
Article https://doi.org/10.1038/s41467-025-62183-1

Electromagnetic dynamic stability analysis
of power electronics-dominated systems
using eigenstructure-preserved LTP Theory

Jiabing Hu 1,6 , Zeren Guo 1,6, Jianhang Zhu 2,6 , Jürgen Kurths 3,
Yunhe Hou 2, Buyang Du 1, Zefei Wu1, Guojie Zhao1, Yunfeng Liu4, Kai Xin4,
Jianbo Guo5 & Shijie Cheng1

Secure operation of power systems, one of the largest man-made systems, is
crucial for economic development and societal well-being. Over the past
century, initiatives like Europe’s Super Grid and China’s Dual Carbon plan have
driven significant changes in power systems, leading to the widespread inte-
gration of diverse power electronic equipment. This has resulted in the
emergence of power electronics-dominated power systems. However, they
have experienced multiple electromagnetic oscillation accidents, causing
large-scale renewable energy disconnections and even power equipment
damage. To address these critical stability issues, now a global concern, the
prevalent method relies on linear time-invariant approximate modeling, i.e.,
the eigenstructure-reconfiguration framework. While effective, it is limited by
the curse of dimensionality in large-scale systems. Recently, the linear time-
periodic theory has shown potential in accelerating calculations, but its ana-
lysis methods remain underdeveloped. In response to these challenges, we
propose here a generalized linear time-periodic participation factor and sen-
sitivity theory within the eigenstructure-preserved framework. This proposed
participation factor significantly improves computational efficiency, out-
performing eigenstructure-reconfiguration methods by orders of magnitude.
Additionally, the proposed sensitivity analysis overcomes the lack of its ana-
lyticity. The potential of our methods is demonstrated through real-world
power systems of China.

Maintaining stability following small perturbations is crucial for
dynamic systems, necessitating reliance on linear stability analysis.
This viewpoint is particularly relevant to power systems1–3, where the
quantitative analysis must adapt to the high-order characteristics:
large-scale power systems often consist of hundreds of thousands of
nodes, and the system states and parameters expand significantly.

Therefore, it is imperative to investigate both the stability itself and the
correlation between stability and states or parameters. Traditional
power systems, dominated by synchronous generators, face sig-
nificant challenges associated with electromechanical dynamics4–10.
Here, the dynamics could be described by a nonlinear time-invariant
(NLTI) model, where linearization is performed around equilibrium
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points (i.e., constant value). Extensive research has been conducted on
this linear stability, focusing on eigenvalues4,5, participation factors6,7,
and sensitivities8,10, all within the framework of the linear time-
invariant (LTI) theory. Eigenvectors, which are fundamental to
participation factors and sensitivities (see Methods), along with
eigenvalues, form the LTI eigenstructure6—the foundation of
electromechanical dynamics. Over the past few decades, their suc-
cessful application has formed the theoretical basis for analyzing and
optimizing the electromechanical stability of traditional power
systems.

Recent developments in power systems, driven by initiatives such
as Europe’s Super Grid plan11, the United States’ Building a Better Grid
Initiative12, and China’s Dual Carbon plan13, have significantly changed
their system composition14,15. The integration of diverse power elec-
tronic equipment, including solar photovoltaics (PV), wind power, and
high-voltage direct current (HVDC) transmission, has become wide-
spread. These changes have resulted in what are now referred to as
power electronics-dominated power systems16 (PEPS). In China, the
transformation of the power grid has accelerated rapidly. By 2023, the
installed capacity of PV increased by 55.2% year-on-year to 610 million
kilowatts, while wind power capacity rose by 20.7% to 440 million
kilowatts. Consequently, the proportion of these renewable sources in
total power generation capacity exceeded 36%17, with projections
indicating it will reach 48% by 2030 and 75.5% by 205018,19. However,
this rapid development of PEPS has raised increasing concerns about
stability issues, particularly those associated with electromagnetic
dynamics. The early adoption of renewable energy in the United States
brought about initial challenges, such as sub-synchronous oscillation
(SSO) accidents in doubly fed induction generator-based wind farms
connected to series compensated networks in Minnesota (2007) and
Texas (2009). These accidents resulted in large-scale turbine trips and
damage to crowbar protection circuits20,21. Similar issues emerged in
China, where in 2010, hundreds of SSO accidents in Hebei Guyuan’s
wind farms led to the disconnection of thousands ofwind turbines22. In
2015, an SSO accident in Xinjiang Hami involving direct-drive perma-
nent magnetic synchronous generator-based wind farms first
occurred23, causing the tripping of several large-capacity synchronous
generators located hundreds of kilometers away, triggering significant
power shortages and system frequency drops. Subsequently, electro-
magnetic oscillation accidents occurred frequently in practical
PEPS24–27, having become a major concern and posing a significant
threat to the safe and stable operation.

