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An 18-DOF hand integrating force–position
multimodal perception using a
monocular camera

Shiwei Chen 1,2, Jiapeng Li 1,2, Zhiming Deng1,2, Peiji Wang 1,2,
Cheng Wei 1,2 & Xibin Cao 1,2

The anthropomorphic hand plays a crucial role in human-machine inter-
action tasks. However, there are very few hands that realize multimodal
perception with high degrees of freedom (DOF) in a low-cost way. Here,
we present a dexterous hand that achieves multimodal sensing solely
through a camera. The hand has 18 DOF but does not require any position
or force sensors, making it cost-effective and easy to manufacture. We
develop an integrated forearm for the hand that provides both actuation
and multimodal sensing information simultaneously. This includes the 18
joint angles, 5 fingertip positions and contact forces, and information on
object softness and contour. The core principle of perception is that the
camera can track the displacement and tension of all tendons simulta-
neously. The multimodal perception model is developed by characteriz-
ing tendon properties and coupling them with the hand dynamics.
Experiments indicate that our hand has potential in multimodal sensing
and dexterity.

The uncertainty of unstructured environments presents a significant
challenge for robots1. To enable versatile and precise manipulation in
complex environments, numerous anthropomorphic hands have been
developed for applications2,3, such as human-robot interaction4–7, as
well as in industrial8–12 and medical prosthetics13–15. Among these, the
ShadowHand16,17, widely used by researchers, provides unprecedented
accuracy and dexterity due to its ultra-high degrees of freedom (DOF)
and numerous sensors for position, pressure, torque, and
temperature18.

However, the increasing DOF in robotic systems proportionally
amplify the demand for force and position sensors. This growth
introduces three key challenges19: integration complexity (e.g., sensor
mounting constraints, wires, and communication protocols); changes
in finger dynamics; and higher costs. Therefore, achieving low-cost,
human-like sensory capabilities remains a significant challenge for
robotic hands. The human hand perceives information from the
surrounding environment through three primary sources: sensory

receptors in the skin, proprioceptive inputs from muscles and
joints, and centrally-originating signals20. To reduce dependency
on the number and variety of sensors, an effective approach is to
use multimodal sensors that integrate proprioception and tactile
sensing.

With advancements in neuroscience, information science, and
new materials and sensors21, numerous sensor mechanisms have
been developed to simultaneously measure proprioception (such
as strain and bending) and tactile information (such as contact
force). Examples include those based on conductive textile22,
e-skin23–25, triboelectric nanogenerators (TENGs)26, liquid metal27,
ionic liquid28, ionogel (printed)29, nanocomposite30–32, smart
braid33–35, waveguide36,37 and heterogeneous sensing38. Among
these, sensors based on optical waveguides have been integrated
into soft prosthetic hands36 to perceive curvature, elongation, and
tactile information. Although tactile sensing is limited to single-
point pressure at the fingertips and relies on complex circuitry and
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wiring, it has already demonstrated the potential for multimodal
perception.

Another category of multimodal sensing approaches involves
vision-based tactile sensors. These sensors primarily utilize cameras
to capture images of contacted objects, and subsequently leverage
image recognition techniques to extract tactile information, which
serves as feedback for robotic manipulation39–43. Representative
sensors include GelForce44,45, Gelsight46, TacTip47, GelSlim48,49, which
can achieve texture recognition50, grasping forces51, and temperature
sensing52. However, the perceptual information from these sensors is
typically limited to the fingertips and constrained by manufacturing
processes and size, potentially interfering with the dynamics at the
fingertips.

Integrating the drive components with multimodal sensing com-
ponents could be a promising solution53,54, as this would reduce the
impact (such as wiring, size, mechanism dynamics, and maintain-
ability) of sensors on the robot’s body. The drive components of DLR
hand include 38 flexible antagonistic spring element (FAS) sensors
used to obtain tendon tension55. Another tendon-based robotic hand56

utilizes motor rotary encoders to indirectly measure tendon length
and tension. However, this approach requires the installation of sen-
sors for each drive component, which increases the size and com-
plexity of the drive components.

The integration of visual systems with drive components may
address this challenge57,58. The vision camera offering the high reso-
lution and low cost, can also observe all drive components in the field
of view at the same time. It can therefore reduce the number of sensors
on the drive components. A passive soft hand without drive compo-
nents is proposed, utilizing cameras to simultaneously track markers
on each tendon to obtain tendon length and tension59, which are used
to estimate hand posture and external forces. In previous work60, we
explored the potential of visual integration in a fully actuated finger,
achieving proprioception (joint angles) and external sensing (joint
torques).

