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PAL-AI reveals genetic determinants that
control poly(A)-tail length during oocyte
maturation,with relevance tohuman fertility

Kehui Xiang 1,2,3 & David P. Bartel 1,2,3

In oocytes of mammals and other animals, gene regulation is mediated pri-
marily through changes in poly(A)-tail length. Here, we introduce PAL-AI, an
integrated neural networkmachine-learningmodel that accurately predicts tail-
length changes in maturing oocytes of frogs and mammals. We show that PAL-
AI learned known and previously unknown sequence elements and their con-
textual features that control poly(A)-tail length, enabling it to predict tail-length
changes resulting from 3′-untranslated region single-nucleotide substitutions.
It also predicted tail-length-mediated translational changes, allowing us to
nominate genes important for oocyte maturation. When comparing predicted
tail-length changes in human oocytes with genomic datasets of the All of Us
Research Program and gnomAD, we found that genetic variants predicted to
disrupt tail lengthening have been under negative selection in the human
population, thereby linking mRNA tail lengthening to human female fertility.

Fully grown vertebrate oocytes, which are arrested at prophase I of
meiosis, haveminimal transcriptional activity due to the condensation
of chromosomes.With little potential for transcriptional control, post-
transcriptional control, particularly translational control, plays amajor
role in regulating gene expression during the subsequent processes of
oocyte maturation and early embryonic development, after which the
zygotic genome is transcriptionally activated1–3. Proper progression
through this period of oocyte maturation and early development
requires translational upregulation of select maternally deposited
mRNAs, such asMOS andCCNB14,5, which encode essential proteins for
meiosis, and TPRX1/2/L6, which encode transcription factors necessary
for zygotic genome activation. Leveraging the strong coupling
between poly(A)-tail length and translational efficiency during these
developmental stages7–14, translation activation of these mRNAs is
achieved by extension of their poly(A) tails4,15,16, which enables them to
compete better for the binding of limited poly(A)-binding proteins and
subsequent recruitment of translation initiation factors11. Thus, dis-
ruption of either translational or poly(A) tail-length changes in these
maturing oocytes or early embryos can cause developmental arrest in
frogs, mice, and humans6,17,18. Genetic alterations to these processes
have also been linked to human female infertility19–21.

Control of poly(A)-tail length during oocytematuration of vertebrate
animals is a tug-of-war between the default transcriptome-wide dead-
enylation and the mRNA-specific cytoplasmic polyadenylation10,13,14,22–24.
The specificity of cytoplasmic polyadenylation relies on two sequence
elements within mRNA 3′ untranslated regions (UTRs): a cytoplasmic
polyadenylation element (CPE,motif UUUUA), which is recognized by the
CPEB1 protein, and a polyadenylation signal (PAS, motif AWUAAA, where
W is either A or U), which is recognized by the cleavage and poly-
adenylation specificity factor (CPSF) complex14,25–28. Contextual features of
these two sequence elements, including their relative positions, flanking
nucleotides, and structural accessibility, as well as the number of each
element within the 3′ UTR, influence the extent of cytoplasmic
polyadenylation14. Although several other sequence elements have been
proposed to influence poly(A)-tail length, their effects are usually small,
indirect, and do not appear to impact more than a handful of
mRNAs14,27,29,30.

Despite advances in our knowledge of cis-acting elements that
control cytoplasmic polyadenylation, a quantitative understanding of
poly(A) tail-length changes for different mRNAs during oocyte
maturation is still lacking. A sequence-based predictive model would
provide further insights into known functional sequence elements and
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enable the discovery and evaluation of additional motifs or regulatory
principles. For example, such a model would enable large-scale
assessment of the consequences of genetic mutations on tail-length
control as well as translational regulation, thus providing an oppor-
tunity to nominate disease-contributing variants that are otherwise
difficult to identify in genome-wide association studies. Therefore, we
set out to develop a machine-learning model that accurately predicts
poly(A) tail-length changes in humans and other vertebrate animals.

Results
An integrated neural network model predicts tail-length chan-
ges during frog oocyte maturation
To predict tail-length changes during frog oocyte maturation directly
from mRNA sequences, we initially developed a multiple linear
regression model based on k-mer (sequence motif length of k) com-
positions within 3′ UTRs. Given the importance of both the number
and position of CPE and PAS elements in influencing tail-length
changes14, we defined two features for each k-mer of varying lengths: 1)
a count metric, specifying the total number of a k-mer within the
3′ UTR; 2) a positional metric, calculated as the sum of the inverse
distances between each k-mer and the 3′ end. We performed training
and testing in a 10-fold cross-validation procedure on frog endogen-
ous mRNA tail-length changes, comparing between 0h and 7 h post-
progesterone treatment14 (Fig. 1a). Test-set predictions from each fold
were concatenated and compared to themeasured values (Fig. 1b).We
tested different k-mer and 3′ UTR lengths as inputs and conducted
extensive hyperparameter tuning (Supplementary Fig. 1a). The best
model performed moderately well and explained approximately 40%
of the variance of measured tail-length changes (Fig. 1c; Spearman
correlation coefficient Rs = 0.64; Pearson correlation coefficient
Rp = 0.63). Notably, the CPE and the PAS, two knownmotifs mediating
cytoplasmic polyadenylation, were among the top-ranked features in
both the count and the positional metrics (Supplementary Fig. 1b, c).

Although the linear model identified the essential motifs for
poly(A)-tail lengthening, it under-predicted tail-length changes for
most mRNAs whose tails were extended by >30 nt. Inspired by recent
advances in deep learning, we developed a neural network model,
termed poly(A)-tail length AI (PAL-AI) (Fig. 1d, Supplementary Fig. 1d,
e), which integrates both convolutional and recurrent neural network
components, using an architecture similar to but simpler than that of
Saluki31. PAL-AI was trained and tested using the sequences of endo-
genousmRNAs, and the same 10-fold cross-validation strategy as used
for the linearmodel. Combinations of different hyperparameters were
tested extensively for the model to achieve the best performance
(Supplementary Fig. 2a, b) without overfitting (Supplementary
Fig. 2c, d). The final trained model predicted tail-length changes with
high accuracy, significantly out-performing the linear model and
explaining more than 67% of the variance of measured values (Fig. 1e;
Rs = 0.82, Rp = 0.82).

To examine the impact of input sequence length on prediction
accuracy, we trained PAL-AI models on various regions of the 3′ UTR
and compared Pearson correlation coefficients between predicted and
measured values. A model trained exclusively on the last 100 nt of 3′
UTRs already explained over 40% of the variance (Fig. 1f; average
Rp = 0.64). Model performance improved with increasing 3′ UTR
length up to 2000nt, beyondwhichno significant gainswereobserved
(Fig. 1f, g, SupplementaryData 5). In contrast, when the last 100ntwere
excluded from the last 1000 nt of 3′ UTRs for the input, the predictive
power declined markedly (Fig. 1f; average Rp = 0.40), supporting the
idea that the 3′-most regions of 3′ UTRs impart the strongest effect on
tail-length changes14.

We further explored whether incorporating additional features,
such as sequences from coding regions and base-pairing probabilities
predicted by RNAfold32, could improve the overall model perfor-
mance. However, models including these features showed no

significant improvement over those trained on equally-sized 3ʹ UTR-
only inputs (Fig. 1f, g), implying that these features, at least as para-
meterized in our model, contribute minimally to tail-length changes.
Nevertheless, among all configurations, the model trained on the last
2000 nt of the 3′ UTR plus the coding region performed the best with
the shortest input length (Fig. 1f, g, Supplementary Data 5) and was
therefore used for subsequent analyses unless otherwise specified. We
also tested a variant model architecture, in which the convolutional
module was replaced with a ResNet block, a design that has demon-
strated superior performance in many deep-learning applications33,34.
This alternative, although at times achieving comparable accuracy,was
less consistent (Supplementary Fig. 2e) and required substantially
more parameters and computational resources. For this reason, we did
not further optimize this ResNet-based model.

PAL-AI learned motifs and contextual features that regulate
poly(A)-tail length
To elucidate the principles learned in the training of PAL-AI, we per-
formed in silico mutagenesis and examined the impact of single-
nucleotidemutations onpredictedpoly(A) tail-length changes. Among
all 6-mers, the loss of the PAS (AAUAAA) and CPE (UUUUA)-containing
6-mers led to the largest decrease in tail-length changes (Fig. 2a).
Sequence logos generated from the most impacted 8-mers also mat-
ched the CPE and the PAS (Fig. 2b). Similarly, when examining the
consequence of gaining of 6-mer motifs, those motifs containing the
PAS and CPE resulted in the greatest predicted tail-length increase
(Supplementary Fig. 3a, b). To prevent the signal from spilling from a
stronger motif to a weaker one, we reexamined tail-length changes
associated with the loss of 6-mers. We identified the 6-mer associated
with the largest mean tail-length change and then re-calculated the
average tail-length changes for all remaining 6-mers after excluding all
point substitutions that disrupted this top 6-mer. This process was
repeated 14 times, each time excluding point substitutions that dis-
rupted an additional 6-mer, thereby generating a ranked list of 15
different 6-mers most associated with predicted tail lengthening
(Fig. 2c). Likewise, we used an analogous procedure to reexamine tail-
length changes associated with the gain of 6-mers (Supplementary
Fig. 3c). As expected, the top 6-mers identified in these analyses con-
tained a PAS or CPE.

In addition to the PAS andCPE, our analyses also showed that PAL-
AI recognized a different class of 6-mers, which were associated with
modest but statistically significant tail lengthening (Fig. 2c, Supple-
mentary Fig. 3c). Interestingly, these motifs each contained a UGU or
GUU trimer, which might be recognized by other RNA-binding pro-
teins such as CELF or DAZL in frog oocytes35–37. Another possibility is
that some of these motifs, such as UGUUUU, which resemble the CPE,
might be weakly bound by CPEB1. A third possibility is that the pre-
sence of these motifs correlates with tail lengthening but is not causal.
To explore this latter possibility, we examined the efficacy of these
motifs in arbitrary sequences used in a massively parallel reporter 3′
UTR library14. Because these arbitrary sequences were not biological,
they were not susceptible to noncausal correlative associations, and
thus any association of a motif with a tail-length change was pre-
sumably causal. Analysis of these reporters revealed an association
between these UGU/GUU-containing 6-mers and tail lengthening, but
it was small –– only a 0.64 nt increase on average for the top UGU/
GUU-containing 6-mer UGUUUU in the absence of a CPE, which was
substantially less than that of a CPE (17.7 nt on average)14. In the same
library, a somewhat larger increase in tail lengthwas observed for UGU
and GUU (1.8 and 1.4 nt above an average effect of a 3-mer, respec-
tively) when a CPE was also present in the 3′ UTR (Supplementary
Fig. 3d). This added tail-lengthening effect was observed in all CPE-
neighboring positions more than 2 nt from the CPE (Fig. 2d), sug-
gesting that these motifs might play a small auxiliary role in tail
lengthening beyond merely modulating the context of the CPE.
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Moreover, for some 3′ UTRs, the co-presence of multiple copies of
these UGU/GUU-containing motifs might still contribute to detectable
tail lengthening14, perhaps through binding to CPEB1-interacting pro-
teins, such as DAZL38,39, which in turn could facilitate recruitment of
CPEB1 to adjacent CPE-like motifs.

