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In toto analysis of embryonic organisation
reduces tissue diversity to two archetypes
requiring specific cadherins

Max Brambach 1,2 , Jana Wittmann 1, Marvin Albert 1,3, Jérôme Julmi1,
Robert Bill 1 & Darren Gilmour 1

Organisms are far greater than the sum of their differentiated cells, as the
function of most cell types emerges from their organisation into three-
dimensional tissues. Yet, the mechanisms underlying architectural diversity
remain poorly understood, partly due to a lack of methods for directly com-
paring different tissue organisations. Here we establish nuQLOUD, an efficient
imaging and computational framework that reduces complex tissues to clouds
of nuclear positions, enabling the extraction of cell-type agnostic architectural
features. Applying nuQLOUD to whole zebrafish embryos reveals that global
tissue diversity can be efficiently reduced to two archetypes, termed ‘amor-
phous’ and ‘crystalline’. We investigate the role of cadherin cell adhesion
molecules in controlling organisational diversity and demonstrate that their
expression segregates along tissue-archetypal lines. Targeted perturbations
identify N-cadherin as a general driver of the amorphous archetype. This
organisation-centric approach provides a way to conceptualise tissue diver-
sification and investigate the underlying mechanisms within a standardised,
quantitative framework.

Cells are the basic units of life. Advances in transcriptomicsnowenable
cellular diversity within organisms to be characterised at an unprece-
dented resolution1–3. The power of this approach is that it exploits the
standard language of mRNA sequences to define and compare diverse
cells in a systematic and quantitative manner. When combined with
perturbation experiments, such expression profiling methods can
identify drivers of cell type diversification4,5. However, characterising
cell compositions via current -omics methods is only part of the
equation, as organisms aremuchmore than the sumof their cell types.
Indeed, the biological functions of most cell types only emerge when
they are organised into multicellular tissues with specific
architectures6. The barrier function of the skin depends on keratino-
cytes being organised in sheets, the contractile function of muscles
depends on their being bundled into longitudinal fibres, the compu-
tational function of the brain depends on neurons being connected in
networks, and so on. Tissues can therefore be considered the

functional units of life, in metazoans at least, and these functions
require proper organisation. Common frameworks for the quantifica-
tion of tissue organisation could provide a basis for examining how
evolving structural features of tissues enable their specific functions.

An important step towards characterising architectural diversity is
the development of advanced imaging methods such as light-sheet
microscopy, which allow standardised imaging of whole developing
organisms at single-cell resolution7,8. Such in toto imaging has been
combined with large-scale tracking of cell nuclei to provide insights into
dynamic germ layer interactions during zebrafish gastrulation9, the ori-
gins of cell fates from gastrulation to organogenesis stages of mam-
malian development10 and several other important aspects of
development11–14. However, while in toto microscopy enabled unprece-
dented imaging of entire animals, this breakthrough has not yet deliv-
ered a greater understanding of the architectural diversity that exists
within organisms. A key limitation has been a lack of standardised
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frameworks for quantifying and comparing multicellular organisation.
Bioimage analysis has generally focused on single-cell segmentation
methods that prove to be very powerful for the description of individual
cell morphologies15,16. However, it can be challenging to extend these to
complex tissues and whole organisms due to the high variability in cell
morphologies and distributions17. This heterogeneity also underlies
another challenge: descriptors that can define the shape of cells in one
tissue may not be informative for another. For example, epithelial cells
can often be quantified as efficiently packed polygons18, whereas
ongoing efforts to define the architecture of the nervous system focus
on the morphology and connectivity of axonal and dendritic
protrusions19. Cell morphology segmentation methods encourage a
focus on cell-scale features that may not be relevant to architecture at
the tissue scale. Thus, the development of efficient frameworks that
allow diverse tissue organisations to be directly compared in a ‘cell-type
agnostic’ manner represents an important step towards understanding
the architectural diversity that exists within and across organisms. The
lack ofmethods for comparingmulticellular architecture has specifically
hindered investigations into the genetic regulation of tissue diversifi-
cation. At the cellular scale, morphogenesis is driven primarily by the
actomyosin cytoskeleton and regulated by RhoA GTPases universally
present in all cells. At the tissue scale, cytoskeletal activities are inter-
connected via cell-cell adhesion that coordinate cell shaping and gen-
erate specific multicellular structures required for diverse organ
functions. This indicates that patterned expression of cell adhesion
molecules, most notably cadherins, could enable genetically-regulated
changes in tissue organisation. Cadherins have long been studied for
their role in tissue integrity and changes in cadherin expression are
hallmarks of degenerative diseases and cancer20,21. Differential expres-
sion of cadherins can promote tissue segregation during early
development22 and cell sorting in ‘synthetic’ embryos23. Beyond segre-
gation, patterned cadherin expression plays a key role in coordinated
cell movements24,25 and lately a ‘cadherin code’ has been shown to
increase the robustness ofmorphogen patterning in the central nervous
system (CNS)26. Notably, the large expansion of the cadherin super-
family that coincided with the emergence of vertebrates—with more
than 100 cadherin and cadherin-related proteins being present in
humans27—has been proposed to reflect the greater morphological
diversification observed in these species28. However, it remains unclear if
differences in cadherin expression can explain the different arrange-
ments of cells that shape tissues.

In this study, we present a general approach to quantify organi-
sational diversity by simplifying tissue complexity to the three-
dimensional arrangement of constituent cells, ‘focusing on the forest
rather than the trees’. By performing nuclear segmentation across
entire embryos, we defined cellular positions within a common point-
cloud-based framework, a standard data structure in many spatial
analysis tasks, enabling comparative organisational analysis of devel-
oping tissues in a cell-type-agnostic manner. This coarse-grained
approach allowed us to track tissue organisation over time and cor-
relate organisational features with gene expression. Unbiased clus-
tering of similarly organised cells revealed that tissue heterogeneity
can be reduced to two diametrically opposed organisational ‘arche-
types,’ which we termed ‘amorphous’ and ‘crystalline’. Defining the in
toto expression of 12 major cadherin cell adhesion receptors showed
that cadherin expression domains become bi-partitioned along tissue
archetypal lines. Further investigation using spatiotemporal correla-
tion analysis and targeted perturbations identified N-cadherin as a
general regulator of the amorphous archetype.

Results
nuQLOUD quantifies global tissue organisation via 3D nuclear
positions
To enable the investigation of the organisational diversity of entire
developing organisms, we initially focused on zebrafish embryos at

48 h post-fertilisation (hpf), a stage where the progenitors of several
major organs are already formed29. Multi-view light sheet microscopy
was used to generate isotropic resolution imaging data of whole
embryoswhere nuclei were stainedwith DAPI and individual cells were
localised using TGMM nuclear segmentation (Fig. 1a, Supplementary
Fig. 1), robustly and accurately identifying the centre of mass of indi-
vidual nuclei10 (Supplementary Fig. 2). While nuclear segmentation is
routinely used to count and track cells9,10, here we explored its
potential for quantifying tissue organisation in toto. We reasoned that
quantifying the 3D arrangement of cells via the position of their nuclei
may provide an effective and standardised method to compare con-
served features of tissue architecture. Overall, we quantified the dis-
tribution of more than 4,000,000 cells in their native environment,
across 34 samples, an average of 117,000± 9000 cells per embryo. We
next took advantage of the explicit point-cloud structure of the data to
characterise the local organisation of nuclei using a three-dimensional
Voronoi diagram, a spatial partitioning algorithm that assigns each
point a volumeof closest ‘cells’ from point distributions. Such Voronoi
cells are constructed by dividing 3D space into regions consisting of all
points closer to a given point than to any other point. The shape and
size of such Voronoi cells consequently provide an object-based
representation of local, multicellular organisation30. A known limita-
tion of conventional Voronoi diagrams is that cells at the embryo’s
edge can have infinite size due to a lack of neighbouring points to limit
their extent, making the method unsuitable for boundary tissues like
skin. To overcome this, we restricted the size of boundary Voronoi
cells adaptively to their neighbourhood by placing artificial points
around the perimeter of the embryo such that each local neighbour-
hood is smoothly extended by one cell layer (see Supplementary Fig. 3,
Supplementary Note 1 for details). We used this adaptively restricted
Voronoi diagram to characterise the organisational context of every
nucleus in entire zebrafish embryos using fourteen engineered fea-
tures, including kernel density estimations over different length scales,
number of neighbours and the polarity of the Voronoi cell (Fig. 1b,
Supplementary Fig. 4a–d, Supplementary Note 2). Clustering of these
features by similarity across all analysed cells identified three organi-
sational feature classes based entirely on local nuclear position that we
termed anisotropy, density, and irregularity (Fig. 1c, Supplementary
Fig. 4e, f). Individual features contributed equally to the overall var-
iance of the data and the spatial distribution of features highlighted
different anatomical regions in a combinatorial way (Fig. 1d, Supple-
mentary Fig. 4g–i). Moreover, individual feature distributions were
conserved between samples (Supplementary Fig. 5). This demon-
strates that our whole-organism description of multicellular arrange-
ment robustly captures meaningful organisational differences within
one unified framework, which we term NUclear-based Quantification
of Local Organisation via cellUlar Distributions (nuQLOUD).