In this work, we propose a low-cost, high-DOF and vision-based
multimodal sensing hand (VMS Hand). It consists of an actuation-
perception forearmandmodularfingers thatdonot require any sensor
installation (Fig. 1a), facilitating easy manufacturing and maintenance.
The actuation-perception forearm utilizes a monocular camera to
achieve multimodal sensing (Fig. 1b) for the dexterous hand manip-
ulation (Fig. 1c), capturing the 18 joints angles (Fig. 1d), external tor-
ques (Fig. 1e), positions and contact forces at 5 fingertips (Fig. 1f), as
well as the softness and contour of contacted objects. We conducted
various experiments on position and force to evaluate its sensing
capabilities and dexterity. The vision-based approach eliminates the
need for traditional position/force sensors on the fingers, significantly
reducing sensing complexity and cost compared to traditional robotic
hands (see Supplementary Tables 1, 2).

Results
Integrated actuation-perception hand design
The VMS Hand mimics the human hand’s structure, comprising a
forearm, palm, five fingers, and a 3D-printed enclosure, as shown in
Fig. 1a. The forearm integrates a motor-tendon actuation system that
replicates the muscle-tendon transmission mechanism of the human
hand61. Compliant force transmission is achieved via springs62,
mimicking the connective tissue membranes in biological muscle-
tendon systems. Inspired by neural tactile signal transmission in
humans, the VMS Hand embeds a monocular camera in the forearm
assembly. This camera captures real-time tendon motion images (see
Fig. 1b and Supplementary Movie 1), which are processed by percep-
tion algorithms to extract multimodal information (e.g., contact for-
ces, joint angles).

The VMS Hand comprises 18 DOF, with its forearm controlling
handmovements through 13 active tendons (Fig. 2a). The layout of the

active tendons is shown in Fig. 2b. The forearm integrates 13 modular
actuation units and a camera to achieve actuation and perception
(Fig. 2c). Each actuation unit’s core component is a tension spring that
serves dual functions: mechanically transmitting motor power to the
tendon system while simultaneously reflecting tendon tension infor-
mation through its own deformation. To enable a monocular camera
to observe all spring deformations, the 13 actuation units are arranged
in a circular pattern. Each actuation unit is equipped with a planar
mirror angled at 45 degrees relative to the spring plane (Fig. 2d),
allowing the camera to capture virtual images of all springs through
mirror reflections.

Two sliders (slider-A and slider-B) aremounted at each end of the
spring, with limitedmovement along linear guides (see Supplementary
Fig. 1a). To rapidly track positional changes at the spring ends,
reflective markers are installed on the slider surfaces. Due to the
spring’s initial length, slider-B’s movement would exceed the planar
mirror’s effective reflection area during motion. Therefore, an addi-
tional slider-b is added to the linear guide rails and connected to slider-
B via a rigid rod.Consequently, the spring’s deformationδx = δM � δm
can be calculated as the displacement difference between slider-A and
slider-b (Fig. 2d). Since the tendon origin is fixed to Slider-A, the ten-
don length changes are represented by the displacement δm of slider-
A. Thus, during the dexterous hand’s motion, a monocular camera
tracks in real time the displacements of the markers
mi,Miði= 1, 2, � � � 13Þ at both ends of the springs in the 13 actuation
units. These measurements are fed into the multimodal perception
model, enabling real-time estimation of the hand’s position and force
feedback.

Modular fingers design
The five fingers are modular, each containing three joints: meta-
carpophalangeal (MCP), proximal interphalangeal (PIP) and distal
interphalangeal (DIP). This reduces manufacturing complexity
and facilitates post-maintenance. The MCP joints of the thumb,
index, and middle fingers feature two DOF enabling abduction
and flexion (Fig. 2e), controlled by two active tendons with dual
restoring springs on the dorsal palm for joint reset. The kinematic
parameters of each finger are shown in Fig. 2f. Although sharing
the same mechanical configuration, the MCP joints of the ring and
little fingers are actuated by a single tendon, retaining only flex-
ion DOF due to their auxiliary role in grasping and spatial con-
straints in forearm integration10,63,64 (Fig. 2g).

Based on the differences in the DOF of theMCP joints, the thumb,
index finger, and middle finger are described as primary fingers, while
the ring finger and little finger are referred to as secondary fingers.
Considering the kinematic coupling characteristics of the PIP and DIP
joints of the humanhand64, theDIP jointwasdesigned as a passive joint
that moves in synchronization with the PIP via a pair of parallel ten-
dons. This pair of parallel tendons is referred to as motion-
coupled tendons, similar to the function of four-bar linkage. The
PIP joint is actuated by an active tendon (Fig. 2f). Tension springs
on the backs of the fingers provide the resetting function for the
PIP and DIP joints.