However, in the electromagnetic timescale, complex time-varying
characteristics emerge in PEPS due to several phenomena, such as
positive–negative sequence coupling in renewable power generation
(RPG) and switching operations in HVDC systems (see Supplementary
Notes 1 and 2). As a result, electromagnetic dynamics are here best
described using nonlinear time-periodic (NLTP)models, where steady-
state behaviors converge todiverseperiodic orbits. Theseorbits areno
longer limited to simple sinusoidal waveforms at a fundamental fre-
quency; instead, they include rich harmonic content—such as second-
order components inherent in RPG internal dynamics and modular
multilevel converter-based HVDC submodules, as well as the 12k ± 1
characteristic harmonics typical of line-commutated converter (LCC)-
based HVDC systems28–30. Furthermore, unlike traditional electro-
mechanical dynamics, the electromagnetic dynamics of PEPS exhibit
more pronounced high-order characteristics. This is partly due to the
relatively low capacity of individual RPG units, and PEPS often require
hundreds of units to replace a single synchronous generator. Addi-
tionally, PEPS include a large number of states associated with induc-
tance and capacitance at the electromagnetic timescale—factors
typically neglected in electromechanical models. Consequently, elec-
tromagnetic oscillations in PEPS are fundamentally linked to the sta-
bility of periodic orbits in high-order NLTP systems, becoming a topic
of growing interest across physics and engineering31–36.

Many attempts have been made for the electromagnetic dynamic
stability evaluation of PEPS. Currently, the most frequently used
methods, which involve Park transformation37, dynamic phasor (DP)38,
and harmonic state-space (HSS)39, rely on approximately transforming
linear time-periodic (LTP) eigenstructure into LTI eigenstructure
(Supplementary Notes 3). We categorize these methods within the
eigenstructure-reconfiguration (ER) theoretical framework. However,
each of these methods has limitations. The Park transformation
essentiallymultiplies system variables by a rotating exponential factor,
which restricts its applicability to systems dominated by a single fre-
quency component40. Unlike traditional power systems, where the
time-varying inductance matrix of synchronous generators can be
simplified into time-invariant differential-algebraic equations37, the
multiple interacting frequencies in PEPS make such simplification
infeasible—even under balanced grid conditions (see also Supple-
mentary fig. 1). Similarly, while the DP method offers flexibility, it may
fail to capture key dynamics, especially in common control scenarios
like phase-locked loops (PLLs) involving nested trigonometric
expressions. Moreover, HSS utilizes Fourier series and harmonic bal-
ance, resulting in the ER-LTI model’s order being the multiplication of
system orders, making it impractical for large-scale PEPS due to the
curse of dimensionality41. In summary, time-invariant methods strug-
gle to accurately represent the general time-varying behavior of NLTP
systems, limiting the broader application of the ER framework in PEPS.