To map out the organisational landscape of whole embryos, we
used nuQLOUD to characterise and compare the organisation ofmajor
tissues, including skin, brain muscles and connective tissue (Fig. 1e,
Supplementary Fig. 6). For that, we incorporated tissue specific gene
expression information from transgenic reporter lines and via hybri-
disation chain reaction fluorescent in situ hybridisation (HCR). We
classified all cells for the presence or absence of fluorescence using an
adapted version of the in toto imaging and segmentation approach
(Supplementary Fig. 7). In this way, we were able to assign sets of
organisational features to genetically defined tissues Fig. 1f, Supple-
mentary Fig. 6b) and compare these directly (Fig. 1g, Supplementary
Fig. 6c). This allowed projecting tissue landmarks onto the feature
space representation and indicated organisational overlap between
tissues that are far apart in both lineage and function, such as skin and
muscles, which are derived from ectoderm and mesoderm, respec-
tively; both exhibit low density and a high degree of anisotropy (Fig. 1f,
g, Supplementary Fig. 6c). Interestingly, clustering of all analysed tis-
sues based on their organisation revealed a bimodal distribution with
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muscles, skin and yolk syncytial layer (YSL) in one group and eyes and
CNS in the other (Fig. 1f). These results show how the nuQLOUD fra-
mework can be used to identify shared organisational patterns across
vastly different organs in whole organisms.

Reducing embryonic organisational complexity to two tissue
archetypes
Next, we expanded our nuQLOUD analysis from gene expression-
defined organs to all cells at multiple stages of zebrafish embryogen-
esis to identify and analyse stereotypical organisational patterns. Cells
with shared organisational features were grouped into eleven ‘orga-
nisational motifs’ using a Gaussian mixture model (Fig. 2a, Supple-
mentary Fig. 8, Supplementary Fig. 9, Supplementary Note 3). The
spatial distributions of individual motifs were compact andmapped to
anatomical regions when projected on individual samples, high-
lighting that the nuQLOUD framework was able to differentiate
between tissues solely based on the local distribution of nuclei

(Supplementary Fig. 10). We tracked the organisational motifs
between 12 and 72 hpf and found that some motifs were present at all
time points, while others were absent early and developed over time
(Fig. 2a, b). One example for a maintained motif was motif IX, which
consistently mapped to the YSL from 12 hpf on. However, cells of the
median fin fold were classified in this motif from 48 hpf onward,
highlighting an organisational similarity between these tissues (Fig. 2b
IX). Motif I evolves from being essentially absent at 12 hpf, to high-
lighting cells of the spinal cord and hindbrain at 24 hpf before
spreading to include cells of the forebrain and eyes by 48hpf, indi-
cating that in different CNS regions cells adopt this organisation in a
temporal sequence (Fig. 2b I). This demonstrates that organisational
complexity increases during early development and highlights that
nuQLOUD is able to detect organisational patterns without gene
expression information in an unbiased way.

To understand higher-level patterns of tissue organisation, we
investigated how organisational motifs relate to each other. We used

Fig. 1 | In toto quantification of multicellular organisation. a Multi-view light
sheet microscopy and nuclear segmentation transform in toto volumetric image
data into point cloud representation. Inset scale bar: 50 µm. b Each cell’s local
organisation is quantified by a 14-dimensional feature vector describing the sur-
rounding point distribution; absolute coordinates are not included in feature set.
c Clustering of organisational features reveals three distinct feature classes: ani-
sotropy, density, and irregularity. d Feature classes show distinct anatomical dis-
tributions and occupy separate regions in organisational feature space (t-SNE

embedding). e Tissue-specific gene expression patterns aremapped onto the point
cloud; individual nuclei are classified as expressing or non-expressing based on
HCR fluorescence or transgenic reporter intensity. f Mean organisational feature
profiles quantify organisational diversity. g Gene expression domains (from e)
overlayed on t-SNE embedding of organisational feature space. Feature values are
z-scored across all cells of multiple samples. N number of samples, n total number
of cells. All scale bars except inset 500 µm. Source data are provided as a Source
Data file.
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hierarchical agglomerative clustering with Ward linkage to group
motifs on their organisational similarity. This revealed two classes,
which we term organisational ‘archetypes’, each accounting for ~50%
of cells in the embryo at 48 hpf. Based on their organisational profile,
we found that the two archetypes fit with the definitions of ‘crystalline’
and ‘amorphous’ from material sciences (Fig. 2c), however we stress
that this classification only refers to organisational patterns and does
not imply the corresponding material properties such as rigidity and
fluidity. Tissues assigned to the amorphous archetype showed a dense,
isotropic and irregular arrangement of nuclei and included cells of the
eyes, CNS and pectoral fin buds. By contrast, tissues assigned to the
crystalline archetype exhibited nuclei arranged in a low-density, ani-
sotropic and regular fashion and included cells of themuscles, skin and
YSL (Fig. 2d, e). This bimodality becomes especially apparent when the
archetypes are projected onto the embedding of the organisational
feature space, with each covering an opposing hemisphere (Fig. 2c).
Random forest classification-based feature importance evaluation and
feature-dropout confirmed that all organisational features contributed
to this classification (Supplementary Fig. 11a, b), and analysis of this

classification across a range of initial cluster numbers showed that the
archetypes are robust and intrinsic to the data (Supplementary
Fig. 11c–e). Moreover, we found that this bipartitioning was not a fea-
ture of a single developmental stage but could be identified through-
out 12 and 72 hpf (Supplementary Fig. 11f, g). We provide three-
dimensional renderings of embryos at 12, 24, and 48 hpf with the two
archetypes highlighted in SupplementaryData 1–3. These results show
that the bimodal organisation of bona-fide tissues identified in the
previous section (Fig. 1f) extends to the whole organism and that local
cellular arrangement follows one of two general organisational
archetypes.