Characterizations of the tendon elongation
There is a clear geometric relationship between the joint angles q of
the dexterous hand and the ideal tendon lengths l, as shown in Eq. (1).
For a single tendon, since it undergoes elastic deformation when
subjected to tension (Fig. 3a), the ideal tendon length l can be
expressed as l = δm� δl. δm represents the displacement of
marker m (equivalent to the tendon input displacement),
obtained by real-time tracking of the internal vision (see Sup-
plementary Movie 2). δl denotes the elongation of the tendon
itself. δl is related to the physical properties and tension of the
tendon itself, and can thus be expressed as δl = f ðδxÞ, where
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Fig. 1 | Overview of the integrated actuation-perception hand. a The vision-
based multimodal sensing (VMS) hand mechanism design. Left: Comparison
between our VMS hand and the human hand (reproduced with permission from
Alamy Stock Photo). The VMS hand uses a motor-tendon system to mimic the
muscle (red) and tendon (white) mechanism. The VMS hand captures information
with a camera and sends image to the controller, while humanhand sensory signals
are transmitted to the brain via nerves (yellow). Right: the VMS hand prototype,
fitted with a 3D printed enclosure. The exposed fingers indicates that there are no
sensors attached to the fingers. b Principle of multimodal perception. During hand

movement, a camera continuously tracks the reflectivemarkers at both ends of
each tendon-connected spring, capturing changes in tendon length and ten-
sion. This data is then integrated into a multimodal model to provide informa-
tiononposition, force, andobjectproperties.cDemonstrationofhandgrasping
capabilities: precise grasp (ball) and power grasp (bottle). d Demonstration of
hand perception capabilities. While performing a manipulation task (e.g.,
grasping a bottle), the multimodal perception model provides real-time feed-
back on joint angles (left), external torque (center), and fingertip contact
force (right).
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δx = δM � δm represents the spring’s deformation.
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An angle calibration platform (see Supplementary Fig. 2a) has
been built to evaluate the tendon elongation. However, since the
spring does not exhibit a significant change in length until the initial
tension is exceeded (see Supplementary Fig. 2b, c), it becomes chal-
lenging to determine the elongation δl by solving the f ðδxÞ. Figure 3a
shows that the mapping relationship between δm and l differs during
the phases of increasing and decreasing tendon displacement. To
estimate joint angle from tendon displacement δm, tendon velocity
δ _m is used to distinguish the direction of tendon movement. The
responses of joint angle relative to tendon displacement and tendon
velocity are shown in Fig. 3b. Based on Eq. (1), the ideal tendon length l
is geometrically related to the joint angle. Therefore, l can be

expressed as:

l = δm� δl = Γ ðδm, δ _mÞ ð2Þ

By performing polynomial fitting on the ideal tendon length l and
ðδm,δ _mÞ, we obtained fitting function Γ ð�Þ. Substituting Eq. (2) into Eq.
(1) yields the relationship between the finger joint angles q and
ðδm, δ _mÞ, as shown in Eq. (3). The fingertip position can be obtained
from the forward kinematics model of the finger.
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Characterizations of the tendon contact detection
Another additional exploration focused on the impact of finger-
environment contact on tendon characteristics, as this would help
the dexterous hand rely solely on internal vision to determine
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Fig. 3 | Characterization of tendon properties. a The relationship between
tendon input displacement δm and output ideal length l during motion. b The
relationship between joint angle and tendon displacement and velocity; the
arrows indicate the trend of joint angle changes. c The relationship between
δM and δm under different joint angles and contact conditions. d The results
of visual recognition, where the yellow and white fonts represent the identi-
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variation along the tendon transmission path; f Visual recognition results
during the pressing of the force sensor by the fingertip of the ring finger. The
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δxc under different joint configurations.

Article https://doi.org/10.1038/s41467-025-62122-0

Nature Communications |         (2025) 16:6801 5

www.nature.com/naturecommunications


contact. Typically, the tendon tension will differ when the finger
reaches the same joint configuration under non-contact and external
force conditions, meaning that the same δm corresponds to different
spring deformations δx. However, when the deformation of the
spring is within the dead zone (Supplementary Fig. 2b), the system
cannot accurately determine contact. Fortunately, we found that the
displacement δM of the marker at the slider-b of the spring con-
sistently showed significant movement. Therefore, δx can be
replaced by δM and apply the same approach to detect contact, can
be expressed as:

contact flag=
1, contact,δM > δM̂ = FðδmÞ
0, no contact,δM = δM̂ = FðδmÞ

 
ð4Þ

where Fð�Þ represents the mapping function from δm to δM in a non-
contact state. δM̂ is the predicted displacement of themarkerM in the
non-contact state based on δm. Figure 3c illustrates the relationship
between δM and δm at different joint configurations and contact
conditions. The straight segments in the figure represent the mapping
relationship between δM and δm in the non-contact state, while the
three inflection points indicate instances of contact. Since the
displacements of all markers (m and M) can be output by vision in
real time (Fig. 3d), the contact states of the different fingers can be
obtained according to Eq. (4).

Characterizations of the tendon transmission
In an ideal scenario, the relationship between fingertip force, joint
torque, and tendon tension in the dexterous hand can be analyzed
using classical robotic dynamics. Since the tendon is in series with the
stretching spring, the input tension of the tendon can be indirectly
measured through the spring deformation. However, frictional losses
are inevitably present in the tendon transmission path, necessitating a
quantitative analysis of these losses to determine the output tension at
the tendon end.