In recent surveys42,43, linear stability analysis with preserved time-
varying characteristics holds great potential, especially for large-scale
systems. However, its related analysis methods are still immature.
Therefore, we focus on the EP theoretical framework of LTP systems—
inspired by the Floquet general solution44, which allows for a qualita-
tive analysis directly incorporating time-varying characteristics, as
shown inFig. 1. The EP framework avoids the additional transformation
required in the ER framework. Despite its potential, the EP framework
has seen limited development, as earlier research primarily addressed
small-scale, low-order LTP systems, such as the Mathieu equation,
which is fundamental inphysics andhas only second-order dynamics45.
In such cases, the Floquet theory alone is sufficient for stability
assessment. In contrast, PEPS with high-order characteristics require
new tools to analyze the interaction between stability and system
states or parameters. Tomeet thisneed,weproposehere a generalized
LTP participation factor and sensitivity theory, establishing a direct
correlation between eigenvalues and time-varying states or para-
meters. Meanwhile, the proposed LTP participation factor theory
enables an accurate and highly efficient analysis (where the ER fra-
mework faces trade-offs) of the electromagnetic linear stability in
large-scale PEPS. The proposed sensitivity analysis overcomes the lack
of its analyticity. Furthermore, it reveals that traditional LTI stability
analysis is a special case of our more general LTP theory. Our research
can also be extended to dynamic stability analysis in diverse systems
with periodic coefficients31–33.

Analysismethodof LTP systemswith EP framework
Unlike LTI systems that focus on stability around a constant equili-
brium point, LTP systems assess stability within the neighborhood of
periodic orbits. For a stability analysis of linear systems, three key
questions must be answered: Is the system stable? Which factors
dominate its stability? How do system parameters influence stability?
These questions are equally relevant for LTP systems. However,
existing analytical methods for LTP systems remain underdeveloped,
and only the first question has been solved by Floquet theory44 (see
Methods).

To answer the remaining questions, we propose corresponding
analysis methods within the EP theoretical framework of LTP systems
(Supplementary Notes 4 and Supplementary fig. 2). Answering these
questions requires defining the eigenvectors of the LTP system,
which are rarely involved. Here, we construct them through the
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diagonalization and invariance of the system matrix A(t), achieved
using a time-periodic matrix R(t). Then, the column vector rk(t) in R(t)
and the row vector lk(t) in L(t)=R-1(t) denote the right and left eigen-
vectors corresponding to the eigenvalue λk, respectively (Supple-
mentary Notes 4).

The correlation between modes and states, i.e., the participation
factor, helps address the second key question. The key to correlation
assessment lies in establishing a mapping mechanism. Previous
interpretations46,47 based on state and mode energy concepts48 have
been limited to LTI systems. Hence, we generalize this energy-based
interpretationwhen constructing the LTP system’s participation factor
analysis method. Due to the energy summation invariance, the map-
ping relationship between state energy and mode energy can be
expressed by the elements of R(t) and L(t) (Supplementary Notes 4).
Therefore, we define the participation factor matrix P as {R(t)⊙LΤ(t)}0,
where ⊙ denotes the Hadamard product, and {}0 represents the mean
or average value over a period.

The correlation between modes and parameters, i.e., sensitivity,
addresses the third question, which can be treated through the gra-
dient ofmodes toparameters. Unlike traditional approaches that focus
solely on time-invariant parameters31–33, we explore the significant
influence of time-varying components. In real-world systems, this
makes the modes functional in mathematics, not just functions of
time-varying parameters. Thus, we derive the functional derivative of
λk[α(t)] along a direction defined by φ(t), yielding a time-independent
value. Then, the sensitivity of a mode to the concerned parameter α(t)
is given by {lk(t)(δA(t)/δα(t)|φ(t))rk(t)}0 (Supplementary Notes 4).

Moreover, when A(t) and the parameters are time-invariant, the
participation factor and sensitivity reduce to the forms consistent with
those of traditional LTI systems (Supplementary Notes 4 and Supple-
mentary fig. 2). Therefore, the analysis method for the LTI system (see
Methods) can be regarded as a special case of the proposed LTP sys-
tem analysis method.

Eigenstructure analysis
We apply the proposed EP-LTP analysis method in real PEPS of the
Hami power grid in Northwest China, which is a typical nonlinear time-
varying system with a large-scale RPG28 and an LCC-HVDC29. Besides,

the details of the utilized models are introduced in Supplementary
Notes 2. To fairly compare the proposed EP-LTP analysis method
against the traditional ER-LTI in electromagnetic dynamics stability
analysis, we model the Hami power grid as a testing system. All tests
are completed on a Dell Workstation, 52CPUs with Intel (R) Gold
6230R, 2.1 GHz.