Cadherin expression patterns align with tissue archetypes
To identify potential genetic regulators of this organisational bipar-
titioning into archetypes, we investigated the cadherin family of cell
adhesion receptors, important regulators of tissue integrity and
differential adhesion-based cell sorting23,31. While much is known
about how cadherins function at the molecular, cellular, and bio-
physical level, their impact on tissue organisational diversity of

Fig. 2 | Global organisational heterogeneity reduces to two organisational
archetypes. a, b Organisational diversity increases over time. A Gaussian Mixture
Model (GMM) stratifies organisational feature space into eleven ‘organisational
motifs’ using pooled data from four developmental stages. Some motifs persist
throughout early development (e.g. III, VI, IX), while others emerge dynamically
(e.g. I, II, VII). Feature values are z-scored; clustering is performed across all time
points. b Example motifs: Motif I is absent early and emerges from 24 hpf on,
ultimately covering the CNS; Motif IX is consistently found in the YSL and later
includes the median fin fold. Feature space (t-SNE) based on all time points. n:
number of cells per motif in the shown sample. c–e Organisational diversity

converges into two archetypes. c Hierarchical agglomerative clustering (HAC) of
organisational motifs (48 hpf data) identifies two archetypes with opposing fea-
tures. ‘Amorphous’ cells are dense, isotropic, and irregular; ‘crystalline’ cells are
low-density, anisotropic, and regular. Feature values are z-scored. HAC used
Euclidean distance and Ward linkage. d Archetypes map to cohesive spatial
domains at 48 hpf.CNS, sensoryorgans, andfinbuds are amorphous;muscles, skin,
and YSL are crystalline. e Cells expressing tissue-specific markers align with one of
the two archetypes, with the exception of fibroblasts. n mean number of cells per
motif across N = 34 samples ± standard deviation. All scale bars 500 µm. Source
data are provided as a Source Data file.
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whole organisms is less clear. To examine whether cadherins play a
role in this context, we probed the relationship between specific
cadherin expression and architecture by projecting in toto expres-
sion patterns of twelve highly expressed cadherins (Supplementary
Fig. 12a), defined by HCR, onto the nuQLOUD framework (Fig. 3a).
This revealed that each cadherin expression domain localised to
discrete, albeit overlapping regions in feature space, indicating that
cells expressing each specific cadherin had a range of organisation
that is definable with our approach (Fig. 3b). Clustering based on
organisational similarity allowed cadherin expression domains to be
grouped into two classes that mapped to the previously identified
organisational archetypes; prominent members of the amorphous
cadherins are N-cadherin (N-cad/cdh2) and cdh11, while members of
the crystalline class include E-cadherin (E-cad/cdh1) and cdh15
(Fig. 3c–e). This clustering of cadherin family members based on the
organisation of expressing tissues was not predicted by similarities in
their amino acid sequence or structures32 (Supplementary Fig. 13).
Grouping cadherin expressing cells based on their transcriptional
similarity as defined by single cell RNA sequencing33 generated a
subdivision of cadherin family members into the same classes
(Fig. 3f, Supplementary Fig. 12b, c). Pairwise co-expression analysis
ruled out single-cell co-expression of multiple cadherins as reason
for the organisational and transcriptional bimodal classification
(Supplementary Fig. 12d). By contrast, comparing cadherin expres-
sion profiles with those of the ‘matrisome’, a curated panel of some
900 extracellular matrix (ECM) proteins and regulators34, did not
identify ECM components whose expression segregates along tissue
archetypal lines (Supplementary Fig. 14). The correlation between
cadherin expression patterns and archetypal organisation suggested

that individual cadherins may be required for the organisation of
their respective expression domains. To test that, we systematically
mutated individual cadherins using CRISPR/Cas9, a strategy that
proved to effectively edit the respective loci as confirmed by
sequencing (Supplementary Fig. 15a, b). We specifically analysed the
organisational effect on cells that normally would express the tar-
geted cadherin, which we identified via HCR FISH (Supplementary
Fig. 15c). While cadherins are known to act redundantly35, loss of the
amorphous class cadherins cdh7a, cdh13 and cdh18a, resulted in
their target tissues shifting towards the crystalline archetype (Sup-
plementary Fig. 15d–f). As loss of E-cad results in an embryonic lethal
phenotype, we applied a genetic mosaic approach to address the
requirement for E-cad in the crystalline organisation of the basal cell
layer of the epidermis (Supplementary Fig. 16a–c). nuQLOUD analy-
sis of Ecad-deficient basal cell clones, identified via loss of an
endogenously-tagged reporter (Cdh1:Cdh1-YFP) revealed a sig-
nificant shift towards amorphous organisation (Supplementary
Fig. 16d–f), a shift that occurred without upregulation of N-cad
(Supplementary Fig. 16g). Thus, loss of function experiments
revealed that the cadherin classes identified by nuQLOUD organisa-
tional analysis play important roles in promoting their respective
tissue archetypes. Moreover, these data on cadherins highlight how
nuQLOUD can be used to highlight connections between transcrip-
tional and tissue-organisational patterns; links that can then be tes-
ted with perturbations using the same quantitative framework.

N-Cad expression dynamics mirror tissue archetype-switching
To investigate the link between cadherin expression and organisa-
tional archetypes further, we reasoned that dynamic changes in

Fig. 3 | Organisational similarity identifies two classes of cadherin-expressing
cells that alignwith archetypes. aCadherin expression domains aremappedonto
thepoint cloud representation; individual nuclei are classified as expressing or non-
expressing based on HCR fluorescence intensity. Cadherins expressed in >1% of all
cells were included (see Supplementary Fig. 12a). Scale bar: 500 µm. b Expression
domains occupy distinct regions in organisational feature space, localising pre-
dominantly to either the left or right hemisphere. c Clustering of cadherin-
expressing cells based on organisational features reveals two major classes. Mean
featurevalues are z-scoredper domain.dThe two cadherin classesmap toopposite

halves of feature space and correspond predominantly to amorphous and crys-
talline archetypes. e Cadherin classes show distinct association with organisational
archetypes. Colour scale: proportion of class-associating cells (cyan/orange = 100%
association; white = 50% each). fAuto-correlation clustering of cadherin expression
domains based on single cell RNA sequencing data33 yields the same E- and N-cad-
like classes as the classification based on organisational similarity. Pearson corre-
lation coefficient. N number of samples, n total number of cells, dendrograms
constructed from hierarchical agglomerative clustering using Ward linkage and
Euclidean distance.
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cadherin expression should correlate with corresponding organisa-
tional changes over time. We therefore selected E- and N-cad as
representatives of the amorphous and crystalline organising cadherin
classes and tracked their expression patterns using transgenic repor-
ters (TgCRISPR(cdh1-mLanYFP)36, TgBAC(cdh2:cdh2-GFP))37 between
12 and 72 hpf (Fig. 4a). E-cad expression remains high in the epidermis
and other epithelial cells that maintain a crystalline organisation
throughout. By contrast, the pattern of N-cad expression is dynamic,
being expressed in most embryonic cells at 12 hpf, before becoming
focused to cells of the CNS and a subset of other tissues from 48 hpf
onwards (Fig. 4a–c, Supplementary Fig. 17). N-cad positive cells were
assigned to the amorphous archetype across the analysed time win-
dow; an association that was agnostic to cell type. For example,
mesenchymal cells of the pectoral fins and neurons of the brain have
little commonality in lineage or function but share amorphous orga-
nisation and N-cad expression (Fig. 4b). This dynamic link between E-/
N-cad expression and archetypal tissue organisation further supports
the idea that specific cadherin expression regulates local tissue
organisation.

To test this in more detail, we next addressed this relationship
within a single tissue, focusing on the developing fast-twitch muscles
between 12 and 48 hpf, a well-studied morphogenic system that exhi-
bits dynamically changing cadherin expression, where N-cad is
expressed homogeneously early before becoming restricted to a
superficial layer of slow muscle cells later38. We sub-selected devel-
oping muscles based on their nuclear morphology and tracked their
cadherin expression at key time points, which confirmed that muscle
cells inside each forming somite downregulate N-cad expression in an
anteroposterior ‘wave-like’ manner (Fig. 4d, Supplementary
Movies 1–3). nuQLOUD analysis revealed that fast twitch muscle pro-
genitors switch their organisational archetype from amorphous at
12 hpf to crystalline at 48 hpf (Fig. 4e). At 24hpf this organisational
transition shows a similar pattern to N-Cad expressionwithin the same
tissue: posterior cells expressed N-cad and remained in an amorphous
organisation whereas anterior cells were N-cad non-expressing and
showed crystalline organisation (Fig. 4e). In the transition zone mid-
way along the anteroposterior axis we identified a population of N-cad
non-expressing, amorphously organised cells, but very few N-cad
expressing crystalline cells (Fig. 4f), suggesting that cells downregulate
their N-cad expression prior to their archetypal transition. Moreover,
expression analysis of cdh15 (also ‘myotubule cadherin’) revealed an
inverse relationship with N-cad; cdh15 expression is undetectable at
12 hpf when N-cad is broadly expressed and expressed throughout the
developing muscles at 48 hpf when N-cad is down regulated (Supple-
mentary Fig. 18a, b). This change in expression correlates tightly with
the organisational transition—at 24 hpf anterior cells have replaced
N-cad with Cdh15, whereas posterior cells continue to express N-
cad but not cdh15, with a narrow transition zone indicating a rapid
cadherin switch (Fig. 4g). Focusing on the organisational features over
time revealed that muscle cells transition from a relatively unorga-
nised, isotropic, and dense arrangement to a highly organised, aniso-
tropic, and low-density configuration as N-cad expression decreased.
This shift reflects their gradual alignment into parallelfibres, where the
directional organisation of the fibres contributes to their anisotropic
footprint (Fig. 4h). The N-cad negative amorphous/crystalline popu-
lations at 24 hpf exhibited almost identical feature profiles as earlier/
later time points, suggesting that the transition between archetypes
was rapid. These findings are consistent with a model where N-cad
expression locks cells in the amorphous archetype, an idea we tested
directly by depleting N-cad function using CRISPR/Cas9 (Supplemen-
tary Fig. 19a–e). Early myotomes of N-cad knockout (KO) embryos
exhibited predominantly crystalline organisation already from 12 hpf
onward and throughout the observed time window (Fig. 4i, j). N-cad
deficient cells maintained a high degree of anisotropic organisation,