We carried out additional in silicomutagenesis by inserting either
the CPE or the PAS at each position along the 3′ UTRs. As expected14,
PAL-AI predicted the strongest impact on polyadenylation when these
elements were introduced near the 3′ ends of the 3′ UTRs (Fig. 2e). An

added CPE was most favorable when located near the PAS on either its
5′ or 3′ side (Fig. 2f), but not in the position most likely to disrupt the
PAS, which is typically ~17 nt from the end of the 3′ UTR (Supple-
mentary Fig. 3e)40, consistent with the positional effects determined
from analyses of millions of reporters14.

Although insertion of the canonical PAS variant AUUAAA mod-
erately promoted polyadenylation (Fig. 2e), noncanonical PAS
variants41 had negligible effects on cytoplasmic polyadenylation
(Supplementary Fig. 3f). In fact, mutating the canonical PAS AAUAAA
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Fig. 1 | Machine-learning models predict tail-length changes during frog
oocyte maturation. a Experimental scheme for examining poly(A) tail-length
changes of frog mRNAs during oocyte maturation. Total RNA was extracted from
oocytes before and after progesterone-induced germinal vesicle breakdown
(GVBD), and changes in poly(A)-tail lengths weremeasured. b Schematic of the 10-
fold cross-validation strategy used to train and test different machine-learning
models in this study. Data were partitioned into training/validation and test sets,
repeated across 10 different stratified folds. c Performance of the multiple linear
regression model. Plotted are the tail-length changes predicted by the model as a
function of the changes measured in frog oocytes between 0 h and 7 h post-
progesterone treatment. Each point represents a unique poly(A) site of an endo-
genous mRNA. Colors indicate the density of points. C.V., cross validation.
d Diagram outlining the two machine-learning models developed to predict
poly(A) tail-length changes from mRNA sequences: a multiple linear regression

model and an integrated neural network (PAL-AI). e Performance of PAL-AI;
otherwise as in (c). f Prediction performance of PAL-AI trained on different input
regions of mRNAs or additional annotation features. Left: input sequence regions
(bars) and additional features, i.e, coding sequence (CDS) or predicted pair-
ing (fold), blue and orange dots, respectively. Right: distributions of Rp values
observed when comparing predicted and measured tail-length changes for test
data held out during training. Ten-fold cross-validation of the model was repeated
five times, generating 50 Rp values. The red rectangle indicates the configuration
chosen as the finalmodel. Box andwhiskers indicate the 10th, 25th, 50th, 75th, and
90th percentiles. g Pairwise comparison of input strategies used for PAL-AI based
on prediction performance. Shown are binned P values from one-sided t-tests,
testing the alternative hypothesis that themeanRp value of the group indicated on
the y axis is greater than that indicatedon the x axis. The red rectangle indicates the
configuration chosen as the final model.
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Fig. 2 | PAL-AI learned sequence elements and contexture features important
for tail-length control during oocyte maturation. a PAL-AI-predicted con-
sequences of motif loss. For each 6-mer, the mean difference in predicted tail-
length change, comparing mutants and wild-type, is plotted as a function of the
number of analyzed mutants. CPE- or PAS-related motifs are indicated (red and
blue, respectively).b Sequencemotifs associated with PAL-AI-predicted changes in
tail length. Sequence logos were generated from 8-mers most associated with the
largest differences in PAL-AI-predicted tail-length change upon 8-mer loss. Pie
charts indicate fractions of 8-mers aligned to logos. Bar plots show mean differ-
ences; points represent individual 8-mers. c Top 6-mers associated with decreased
predicted tail-length change from in silico mutagenesis, selected iteratively, with
exclusion. Motif colors: CPE (red), PAS (blue), GUU/UGU (orange), others (black).
Error bars, standard error. d Positional effects of 3-mers flanking a CPE. Plotted for
each 3-mer are differences in mean tail length for mRNAs with that 3-mer at indi-
cated positions relative to a CPE in the N60-PASmos library14. The gray box indicates
positions where 3-mers impact the CPE context14. e PAL-AI-predicted positional
effects of inserting CPE and PAS along the 3′ UTR. Plotted are mean differences in

predicted tail-length change. Drop near position 17 reflects PAS disruption (Sup-
plementary Fig. 3e). Shaded areas, standard error. Inset, last 100 nt of the 3′ UTR.
f Predicted effects of CPE-PAS spacing. Mean differences in PAL-AI-predicted tail-
length change conferred upon inserting a CPE in silico are plotted as a function of
the relative distance between CPE and PAS. Shaded areas, standard error. The gray
box, CPE-PAS overlapping positions. g PAL-AI-predicted effects of single-
nucleotide substitutions in themos.L 3′ UTR. The heatmap indicates the difference
in predicted tail-length change (DPTLC) for each substitution (x, original; y, alter-
native). Line plots indicate max (red) and min (blue) mutational outcomes at each
position. The logoplot indicates the importance of eachnucleotide, with theheight
normalized to the negative value of the average outcome of three possible sub-
stitutions. Dashed rectangles, CPE and PAS. The arrow points to an instance of
a new CPE, generated by a G-to-U substitution, and its associated increase in tail-
length change. h PAL-AI-predicted effects of single-nucleotide substitutions in the
tpx2.L 3′ UTR, plotted as in (g). The solid arrow points to an example of a sub-
stitution to a more optimal PAS-flanking nucleotide; the dashed arrows point
to optimal CPE-flanking nucleotides14.
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to any PAS variant reduced the predicted tail-length increase by
7.7–11.7 nt (Supplementary Fig. 3g). Additionally, in the CPEmos-N60
reporter 3′ UTR library14, when variants containing either an AAUAAA
or AUUAAA were excluded, none of the remaining 6-mers were asso-
ciated with tail lengthening (Supplementary Fig. 3h). Together, these
analyses indicate that although non-canonical PAS variants can direct
mRNA cleavage and polyadenylation42, they do not facilitate mRNA
polyadenylation in the cytoplasm—at least not during oocyte
maturation.

To gain more insights into properties that PAL-AI learned at the
transcript level, we examined predicted consequences of all possible
point substitutions at the last 100 nt of the mos.L mRNA. In silico
mutations that perturbed either the PAS at position –21 or the CPE at
position –86 caused considerable decreases in predicted tail length-
ening, whereas a G-to-U mutation at position –62 created a new CPE,
thereby causing an increase in predicted tail lengthening (Fig. 2g).
mos.L also contains a second CPE falling near the PAS, at position –27.
This PAS-proximal CPEwas expected to be suboptimal for cytoplasmic
polyadenylation because its separation from the PAS of only 1 nt was
too short14. Notably, PAL-AI recognized this proximity feature and
correctly predicted only mild mutational outcomes when this motif
was disrupted (Fig. 2g).

In another example, the tpx2.LmRNA, PAL-AI identified two CPEs
predicted to be important for tail lengthening. Furthermore, PAL-AI
predicted decreases in tail lengthening when Gs at positions –66 and
–36 (both at –2 positions relative to CPEs) were mutated and an
increase in tail-length change for a C-to-G substitution at position –12
(+1 relative to the PAS) (Fig. 2h)—all observations consistent with the
contextual features of the CPE and the PAS identified from analyses of
millions of reporters14. Similar results were observed for other exam-
ples of known substrates of cytoplasmic polyadenylation (Supple-
mentary Fig. 3i, j).

Together, these analyses indicated that PAL-AI successfully cap-
tured the sequence elements and their contextual features important
for promoting cytoplasmic polyadenylation, thereby enabling it to
accurately predict poly(A) tail-length changes of frog mRNAs during
oocyte maturation.

PAL-AI predicts poly(A) tail-length change of injected mRNAs
Next, we asked if PAL-AI was able to predict tail-length changes of
injected reporter mRNAs. To this end, we amplified a small subset of a
3′-UTR reporter library (N60-PASmos)14 to generate a library with only
~35,000 variants (Fig. 3a), which we called N60(LC)-PASmos. The

reduced sequence complexity of this libraryenabled acquisitionof tail-
length distributions of individual mRNA sequences. We injected this
mRNA library into prophase I-arrested frog oocytes, collected RNA
samples at 0 h and 7 h post-progesterone treatment, and used high-
throughput sequencing14 to identify the 3′ UTR variant and determine
its tail-length distribution at each of the two stages of matura-
tion (Fig. 3b).

When using tail-length changes measured for these injected
mRNAs to test our model trained on endogenous mRNAs, our model
performed well (Supplementary Fig. 4a). Indeed, correlation coeffi-
cients observed when testing on the injected mRNAs (Rs = 0.77,
Rp = 0.83) resembled those observed when testing on endogenous
mRNAs (Fig. 1e, Rs = 0.82, Rp = 0.82). However, the model appeared to
under-predict the magnitude of the tail-lengthening effects (Supple-
mentary Fig. 4a). A few possibilities could explain the systematic dif-
ference in the magnitude of tail-lengthening observed for injected
mRNAs compared to that predicted by PAL-AI. First, the sequence
lengths of the training and the testing datasets were markedly differ-
ent. Endogenous mRNAs used for training PAL-AI had few 3′ UTRs
shorter than 100 nt (420 out of 6054), whereas 3′ UTRs of the injected
mRNAs were all relatively short (81 nt). Second, due to experimental
variability, particularly the variable time it takes for oocytes of differ-
ent batches to mature, the endogenous mRNAs and injected mRNAs
may have been collected at somewhat different maturation stages.
Third, the 3′ UTRs of the reporter mRNAs consisted of arbitrary
sequences, whose composition may differ substantially from natural
mRNA sequences.

To test whether sequence composition contributed to the dis-
crepancy, we modified PAL-AI’s last layer to enable dataset-specific
multi-output predictions (Supplementary Fig. 4b). Training on alter-
nating batches of endogenous and injected mRNAs maintained per-
formance on endogenous mRNAs (Fig. 3c, Rs = 0.82, Rp = 0.82) while
enhancing performance on injected mRNAs (Fig. 3d, Rs = 0.81,
Rp = 0.88). To distinguish this multi-output model from the original
PAL-AI model, we termed this model as PAL-AI-m (“m” for multi-out-
put) and the original model as PAL-AI-s (“s” for single-output).

Despite the improvement, the PAL-AI-m model still under-
predicted tail lengthening for most long-tailed (≥80 nt) mRNAs from
the injected library.Whenwe re-trained themodel withmeasurements
fromonly injectedmRNAs, PAL-AI performed significantly better when
tested on held-out data (Supplementary Fig. 4c, Rs = 0.86, Rp = 0.91). In
silico mutagenesis analyses indicated that the newmodel also learned
the expected sequence elements important for tail lengthening and
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Fig. 3 | PAL-AI predicts tail-length changesof syntheticmRNAs in frogoocytes.
a Schematic of theN60(LC)-PASmosmRNA libraryused for injection.b Experimental
scheme for mRNA library injection and sample collection. c Performance of the
PAL-AI-m model in predicting tail-length changes of frog endogenous mRNAs.