For a joint controlled by an active tendon, the analysis of the
tension transmission process is shown in Fig. 3e. When the fin-
gertip makes contact with the environment, the torque τil exerted
by the i-th active tendon to resist the external torque can be
expressed as Eq. (5). Detailed derivation can be found in Supple-
mentary Method 1.

τil =ψiðq,μÞ � ðδxiðtÞ � δxiðtcÞÞ=Ki � δxic ð5Þ

Where tc represents the moment at the instant of contact; δxðtÞ
represents the i-th spring deformation, derived indirectly via visual
tracking of markers displacement(see Fig. 3f and Supplementary
Movie 3); δxi

c represents the deformation increment of the i-th spring
after contact; Ki =ψðq,μÞ is the equivalent stiffness coefficient of the i-
th series tendon spring,which is related to the joint angleq and friction
coefficient μ at the moment of contact.

Based on Eq. (5) and the finger dynamics, the external torque τext
at each finger joint can be obtained, as shown in Eq. (6). Figure 3g
illustrates the variationof external torque τext with incrementof spring
deformation δxc under varying joint angle. The fingertip contact force

Fext = ðJT Þ
+
τext , where ðJT Þ+ is the generalized inverse of the Jacobian

matrix transpose.
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Position perception experiment
The finger joint angles can be calculated from themarker displacement
δmmeasured by the forearm-mounted camera using Eq. (3). We define
the joint numbering as qij , where i= 1, 2, . . . 5 sequentially represents
the thumb, index, middle, ring, and little finger; For primary fingers
(e.g., thumb), j = 1, 2, 3, 4 corresponds to the MCP abduction joint,
flexion joint, PIP joint, and DIP joint respectively; For secondary fingers,
j = 1, 2, 3 represents the MCP flexion joint, PIP joint, and DIP joint.

The accuracy of position perception was evaluated by 12 repetitive
joint motion experiments. The camera-estimated angles q̂ and encoder-
measured ground truth q were synchronously recorded (see Fig. 4a and
Supplementary Fig. 3). Results showed mean absolute errors of 1.14°,
1.04°, and 0.95° for the MCP abduction joint, flexion joint and PIP joint,
respectively. Since the MCP abductor joint is actuated differentially by
two tendons, small variations in the differential tendon lengths are
amplified into larger angular deviations. Consequently, the prediction
errors are further magnified. Variations in accuracy among the different
jointsmay arise from factors such asmechanical dimensional tolerances
incurred during manufacturing and calibration inaccuracies.

The dexterous hand achieves closed-loop position control by real-
time acquisition of joint angle feedback signals integrated with posi-
tion control algorithms. As the MCP abduction and flexion joints are
actuated by two coordinated tendons, the desired joint anglesqd must
be converted into corresponding tendon length variation ld to estab-
lish a decoupled joint control model. For a given set of desired joint
anglesqdðtÞ, the correspondingdesired tendon length ldðtÞ change can
be computedusing Eq. (1). Subsequently, a delay-compensated control
input uðtÞ is constructed, as shown in Eq. (7).

uðtÞ=Kf ðld ðt + ςÞÞ+Kp ðld ðtÞ � qðtÞÞ+Kd
d
dt

ðld ðtÞ � lðtÞÞ ð7Þ

whereKf is the feedforward position gain,Kp andKd are the feedback
position gain and derivative gain, respectively. ς represents the system
time delay calibrated via frequency response analysis or step response
experiments (see Supplementary Fig. 4)

To validate the tracking performance and robustness of the pro-
posed control system, we conducted stepped reference trajectory
tracking experiments and external disturbance tests (see Supplemen-
tary Movie 4). The reference trajectory was designed as a multi-step
signal with 5° increments at 1-second intervals. The angle tracking
performance is shown in Fig. 4b; with the addition of the feedforward
term, the tracking error decreased by 34.3% compared to the case
without feedforward control (see Supplementary Fig. 5). To evaluate
the anti-interference capability of system, six external force pertur-
bations (three downward/three upward) were applied during fingertip
motion (Fig. 4c). The experimental results demonstrated that the
perception system could detect the position changes caused by the
external disturbances. The controller promptly adjusted and restored
motion to the preset target position after force removal, demon-
strating the robustness and stability of the adopted control scheme.

To assess the dexterous hand’s ability to synergistically perceive
angle and position, we conducted experiments with grasping a tennis
ball. During the experiment, a camera on the forearm tracked the
displacement of all markers in real time (Fig. 4d), enabling simulta-
neous monitoring of the joint angles (Fig. 4e) and the five fingertips
positions (Fig. 4f). The dexterity of the VMS hand was evaluated in the
standardized Feix GRASP taxonomy65 test (see Supplementary
Movie 5). The VMS hand successfully implemented 33 graspingmodes
(Fig. 4g), including precise grasping operations requiring fingertip
coordination, such as pen holding, egg pinching, and chopstick
manipulation. All grasping tasks were stably executed via feedforward-
feedback closed-loop control based on predefined joint angle config-
urations. Experimental results demonstrating the system’s adaptability
in multi-scenario grasping applications.
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External force perception experiment
Relying only on the information provided by the internal vision of the
forearm, the VMS hand can detect contact and also provide real-time
feedback on the external torques at the joints and external forces at
the fingertips. To evaluate the external perception capabilities of the

hand, we conducted three parts of experiments: contact detection,
contact force evaluation, and object rotation experiments.