yet exhibit reduced density throughout (Fig. 4k). The striking link
between N-cad expression and the amorphous archetype raises the
question if misexpression of N-cad alone is sufficient to drive an
archetype transition. To test this idea experimentally, we mis-
expressed a N-cad-GFP fusion protein, that has previously been shown
to complement function in N-cad-deficient embryos37, in basal cells of
the epidermis (Supplementary Fig. 20). While N-cad-GFP was specifi-
cally enriched at the interfaces of expressing basal cells, indicating that
it mediates homotypic cell-cell interactions also in this ectopic context
(Supplementary Fig. 20a–e), it did not detectably shift these or their
neighbouring cells from their normal epidermal organisation (Sup-
plementary Fig. 20f, g). This result is consistent with previous experi-
ments showing that cadherin misexpression does not alter tissue
organisation in other organisms39. Combined, these data show that
dynamic N-cad expression is required, but unlikely sufficient, for the
amorphous archetype during development.

N-cad loss leads to amorphous-to-crystalline archetype-
switching
Thefinding thatdownregulationofN-cad expression enables tissues to
transition from an amorphous to a more crystalline organisation pre-
dicts that the continued high-level expression of N-cad by tissues such
as the CNS could be required to maintain their amorphous archetype.
To test this hypothesis, we expandedour analysis ofN-cadKO towhole
embryos between 12 and 48 hpf, starting at a developmental stage
when N-cad has just reached its full expression (Supplementary
Fig. 21a). 12 hpf saw a significant reduction in the fraction of cells
showing amorphous organisation with an increase in crystalline
organisation (Fig. 5a, b). Moreover, N-cad KO embryos at this stage did
not exhibit a significant reduction in total cell count over WT, indi-
cating that the identified change in organisation is not a consequence
of defects in cell proliferation or viability. However, at later stages,
N-cad KO embryos showed the previously described morphological
phenotypes and lower cell numbers overall (Fig. 5c, Supplementary
Fig. 21b, c),meaning that changes in tissue organisation at these stages
could be a secondary consequence of more global developmental
defects. To study the organisational effects downstream of N-cad loss
more directly, we focused on the CNS, the major N-cad expressing
tissue at 48 hpf. We generated identifiable N-cad deficient clones by
combining a genetic mosaic approach with transgenic reporters for
N-cad expression and neural identity. Mosaic knockout (mKO) of
N-cad was achieved by injecting Cas9 + sgRNAs against N-cad into a
single cell at the 8-cell stage (Fig. 5d). This significantly reduced the
general morphological defects observed in 1-cell stage CRISPR injec-
tions or N-cad homozygous mutant lines (Supplementary Fig. 18f). To
identifyN-caddeficient clones,we took advantageof the fact thatmost
cells of the CNS at 48 hpf co-express N-cad and the neuronal reporter
Neural Beta-Tubulin (NBT:dsRed) (Fig. 5e). Therefore, we identify
CRISPANT cells (i.e. cells that would express N-cad normally, but have
lost gene function) as cells that express NBT but not N-cad in themKO
condition (Fig. 5d, e). We found a significant reduction of such double-
positive cells inmKOsamples overWT (Fig. 5e), confirming the efficacy
of the approach. Using whole-brain light sheet microscopy and nuQ-
LOUD (Fig. 5f, Supplementary Fig. 22a, b), we quantitatively compared
the organisation of N-cad deficient (NBT+/Cdh2-GFP-) and surround-
ing WT neurons (NBT+/Cdh2-GFP+) in mKO embryos at 48 hpf. In WT
animals, analysed NBT+ cells organised amorphously, as did NBT + /
Cdh2-GFP+ cells in the mKO conditions (Fig. 5g, h). By contrast, NBT
+/Cdh2-GFP- neurons within the same sample were assigned at a sig-
nificantly higher frequency to the crystalline archetype (Fig. 5g, h).
Moreover, spatial correlation analysis revealed that N-cad deficient
cells surrounded by N-cad competent cells organised amorphously,
while groups of N-cad deficient cells had gained crystalline organisa-
tion (Fig. 5i), exhibiting a decrease in cell density and an increase in
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regularity (Fig. 5j), confirming that archetypes are an emergent feature
ofmulticellular organisation. These results show that N-cad expression
is not only required for the maintenance of amorphous organisation
during muscle development but serves the same role during the
development of the CNS. Together with the dynamic and phenotypic
findings from in toto analysis, this supports a model where N-cad is a
general driver of the amorphous archetype during zebrafish
development.

Discussion
Advances in light microscopy and transcriptomics have led to an
explosion of interest in tissue heterogeneity in a wide variety of
experimental systems from organoids40 to synthetic embryos23, and
whole small organisms17. Progress towards amore generalmechanistic
understanding of tissue diversification depends on integrating data
collected from different contexts41. The motivation behind nuQLOUD
was to provide a common imaging-based framework that is flexible
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and general enough to encompass the high organisational variation
that is found between tissues and organisms.We achieved this goal by
sacrificing cell-scale morphological features, which are more challen-
ging to quantify and are better-suited for characterising cell-type dif-
ferences, and instead focusing on how cells are arranged in 3D. This

focus on the organisation of tissues rather than cells is analogous to
how architecture generally focuses on the layout of buildings rather
than bricks. Reducing embryonic complexity to the positions of all cell
nuclei, achieved using established in toto segmentation methods10,
allowed us to leverage the computational efficiency of point-cloud-

Fig. 4 | Changes in N-cad expression are linked to an amorphous-to-crystalline
transition during muscle development. a, b E- and N-cad expression patterns
qualitatively match crystalline and amorphous archetypes. Grey: non-expressing
cells, double-positive cells not shown. cAssociationof E-/ N-cadwith organisational
archetypes persists throughout early development.N = 4 samples/time point. Error
bars: s.d. of mean. d Muscles downregulate N-cad in an anteroposterior (A-P)
fashion. Arrowheads: position of representative images; dotted lines: muscle pro-
genitors at 12 hpf; asterisk: notochord. Line plots: cadherin-expressing cell num-
bers along A–P axis. Ordinates are not normalised between time points.
e Organisational archetypes switch in an A–P pattern, visualised via t-SNE and A–P
line profiles. f Crystalline muscle cells have downregulated N-cad, while N-cad
expressing cells are organised amorphously during transition. g N-cad down-
regulation coincides with cdh15 upregulation at 24hpf. Dashed line: measured line

profile. Arrowhead: transition point. Maximum intensity projection. ** N-cad
expressing spinal cord. hDevelopingmuscles become less isotropic and less dense
when switching organisational archetype. i–k Transient CRISPR/Cas9-mediated
N-cad KO in F1 embryos increases crystalline organisation and disrupts A–P tran-
sition at 24 hpf. i Representative images and A–P line profiles show loss of amor-
phous organisation in N-cad KO. j Between 12 and 48hpf, KO significantly more
crystalline cells organise crystalline than WT (Welch’s t-test, two-sided; N = 3 or 4
per time point; dots: embryos; error bars: s.d. of mean). k N-cad-deficient cells
match WT 48 hpf muscle in density but show more heterogeneous isotropy. Solid
lines in A–P plots show total cell number; thin lines: individual samples. N number
of samples,n total cells. Scale bars: embryos 500 µm, zoom-ins 100 µm. Source data
are provided as a Source Data file.