Otherwise, this panel is as in Fig. 1c. d Performance of the PAL-AI-m model in
predicting tail-length changes of mRNAs in the N60(LC)- PASmos library. Otherwise,
this is as in Fig. 1c.
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their contextual features (Supplementary Fig. 4d–f). This training
approach on synthetic, nonbiological reporter sequences also ensured
that these learned elements and features are causative for tail-length
changes, rather than correlated to causative features.

Predicted effects of single-nucleotide substitutions correspond
with experimentally determined effects
The ability of PAL-AI to predict the fate of injected mRNAs enabled
direct assessment of its ability to predict the consequences of muta-
tions, including all possible single-nucleotide substitutions. To this
end, we generated a single-nucleotide mutagenesis library of reporter
mRNAs with 3′-UTR sequences derived from the last 100 nt of 3′ UTRs
of ten mRNAs selected from frog oocytes. For each of the ten 100-nt
UTR fragments, each nucleotide of the 3’UTRwas substitutedwith one
of the three alternativenucleotides, resulting in 3000variants (Fig. 4a).
These 3000 variants, together with the non-substituted wild-type
molecules, were injected into oocytes and the effect of each sub-
stitution on tail-length changes was analyzed over the course of
maturation. Of the ten 3′-UTR fragments, eight (atp1a1.S, ccnb1.2.L,
ccnb2.L, lima1.L, mad2l1.L, magoh.S, mos.L, and tpx2.L) directed cyto-
plasmic polyadenylation upon injection into oocytes, whereas two
(aurkaip1.L and dbf4.L) directed no tail lengthening during frog oocyte
maturation14.

When comparing the predicted difference in tail-length change to
that measured between each mutant and the wild-type, the PAL-AI-m
model performed significantly better compared to the PAL-AI-s model
for eight out of ten mRNAs (Fig. 4b, Supplementary Data 5). This
improved performance suggested that the PAL-AI-m model success-
fully learned additional features from the non-natural sequences of the
N60(LC)-PASmos library. The PAL-AI-m model achieved high accuracy
(Rp: 0.78–0.90) for six mRNAs (atp1a1.S, lima1.L, mad2l1.L, magoh.S,
mos.L, and tpx2.L; Figs. 4b, d–g, 5a, b, Supplementary Fig. 5a–f) and
moderate accuracy (Rp: 0.58–0.62) for three mRNAs (aurkaip1.L,
ccnb1.2.L, and ccnb2.L; Fig. 4b, Supplementary Figs. 6a, b, d, e, 7a, b).

Concordance between predicted and experimental outcomeswas
particularly clear for substitutions that disrupted either a CPE or PAS
(Figs. 4c, f, g, 5a, Supplementary Fig. 5d–f). Substituting the canonical
PAS (AAUAAA) with the alternative variant AUUAAA severely affected
tail lengthening, but not as severely as observed for any of the other
single-nucleotide substitutions of AAUAAA (Fig. 4c). These experi-
mental findings validated our in silico mutagenesis conclusion that
noncanonical PAS variants do not support cytoplasmic polyadenyla-
tion during oocyte maturation.

At the individual mRNA level, ablation of any of the three motifs
(two CPEs and one PAS) within mos.L mRNA led to substantial
decreases in tail lengthening, as predicted by PAL-AI-m (Fig. 4f). The
predicted weaker contribution to cytoplasmic polyadenylation by the
CPEproximal to the PAS compared to that by theCPE further upstream
was also validated (Fig. 4f). Similar results illustrating PAL-AI-m’s ability
to predict the importanceof thesemotifs and their contextual features
were also observed for other mRNAs (Fig. 4g, Supplementary Fig. 5).
Notably, the predicted differences in tail-length changes observed
between many variants and the wild-type were smaller than those
measured, perhaps due to the same reasons previously put forward to
explain the under-prediction of changes for the injected N60(LC)-
PASmos library (Supplementary Fig. 4a).

In another example, mad2l1.L mRNA had no CPE within the last
100 nt of its 3′ UTR but contained seven UGU/UGUUUmotifs (Fig. 5a).
Mutations within these motifs caused modest but consistent reduc-
tions in tail lengthening (Fig. 5a, b), agreeing with their detectable but
weak roles in cytoplasmic polyadenylation. In contrast, substitutions
that introduced a single CPE led to large increases in tail lengthening,
almost all of which were correctly predicted by PAL-AI-m (Fig. 5a, b).

Despite achieving good performance for the six aforementioned
mRNAs (Rp = 0.78–0.9), PAL-AI-m performed only moderately well on

three mRNAs (aurkaip1.L, ccnb2.L, and ccnb1.2.L, Rp = 0.58, 0.62, and
0.59, Supplementary Figs. 6b, e, 7a) and did not perform well at all on
one mRNA (dbf4.L, Rp = 0.21, Fig.5c). The wide-type dbf4.L mRNA,
which had no CPE and a relatively weak PAS (AUUAAA), had little tail
lengthening, and thus most single-nucleotide substitutions had negli-
gible opportunity to reduce tail lengthening (Fig. 5d), which largely
explained their relatively weak effects for this mRNA. PAL-AI-m did
predict moderate increases in tail lengthening for a few substitutions
that would create CPEs predicted to lengthen tails, but by no more
than 10 nt (Fig. 5c). Although some of these predicted increases were
validated (positions –61 and –51), others, particularly those down-
stream the PAS (positions –35, –31, –7 and –6) were not (Fig. 5d). To
understand these discrepancies, we predicted the secondary structure
of the last 100 nt of the wild-type dbf4.L 3′UTR using EternaFold43. The
substitutions at positions –61 and –51 both created CPEs in loop
regions, whereas the substitutions at positions –35, –31, –7 and –6 all
created CPEs with nucleotides paired in a stem loop (Fig. 5d, e), which
likely prevented these CPEs from being recognized by the CPEB1
protein.

For aurkaip1.L and ccnb2.L mRNAs, PAL-AI-m had difficulty pre-
dicting increased tail lengthening caused by substitutions in con-
secutive positions within a few UTR segments (aurkaip1.L: positions
–34 to –30 and –19 to –15, Supplementary Fig. 6a; ccnb2.L: positions
–60 to –55 and –15 to –10, Supplementary Fig. 6d). These substitutions
appeared to destabilize stem loops that were sequestering PAS ele-
ments in the wild-type UTRs (Supplementary Fig. 6c, f), thus making
these elements more accessible for CPSF binding. In support of this
hypothesis, substitutions that further stabilized these stem loops
reduced tail lengthening (aurkaip1.L: A-to-G at position –35 and C-to-U
at position –14, Supplementary Fig. 6a, c; ccnb2.L: C-to-G at position
–54 and C-to-G at position –16, Supplementary Fig. 6d, f). Together,
these analyses indicated that sequences within the 3′ UTR can indir-
ectly affect poly(A) tail-length changes by modulating the structural
accessibility of the CPE and the PAS, amechanism that likely applies to
select mRNAs30 and thus had not yet been effectively learned by PAL-
AI-m.

As for the ccnb1.2.L mRNA, PAL-AI-m under-predicted the effects
of a CPE that overlapped with the PAS (Supplementary Fig. 7a, b).
Binding of CPEB1 to this overlapping CPE presumably prevented CPSF
from recognizing the PAS, thus inhibiting cytoplasmic polyadenylation
as previously suggested44. Supporting this hypothesis, the C-to-U
mutation at position –18 of magoh.S mRNA created an overlapping
CPE, which reduced tail lengthening (Supplementary Fig. 5f).

Despite some discrepancies between the predictions and experi-
mental results, these analyses demonstrated that, overall, PAL-AI can
accurately predict tail-length changes caused by single-nucleotide
mutations within mRNA 3′ UTRs.

PAL-AI predicts poly(A) tail-length change in mammalian
oocytes
Because principles of poly(A) tail-length control during oocyte
maturation are highly conserved among frogs,mice, and humans14, we
asked if PAL-AI trained from frog oocyte data could predict tail-length
changes during mammalian oocyte maturation. For mouse oocytes,
PAL-AI achieved moderate accuracy (Supplementary Fig. 8a; Rs = 0.57,
Rp = 0.58). The performance of the model was likely affected by
unmatched developmental stages between frogs and mice, and also
global deadenylation that was independent of 3′-UTR sequences13,14.
Similar predictive power for PAL-AI was also observed for human
oocytes using published datasets (Supplementary Fig. 8b; Rs = 0.61,
Rp = 0.59), even though the humanmeasurementswere acquired using
a different sequencing protocol and platform (PacBio)24.

To minimize prediction errors arising from species-specific
sequence composition and experimental variability, we developed a
multi-species PAL-AI model trained on pooled data from frogs, mice,
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and humans, using the same approach as for our frog endogenous
mRNAs and injected mRNAs. This model, termed PAL-AI-ms (“ms” for
multi-species), showed improved performance for both mouse
(Fig. 6a; Rs = 0.63, Rp = 0.64) and human oocytes (Fig. 6b; Rs = 0.68,
Rp = 0.66), while maintaining comparable accuracy for frog oocytes
(Supplementary Fig. 8c; Rs = 0.79, Rp = 0.77). In addition, the model’s
predictions also correlated well with independent tail-length mea-
surements obtained using Oxford Nanopore Technologies (ONT) for
mRNAs during mouse oocyte maturation13 (Supplementary Fig. 8d;

Rs = 0.69, Rp = 0.69). Although ONT data showed larger absolute tail-
length changes compared to our measurements obtained using Illu-
mina sequencing (HiSeq 2000), both datasets exhibited consistent
trends (Supplementary Fig. 8e). This systematic difference in magni-
tude likely explained why the model under-predicted tail-length
changes in the ONT data (Supplementary Fig. 8d).

In frog, mouse, and human oocytes, tail-length changes strongly
correlate with translational efficiency changes10,13,14. As a result, our
model-predicted tail-length changes were expected to be informative
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regarding up- and down-regulation of mRNA translation—not only for
endogenous mRNAs but also for any mRNAs with known 3′-UTR
sequences. To confirm this expectation, we predicted tail-length
changes for a series of reporter mRNAs with different 3′-UTR
sequences used for assessing translational regulation during mouse
oocyte maturation12. Our model-predicted tail-length changes corre-
sponded well with the reported translational efficiency changes
(Fig. 6c; Rs = 0.89, Rp = 0.91).