The plate was positioned above a six-dimensional force sensor,
enabling the sensor to reflect changes in force during fingertip contact
with the plate. Simultaneously, the actuation-perception forearm

thumb index middle

ring little

0.50

0.45

0.40

0

0.05

-0.06
0.060

X(m)

Y(m)

Z(m)

1

step=5°

a b c

d fe

2 3 54 6 7

8 9 10 1211 13 14

15 16 17 1918 20 21

22 23 24 2625 27 28

29 30 31 3332

g

jo
in

t a
ng

le
(°

)

0

20

40

60

30 40 50
t(s)

q21 q22 q23

q̂21 q̂22 q̂23

jo
in

t a
ng

le
(°

)

0

20

40

60

5 10 15

t(s)

jo
in

t a
ng

le
(°

)

20

10

30

40

0

0

desired

measured

10 20 30
t(s)

q21 q22 q23

jo
in

t a
ng

le
(°

)

30

15

45

60

0
1 2 3

t(s)

q̂11 q̂23q̂22

q̂41 q̂52

Fig. 4 | Evaluation of the hand position perception capability. a Comparison of
the internal perception joint angles q̂ and the actual joint anglesq of the VMSHand.
b Joint angle tracking response under multi-step reference signal input. c Anti-
disturbance experiment during finger motion, with orange arrows indicating

external disturbance directions. d The visual recognition results during the tennis
ball grasping. e The time-varying joint angle profiles during the grasping task. f The
three-dimensional trajectories of five fingertips throughout the grasping process.
g The grasp taxonomy with all 33 standard modes.

Article https://doi.org/10.1038/s41467-025-62122-0

Nature Communications |         (2025) 16:6801 7

www.nature.com/naturecommunications


transmits δM and δm in real time to the tendon contact model
(see Eq. (4)) to detect contact occurrence (Fig. 5a). This data can be
compared with the force sensor measurements to validate the effec-
tiveness of contact detection.

The fingertips of the index, middle, ring, and little fingers were
sequentially controlled topress theplate and then return to their initial
positions (see Supplementary Movie 6). The detection results and the
force sensor’s response curve are shown in Fig. 5b. The results indicate
that the normal force from the sensor gradually increased upon fin-
gertip contactwith the tray anddecreased as the fingertips returned to
the initial position. During this process, our measurement system also
detected fingertip contact in real time, consistent with the trends
observed in the force sensor data.

In the characterization of tendon transmission, we calibrated the
friction coefficient μ and K1 for each tendon during the transmission
process. In this experiment, we controlled the little finger to press the
six-dimensional force sensor under different joint configurations to
evaluate themeasurement capabilities of external torques and contact
forces (see Supplementary Movie 7). The experimental setup was
shown in Fig. 5c. During the experiment, the six-dimensional force
sensor provided real-time outputs of the external force F6x1

ext applied by
the fingertip. The δm output from the actuation-perception forearm
was used to measure the joint configuration q and calculate the Jaco-
bianmatrix J, while δx was substituted into Eq. (6) tomeasure the joint
external torque τ̂ext and the fingertip contact force F̂ext = ðJT Þ

�1
τ̂ext .

The actual external torque is given by τext = J
TFext .

The relationship between external torque and fingertip contact
force with the increment of spring deformation after contact for dif-
ferent joint configurations is shown in Fig. 5d and Fig. 5e, respectively.
Experimental results indicate that our measurement model effectively
characterizes the transmission properties of tendons at various con-
tact angles. Themaximumerror in the normal contact force during the
experiment reached 0.49N. The errors in contact forcemay arise from
angle inaccuracies, internal visual recognition errors, and calibration
errors in the friction coefficient. The actuation-perception base can
output not only the normal force Fz but also the tangential force Fx ,
which aids in slip detection during grasping tasks.

The position sensing capability of the dexterous hand during
grasping ((Fig. 4e, f) and its flexibility (Fig. 4g) have been demon-
strated. To further showcase the hand’s external force sensing ability,
an in-hand object rotation experiment was designed (see Supple-
mentaryMovie 8). First, a stable grasp of the object is achieved using a
preset grasping configuration. Then the tension of the ring and little
finger tendons were increased to enhance fingertip contact pressure
and induce object rotation. Figure 5f illustrates the visual-tracked
spring deformation variations during object manipulation. The
dynamic profiles of fingertip output forces and joint external torque
for the ring and little fingers are shown in Fig. 5g and Fig. 5h, respec-
tively. Experimental results demonstrate that the vision-based multi-
modal perception scheme can achieve real-time monitoring of joint
torque and fingertip contact force changes. With this information, the
hand has the potential to perform various complex tasks, including
object manipulation, in-hand repositioning, multi-finger coordination,
force control, haptic feedback integration, adaptive grasping, and
tool use.