Fig. 5 | Clonal N-cad loss induces localised shift towards crystalline archetype.
a–c N-cad knockout (KO) reduces amorphous organisation frequency at 12 hpf.
a Representative renderings of control and N-cad KO embryos (nuclei segmented
and coloured by archetype). KO via Cas9 + sgRNAs injection at the 1-cell stage.
b Fraction of amorphously organised cells drops ~30% in KO. c Total cell number
remains unchanged between conditions. d Mosaic KO (mKO) of N-cad generated
viaCas9 + sgRNAs injection into a single cell at the 8-cell stage. CNScells co-express
NBT and N-cad under WT conditions; mKO cells lack N-cad but express NBT,
enabling identification. e mKO is efficient, reducing N-cad+ fraction among NBT+
cells from ~98 to ~34%. f Whole-brain light sheet microscopy confirms mKO phe-
notype andorganisational changesmKOclones (overview scale bar: 200 µm;zoom-
in: 15 µm; N = 12 control, 15 mKO). g NBT+N-cad- cells from mKO embryos show a

shift toward crystalline organisation in feature space, not observed in N-cad+ cells.
Organisation quantified per sample and mapped onto the in toto organisational
feature space (N: samples; n: total cells). hCrystalline fraction is significantly higher
in mKO cells than N-cad+ cells, which are comparable to control. i N-cad-deficient
cells organise crystalline only when neighbouring cells are also N-cad-deficient.
Spatial correlation function g(r) shows distance-dependent likelihood of finding
specific local organisation over uniform, random expectation. j Shift towards
crystalline organisation is associated with reduced cell density and increased reg-
ularity. All p-values via Welch’s t-test, two-sided. Dots in bar/box plots: individual
embryos (N = 3WTor 4KO in (b, c);N = 12WTor 15mKO in (e,h)). Error bars/bands:
s.d. of mean. Box plots show median (centre), interquartile range (box), and 1.5×
IQR (whiskers). Source data are provided as a Source Data file.
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based frameworks and analyse large numbers of embryos each com-
prising >100,000 cells. We demonstrate that this can be done by
simply adding DAPI, a universal DNA stain that removes the need for
specific genetic reporters, thus nuQLOUD can be used to quantify
tissue architecture in basically any biological specimen, essentially
gratis.

One goal of the nuQLOUD approach was to provide a way to
define tissue organisation at the whole-organism scale. General
descriptors of tissue state, such as the epithelial-mesenchymal para-
digm, are extremely powerful as they enable the transfer of concepts
and mechanisms between a variety of biological contexts42. While
mesenchymal and epithelial states are normally identified using diag-
nostic markers, they were originally defined via their distinct mor-
phological and organisational characteristics43. Such architectural
features, often obvious to the trained eye, are challenging to quantify
and define systematically. Addressing exactly this challenge, nuQ-
LOUD shows that embryonic complexity can be reduced to crystalline
and amorphous tissue archetypes that appear analogous to epithelia
and mesenchyme, respectively. However, it’s clear that these tissue
archetypes are not simply ‘organisational proxies’ of classical
mesenchymal and epithelial states. For example, while the crystalline
archetype comprises epithelia such as skin and pronephros, it also
includes non-epithelial tissues like muscles. Likewise, the amorphous
archetype includes pectoralfinmesenchymebut also branchial arches,
spinal cordneurons and eyes. These tissues are amorphous, as they are
denser and less positionally ordered than epithelia, but they don’t fit
the definition of loosely organised bona fide mesenchyme. Indeed,
nuQLOUD’s local organisational features select for cell collectives and
tissues rather than individualmesenchymal cells. Thus, the amorphous
archetype describes cells that are in between epithelia and mesench-
ymeon the organisational spectrum.Of relevance here is the emerging
concept that such ‘E/M hybrid’ states, also termed partial EMT, cor-
relate with increased fate plasticity or ‘stemness’ in contexts such as
cancer and reprogramming44. Intriguingly, time-resolved analysis
revealed that most internal cells in early embryos are initially amor-
phous before undergoing a progressive ‘crystallisation’ that correlates
with organ progenitor assembly. Such ‘amorphous to crystalline
transitions’ again appear analogous to mesenchymal to epithelial
transitions (MET), and the related jamming transition25,45, however
they can be identified systematically from changes in cell arrangement
alone. Combined, these data support the conclusion that organ
maturation displays a general set of organisational features that can be
reliably detected using the nuQLOUD framework, as demonstrated for
example, in the maturation of fast twitch muscles.

The quantitative readout of tissue organisation provided by
nuQLOUD allowed us to explore the relationship between cadherin
expression and organisational archetypes. Integrating spatial expres-
sion data of 12major cadherins into the nuQLOUD framework revealed
two distinct groups: cadherins linked to crystalline tissues, such as E-
cad, and those associated with amorphous tissues, including N-cad.
Time-resolved analysis revealed that N-cad expression is tightly cor-
related with the amorphous archetype, being expressed by the
majority of cells at early stages and becoming replaced bymore tissue-
specific cadherins as cells undergo amorphous to crystalline transi-
tions. By contrast, cells of the nervous system displayed high N-cad
expression and amorphous archetype organisation across all stages
studied, consistent with its described role in nervous development.
N-cad depletion, either through normal developmental down-
regulation or targeted perturbations, led to cells switching their
organisation from amorphous to crystalline, identifying N-cad as a
central regulator of the amorphous archetype. These data support a
model where N-cad downregulation and exit from the amorphous
archetype represents a common gating mechanism, regulating non-
neural tissue assembly. Interestingly, recent findings show that inac-
tivation of N-cad function increases the self-organisation potential of

cultured mammalian gastruloids46, consistent with the proposal that
regulation of N-cad expression may play a similar gating function
during the formation of synthetic embryos. Itwill be very interesting to
explorewhether archetypal organisational patterns and transitions are
also a predictive feature tissue assembly in such synthetic embryo
systems. Looking ahead, we can imagine several ways in which nuQ-
LOUD may be combined with other approaches to address key ques-
tions in tissue biology. Of general interest is how changes in the cell
arrangement feedback on signalling pathways that control cell fate,
whether through pathways regulated via cell-cell coupling, such as
Hippo and Notch, or by changing the reach and distribution of mor-
phogens. Recent work on organ development47, tissue patterning48,
and immune regulation49 has highlighted that differences in tissue
organisation can be as influential in cellular decision making as sig-
nalling pathways. Developing a standard language for the quantifica-
tion of cellular arrangement, like the one presented here, will be
instrumental for a more integrated understanding of the interplay
between genetic and morphological factors that enable contextual
decision-making in physiology and disease.

The current nuQLOUD framework is not without limitations. First,
it assumes a continuous arrangement over a characteristic length
scale, typically one nearest neighbour on the Delaunay graph. While
this assumption is appropriate for analysing tissues with dimensions
exceeding ~30 µm, it is less optimal for narrow structures, such as
blood vessels50, or isolated cells, such asmacrophages and fibroblasts,
which are sampled along with their surrounding tissue. Second,
organisational features in nuQLOUD are defined as local averages,
which may average out tissues that exhibit different structural prop-
erties along different axes. For example, at later stages, the retina
shows regular, layered organisation in one direction, while beingmore
amorphous in orthogonal planes. To account for this, future versions
of nuQLOUD will include directional organisational features, such as
directed variation of cell density. Our investigation of cadherins
identified N-cad as a key player in regulating amorphous organisation,
however, the lack of phenotype resulting from inactivation of others
does not mean that they play no role, as cadherins are known to act
redundantly.