The eigenvalues and eigenvectors analysis are the prerequisite for
further participation factor and sensitivity analysis. We compare the
proposed EP-LTP analysis method with a mature LTI model, which
performs the best and is most commonly used in terms of accuracy,
namely the HSS model39. Besides, the drawbacks of the Park and DP
methods are illustrated in detail in Supplementary Notes 3. The HSS
model, based on Fourier series approximation and harmonic balance
principles, relies on a critical parameter: the truncation number, which
determines the maximum harmonic dynamics considered. This para-
meter is vital for maintaining the model’s accuracy41 and will be dis-
cussed in subsequent comparative studies.

To better summarize the quantitative relationship between the
order of the small-signal model and computational efficiency, we
constructed multiple testing systems (including 813th-order and
2263th-order testing systems), reflecting the dynamics of different
power devices (Supplementary Notes 6). The overall comparative
results for all testing systems are shown in Fig. 2a. The HSS model
requires different truncation numbers for various stability issues, and
we report the time costs of the eigenstructure analysis for five trun-
cation numbers (i.e., 2, 4, 8, 16, and 29). For all testing systems, the EP-
LTP method consistently has a shorter time cost compared to the HSS
model. The time cost is proportional to the third-order polynomial of
the model order nc, which is suitable for both EP-LTP and ER-LTI.
Therefore, as the system scale expands or the required truncation
number increases, the advantages of the proposed EP-LTP method
becomemore prominent. For the testing system of n = 813, the EP-LTP
method is even 2000 times faster than traditional ER-LTImethodswith
a truncation number of 29, which ensures an accurate calculation of
the eigenvalues with real parts >−0.8. This real-part threshold is arti-
ficially set, and a smaller threshold would allow for a more compre-
hensive characterization of the electromagnetic dynamics in large-
scale PEPS.
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Fig. 1 | Overview of the EP-LTP framework and its connection to the LTI fra-
mework. Extensive research on the linear stability of NLTP systems has tradition-
ally been conducted within the LTI framework using ER techniques. However,
existing ER methods—such as the Park and DP methods, which convert NLTP sys-
tems intoNLTI forms, and theHSSmethod,which approximates LTP systems as LTI
forms—face significant challenges. In contrast, the EP-LTP framework aims to avoid

additional transformations and directly maintains the system’s original LTP
eigenstructure for linear stability analysis, allowing modeling and analysis to be
performed within the LTP framework. Nevertheless, stability analysis for LTP sys-
tems has traditionally relied solely on Floquet theory for assessing overall system
stability. To address this, we further evaluate the correlation between stability and
states or parameters through the LTP eigenstructure analysis.
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To further demonstrate the advantages, we compare the eigen-
structure accuracy through the 813th-order and 2263th-order testing
systems. Based on the Floquet theory, the eigenvalues of the EP-LTP
methodare reliablewithin the rangeof numerical calculation accuracy.
Therefore, Fig. 2b shows the accuracy rate between the ER-LTI eigen-
values with different truncation numbers and EP-LTP eigenvalues,
considering only eigenvalues with real parts greater than σ (σ = −0.1,
−0.4, and −0.8). The accuracy improves with higher truncation num-
bers for the ER-LTI method, but EP-LTP maintains reliable accuracy
with lower computational demands. Besides, based on Supplementary
Notes 3, the Fourier coefficients of the EP-LTP eigenvectors are theo-
retically equivalent to the eigenvectors of the HSS model. Conse-
quently, the accuracy of the ER-LTI eigenvectors still relies on the same
truncation number required for eigenvalue accuracy (Fig. 2c). Since
the ER-LTI method demands higher truncation numbers for accuracy,

it will result in exceptionally computationally expensive effort, show-
ing the significant advantage of the proposed EP-LTP method.