Although tail-length control during oocyte maturation is highly
conserved among vertebrates, tail lengthening and associated trans-
lational upregulation are known to be required for mRNAs from only a
few genes. Conserved tail lengthening of mRNAs from orthologous
genes may shed light on the functional significance of tail lengthening
during oocyte maturation and early development, but mRNAs from
only 19 genes with conserved tail lengthening have been identified14.
Part of the reason for this small number is that mostmRNAs could not
be evaluated because they lacked tail-length measurements in at least
one of the three species14. To overcome this limitation, we used our
model-predicted tail-length changes for cases in which tail-length
measurements were unavailable, resulting in the identification of
another 264 genes (57, 108, and 99 with one, two, and three predicted
values, respectively) whose mRNA poly(A) tails were either extended
or predicted to be extended ≥15 nt in all three species (Fig. 6d, Sup-
plementary Fig. 8f, g). Most of these mRNAs had increased transla-
tional efficiency, and for those for which translational efficiency
changes had not been measured, PAL-AI-predicted tail-length increa-
ses could be informative. A Gene Ontology analysis of these genes
revealed enrichment of molecular pathways such as cell cycle, micro-
tubule cytoskeleton organization, cell division, and chromosome
organization, which are crucial for meiosis and presumably prepare
the zygote for cell divisions of early embryonic development (Fig. 6e).

Variants predicted to disrupt poly(A)-tail lengthening are under
negative selection in humans and throughout vertebrates
Next, we asked if genetic variants predicted to influence tail-length
changes during oocyte maturation have been under evolutionary
selection.We analyzed human 3′UTRs by using PAL-AI-ms to predict the
effects of all possible single-nucleotide mutations within their last 100
nt. For each position, we calculated the average difference in predicted
tail-length change when mutated to alternative nucleotides and classi-
fied the wild-type nucleotide by the direction of the effect and severity
whenmutated: tail-length reduction (severe [≤ –25 nt],moderate [–25 to
–15 nt], mild [–15 to –5 nt]), minimal-impact [–5 to 5 nt], and tail-length
increase (mild [5 to 15 nt], moderate [15 to 25 nt], severe [>25 nt]).
Comparing these predictions to phyloP scores, a conservation metric
based on the alignment of 100 vertebrate genomic sequences45,46,
revealed strong evolutionary constraints, with conservation levels
tracking predicted functional impact. For example, nucleotides for
which mutations would cause severe tail-length reduction showed

significantly higher phyloP scores than moderate-impact sites
(Mann–Whitney U test), which in turn were more conserved than mild-
impact sites, with minimal-impact sites being least conserved (Fig. 7a,
Supplementary Fig. 9a, Supplementary Data 5). Nucleotides for which
mutations would cause tail-length increase showed a parallel but weaker
trend, with only mild/moderate-impact sites exhibiting significantly
elevated conservation relative to minimal-impact sites (Fig. 7a, Supple-
mentary Fig. 9a, SupplementaryData 5). This is likely in part because tail-
length shortening during oocyte maturation is non-specific13,14,22,23 and
therefore very few sites, when mutated, would result in tail-length
increase (Supplementary Data 5). Overall, these findings indicate that
genomic positions at which mutations would substantially alter poly(A)
tail-length changes during oocytematuration have been under purifying
selection in the vertebrate lineage.

We also asked if genetic variants predicted to influence tail-length
control during oocyte maturation might have functional consequences
for human health. To this end, we analyzed ~8.4 million 3′-UTR variants
from the All of Us Research Program47 using PAL-AI-ms. For each variant,
we calculated its predicted effect size as the difference in predicted tail-
length change relative to the reference allele (Fig. 7b). Focusing on the
last 100 nt of each 3′ UTR (~0.85 million variants), we binned variants by
predicted effect size the same way as we had done for the conservation
analysis and examined their relative fractions in each bin for groups with
different allele frequencies. This analysis revealed a striking allele-
frequency-dependent depletion of tail-lengthening-disrupting variants.
For example, variants predicted to severely disrupt tail-lengthening
showed significant depletion (2-, 3-, 7- and 10-fold) in common variants
(allele frequencies >0.01%, >0.1%, >1%, and >10%, respectively) compared
to singletons (P= 1.7 × 10–10, 6.8 × 10–8, 8.3 × 10–7, and 8.1 × 10–4, Fisher’s
exact test, Supplementary Data 5). Depletion of frequent alleles was also
significant, albeit to a lesser degree, for variants predicted to impart
moderate (1.5–1.9 fold) and mild (1.3–1.7 fold) reduced tail-lengthening
(Fig. 7c, Supplementary Data 5). This depletion pattern remained sig-
nificant even after excluding all variants that would introduce or ablate
PAS motifs (Supplementary Fig. 9b, Supplementary Data 5), which were
presumably also under negative selection due to their nuclear role in
specifying mRNA cleavage and polyadenylation48. In contrast, gain-of-
function variants were not consistently depleted in common alleles
compared to singleton variants (Fig. 7c, Supplementary Data 5). Simi-
lar results were observed when PAL-AI was applied to the gnomAD
v4.1 datasets49 (Fig. 7d, Supplementary Fig. 9c, d, Supplementary Data 5).
Together, these analyses indicated that variants that disrupt poly(A) tail-
length control, particularly those that disrupt tail lengthening during
oocyte maturation, are under negative selection in humans.

Discussion
We developed PAL-AI, a neural network model that predicted tail-
length changes in frog, mouse, and human oocytes using only
sequence information. PAL-AI captured consequential sequence

Fig. 4 | Experiments validate predicted effects of single-nucleotide substitu-
tions. a Schematic of the library of single-nucleotide substitutions used for injec-
tion. b Summary of the relationships between the measured and the PAL-AI-s- or
PAL-AI-m-predicted effects of single-nucleotide substitutions. For each of the 10
mRNAs in the single-nucleotide mutagenesis library, Pearson R values were calcu-
lated based on the differences in tail-length change predicted by the indicated
model (key) and those measured for each single-nucleotide substitution, compar-
ing between 0 h and 7 h post-progesterone treatment. The top-performing model
trained fromeach fold of the ten-fold cross-validationwas used for predictions (ten
models total for each architecture). P values are from one-sided t-tests. Box and
whiskers indicate the 10th, 25th, 50th, 75th, and 90th percentiles. n.s. not sig-
nificant (P ≥0.01). c PAL-AI-m prediction of the effects of single-nucleotide sub-
stitutions that disrupt either a CPE or a PAS (AAUAAA). Error bars indicate the
standard error of the mean of variants from the single-nucleotide substitution
library bearing the indicated substitutions. d PAL-AI-m prediction of the effects of

single-nucleotide substitutions of the mos.L mRNA. Plotted for each single-
nucleotide substitution is the difference in tail-length change predicted by PAL-AI-
m compared to thatmeasured for thatmRNAvariant injected into frog oocytes and
collected 0 h and 7 h post-progesterone treatment. On the sides are density dis-
tributions for the predicted and measured differences in tail-length change. e PAL-
AI-m prediction of the effects of single-nucleotide substitutions of the tpx2.L
mRNA;otherwise, as in (d). f Impact of single-nucleotide substitutions onpredicted
and measured tail-length changes for the mos.LmRNA. Shown are results for the
last 100 nt of the mos.L 3′ UTR. The heatmaps indicate the predicted (top) and
measured (bottom) differences in tail-length change (DTLC) as a result of changing
each nucleotide (x axis) to each of the three non-wild-type alternatives (y axis), with
x indicating the non-substituted, wild-type nucleotide. The line plots and logo plots
are as in Fig. 2g. Dashed rectangles indicate the CPE and PAS. g Impact of single-
nucleotide substitutions on predicted and measured tail-length changes for the
tpx2.L mRNA; otherwise as in (f).
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motifs and contextual effects without any feature generation, thereby
allowing us to predict tail-length changes of mRNAs with any
sequence. Moreover, PAL-AI helped us identify UGU/GUU-containing
motifs contributing to poly(A)-tail lengthening. Although previously
implicated in regulating translation35,38,39,50–52, these motifs had not
been associated with tail-length control. Our analyses of the injected
mRNA reporter libraries further demonstrated that their tail-
lengthening effects were causal rather than correlative with other
features of endogenousmRNAs. Individually, thesemotifs contributed

weakly to polyadenylation, but multiple copies did result in con-
siderable tail lengthening, as illustrated by the mad2l1.L mRNA. Their
precise roles in affecting tail lengths might be context-dependent, as
some might serve as CPE-like motifs promiscuously bound by CPEB1,
whereas others might be recognized by RNA-binding proteins such as
DAZL, which also interacts with CPEB1 and thus might help facilitate
recruiting CPEB1 to the 3′ UTR.

The ability of PAL-AI to predict tail-length changes of both
endogenous mRNAs and injected mRNAs enabled us to capture the
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Fig. 5 | Auxiliary motifs and structural accessibility influence tail-length
changes. a Impact of single-nucleotide substitutions on predicted and measured
tail-length changes for the mad2l1.LmRNA. Dashed rectangles indicate UGU/
UGUUU elements that each appears to modestly promote poly(A)-tail lengthening.
The arrows point to instances of new CPEs generated by substitutions and their
associated increases in tail-length changes. Otherwise, this panel is as in Fig. 4f.
b PAL-AI-m prediction of the effects of single-nucleotide substitutions of the
mad2l1.LmRNA. Otherwise, this panel is as in Fig. 4d. c PAL-AI-m prediction of the
effects of single-nucleotide substitutions of the dbf4.LmRNA.Otherwise, this panel
is as in Fig. 4d. d Impact of single-nucleotide substitutions on predicted and

measured tail-length changes for the dbf4.LmRNA. Dashed rectangles indicate two
regions predicted to pair with each other, forming the stem of a hairpin. Arrows
indicate CPE-creating substitutions with tail-length changes either correctly (solid)
or incorrectly (dashed) predicted by PAL-AI-m. e EternaFold-predicted maximum
expected accuracy secondary structure of the last 100 nt of the dbf4.L 3′ UTR. The
dashed rectangle indicates the stem of the hairpin highlighted in (d). Triangles
indicate positions where CPE-creating substitutions with tail-length changes either
correctly (solid) or incorrectly (hollow) predicted by PAL-AI-m, as shown in (d). The
PAS is shaded light blue. Base pairings are indicated with thick lines for G–C, thin
lines for A–U, and a dot for the G–U wobble.
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consequences of most single-nucleotide substitutions. For a few
mRNAs, PAL-AI under-performed in predicting the outcomes of sub-
stitutions—often those substitutions that appeared to alter the struc-
tural accessibility of CPE or PAS elements. However, when we
combined base-pairing probability, as predicted by RNAfold32, with
mRNA sequences as the input for our model, the performance did not
significantly improve, which suggested that more accurate para-
meterization of mRNA structure would be needed for the model to
account for structural accessibility. Perhaps incorporating data from
in-oocyte structural probing of mRNAs will further improve themodel
predictions53–56.

Because of the strong influence of tail length on translational
efficiency in oocytes, we envision that our model can be used to
engineer mRNA 3′-UTR sequences for desired protein expression in
these systems. Furthermore, bypredicting tail-length changes that had
not yet been measured in frog, mouse, or human oocytes, our model
helped identify a group of genes that appear to undergo conserved
mRNA tail-lengthening during oocyte maturation. Although for
mRNAs of most of these genes, the importance of translational upre-
gulationduring oocytematuration and early embryogenesis still needs

to be examined, knowledge of these genes can inform efforts to
identify mutations that affect human female fertility.