Methods
Zebrafish handling
Zebrafish (Danio rerio) strains (Golden) were maintained, grown and
bred following the standard procedures described in ref. 51. All
experiments were conducted in accordance with the regulation and
guidelines of the veterinary office of the University of Zürich and the
Canton of Zürich, Switzerland and the EuropeanUnionDirective 2010/
62/EU. Embryoswere staged following29. All embryos used in this study
were younger than 72 h post-fertilisation, a developmental stage prior
to sex differentiation; therefore, sex was not considered in the
experimental design.

Chemical treatment
Embryos were kept in E3 medium and were treated with 0.002%
N-phenylthiourea (PTU, Sigma-Aldrich) from 24 hpf on to prevent
pigmentation. For immobilisation of embryos older than 24 hpf during
screening they were treated with 0.01% tricaine methanesulfonate
(MS222, Sigma-Aldrich). Moreover, highly concentrated tricaine
(300mg/L)was used to euthanize embryos prior tofixation. To aid and
accelerate dechorinationof embryos between24 and48 hpf, theywere
treated with 0.05% pronase52.

Zebrafish lines
To visualise gene expression live and without staining, transgenic
zebrafish lines were used. The nervous system was visualised using
Tg(NBT:DsRed)53, E-cad expression was visualised using either
TgCRISPR(cdh1-mLanYFP) or TgCRISPR(cdh1-tdTomato)36. N-cad
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expression was visualised using TgBAC(cdh2:cdh2-GFP)37. Over-
expression of N-cad in the skin was achieved using TgBAC(p63:Gal4)54,
TgCRISPR(cldni:cldni-mScarlett) crossed with Tg(UAS:cdh2-mNG).
The N-cadherin mutant pactm101b (cdh2tm101/+) was used to validate the
morphological phenotype of the N-cad CRISPR55.

Fixation of samples and nuclear staining
Prior to imaging, zebrafish embryos at stages before 48 hpf were
manually dechorionated using Dumont #5 forceps; embryos at later
time points were already hatched. Embryos were euthanized using
tricaine and fixed for 1 h at room temperature in 4% paraformaldehyde
(PFA) in 1× phosphate-buffered saline (PBS). Subsequently, the sam-
ples were rinsed three times with PBS Tween (PBS+0.05% Tween-20,
Thermo Fisher Scientific, PBS-T), permeabilized for 1 h in PBS Triton
(PBS + 0.1% Triton X-100, Thermo Fisher Scientific) and rinsed again
with PBS-T. The nuclei of the samples were stained by treating the
sample with 1 × 4′,6-diamidino-2-phenylindole (DAPI) for 2 h at room
temperature. After staining, the samples were rinsed with PBS-T,
stored in PBS-T at 4 °C and imaged within 14 days.

Fluorescent labelling of transcripts via HCR RNA FISH
To identify cells that expressed genes of interest, we labelled their
transcripts using HCR RNA fluorescent in situ hybridisation (HCR RNA
FISH)56. Probes were designed by and ordered from Molecular Instru-
ments. Fluorescent amplifiers with emission wavelengths of 594 nm
(red) or 647 nm (infra-red) were used. Generally, two sets of HCR
probes were multiplexed within individual samples to increase ima-
ging throughput. To stain samples with HCR RNA FISH, embryos were
fixed for 1 h using 4% PFA. Subsequently, samples were washed for
three cycles with PBS-T and permeabilised via amethanol dehydration
sequence (25, 50, 75%methanol in PBS-T for 15min, 100%methanol for
1 h). A reversed sequence was used to rehydrate samples with 10min
per step and four concluding wash cycles. Afterwards, samples were
pre-hybridised using the probe hybridisation buffer at 37 °C for 30min
and HCR probes were applied (2 pmol per probe) for 12–16 h at 37 °C.
To remove unbound probes, samples were incubated four times for
15min in probe wash buffer and two times 5min in 5× saline-sodium
citrate + tween (ssct) buffer. Embryos were pre-amplified in amplifi-
cation buffer for 30min and then incubated with hairpin solution for
12–16 h. Hairpin solution was generated by mixing separately heat-
shocked (30 s at 95 °C) amplifier-specific hairpin h1 and hairpin
h2 solutions in amplification buffer. The staining was completed by a
final five cycles of PBS-T washes. Samples were kept in PBS-T after-
wards and either further processed or imaged.

F0 CRISPR knockout and validation
F0 KO were generated via injection of a sgRNA/Cas9 mix into early-
stage zebrafish embryos. sgRNAs sequences are summarised in (Sup-
plementary Table 2). The injection mix was composed of Cas9-2xNLS
protein (1mg/µL), the sgRNAs (128 ng/µL) and phenol red (0.025%).
Full KOwere achieved by injecting 1–2 nL of injectionmix into the yolk
at the 1-cell stage of embryonic development, mKO were achieved by
injecting into one cell at the 8-cell stage of development (~1 h 10min
post fertilisation at 25 °C). The Cas9 protein was sourced from the
Protein Expression and Purification Core Facility of the European
Molecular Biology Laboratory (EMBL) and was kept in media con-
taining Hepes, KCl, and Glycerol at −80 °C.

To verify the efficacyof sgRNAs, the homology regions of theused
sgRNAs were amplified and sequenced to detect DNA sequence poly-
morphisms. For that, injected embryos were grown to 4 dpf and
euthanised using tricane. Genomic DNA was extracted from individual
samples using 40 µL QuickExtract DNA extraction solution (Lucigen
QE0905T). Embryos were incubated for 15min at 25 °C, 5min at 65 °C
and 2min at 95 °C and vortexed in between incubation steps. Subse-
quently, solid debris was removed by centrifuging 1min at 13,000 × g.

To amplify the region of sgRNA homology, flanking primer pairs were
designed using the software tool Primer357 with default parameters.
Primer sequences are summarised in Supplementary Table 3. Poly-
merase chain reaction (PCR) was performed using Taq polymerase
(NEB M0267S) and PCR products were analysed via gel electrophor-
esis. Band locations were predicted based on the size of the cut or
uncut genomic DNA sequence and DNA was recovered via gel
extraction and purification (QIAGEN 28604). Sanger sequencing was
used to detect sequence polymorphisms which indicated sgRNA effi-
cacy (Supplementary Figs. 15 and 19).

Light sheet microscopy
Samples weremounted in 1% low-melting agarose solution in 1X E3fish
embryo medium by aspirating them head-first into 20 µL glass capil-
laries (BRANDTransferpettor caps,Merck) usingTransferpettor piston
rods (BRAND, Merck).

Light sheet microscopy was performed on a Zeiss Z.1 Lightsheet
microscope. All images were acquired using a Zeiss W Plan Apoc-
hromat 20 × 1.0 corrected water immersion objective and a set of two
Zeiss 10× illumination objectives. For in toto acquisition the detection
objective was de-zoomed by a factor 0.45, 0.65 for partial brain ima-
ging. The beam waist of the light sheet was optimised for maximum
uniformity across the field of view. Images were recorded using sci-
entific Complementary Metal–Oxide–Semiconductor (sCMOS) cam-
eras (PCO edge 5.5) with 1920 × 1920 pixels. During acquisition, the
camera sensorswere cropped in a portrait fashion (1200 − 1600 × 1920
pixels) to exclude non-signal areas, improving acquisition speed and
decreasing data volume.

