It is easy to show that it can be obtained as:

χ ijðγÞ= � ∂2 ln Fðγ, εÞ
∂εi∂εj

					
ε =0

: ð21Þ

In the case of a single coupling (Nc = 1), the tensor χij(γ) simplifies to a
scalar function, which peaks at the phase transition and diverges in the
thermodynamic limit. However, even in this simpler case, computing
the fidelity susceptibility is difficult. Standard approaches require
evaluating the ground state for each coupling value, computing the
fidelity, and then using finite-difference methods to estimate its
second derivative [see Eq. (21)]. However, the fidelity becomes
exponentially small as the system size increases,making the procedure
numerically challenging. As a result, fidelity susceptibility is typically
computed via exact diagonalization on small clusters or tensor
network methods in one-dimensional systems37. Efficient algorithms
based on Quantum Monte Carlo methods have been proposed to
address this challenge, but they are limited to systems with positive-
definite ground states31.

In this work, we propose an alternative approach that overcomes
these limitations. The matrix χij(γ) in Eq. (21) can be equivalently
computed as the realpartof thequantumgeometric tensorwith respect
to couplings γ 32,33 as:

χ ijðγÞ=< hÔy
γ, iÔγ, jiγ � hÔy

γ, iiγhÔγ, jiγ
n o

: ð22Þ

The operators Ôγ, i are diagonal in the computational basis whose
matrix elements are defined as hσjÔγ, ijσ 0i= δσ,σ0∂Log ½ψθðσjγÞ�=∂γðiÞ,
where γ(i) is the i-th component of the coupling vector γ. By
exploiting the multimodal nature of the FNQS wave function, it is
possible to compute the derivatives of the amplitudes with respect
to the Hamiltonian couplings, a highly non-trivial quantity that is
inaccessible for standard variational states optimized on a single
value of the couplings. As a result, for FNQS, the quantumgeometric
tensor in Eq. (22) can be directly computed using automatic
differentiation techniques, bypassing the need to explicitly calcu-
late the fidelity.

We emphasize that identifying quantum phase transitions
without prior knowledge of order parameters is a challenging task,
and existing state-of-the-art methods have notable limitations that
hinder their applicability in complicated scenarios. For instance,
supervised approaches74 require prior knowledge of the different
phases, while unsupervised techniques are generally restricted to
models with a single physical coupling75 or rely on quantum tomo-
graphy, which is typically computationally demanding76,77. All these
limitations are overcome by our approach, which extends the
computation of fidelity susceptibility31 to general physical models
with multiple couplings.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The architectures trained in this paper are publicly available at https://
huggingface.co/nqs-models, along with examples for implementing
these neural networks in NetKet65.
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