Participation factor analysis
We apply the proposed eigenvectors to the EP-LTP participation factor
analysis. Besides, the ER-LTI participation factor analysis results are
taken as the comparison object, which comes from the HSSmodel and
traditional LTI participation factor analysis methods. Since the ER-LTI
participation factors characterize the contribution of Fourier coeffi-
cients of each state to each eigenvalue, synthesis processing is
required (Supplementary Notes 4).

We take the 813th-order and 2263rd-order testing systems for
comparative analysis. The time required to calculate the participation
factors includes the time spent on both eigenstructure and participa-
tion factor calculations. As shown in Fig. 3a, although the proposed

Fig. 2 | Comparison of efficiency and accuracy between EP-LTP and ER-LTI
frameworks in eigenstructure calculations. a CPU time required to compute
both eigenvalues and eigenvectors. Points of different shapes represent the EP-LTP
model and the ER-LTI models with different truncation numbersm. A third-order
polynomial fit (i.e., CPU time∝n3

c) is applied to capture the CPU time trend, where
nc denotes the model order. Specifically, nc = n for the EP-LTP model and
nc = n(2m + 1) for the ER-LTI models, with n representing the system scale. Addi-
tional details are provided in the Supplementary Information. b ER-LTI model
fidelity compared with EP-LTP model. Three specific damping ranges (i.e., the real
parts of eigenvalues σ > −0.1, −0.4, and −0.8, the modes within these ranges are
prone to instability) are focused on, represented as blue, red, and green lines,

respectively. Under different damping ranges, the eigenvalue number isNltp for the
EP-LTP model. Besides, the accurate number of eigenvalues obtained by ER-LTI is
Nhss.We use the quotient ofNhss andNltp to represent the fidelity of theHSSmodels
in different damping ranges. c Eigenvector error between EP-LTP and ER-LTI. A
comparison is performed in the 813th-order testing system, where a high trunca-
tion number guarantees the accuracy of all modes with real parts > −0.8. The cor-
responding eigenvector results are consistent between the EP-LTP and ER-LTI
modelswith the truncation number 29. See SupplementaryNotes6 fordetails and a
quantitative interpretation of the accuracy indices. Source data are provided as a
Source Data file.
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LTPparticipation factors offer no significant advantage over the ER-LTI
participation factors in the 813th-order testing system, there is a huge
difference in the time cost for calculating the eigenstructure (see
Supplementary Table 1). Since the eigenstructure calculation is
essential for a participation factor analysis, the proposed LTP method
overall demonstrates a significant efficiency advantage. Then, the
participation factor error between ER-LTI and EP-LTP is shown in
Fig.3b, where only eigenvalues with the real parts greater than −0.8 are
considered (SupplementaryNotes 6definesparticipation factor error).
As the truncation number increases, the participation factor error
decreases (see Supplementary Table 2 for comparison results of all
testing systems). To ensure an accurate participation factor analysis

for all eigenvalues, the ER-LTI method requires a truncation number
greater than 29, significantly increasing computation time.

For the weaker damping modes of concern of both testing sys-
tems, the dominant units based on the LTP participation factors are
given in Fig. 3c. In the 813th-order testing system, the dominant units
include RPG and LCC-HVDC. The necessity of a larger truncation
number (i.e., here is larger than 29) for ER-LTI, due to LCC-HVDC
participation, highlights why standard LCC-HVDC models49 from IEEE
working groups often fail to capture key electromagnetic stability
issues (also see Supplementary fig. 4). In contrast, in the 2263th-order
testing system, where the dominant units are only RPG, a lower trun-
cation number can meet the requirements for an accurate analysis.
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b Participation factor error betweenEP-LTPand ER-LTI. See SupplementaryNotes 6
for details and a quantitative interpretation of the accuracy indices. c Hami power