For whole-organism acquisition, samples were imaged from four
orthogonal sides starting with a lateral view with the ventral-dorsal axis
of the sample going from left to right and continuing in steps of 90°
clockwise along the anteroposterior axis of the sample. For 12 hpf
samples, one such imaging volume was sufficient to capture a whole
sample. For more developed samples, several overlapping (10–20%)
four-view imaging volumes were acquired along the anteroposterior
axis of the sample; 24 hpf: 2 volumes, 48 hpf: 4 volumes, 72 hpf: 5
volumes. The z-spacing of consecutive frames was 1 µ and for each
frame the left and right light sheet illuminationwas recorded separately.
Acquisition is illustrated in Supplementary Fig. 1. During acquisition, the
‘Pivot Scan’ option was turned on to reduce illumination artefacts. The
light sheet offset was manually calibrated for each sample individually
by contrast maximisation. Illumination settings were chosen to mini-
mise acquisition time. To avoid photobleaching during setup, spatial
alignment andmultiview setup was performed using the DAPI channel.
Other fluorescent channels were set up using single-frame acquisition.
Multicolour imagingwasperformed sequentially byprioritising z-stacks
over colour, i.e. full z-stacks were acquired repeatedly with single col-
ours. The whole imaging process can hence be summarised as: light
sheet direction → z-stack → colour → volume → tiles.

Multi-view fusion of light sheet microscopy data
Raw light sheet images were stored as czi (Zeiss) files. The code
repository MVRegFus (github.com/m-albert/MVRegFus), later refac-
tored into the package multiview-stitcher58, was used to fuse the
acquired data into one image volume with isotropic resolution and
locally optimised image quality. First, the opposing light sheet illumi-
nations were fused per frame maximising the normalised discrete
cosine transform Shannon Entropy (DCTS) to select the highest con-
trast elements for the fused image59. Subsequently, overlapping image
volumes were fused using DCTS to select the highest contrast regions.
Views were registered in a pairwise fashion, matching overlapping
volumes of consecutive rotational angles and positions along the
anteroposterior axis. Finally, all views were fused performing Lucy-
Richardson based multi-view deconvolution, additionally considering
DCTS derived multiplicative weights for each view.
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For processing, voxel intensities were background subtracted
considering a constant value of 200AU. Images were binned by the
factors 4 × 4 × 1 (x, y, z) during processing to increase performance.
The final isotropic resolution of the fused image was 1 µm/voxel. The
processed images were stored in the HDF5-derived ims format for
efficient compression andhandling. The fusionpipeline is illustrated in
Supplementary Fig. 1.

Nuclear segmentation via TGMM
Individual nuclei were segmented in 3D from volumetric microscopy
images using the Tracking with Gaussian Mixture Models (TGMM 2.0)
software10. The background of individual images was estimated by
measuring the maximum intensity of regions not containing nuclear
signal using the image analysis software Fiji60. The anisotropy parameter
was set to 1.0 since the processed images had isotropic resolution. The
minimal and maximal size of detected nuclei was determined by mea-
suring nuclear sizes in fluorescence images andwas set to 150 and 4000
voxels, respectively. To suppress mis-segmentations, the covariance
matrix of the 3D Gaussian distribution was regularised such that its
eigenvalues were bounded between 0.02 and 0.1, limiting the size of the
three principal axis of the distribution. Additionally, total eccentricity
was limited to ϵ=9. All other parameters were either left at default
values or they were empirically determined to their used values. All
parameters are summarised in Supplementary Table 1. The TGMM
software was implemented in C++ and was released with a command
line-based interface or a rudimentary graphical user interface. Bothwere
not suitable for automated segmentation of multiple images in parallel
and generally struggled with processing more than a single image at a
time. We therefore developed a python-based API which managed the
tool’s parameters and the image- and segmentationfile paths.Moreover,
it enabled the parallel processing ofmultiple images simultaneously and
automatically transformed the TGMM output files into a DataFrame
representation. The software is publicly available at https://github.com/
max-brambach/tgmm_utility.

Generation of Voronoi diagrams
Three-dimensional Voronoi diagrams were generated using a modified
version of the software voro++61. We modified the software to enable
the generation of a radially restricted Voronoi diagram using
command-line input, which enabled the integration of the tool into a
Python-based workflow. The radial restriction was achieved by initi-
alising every Voronoi cell as a dodecahedron with edge length 100
voxels (≙ µm). Overlapping Voronoi cells were subsequently cropped
to a regular Voronoi diagram. Boundary cells were limited to their initial
shape and could therefore be identified by consisting of faces that were
not shared with other Voronoi cells. The modified voro++ version is
publicly available at https://github.com/max-brambach/voro. To sup-
press boundary effects on the Voronoi diagram, we developed a
method to restrict the size and shape of boundary cells based on the
distribution of their neighbouring cells using auxiliary points and a
secondary Voronoi diagram. See Supplementary Note 1 for more
details.

Intensity quantification
For light sheet images, fluorescence intensity was quantified following
two strategies. Nuclear signals were evaluated in a 2× dilated region
around the location of the segmented nucleus (Supplementary
Fig. 7b). All other signal patterns such a cytosolic and more punctaed
signals commonly associated with HCR RNA FISH were integrated in
each nucleus’ Voronoi cell (Supplementary Fig. 7c). To delete noise
contributions, the signal distributionwas then fittedwith twoGaussian
distributions. The lower mean Gaussian was considered noise, while
the higher one was considered the true signal.

Fluorescence intensity line profiles used to quantify N-cad and
cdh15 expression were drawnon the ventral somites of a sum intensity

projection for each sample individually. N-cad and cdh15 expression
was then evaluated along this line. Background noise was measured
outside the sample and subtracted, autofluorescence of the sample
was measured at non-fluorescing parts and used to normalise the line
intensity.

Organisational features
To characterise local tissue architecture, we extracted organisational
features from the 3D coordinates of segmented nuclei. Multi-scale cell
density was measured using kernel density estimation within concentric
spherical regions (0–10 µm, 10–20 µm, 20–30 µm). Counts were nor-
malised by shell volume to obtain volumetric densities. This approach
distinguished compact local clusters from broader tissue-level density.
We further employed restricted 3D Voronoi diagrams to quantify spatial
relationships between cells. For each Voronoi cell, we computed:
(i) Voronoi cell volume, reflecting local crowding and anisotropy;
(ii) Voronoi density, defined as the mean inverse distance to Delaunay-
connected neighbours; (iii) number of neighbours, i.e. the number of
adjacent Voronoi cells sharing a face; and (iv) centroid offset, the dis-
tance between the Voronoi cell’s centroid and its seed point, capturing
local asymmetry. To assess neighbourhoodheterogeneity, we calculated
the mean and standard deviation of Voronoi volume, neighbour num-
ber, and centroid offset across each cell’s immediate Voronoi neigh-
bourhood (excluding the cell itself). This added six features describing
local variability. All features were jointly z-score normalised across
samples to enable cross-feature comparisons, embedding, and cluster-
ing, while preserving inter-sample differences. See Supplementary
Note 2 for more details. To enhance interpretability, we grouped orga-
nisational features into three classes—density, anisotropy, and irregu-
larity—based on their similarity using hierarchical agglomerative
clusteringwithWard linkage based on their pairwise Pearson correlation
(Supplementary Fig. 4e, f). Correlation was assessed on a single cell level
and then averaged across all samples. Features in the density class
included multi-scale cell densities (0–10 µm, 10–20 µm, 20–30 µm) and
Voronoi density. These features are directly related to the local packing
of cells, measuring either kernel-based densities within concentric
spherical shells or pairwise proximity within the Delaunay graph. The
anisotropy class comprised Voronoi cell volume (mean and neigh-
bourhood statistics) and centroid offset (individual and neighbourhood
statistics). These features quantify geometric asymmetries in local cell
arrangements. Voronoi volume is sensitive to anisotropic neighbour-
hoods, decreasing when density is concentrated along a single axis,
while centroid offset measures the spatial displacement between a cell’s
position and the centre of its associated Voronoi polyhedron, increasing
with local asymmetry. The irregularity class included the number of
neighbours (individual and neighbourhood values) and the standard
deviation of Voronoi cell volume in the neighbourhood. These features
reflect heterogeneity in the localmicroenvironment. A higher number of
neighbours or greater variability in Voronoi volumes indicates dis-
ordered or non-uniform cell packing, independent of absolute density.
Individual feature importancewas assessed by analysing howmuch each
feature contributed to the first two principal components of the data,
validating that the feature set was not over-defined (Supplemen-
tary Fig. 4g).