Indeed, genetic variants predicted by PAL-AI to disrupt tail-length
control during oocyte maturation have been under negative selection
in vertebrates including humans. Presumably, some of these variants
perturb sequence elements or contextual features important for
cytoplasmic polyadenylation, thus leading to failed translational acti-
vation of mRNAs encoding proteins important for oocyte maturation
or early embryonic development. While not evidently observed in this
study, as larger genomicdata sets become available andmore sensitive
analyses are conducted, negative selection might also be detected for
mutations predicted to lead to inappropriate activation of transla-
tionally repressed mRNAs during these developmental transitions.

Although the observed depletion of variants predicted to disrupt
tail lengthening persisted after excluding PAS-perturbing substitu-
tions, we cannot rule out that some of this selection pressure may
reflect pleiotropic effects on other RNA-processing events. For
instance, U-rich sequences resembling the CPE near the mRNA 3′ end
can serve as binding platforms for Fip1 in nuclear pre-mRNA
processing57,58. Variants disrupting these motifs could simultaneously
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Fig. 6 | Multi-species PAL-AI predicts tail-length changes of endogenous
mRNAs ofmouse and human oocytes. a Performance of themulti-species PAL-AI
model on mouse mRNAs. Plotted are the tail-length changes predicted by PAL-AI-
ms to occur upon mouse GV-to-MII oocyte maturation as a function of the mea-
sured changes. Each point represents a unique poly(A) site of an endogenous
mRNA.Otherwise, this panel is as in Fig. 1c.b Performanceof themulti-species PAL-
AI model on human mRNAs. Otherwise, this panel is as in (a). c Ability of predicted
tail-length changes to explain translational efficiency changes. Plotted is the rela-
tionshipbetween themulti-species PAL-AImodel-predicted tail-length changes and
translational efficiency changes measured for seven mRNA reporters upon mouse
GV-to-MII oocyte maturation12. The P value was from a one-sided correlation test.

d Genes predicted or shown to have substantial mRNA tail-lengthening (≥15 nt) in
human (H.s.), mouse (M.m.), and frog (X.l.) oocytes. Heatmaps show measured or
predicted (dots) tail-length changes (left) and measured translational efficiency
changes (right), comparing between humanGV andMII oocytes, mouse GV andMII
oocytes, and frog oocytes 0 h and 7 h post-progesterone treatment. Only genes
with the model-predicted values in one of the three species were shown. Gray
indicates values not available. e Select ontologies enriched for genes with sub-
stantial mRNA tail-lengthening (≥15 nt, predicted, if not measured) in human,
mouse, and frog oocytes. P values were from one-sided Fisher’s exact tests and
corrected for multiple testing72.
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impair both cytoplasmic polyadenylation and nuclear 3′-end forma-
tion. Future integration of PAL-AI with tools capable of predicting 3′-
end-processing defects, such as APARENT248 or PolyaID59, could help
distinguish these potentially confounding selective pressures.

Past efforts to identify genetic causes of female infertility have
primarily focused on variants in coding regions, perhaps in part due to
the use of exome sequencing19. However, mutations that explain
defects in oocytes and early embryos associated with female infertility
fall in fewer than 20 genes and are found in only a small portion of
patients60. Given the importance of tail-length and translational con-
trol in human oocytes and early embryos, as well as our analyses of
variant abundancies in thehumanpopulation, someunexplained cases
are presumably due to disruptivemutations occurring in 3′UTRs.With
more genomes with female reproductive failures being sequenced, we
will be able to start assessing contributions by these variants, and PAL-
AI can be a valuable tool complementing current approaches, such as
genome-wide association studies, to help nominate causal variants
within 3′ UTRs.

Methods
Annotations of poly(A) sites and 3′ UTRs
Annotations of poly(A) sites and 3′ UTRs of frog, mouse, and human
oocytes were obtained from a previous study14.

Linear regression models for poly(A) tail-length changes
Poly(A) tail-length changes for each isoform of frog oocyte endogen-
ous mRNAs were calculated as the difference between median tail
lengths measured at 0 h and 7 h post-progesterone treatment,
requiring at least 50 poly(A) tags at both time points, as reported
previously14. Only 3′ UTRs not annotated as “uncertain” in previously
curated annotations14 were included.

K-mer featureswere defined as the positions and counts of all k-mers
in the length of either 5–6 nt or 4–7 nt within the specified regions of the
3′ UTR of each mRNA isoform for the linear regression model. For iso-
forms with 3′ UTRs shorter than the length of the specified region, the
entire 3′ UTR was examined. Isoforms with 3′ UTRs shorter than 10 nt
were excluded. Each 3′ UTR was appended with the tri-nucleotide
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Fig. 7 | Variants predicted to disrupt poly(A)-tail lengthening are selected
against in the human population and throughout vertebrates. a Negative
selection among sequenced vertebrate species of variants predicted to be more
disruptive of tail lengthening. Shown are distributions of phyloP scores45,46,
grouped by the averaged differences in PAL-AI-predicted tail-length changes for
individual nucleotides when substituted to each of the three alternative nucleo-
tides. Only positions within the last 100 nt of 3′UTRs were included in this analysis.
For the tail-length difference bin, parentheses indicate values not included, while
square brackets indicate values included. Box and whiskers indicate the 10th, 25th,
50th, 75th, and 90th percentiles. Statistical test results are reported in Supple-
mentary Fig. 9a and Supplementary Data 5. b Predicted effects on the tail-length
change for human variants. Shown is the PAL-AI-predicted difference in the tail-

length change for each variant reported in the All of Us Research Program (exome
callset v8) and that of the reference allele, plotted as a function of the variant
position in its 3′UTR. Colors indicate allele frequencies (key). cDepletion in human
3′ UTRs of alleles predicted to disrupt poly(A)-tail lengthening. Shown are relative
frequencies of variants, grouped by differences in predicted tail-length change,
among cohorts of variants with different allele frequencies (AF) reported in the All
of Us Research Program (exome callset v8). Only variants within the last 100 nt of 3′
UTRs were included in this analysis. Binned P values (circles at the top) were from
one-sided Fisher’s exact tests performed for each cohort against singletons. Sta-
tistical test results are reported in Supplementary Data 5. d Same as (c), but for
variants reported in gnomAD v4.1 dataset.
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sequence “AAA” before k-mer extraction. This sequence was treated as
part of the 3′ UTR for both k-mer feature calculation and the specified
region length (e.g., for the “last 1000 nt” region, the last 997 nt of the
annotated 3′ UTR were used before appending “AAA”).

The number of each k-mer Nk was counted with the oligonucleo-
tideFrequency function from the R package Biostrings61. A composite
positional feature value Pk was computed for each k-mer to summarize
its positional distribution relative to the 3′ end:

Pk =

P

j

1
max dj , 1ð Þ , j =2 +

0, j 2 +

8
<

:
ð1Þ

where dj is the distance from the 3′ end to the j-th occurrence of the k-
mer. The linear regression model predicting tail-length change Li for
isoform i was defined as:

Li = c
0 +

X

k

ckN � Nk
i +

X

k

ckP � Pk
i ð2Þ

where c0, ckN , and ckP are the model coefficients to be optimized. All
features were scaled using RobustScaler from the Python scikit-learn
package62. Data were randomly stratified into 10 folds using
StratifiedKFold62, maintaining the proportion of isoformswith 0, 1, 2, 3,
or ≥ 4 CPE (UUUUA) elements within their 3′ UTRs.

The model was implemented using a single Dense layer in
Tensorflow63 and trained with the Adam optimizer. Hyperparameters
were tuned using the Optuna64 framework. The negative R2 (between
measured and predicted tail-length changes) for the validation data
was used as the objective to minimize for optimization. Final hyper-
parameterswere: learning_rate = 0.0025169, l1_regularizer =0.000166,
l2_regularizer = 0.0001097, epochs =100, batch_size = 50, loss = ‘mse’,
patience = 10. Model performance was evaluated in 10-fold cross-vali-
dation. In this procedure, the 9-fold data were used for model training
and validation (further split into 90% for training and 10% for valida-
tion, stratified by CPE count) while the remaining fold was used for
testing the model performance. After each epoch, the model was
evaluatedon the validation set. Training stoppedearly if validation loss
did not improve over 10 consecutive epochs, and the best model
(based on the lowest validation loss) was saved. This training/valida-
tion procedure was repeated 5 times, accounting for differences in
weight initializations, and the model with the highest R2 (between
measured and predicted tail-length changes) for the validation data
was selected to predict the remaining fold. The procedure was rotated
across all 10 folds. Final model performance was assessed by con-
catenating predictions fromall test folds and comparing themwith the
measured tail-length changes.

PAL-AI for poly(A) tail-length changes
The following datasets were used to train or validate different PAL-AI
models: 1) the frog endogenous mRNA dataset: same as that used in
the linear regressionmodel; 2) the N60(LC)-PASmos library dataset: tail-
length changes of the N60(LC)-PASmos librarymRNAs injected into frog
oocytes, comparing median tail lengths measured at 0 h and 7 h post-
progesterone treatment during oocyte maturation, requiring at least
50 poly(A) tags at both time points; 3) the single-nucleotide muta-
genesis library dataset: tail-length changes of the single-nucleotide
mutagenesis library mRNAs injected into frog oocytes, comparing
median tail lengths measured at 0 h and 7 h post-progesterone treat-
ment during oocyte maturation, requiring at least 50 poly(A) tags at
both time points; 4) the mouse endogenous mRNA dataset: tail-length
changes of mouse endogenous mRNAs, comparing between median
tail lengths measured in GV and MII oocytes, requiring at least 50
poly(A) tags in both replicate-merged datasets as described
previously14; 5) the human endogenous mRNA dataset: tail-length

changes of human endogenous mRNAs, comparing between median
tail lengths measured in GV and MII oocytes, requiring at least 50
poly(A) tags in both datasets as described previously14.

To encode sequences as input for PAL-AI, RNA sequences from
the specified regions of eachmRNA isoform’s 3′UTRwere appended at
the 3′ end with the tri-nucleotide sequence “AAA”. For isoforms with 3′
UTRs shorter than the specified region, the entire 3′UTRwas used, and
“N”swerepadded at the 5′ end. IsoformswhoseAAA-appended3′UTRs
were shorter than 10 nt were excluded. Sequences were one-hot
encoded into four channels, with “N” represented by a zero vector.
When coding regions were included, they were padded to the 5′ end of
the AAA-appended 3′UTRs. If the total length was still shorter than the
required input length, “N”s were padded at the 5′ end. A fifth channel
was added, where a value of 1 marked 3′-UTR positions and 0 marked
coding or padded regions. When secondary structure information was
included, RNAfold32 was used to predict structure from the AAA-
appended 3′ UTR. The unpairing probability of each nucleotide was
added as a sixth input channel. Nucleotides from the coding region
and padded “N”s were assigned a value of 0 in this sixth channel. The
inputs for different final PAL-AI models were summarized in Supple-
mentary Data 1.