Active tactile perception
Tactile feedback allows robotic hands to assess the physical properties
of objects, including softness and surface texture, facilitating the
adjustment of grasping force and posture to optimize manipulation
task performance. To validate the active tactile sensing capability of
the VMS hand, experiments for softness detection and contour
recognition were designed.

The robotic hand quantifies object softness by measuring differ-
ences in compression displacement. Its principle is that when the

fingertip applies the same force to surfaces of varying softness, the
surfaces produce different compression displacements due to differ-
ences inmaterial compliance.When a fingertip is controlled by a single
tendon, the time point of contact detection is defined as tc. We define
the force applied by the fingertip as positively correlated with the
deformation of the spring after contact, represented as
δxc = δx � δxðtcÞ. Additionally, the compression displacement of the
fingertip is positively correlated with the displacement of the tendon
after contact, denoted as δmc = δm� δmðtcÞ. Thus, the softness of the
object can be defined as Kobj = δxc=δmc.

A validation experiment was conducted using three repre-
sentative materials (wood, foam, and sponge) to evaluate tactile
softness perception (see Supplementary Movie 9). During the
experiment, pressure was applied to the materials by independently
adjusting the tendon tension of the middle finger PIP joint, while
maintaining the same pressing speed for all materials. The states of
the middle finger pressing the surfaces of the wood block, foam
block, and sponge block are shown in Fig. 6a. The vision system
within the actuation-perception forearm continuously provides real-
time feedback on δx and δm, with the recognition results shown in
Fig. 6b. Based on δm, δx and the contact moment tc, the relationship
between δxc and δmc can be obtained, as shown in Fig. 6c. The slope
of this curve reflects the softness Kobj . As expected, the experimental
data indicate a decreasing order of softness: wood block, foam block,
and sponge block. It is noteworthy that since the fingertip shell itself
deforms under pressure, employing shell materials with higher Shore
hardness may improve softness detection performance (see Sup-
plementary Fig. 6).

When external visual and laser radar devices reconstruct the
shape of objects, they may encounter occlusions. Using tactile devices
to touch occluded surfaces could address this challenge. Here, since
the actuation-perception forearm can provide contact force detection
and fingertip position information, we utilize the fingertips as tactile
sensors to identify the object contours. The coordinate systems of the
robotic arm and hand are unified into the world coordinate system
(Fig. 6d). This ensures that when the robotic arm moves horizontally
(along the negative z-axis) to scan the object surface, the fingertip
position is referenced to the world coordinate system rather than the
hand base.

The object surface was positioned directly beneath the palm to
ensure contact detection during finger flexion (see Supplementary
Movie 10). Initial contact triggers spatial registration between fingertip
coordinates and surface contact points. Upon contact detection, the
3D position was recorded, followed by controlled negative z-axis arm
motion for continuous contour mapping. Using this approach, we
tested the fingers’ ability to recognize surface contours of step heights
(Fig. 6d). The VMS hand could also distinguish the shapes of irregular
objects, such as stapler (Fig. 6e) and computer mouse (Fig. 6f). While
the accuracy and sensitivity of the VMS hand remain inferior to human
hand capabilities, it has already demonstrated potential in shape
reconstruction.

Discussion
In this paper, we propose the VMS hand that offers low cost, multi-
modal perception, and dexterity. The fingers are modular and do not
require the installation of any position sensors or expensive force
sensors. Therefore, they are easy tomanufacture andmaintain,making
them suitable for harsh environments (such as tasks involving high
electromagnetic interference or grasping sharp objects). Due to the
hand’s cost-effectiveness (see Supplementary Table 1), we believe it
will have a wide range of applications, such as in industrial humanoid
robots and prosthetic hands.

The proposed vision-based multimodal sensing scheme has been
validated through a series of positional, external force, and tactile
experiments. It demonstrates two core advantages: First, the sensing
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cost is cost effective, accounting for only 6% of the total system cost
(see Supplementary Table 2). The cost advantage becomes more
pronounced as the number of DOF increases. Second, it simplifies
manufacturing and maintenance processes. Compared to flexible

electronic sensing requiring sophisticated fabrication techniques, the
core components of this vision-based solution are easily accessible and
assembled using common materials such as springs, tendons, planar
mirrors, and a camera.Moreover, the vision-based sensing scheme can
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be adapted to other mechanisms, including tendon-driven robotic
arms and cranes.

While the VMS hand demonstrates significant potential in
terms of cost and sensing capabilities, there remain areas that
require further enhancement. First, the flexibility could be
enhanced by increasing the DOF of the wrist. The actuation and
sensing components for the wrist could be integrated into the
existing forearm, requiring only adjustments to size and camera
field of view. Second, the selection of camera and actuator has a
significant impact on forearm size. Parameters including the lens’s
minimum working distance, camera resolution, and frame rate
influence forearm size and weight. Meanwhile, the current servo

motors’ bulky size leads to excessive actuator layout space con-
sumption. Adopting smaller brushless DC motors could improve
forearm compactness.