Identification of organisational motifs and archetypes
Organisational motifs were identified by clustering all cells based on
their 14 z-scored organisational features using a Gaussian mixture
model with 11 components, initialised with k-means clustering. The
number of components was empirically found using the elbow cri-
terion on the Silhouette score and the Bayesian information criterion
as well as by identifying a local minimum of the Jensen-Shannon
divergence gradient (Supplementary Fig. 8a–c). The importance of
each feature to this classification was evaluated by training a random
forrest classifier on the feature vectors and motif labels; utilisation of
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individual features gives an estimate for importance. No feature was
found to be underutilised (Supplementary Fig. 8d).

Organisational archetypes were identified by clustering motifs
based on their pairwise feature correlation using hierarchical
agglomerative clustering andWard linkage. All features were shown to
contribute to the classification either using a random forest classifier
or via feature dropout (Supplementary Fig. 11a, b). Moreover, the
assignment to archetypes was not sensitive on the prior assignment to
organisational motifs; initial clustering into 2, 4, 8, …, 256 clusters
yielded similar results (Supplementary Fig. 11c–e), however, with
decreased computational performance for higher numbers.

Embedding of partial imaging data into in toto organisational
feature space
Zoomed-in analysis of specific organs, such as the brain (Fig. 5) and the
skin (Supplementary Fig. 16) using nuQLOUD was performed in the
followingway.Nuclei were segmentedusingTGMMandorganisational
features were calculated as described above. Nuclei on the border of
the imaging frame were excluded from analysis due to their artificially
altered feature profile. New data was normalised using the z-score
parameters used to normalise the in toto dataset. To add new data to
the existing t-SNE, we followed62. In brief, new points were initialised in
the embedding at the coordinates of their nearest neighbours in fea-
ture space. The embedding was then run for 500 iterations at exag-
geration 3 and momentum 8.

Spinning disc confocal microscopy and corresponding data
analysis
Data on cdh15 expression during muscle development and N-cad
misexpression in the skin, spinning disc confocal microscopy was
used. Samples were mounted in 1% low-melting agarose solution on
their side in 1× E3 fish embryo medium on a Cellvis 4-Chamber Glass
Bottom Dish on their side.

Confocal images were acquired at a Andor Dragonfly 200
spinning-discmicroscope using a Nikon ×20/NA0.95 water immersion
objective, 1μm z-step, spinning disc with a 40μm pin-hole size and
captured by a Sona sCMOS camera at 2048 × 2048 pixels. Tiled images
were captured with 20% overlap.

Tiled images were stitched using the Grid/Collection stitching
plugin60 (default parameters, fusion method: maximum intensity). To
achieve isotropic spacing, the images were then down-sampled in xy
using bilinear interpolation (factor 0.35).

CDH15 expression data was processed using the nuQLOUD pipe-
line outlined above; N-cad misexpression data was processed in the
followingway. Images of the p63:Gal4, UAS:cdh2-mNG and clndi:clndi-
mScarlett channels were maximum projected in z and manually
adjusted to the same intensity levels using FIJI. Line profiles were
exported using the ‘Plot Profile’ function. For plotting purposes, the
intensities were normalised following:

Inorm =
I � Imin

Imax � Imin
, ð1Þ

where Imin and Imax denote the minimum and maximum intensities
along the given line profile, respectively.

For segmenting skin cell areas, the inverted projected clndi:clndi-
mScarlett channel images were imported in cellpose216 and segmented
using the cyto2 model (cell diameter: 60px, flow_threshold: −20, cell-
prob_threshold: −2, stitch-threshold: 4). Segmented objects that cor-
responded to the centre of lateral line organs rather than skin cells
were manually removed in cellpose. Cellpose segmentations were
reimported in FIJI. To minimise distortion effects from projections on
the side of the fish, only the areas andmean N-cad intensities in cells in
the centre of the fish weremeasured. For each sample, N-cad high, and
N-cad low expressing cells were classified using Otsu’s method. Cell

areas from four samples were combined to perform a two-sided
Mann–Whitney–Wilcoxon test comparing the cell areas of N-cad high
and low expressing cells.

Single cell RNA sequencing data processing
Single cell RNA sequencing data of early zebrafish development was
obtained from33 and processed using scanpy. Pre-processing was
performed following63. Initially, cells were filtered out that expressed
less than 200 genes and genes were removed that were expressed in
less than 3 cells. The numbers of counts per cell were normalised to
10,000 and logarithmized. Highly variable genes were identified
following64 with minimum mean 0.125, maximum mean 3, and mini-
mum dispersion 0.5. Individual genes were scaled to unit variance and
maximum standard deviation was limited to 10. Differential gene
expression analysis was performed according to65 using the
Mann–Whitney U-test.

Statistics and reproducibility
Used statistical tests are indicated in the corresponding figure legends.
If not stated otherwise, N denotes the number of samples (replicates)
and n the number of cells (observations). For statistical analysis,
observations are grouped by sample.

Box plots illustrate data distributions by showing their median
(central line), interquartile range (box), 1.5× interquartile range
(whiskers), and outliers (flyers). Error bars on bar plots indicate the
standard deviation of the mean if not stated otherwise.

No statistical method was used to predetermine sample size.
Individual sample groups contained at least three samples. Data were
excluded only in cases where image quality was insufficient to permit
reliable segmentation. Exclusion decisions were based on manual
inspection of the raw microscopy data prior to analysis and were
independent of experimental conditions. The experiments were not
randomised and the investigators were not blinded to allocation dur-
ing experiments and outcome assessment.

For low-dimensional embedding, either t-SNE or UMAP were used.
t-SNE representations were generated following62 using principal com-
ponent initialisation, dual perplexities (50 and 500), learning rate n/12
and the cosine distance. 25,000 randomly selected observations were
pre-embedded using 250 iterations at exaggeration 12, and momentum
0.5, followed by 750 iterations at exaggeration 1, and momentum 0.8.
The remaining dataset was mapped onto the pre-embedding using a k-
nearest neighbour search in feature space. Finally, the full embedding
was optimised with perplexity 30, 500 early exaggeration iterations
(exaggeration 4, momentum 0.5) and 500 iterations at exaggeration 3,
and momentum 8. UMAP embeddings were generated using minimum
distance 0.5, spread 1.0, alpha 1.0, gamma 1.0, negative sample rate 5
and initial spectral embedding. Spatial correlation functions were
computed to quantify cell clustering. For each sample, a three-
dimensional k-d tree was constructed from cell coordinates, and pair-
wise distances were used to estimate the local density of neighbouring
cells. The pair correlation function g(r) was calculated as the observed
density of cell pairs within distance r, normalised by the expected
density under a homogeneous Poisson distribution. Pair correlation
functions were computed separately for N-cad negative vs negative and
negative vs positive, stratified by archetype status.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within this
article, its supplementary files and the following online repositories. The
raw light sheet data (postmulti-view fusion) generated in this study have
been deposited in the BioImage Archive, accession number
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S-BIAD140566. The scRNAseq data by Farnsworth et al.33 used in this
study are available at NCBI SRA under accession code PRJNA564810
[https://www.ncbi.nlm.nih.gov/bioproject/564810]. The scRNAseq data
by Wagner et al.67 used in this study are available at NCBI GEO under
accession number GSE112294. Source data are provided with this paper.

Code availability
A Python implementation of nuQLOUD is available at [https://github.
com/max-brambach/nuQLOUD], archived under [https://doi.org/10.
5281/zenodo.15733475]68. Amodified version of voro++ accompanying
nuQLOUD is available at [https://github.com/max-brambach/voro].
Tools to efficiently run nuclear segmentation using TGMM are avail-
able at https://github.com/max-brambach/tgmm_utility, archived
under [https://doi.org/10.5281/zenodo.15733494]69. The multi-view
fusion algorithm MVRegFus is available at [https://github.com/m-
albert/MVRegFus], archived at [https://doi.org/10.5281/zenodo.
15240470]58.
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