The base PAL-AImodel PAL-AI-s integrated a convolutional neural
network with a recurrent neural network, in an architecture similar to
Saluki31. It consisted of fourmodules: 1) Input block, which included an
input layer, a 1D convolution, a normalization layer, and an activation
layer. 2) Convolutional block, which included repeated structure, with
each repeat comprising a 1D convolution layer, a normalization layer,
an activation layer, a 1D maxpooling layer, and a dropout layer. 3)
Recurrent block, which included a recurrent layer (GRU, BiGRU, LSTM,
or BiLSTM), a normalization layer, and an activation layer. 4) Dense
block, which contains a dense layer, a dropout layer, a normalization
layer, an activation layer, and afinaldense layerwith a singleoutput for
the tail-length change. All convolution layers used the same number of
filters and kernel size. The convolutional layers, the recurrent layer,
and the first dense layer used the same kernel initializer and regular-
izer. All dropout layers had the samedropout rate. Layer normalization
was used in all blocks, except for the Dense block, in which batch
normalization was used. All activation layers used the same function—
either SELU, SiLU (Swish), or Leaky ReLU. If SELU was used, the Lecun
normal initializer and Alpha Dropout were applied. Otherwise, the HE
normal initializer and regular Dropout were used.

The PAL-AI-s model was implemented using the Python Tensor-
Flow package63 and trained with the Adam optimizer. Loss functions
used were either the mean squared error (MSE) or the mean absolute
error (MAE). The hyperparameter tuning, cross-validation strategy,
and model performance evaluation followed the same procedures as
the linear regression model.

For the N60(LC)-PASmos library, PAL-AI-s used the same archi-
tecture. Sequences in the 60-nt random region and constant region
were appended with “AAA” and one-hot encoded. Training and eva-
luation were performed as described for endogenous mRNAs.

The PAL-AI-m and PAL-AI-ms models shared the same base
architecture as PAL-AI-s, with three key modifications. First, an
additional input feature was included to indicate the dataset group
for each mRNA sequence. Second, rather than a single output, the
final dense layer outputs multiple values, with one per dataset group.
Third, a custom gathering layer was added after the dense layer to
select the appropriate group-specific output based on the input
dataset label. For the PAL-AI-m model, the frog endogenous mRNA
dataset (output head 1) and the N60(LC)-PASmos library dataset
(output head 2) were used. For the PAL-AI-ms model, the frog
endogenous mRNA dataset (output head 1), the human endogenous
mRNA dataset (output head 2), and the mouse endogenous mRNA
dataset (output head 3) were used. All input sequences were encoded
as described for PAL-AI-s. Training and evaluation followed the same
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procedure as PAL-AI-s, with the following differences to accom-
modate multiple groups. First, when splitting the training and vali-
dation set, the validation set contributed 10% of its data for the group
with the smallest dataset, and validation sets from all other groups
were downsampled to match this number. Second, for training, data
from larger groups were similarly downsampled per epoch to match
the smallest group, and batches were alternated across groups.
Third, the average of negative R2 values (between measured and
predicted tail-length changes) across validation groups was used as
the objective to minimize during hyperparameter optimization.

A ResNet-based variant of PAL-AI was also tested, replacing the
second module of PAL-AI-s with a dilated convolutional ResNet
architecture33 comprising seven groups with dilation rates of 1, 2, 4, 8,
4, 2, and 1. Each group contained four blocks, each consisting of a
dilated convolution layer, layer normalization, an activation layer, a
second dilated convolution layer, another layer normalization, a resi-
dual skip connection, and a final activation layer.

For all PAL-AI models, an optional input representing the initial
tail length could be provided. When included, this value was con-
catenated to the input of the final dense layer. Although incorporating
this feature improved performance for some datasets, it reduced
generalizability, as initial tail-length measurements were not available
for all mRNAs.

For all predictions made with PAL-AI, input sequences were
encoded using the same schemeas duringmodel training. To compare
model performance on the single-nucleotide mutagenesis library,
predictions were generated using either PAL-AI-s (endogenous mRNA-
trained) or PAL-AI-m (endogenous mRNA-specific output head 1).
Unless otherwise specified, final predictions were computed as the
average output across the best-performing models from each fold of
the 10-fold cross-validation to reduce fold-specific or initialization-
specific biases and improve overall generalizability.

Hyperparameters for each PAL-AI model were optimized using
Optuna64, with final values summarized in Supplementary Data 1.

In silicomutagenesis (ISM). For frog and humanendogenousmRNAs,
all 3′ UTRs were analyzed except those previously annotated as
“uncertain”14. For the N60(LC)-PASmos library, all 3′ UTRs in the curated
reference were used. Input sequences were constructed and encoded
as described for PAL-AI. Tail-length changes of thewild-type sequences
were predicted using PAL-AI. For ISM, each nucleotide within 3′ UTRs
was individually substituted with each of the three possible alternative
nucleotides (the fifth channel annotating the 3′ UTR was not altered),
and the tail-length change of each mutant was predicted with corre-
sponding PAL-AI models: PAL-AI-s (frog endogenous mRNA-trained)
for frog endogenousmRNAs, PAL-AI-s (N60(LC)-PASmos library-trained)
for N60(LC)-PASmos library mRNAs, and PAL-AI-ms (human-specific
output head 2) for human endogenous mRNAs. The difference
between the predicted tail-length change of the wild-type and each
mutant was then calculated.

To examine the tail-length effect of losing or gaining a k-mer,
differences between the predicted tail-length change of the wild-type
and those of all single-nucleotide substitution mutants that disrupted
the original k-mer or introduced a new k-mer were averaged across all
instances of that k-mer within the last 300 nt of 3′UTRs from all mRNA
isoforms.

In some cases, k-mer-associated differences in predicted tail-
length changes were examined in an iterative exclusion process. Only
mutations within the last 300 nt of 3′ UTRs were considered. In each
round of the iteration, mutations that disrupted (for k-mer loss) or
introduced (for k-mer gain) any k-mer already present in an exclusion
list (initially empty) were ignored. The average difference in predicted
tail-length change between the wild-type and the mutant was then
calculated for all k-mers that were not in the exclusion list. The k-mer

with the largest tail-length increase (for k-mer gain) or decrease (for k-
mer loss) was recorded and added to the exclusion list before starting
the next round. The iteration continued until no k-mer showed a sta-
tistically significant increase (or decrease) in predicted tail-length
change (Welsh’s t-test; Bonferroni-adjusted P >0.05).

Motif logos were generated from 8-mers associated with poly(A)
tail-length changes. K-mers were filtered by three metrics: the tail-
length difference (positive for increase or negative for decrease), the
Z-score of this difference (≥3 or ≤–3), and the Bonferroni-corrected P
value from Welch’s t-test (<0.01). Tail-length changes were used as
weights for generating motif logos. Retained k-mers were ranked by
tail-length changes in descending order when examining motifs asso-
ciated with tail-length increases, and in ascending order when exam-
ining motifs associated with tail-length decreases. An iterative
clustering procedure was applied to group similar k-mers. Starting
with the top-ranked k-mer, each subsequent k-mer was aligned to all
entries in a growing seed list (initially empty). The first k-mer was
added to the seed list without alignment. Alignments were ungapped
and scored across all possible positions using the following scheme: +1
for a match, –1.5 for a mismatch, and –1 for a position offset. The
alignment with the highest score (required to be >–0.1) was retained,
and the k-mer’s weight was assigned to this alignment. If multiple
alignments tied for the highest score—whether due to different posi-
tions or different seedmatches—all tied alignments were retained, and
the weight was evenly distributed among them. If no alignment
exceeded the threshold score, the k-mer was considered unaligned
and added to the seed list as a new seed. This procedure continued
until all retained k-mers had been either aligned to an existing seed or
added to the seed list. For each seed and its aligned k-mers, a position
weight matrix (PWM) was computed. At each alignment position,
nucleotide-specificweightswere summedacross all aligned k-mers. If a
k-mer did not contribute a nucleotide at a given position, its weight
was distributed equally among A, C, G, and U. The summed weights
were then normalized by the total weight at each position to yield
nucleotide probabilities. Motif logos were generated from the result-
ing PWMs using the R package ggseqlogo65.

Motif insertion analysis
Filtering and encoding of input sequences were performed as in the
ISM analysis. To insert a motif, the sequence of the same length at a
specified position within the 3′UTR of anmRNAwas replaced with the
motif. The fifth channel annotating the 3′ UTR was left unchanged.
PAL-AI was then used to predict the tail-length changes of both the
wild-type and motif-inserted mutant. The difference between these
predictions was used as the insertion outcome. When analyzing the
relative positioningof the PAS andCPE elements, onlymRNAswhose 3′
UTRs contained at least a PAS within the last 100 nt were included. For
these mRNAs, the relative distance was calculated between each CPE
and the PAS closest to the 3′ end.

Reanalysis of reporter libraries for k-mer-associated tail-length
changes
Poly(A) tail-length measurements of the frog oocyte-injected N60-
PASmos library at 0 h and 7 h post-progesterone treatment and CPEmos-
N60 library at 0 h and 5 h post-progesterone treatment were obtained
from a previous study14. For the N60-PASmos library, the analysis was
restricted to reporter variants containing exactly one instance of the
UUUUA motif within the 3′ UTR. For the CPEmos-N60 library, the ana-
lysis was restricted to reporter variants not containing any AAUAAA or
AUUAAA motifs within the 3′ UTR. For each k-mer, all variants con-
taining that k-mer were identified, and the mean tail length across
those variantswas computed. To assess the positional effect of specific
k-mers, only variants in which the k-mer appeared at a defined position
were included in the calculation.
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Preparation of the N60(LC)-PASmos library
The DNA template for the N60(LC)-PASmos library was generated by
PCRusing primers KXU024 andKXU068, and 2 amol of theN60-PASmos

DNA template used previously14. The reaction (100-µl total volume)
was performed with the KAPA HiFi HotStart Kit (Roche, KK2502). PCR
products were gel-purified using agarose gels (Lonza, 50004) and the
GeneJet Gel Extraction Kit (Thermo Fisher, K0692).

For mRNA library preparation, in vitro transcription was carried
out in a 100-µl reaction containing 40mMTris (pH 8.0), 21mMMgCl2,
2mM spermidine (Sigma, 85558-1 G), 1mM dithiothreitol (GoldBio,
DTT25), 5mM NTP Mix (Thermo Fisher, R0481), 0.2 U yeast inorganic
pyrophosphatase (New England Biolabs, M2403L), 80 U SUPERase·In
(ThermoFisher, AM2694), 2 µgDNA template, and T7 RNApolymerase
(purified in-house, final concentration 6.4 ng/µl). The reaction was
incubated at 37 °C for 3 h. To remove DNA templates, 2 U of DNase I
(New England Biolabs, M0303S) were added, followed by a 20-minute
incubation at 37 °C. To enhance HDV ribozyme cleavage, thermal
cycling was performed (65 °C for 90 s, followed by 37 °C for 5min,
repeated for four cycles in 50-µl aliquots per tube). Before gel loading,
2 µl of 0.5MEDTA (pH8.0) and 100 µl 2×Gel Loading Buffer II (Thermo
Fisher, AM8547) were added. Samples were incubated at 65 °C for
5min, then resolved on 5% urea–acrylamide denaturing gels. Desired
RNA bands were visualized by UV shadowing, excised, macerated, and
eluted overnight (>16 h) at 23 °C in 10mMHEPES (pH 7.5) and 300mM
NaCl with shaking (1400 rpm, 15 s on/105 s off) on a thermomixer. Gel
debris was removed using Spin-X columns (Corning, 8160), and RNA
was precipitated with isopropanol and resuspended in water.