The spatial separation between actuators and sensors introduces
non-collocation challenges. While the feedforward control law miti-
gates this issue for predefined trajectory tracking tasks, advanced
control strategies (e.g., adaptive control66) should be explored to
enable dexterous manipulation in complex scenarios. Furthermore,
the current sensing accuracy remains inferior to specialized sensors.
Integrating precise physical models with machine learning techniques
or enhancing calibrationmethods (e.g., self-calibration67) could further
improve perception accuracy.

Fig. 6 | Evaluation of Active Tactile Sensing Capabilities. a The fingertip of the
middle finger presses against the states of wood, foam, and sponge; b The visual
recognition images and output displacement information (δx and δm), when the
fingertip presses against different objects; c The curves of δxc and δmc during the
pressing of different objects, where the slope reflects the softness of the target;

dDetection of the contours of objects at different heights (above) and the scanning
results (below); e Detection of the contour of a stapler (above) and the scanning
results (below); f Detection of the contour of a mouse (above) and the scanning
results (below).
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Methods
Objectives and design of the study
Our objective is to develop a dexterous hand system that combines
multimodal perception with low cost, demonstrating the feasibility of
a vision-based integrated actuation-perception approach. Due to the
high resolution and wide field of view of the vision camera, the
advantages of the integrated actuation-perception scheme become
more pronounced as the robot’s DOF increase. We designed an
actuation unit composed of commonly used materials such as motor,
springs, reflective markers, and planar mirrors, making it easy to
manufacture and maintain. Thirteen actuation units are arranged in a
circular array, with a low-cost industrial camera mounted on the base
of the actuation units to capture the deformation of the springs across
all units. The dexterous hand is designed to be tendon-driven, allowing
for high flexibility and intrinsic compliance controlled by the actuation
units. Thorough exploration of the spring deformation data helps us
gather valuable information about the dexterous hand, such as joint
angles and fingertip forces.

Fabrication of actuation units
The actuation unit of the finger is designed to bemodular, consisting
of a planar mirror bracket, planar mirror, linear guides, bearing
carriage, springs, tendons, wire spools (radius = 10mm), servo
motor, and mounting plate, as shown in Supplementary Fig. 1a. To
minimize the weight of the module, we adopted a hollow design for
the mounting plate, retaining only the necessary components to
secure the servo motor, linear guides, and planar mirror bracket.
Two linear guides are fixed to the mounting plate by a guide rod
support, allowing the springs to stretch axially. The servo motor
drives the rotation of the wire spools, which in turn stretches the
tendons and the springs. The ends of the springs are secured to two
sliders, with reflective circularmarkersmounted on their surfaces for
camera recognition. The planar mirror is mounted on a bracket that
is inclined at a 45-degree angle to the mounting plate, ensuring that
the virtual image of the reflective markers in the mirror forms a 90-
degree angle with the mounting plate.

Fabrication of actuation-perception forearm
To reduce the overall size of the forearm part, we arranged the 14
actuation units in a circular pattern and fixed them to a circular base
(Supplementary Fig. 1b). The 14th actuation unit is reserved for
potential future use to add DOF. It will serve as a backup for future
enhancements in DOF. We designed a circular PCB that facilitates 16-
channel PWM output and manages the power supply for the entire
system. Amini-industrial camera (201 fps at 1280 × 1024Mono 8, 1.5W
at 5 VDC) is positioned at the center of the circular circuit board to
track the reflective markers on the actuation units. The parameters of
the camera and lens are shown in Supplementary Table 3. A circular
LED light source is fixed to the mounting plate for illumination.

The circular PCB is secured to themounting plate of the actuation
units using screws. A cooling fan ismountedon the upper circular base
to dissipate heat from the camera and circuit board. To prevent
interference from external light fluctuations during recognition, a 3D-
printed circular enclosure is installed on the forearm, with ventilation
holes designed to ensure heat dissipation.

Fabrication of finger
Each finger is modular, featuring identical structural designs as illu-
strated in Fig. 2b. After assembling the fingers, one endof the tendon is
anchored to the joint, then routed through the pulley system on the
palm to connect with the forearm. The material properties of the
tendon are shown in Supplementary Table 4. To minimize losses
during the tendon transmission process, ball bearings are installed on
each pulley. To avoid coupling between the MCP and PIP joints, the
tendon controlling the motion of the PIP joint is routed through the

axis of the MCP joint and ultimately connected to the actuation unit.
Except for the restoring spring in the MCP joint of the thumb, the
restoring springs for all other joints are mounted on the dorsal side of
the palm and fingers. The bottomof the restoring springs is secured to
the palm with a rectangular base, which has two screws to adjust the
pre-tension of the return springs. The palm of the dexterous hand is
fixed to the upper surface of the arm using four aluminum alloy rods.
Both the palm and finger components are machined from aluminum
alloy to ensure structural durability, while the enclosures of the fore-
arm and finger adopt 3D-printed components (black resin) for cost
efficiency and weight reduction.