RNA capping was performed using the Vaccinia Capping System
(New England Biolabs, M2080S) according to the manufacturer’s
protocol, with the capping enzyme used at 2U/µl. Capped RNAs were
purified by phenol/chloroform extraction and ethanol precipitation,
then desalted using Micro Bio-Spin P-30 columns (Bio-Rad, 7326250).
To remove 2ʹ,3ʹ-cyclic phosphates generated by HDV ribozyme clea-
vage, capped RNAs (up to 100 µg) were incubated in a 100-µl reaction
containing 50 U T4 polynucleotide kinase (PNK; New England Biolabs,
M0201S), 1× T4 PNKbuffer, and 25U SUPERase·In at 37 °C for 1 h. RNAs
were then purified again by phenol/chloroform extraction and ethanol
precipitation.

Finally, RNAs were resuspended in 1× Gel Loading Buffer II and
further purified using urea–acrylamide denaturing gels as described
above. RNA integrity was verified by visualization on
formaldehyde–agarose denaturing gels as described11, and samples
were stored at –80 °C until use.

Preparation of the single-nucleotide mutagenesis library
The oligo pool was synthesized as SurePrint HiFi Oligo (Agilent Tech-
nologies; Supplementary Data 3). Each oligo contained a variable
region derived from the last 100 nt of the 3′ UTR of one of ten frog
oocyte mRNAs (atp1a1.S, ccnb1.2.L, ccnb2.L, lima1.L, mad2l1.L,
magoh.S,mos.L, tpx2.L, aurkaip1.L, and dbf4.L). At each position, every
nucleotide was mutated to the three alternative nucleotides, yielding
3010 sequences (10 wild-type and 3000 mutants). A 35-nt poly(A)
fragmentwas appended to the 3′ end, and constant sequences (24nt at
the 5′ end and 20 nt at the 3′ end) were added for PCR amplification.
Both forward and reverse strands were included in the pool.

The DNA template for in vitro transcription was assembled by
overlapping PCR using the KAPA HiFi HotStart Kit. Three fragments
were joined sequentially. Fragment 1 (F1) was amplified from the N60-
PASmos template14 with primers KXU024 and KXU236. Fragment 2 (F2)
was amplified from the oligo pool with primers KXS067 and KXU237.
Fragment 3 (F3) was amplified from the plasmid C07111 with primers
KXU110 and KXU068. F1 and F2 were first joined, and the resulting
productwas joinedwith F3 in a 100-µl PCR reaction containing 10pmol
of each fragment, 2 µl KAPAHiFi enzyme, 3 µl 10mMdNTP, and20 µl 5×
KAPAHiFi buffer for 15 cycles, with an annealing temperature of 66 °C.

PCR products were purified using agarose gels and the GeneJet Gel
Extraction Kit. The mRNA library was then in vitro transcribed and
capped, followed by removal of the 3′-end cyclic phosphate as
described for the N60(LC)-PASmos library.

Preparation of the reporter mRNA poly(A) tail-length
standard mix
Each of the four poly(A) tail-length standards was constructed from
two fragments (F1 and F2) joined by overlapping PCR. Both fragments
were amplified from plasmid C071 using the KAPA HiFi HostStart Kit
and the following primer sets: KXU024 and one of KXU290, KXU291,
KXU292, or KXU293 (for F1); KXU068 and one of KXUm019,
KXUm020, KXUm021, or KXUm022 (for F2, yielding tail lengths of 10,
50, 90, or 130 nt). Overlapping PCR was performed in a 50-µl reaction
containing 100 fmol of each fragment, 1 µl KAPA HiFi enzyme, 1.5 µl
10mM dNTPs, and 10 µl 5× KAPA HiFi buffer. After 5 cycles (annealing
temperature 63 °C), primers KXU024 and KXU068 were added to a
final concentration of 300nM along with 1 µl KAPA HiFi enzyme, 1.5 µl
10mMdNTP, and 10 µl 5× KAPAHiFi buffer to bring the final volume to
100 µl. Twenty-four additional PCR cycles were performed. PCR pro-
ducts were purified using agarose gels and the GeneJet Gel Extraction
Kit. Each RNA was in vitro transcribed and capped, followed by
removal of the 3′-end cyclic phosphate as described for the N60(LC)-
PASmos library. The four mRNA standards were mixed at equimolar
concentrations. Each contained a unique 4-nt barcode in the 3′ UTR,
introduced by KXU290, KXU291, KXU292, or KXU293. Sequences of
the four tail-length standards are provided in Supplementary Data 4.

Reporter mRNA library injection and sample collection
Frog oocytes were obtained fromXenopus1 (12005). Healthy Stage V–VI
oocytes were hand-picked and transferred to OR-2 buffer (5mM HEPES
pH 7.6, 82.5mM NaCl, 2.5mM KCl, 1mM MgCl2, 1mM CaCl2, 1mM
Na2HPO4) supplemented with 100 µg/ml Gentamicin (Thermo Fisher,
15750060) and incubated at 18 °C overnight (>16h) for recovery. Injec-
tions were performed at 23 °C using a PLI-100 Plus Pico-Injector. For
both the N60(LC)-PASmos library and the single-nucleotide mutagenesis
library, 4 nl of mRNA (0.1 pmol/µl) was injected per oocyte.

Frog oocytes were matured in vitro in OR-2 buffer supplemented
with 10 µg/ml progesterone (Millipore Sigma, P0130), diluted from a
10mg/ml ethanol-dissolved stock. Maturation timing varied across
batches: in most cases, 50% of oocytes underwent germinal vesicle
breakdown (GVBD; indicated by a white spot on the animal pole) within
3–5 h, and 100% reached GVBD by 7h post-progesterone addition.

At indicated time points post-progesterone treatment, groups of
100 frog oocytes were collected. After removing OR-2 buffer, oocytes
werewashed three timeswith ice-cold buffer RL (20mMHEPES pH 7.5,
100mM KCl, 5mM MgCl2, 1% Triton X-100, 100 µg/ml cycloheximide,
cOmplete protease inhibitor cocktail [MilliporeSigma, 11836170001, 1
tablet/10ml], 10 µl/oocyte). Following the washes, buffer was com-
pletely removed, and oocytes were lysed in buffer RL (10 µl per oocyte)
supplemented with 200 U/ml SUPERase•In (10 µl/oocyte) by vigorous
shaking and pipetting. Lysates were clarified by centrifugation at
5000× g for 10min at 4 °C. Supernatants were mixed with 3 volumes
of TRIzol LS (Thermo Fisher, 10296010).

The 0 h post-progesterone sample was prepared by collecting the
supernatant from lysed, untreated oocytes and mixing it with the
uninjectedmRNA library prior to TRIzol LS addition. All TRIzol-LS RNA
extractions were performed using Phasemaker tubes (Thermo Fisher,
A33248) following the manufacturer’s instructions. Total RNA was
resuspended in 40 µl water (0.4 µl/oocyte).

Library preparation and sequencing of the injected mRNA
libraries
Total RNA (10 µl, ~30 µg) from injected oocytes was combined with 10
amol of reporter mRNA poly(A)-tail-length standard mix. To this, 8
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pmol each of oligos KXSH009 and KXSH010, and 2× SSC (0.3M NaCl,
30mM sodium citrate pH 7.0), were added in a final volume of 50 µl.
The RNA-oligo mixture was incubated at 70 °C for 5min and then
cooled to 23 °C at a rate of 0.1 °C/sec for annealing. The annealed RNA
was incubated with 40 µl MyOne Streptavidin C1 beads (Thermo
Fisher, 65002) for 20min at 23 °C on a thermalmixer (15 s on and 1min
45 s off). The supernatant was separated from the beads with a mag-
netic rack and removed. Beads were washed twice with 300 µl 1× B&W
buffer (5mM Tris-HCl pH 7.5, 0.5mM EDTA, 1M NaCl) and once with
300 µl 2× SSC. RNA was eluted from beads with two sequential incu-
bations: first in 100 µl 10mM HEPES pH 7.5 at 65 °C for 3min, then in
100 µl water at 65 °C for 3min. Eluates were combined, ethanol-pre-
cipitated, and resuspended in 6.5 µl water.

Anti-sense oligo-enriched RNA was ligated to a pre-adenylated 3′
adapter (KXS347a) in a 10-µl reaction containing 5 µM adapter, 50mM
HEPES pH 7.5, 10mM MgCl2, 10mM dithiothreitol, and 1 U/µl T4 RNA
ligase 1 (NEB, M0204S). Ligation was performed at 23 °C for 150min.
Ligated RNA was extracted with phenol/chloroform, ethanol-pre-
cipitated, and resuspended in 11.4 µl water. The ligated RNA was mixed
with0.6 µl 100 µMprimerKXS348and 1 µl 10mMdNTPs in a total volume
of 13 µl, incubated at 65 °C for 5min, and cooled on ice for 1min. Reverse
transcription was performed in a 20-µl reaction using SuperScript IV
(ThermoFisher, 18090050), with 1× SSIV Buffer, 5mM dithiothreitol, 1 U/
µl SUPERase•In, and 200 U enzyme, incubated at 55 °C for 15min. After
reverse transcription, RNA was then hydrolyzed with 3.3 µl 1M NaOH at
90 °C for 10min, followed by neutralization with 24 µl 1M HEPES pH 7.5.
The resulting cDNA was ethanol-precipitated, resuspended in water, and
amplified in a 50 µl PCR reaction using primer KXS037 and a barcoded
primer (KXS057) targeting a constant region of the library. Amplification
was performed using the KAPA HiFi HotStart Kit following the manu-
facturer’s suggested protocol for 11~14 cycles. The final PCR-amplified
product was cleaned up twice with AMPure XP beads (Beckman Coulter,
A63881) at a 1.2× beads-to-sample ratio.

Sequencing was performed on an Illumina HiSeq 2500, with a
custom run of two reads: a 281-cycle first read using primer KXS067,
and a 10-cycle second read using a standard TruSeq sequencing pri-
mer. To generate a reference, the uninjected 0h N60(LC)-PASmos

library sample was also sequenced on AVITI using the same primers,
with custom read lengths of 299 and 10 cycles.

Variant and tail-length analysis for the injected mRNA libraries
To build a reference sequence for the N60(LC)-PASmos library, read 1
from the 0h post-progesterone (uninjected) sample sequenced on
AVITI was trimmed to 81 nt from the 5′ end. Trimmed reads were
screened for the presence of a known constant region from the 3′UTR
of poly(A) tail-length standards (ACCAGCCTCAAGAACACCCGA
ATGG). A maximum of seven mismatches was allowed within the first
25 nt of this sequence, permitting positional offsets from –3 to +3 nt.
Next, the remaining reads were examined for the expected constant
sequence AATAAAGAAATTGATTTGTCT at positions 61–81, again
allowing offsets from –3 and +3 nt. Reads containing a 21-nt segment
with no more than six mismatches to the constant sequence at any
allowed position were retained. For reads with a non-zero offset,
alignment was corrected to zero: if the offset was negative, “N” bases
were prepended to the read; if positive, the corresponding number of
bases was trimmed from the start of the read. These modified reads
were then clustered using UMICollapse66, and clusters with more than
100 supporting reads were retained. The consensus (primary)
sequence from each cluster was used to construct the reference
sequence for the N60(LC)-PASmos library.

During the HiSeq 2500 run for both the N60(LC)-PASmos and
single-nucleotidemutagenesis libraries, a sequencing artifact occurred
at cycle 26 of read 1, resulting in a repeated base call at cycle 26 and 27.
Consequently, base 27 was removed from all reads prior to down-
stream analysis.

For the N60(LC)-PASmos libraries, read 1 sequences from the HiSeq
run were aligned to the reference using STAR (v2.7.1)67 with the fol-
lowing parameters ‘--outFilterMultimapNmax 1 --alignEndsType Local
–clip3pNbases 199 --outSAMattributes All --outSAMtype BAM Sorted-
ByCoordinate’. Poly(A)-tail lengths formapped reads were determined
as previously described for the N60-PASmos libraries14.

For the single-nucleotide mutagenesis libraries, read 1 sequences
from the HiSeq run were aligned to the reference consisting of the last
100 nt of the 3′ UTR from ten selected frog oocyte mRNAs (wild-type
sequences) using STAR (v2.7.1)67 with these parameters ‘--out-
FilterMultimapNmax 1 --outFilterMismatchNmax 1 --alignEndsType
EndToEnd –clip3pNbases 180 --outSAMattributes All --outSAMtype
BAM SortedByCoordinate’. Mutations were classified using the CIGAR
string in the resulting BAM file. Poly(A)-tail lengths for these mapped
reads were determined as for the N60(LC)-PASmos libraries, with the
tail-start position defined as position 101 of read 1. Only wild-type and
single-nucleotide substitution variants were retained. For each variant,
reads sharing the same read 2 sequences (serving as a unique mole-
cular identifier, UMI) were grouped and collapsed. The median tail
length of each collapsed was used as the representative poly(A)-tail
length.

Reference sequences of both the N60(LC)-PASmos and single-
nucleotide mutagenesis libraries are provided in Supplemen-
tary Data 4.

RNA secondary structure prediction
RNA secondary structures for the 3′ UTR sequences in the single-
nucleotide mutagenesis library were predicted using EternaFold (v1.3.1)43

with the parameters “--params parameters/EternaFoldParams.v1”. The
resulting dot-bracket notations were visualized using RNAcanvas68.

Analysis of mouse oocyte data sequenced by Nanopore
Poly(A)-tail lengths of mouse oocyte mRNAs obtained via Oxford
Nanopore Technologies (ONT) sequencing were retrieved from a pre-
vious study13. Tail-length changes were calculated by comparing the
median tail lengths between GV and MII oocytes, requiring at least 50
poly(A) reads in datasets from both stages. As ONT-reported tail-length
measurements were reported per gene rather than per mRNA isoform,
comparisons were made with the primary isoform for each gene,
defined based on HiSeq data14 or predicted using PAL-AI-ms (mouse-
specific output head 3). Analyses were restricted to genes whose pri-
mary isoform represented more than 90% of expression in GV oocytes.

Prediction of poly(A) tail-length changes of reporter mRNAs
during mouse oocyte maturation
To evaluate the relationship between predicted tail-length changes
and experimentally measured translational efficiency changes of
reporter mRNAs injected into mouse oocytes, source data were
obtained from a previous study (see Fig. 4g of the original
publication)12. Translational efficiency change was calculated as the
difference between the mean normalized fluorescence signals in GV
versus MII oocytes (24 h). Reporter mRNA 3′ UTR sequences were
inferred from the cloning and mutagenesis primers used in this study.
Tail-length changes for these sequences were predicted using PAL-AI-
ms (mouse-specific output head 3).

Cross-species analysis of poly(A) tail-length and translational
efficiency changes
Gene orthology tables (frog-to-human from Xenbase, mouse-to-human
from Ensembl) were used to map homologous genes. Measured tail-
length changes were compared between GV andMII oocytes in humans
andmice, and between 0 h and 7h post-progesterone treatment in frog
oocytes. For mRNA isoforms with unique 3′ ends in one of the three
species, predicted tail-length changes from PAL-AI-ms were used if
experimental data were unavailable. For genes with multiple mRNA
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isoforms, the dominant isoform (>50% by tag count in GV oocytes of
humans ormice, or in 0h post-progesterone frog oocytes) was selected.
If a human gene had multiple homologs in frog or mouse, the average
tail-length change across all the homologs was used.

Translational efficiency data derived from ribosome profiling and
mRNA-seq were reprocessed14 and compared between GV and MII
oocytes in humans6 and mice12.

For gene ontology (GO) analysis, genes showing substantial tail
lengthening (≥15 nt, by measurement or prediction) during oocyte
maturation in all three specieswere selected. These geneswere ranked
by the smallest tail-length change across three species, and the ranked
list was submitted to the gost function in the R package gprofiler269

with the parameters “ordered_query = TRUE, user_threshold =0.05,
correction_method = “g_SCS”. The top eight non-overlapping GO:Bio-
logical Process categories (not from the same parent term and ranked
by gSCS-adjusted P value) were reported.

Evolutionary constraint associated with tail-length changes
PhyloP scores from multiple sequence alignments of 99 vertebrate
genomes to the human genome were obtained from the UCSC Gen-
ome Browser46. For each nucleotide within the last 100 nt of human 3′
UTRs with an available phyloP score, the mean PAL-AI-predicted dif-
ferences in tail-length changes when this nucleotide was substituted
with each of the three alternative nucleotides (from ISM analysis) were
calculated.

Prediction of poly(A) tail-length changes for human genetic
variants from the All of Us Research Program and gnomAD
MRNA3′UTR isoforms shorter than 10 ntwere excluded from analysis.
To maximize variant coverage despite incomplete transcript annota-
tions, the “uncertain” 3′ UTRs in the annotations were retained if
their 3′ ends were supported by entries in the PolyA_DB_v3.2
database70.

For the data reported in the All of Us Research Program47, all single-
nucleotide polymorphism and indel variants from short-read whole-
genome sequencing callsets encompassing human exome regions
(version 8) were intersected with human oocyte 3′ UTR genomic coor-
dinates. Variants overlapping these regions were selected. For each
variant, the associated 3′ UTR sequence was reconstructed by sub-
stituting the reference allele with the alternative allele, followed by
appending three adenines (AAA) at the 3′ end. Tail-length changes were
predicted using PAL-AI-ms (human-specific output head 2). The muta-
tional outcome was defined as the difference in predicted tail-length
change between the variant and corresponding wild-type (reference)
sequence. In cases where a variant overlappedmultiple 3′UTRs, the one
with the largest absolute difference in predicted tail-length change was
used for downstream analysis.

For the data reported in gnomAD49, genomic variants from v4.1
(covering 76,215 individuals) were downloaded from gnomad.-
broadinstitute.org. Variants were included if they passed all quality
filters (indicated by “PASS” in the “FILTER” column in the VCF file) and
intersected annotated 3′ UTR genomic locations. Tail-length changes
andmutational outcomes were computed using the same approach as
for the All of Us Research Program.

Quantification and statistical analysis
Graphs were generated and statistical analyses were performed using
R71. Statistical parameters, including the value of n, statistical test, and
statistical significance (P value), are reported in the figures or their
legends, or Supplementary Data 5. No statisticalmethods were used to
pre-determine sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All standard sequencing data generated in this study are available in
the Gene Expression Omnibus under the accession number
GSE280422. Raw intensity data for reporter mRNA tail-length
sequencing cannot be deposited in public databases due to their
large sizes and are available upon request. Other processed data are
available at Zenodo with https://doi.org/10.5281/zenodo.15461000,
except for that derived from gnomAD and the All of Us Research
Program, due to privacy policies on human genetic information. Oligo
sequences used in this study are listed in Supplementary Data 2.
Sequences of the oligo library used for the single-nucleotide muta-
genesis library are listed in Supplementary Data 3. Sequences of the
N60(LC)-PASmos library, the single-nucleotide mutagenesis library, and
the tail-length standards are listed in Supplementary Data 4. Other
publicly available data analyzed in this study are indicated in the
relevant sections of Methods. To access the genomic data reported in
the All of Us Research Program, a Controlled Tier account is required
on theWorkbench (https://workbench.researchallofus.org). Accession
codes with links are listed below: GSE280422 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE280422] (N60(LC)-PASmos library
mRNA and single-nucleotide mutagenesis library mRNA tail-length
data), 15461000 [https://doi.org/10.5281/zenodo.15461000] (Pro-
cessed data in this study), GSE228001 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE228001] (Mouse oocyte mRNA tail-length
data measured by ONT), GSE241107 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=gse241107] (frog oocyte mRNA, N60-PASmos

library mRNA, and CPEmos-N60 library mRNA tail-length data; repro-
cessed mouse and human oocyte translational efficiency data),
HRA001911 [https://ngdc.cncb.ac.cn/gsa-human/browse/HRA001911]
(human oocyte tail-length data), GSE197265 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE197265] (human oocyte ribosome-
footprinting profiling and mRNA-seq data), GSE165782 [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165782] (mouse oocyte
ribosome-footprinting profiling and mRNA-seq data), Figure 4g
[https://static-content.springer.com/esm/art%3A10.1038%2Fs41556-
022-00928-6/MediaObjects/41556_2022_928_MOESM4_ESM.xlsx]
(sourcedata for GFP signals of theGFP-Snd1 3’UTR reporter presented
in Fig. 6c), gnomAD v4.1 [https://gnomad.broadinstitute.org/data]
(humangenomic variant data reported in gnomAD), All of Us Research
CDRv8 [https://workbench.researchallofus.org/] (human genomic
variant data reported in All of Us Research Curated Data Repository
Exome v8).

Code availability
The code for PAL-AI is written in Python 3.8 and available at https://
github.com/coffeebond/PAL-AI. Reporter mRNA tail-length sequen-
cing data analyses were performed using a custom script written in
Python 2.7 and available at https://github.com/coffeebond/MPRA_tail_
seq. The codes for analyses and generating the figures are available at
https://github.com/coffeebond/PAL-AI_paper.
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