Visual recognition
The basic principle of camera recognition for circular reflective mar-
kers is contour detection. This is achieved by detecting changes in the
gradient of image grayscale values to extract variations in the center
pixel. We utilized OpenCV to implement this fundamental function.
The real challenge lies in quickly tracking the pixel changes of 26
reflective markers, which is crucial for real-time control. To address
this, we adopted an image segmentation and multithreaded con-
current processing approach, dividing the camera image into four
rectangular regions and performing contour detection in each of the
four threads. Finally, thepixel coordinates of all themarkers areoutput
in sequence to the controller.

Camera calibration
Typically, a monocular camera can only output two-dimensional
pixel coordinates and pixel distances. To obtain physical distances,
we place all detected targets on the same plane, allowing us to cali-
brate the scaling factor between pixel distance and actual distance.
First, before mounting the camera to the forearm, we perform
intrinsic calibration using Zhang’s checkerboard method to correct
image distortion.

Subsequently, the camera isfixed to themounting plate inside the
forearm, ensuring its optical axis remains parallel to the spring plane.
We adjust the optical path using a planar mirror to ensure that the
virtual image plane of all reflective markers is perpendicular to the
camera’s optical axis. Since the actuation units are arranged in a cir-
cular layout and themirror brackets are uniformly installed, the virtual
images remain coplanar, establishing a fixed proportional relationship
between single-pixel distance and real-world distance. Finally, since
slider B and slider b are rigidly connected by a rod, the actual distance
between them is known and can be used to calculate the scaling factor
K (K = actual distance / pixel distance), thereby completing the
calibration.

Characterization of the tendon elongation
We installed angle encoders (AS5600, 12-bit) on the joints of the
fingers and obtained the actual angle through PWM sampling at
100Hz (see Supplementary Fig. 3a), which was then sent to the
dexterous hand’s controller through the Serial protocol. The actual
angle can be converted to the tendon output displacement l by Eq.
(1). Note that the angle encoders will be removed once tendon cali-
bration is complete. The tendon input displacement δm is provided
by feedback from the actuation-perception forearm at a frequency of
150Hz. By controlling the position of the servomotor, the joint angle
is rotated to its maximum angle and then returned to the starting
position, with tendon displacement δm and joint angles recorded in
real-time. The tendon displacement δm was filtered using a Butter-
worth low-pass filter (cut-off frequency: 50Hz), and tendon velocity
δ _m was derived through differentiation of displacement followed
by moving average filtering (window length: 35). To establish a
mappingmodel Γ ð�Þ between joint angles and tendon parameters, the
linear polynomial regression model was employed for functional
fitting.
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Characterization of the tendon contact detection
In order to obtain the relationship between themarkerm andM during
free motion, we control the joint angle of the hand from 0 to the
maximum angle and record the displacement ðδm, δMÞ during the
motion. The mapping function Fð�Þ fromm andM is obtained through
cubic polynomial fitting.

Characterization of the tendon transmission
We developed a force measurement platform (Supplementary
Fig. 7a), where a six-dimensional force sensor (K6D40, 50 N) is
mounted on the surface of the platform. The specific parameters of
the force transducer are shown in the Supplementary Table 5. The
height of the platform can be adjusted using a knob, allowing us to
configure the fingers to apply pressure to the force sensor at dif-
ferent joint configurations. The external force Fext applied by the
fingertip is provided by feedback from the force sensor, while the
camera outputs the spring deformation δx in real time. The signals
from the six-dimensional force sensor are converted to digital
values using a high-precision digital amplifier (GSV-8) and are ulti-
mately transmitted to the dexterous hand’s controller via a Serial
protocol at a frequency of 500 Hz. The joint angle is calculated by
substituting the displacement δm from the base into the position
measurement model, as shown in (3). For each joint controlled by
active tendons, control the fingertip to press the six-dimensional
force sensor in five different joint configurations, and record the
spring deformation δx, joint angle q, and external torque
τext = J

TFext during the experiment (Supplementary Fig. 7b). The
gray wolf optimization algorithm is used to fit the multi-objective
optimization function ψð�Þ.

Data acquisition and processing
The controller of the dexterous hand system utilizes an NVIDIA Xavier
NX board to run the visual detection and motion control programs.
The only input source is a monocular camera, connected to the con-
troller via USB 3.0 for communication and power supply. The motion
control program sends commands to the circular PWM circuit board
through a serial port with a baud rate of 115200, operating at a com-
munication frequency of 100Hz. Upon receiving the commands, the
PWM circuit board outputs 13 PWM signals to the servos. The camera
can achieve a frame rate of 150 fps in RGB image outputmode, and the
optimized visual processing program allows for real-time processing
of each frame.

Data availability
All data supporting the findings of this study are available within the
article and its supplementary files. Source data are provided with
this paper.

Code availability
All the relevant codes can be directed to, and will be fulfilled by, the
corresponding authors.
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