grid structure and participation factor analysis. The participation factor of equip-
ment is obtained by summarizing the participation factor of each state within the
equipment59. The color-coded circles denote the equipment whose participation
factor is greater than 10−7, with the color indicating the corresponding participation
factor. The radius of the circle represents the capacity of different equipment. The
concentric circles denote the substation. Source data are provided as a Source
Data file.
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Sensitivity analysis
In large-scale PEPS, thousands of system parameters influence elec-
tromagnetic dynamic stability. For the influence of system parameters
on linear stability, due to the lack of sensitivity analyticity, the tradi-
tional methodmainly relies on the eigenvalue locus under the studied
parameter range, which is commonly used in both the LTP model and
the reasonably truncated HSS model. However, the traditional sensi-
tivity analysis, which essentially involves traversing parameters, lacks a
global understanding of system parameters and has poor efficiency.
Here, the proposed EP-LTP sensitivity analysis method offers a more
efficient way to assess the impact of massive system parameters on
linear stability. Since sensitivity describes the change along the tan-
gential direction of the eigenvalue locus, we use the eigenvalue locus
to evaluate the correctness of the proposed LTP sensitivity analysis
method.

Unlike LTI systems that only contain time-invariant parameters,
LTP system parameters can generally be divided into two categories:
time-invariant andperiodic time-varying. For the time-invariant system
parameters, the sensitivity analysis involves a function calculation. As
shown in Fig. 4a, the impact of various control parameters on domi-
nant eigenvalues is depicted. The eigenvalues motion trend from the
sensitivity analysis is consistent with the actual eigenvaluemotion. For
the periodic time-varying system parameters, sensitivity analysis is
more complex and involves functional calculations. Here, we examine
the sensitivity of a time-varying voltage vector under unbalanced
voltage conditions of power sources, reflecting real-world engineering
scenarios. As shown in Fig. 4b, the impact of positive and negative
sequence voltages on system stability varies. For the mode λc21, redu-
cing the negative sequence voltage or increasing thepositive sequence
voltage will improve mode damping. However, for the mode λc22,
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variation of 2%, the sensitivity analytical results (end of red arrows) closely
approximate the eigenvalue changes. b Case2: to time-varying voltage vector us(t)

of Jijihu station. Here, the variation form60 ofus(t) is e jωt and e-jωt. The intersection of
thewhite dashed lines denotes the two concernedmodes (i.e., λc21 and λc22) with the
different voltage conditionsof Jijihu station. Twogradient lines (gray solid lines) are
marked based on the fitted surfaces. With a variation of 1/30 along the gradient
direction, the sensitivity analytical results (red solid arrows) accurately capture the
damping changes (blue dashed arrows). Supplementary Notes 6 provides more
details. Source data are provided as a Source Data file.
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increasing the negative sequence voltage will improvemode damping.
The trends in system damping observed through LTP sensitivity ana-
lysis match the actual system damping variations. Therefore, the pro-
posed LTP sensitivity analysis can successfully be applied to time-
varying and time-invariant system parameters.

Results and discussion
In this paper, we present numerical calculation analysis methods for
electromagnetic dynamic stability of large-scale PEPS within the
eigenstructure-preserved linear time-periodic (EP-LTP) framework,
which go substantially beyond existing EP-LTP approaches that only
answer whether the system is stable. Our significant contributions
include the development of the EP-LTP participation factor and sen-
sitivity analysis methods, which answer the critical questions: which
factors dominate system stability, and how parameters affect system
eigenvalues. By comparing large-scale Hami PEPS in China, the pro-
posed EP-LTP method produces more accurate results and
lower computational costs in dominant factors analysis than the
best-performing linear modeling and analysis methods in the
eigenstructure-reconfiguration linear time-invariant (ER-LTI) frame-
work, which are better suitable for small-scale systems. In this paper,
the EP-LTPmethodcanbemore than2000 times faster than the ER-LTI
method. It should be noted that the multiplication amplification of
small-signal model order in the ER-LTI framework is the intuitive rea-
son for its computationally expensive effort. For the last question, the
proposed EP-LTP method overcomes the lack of its analyticity, offers
detailed insights into the influence of parameters on linear stability,
and avoids the poor efficiency in traditional traversalmethods, such as
the eigenvalues locus. The generalizability of the proposed approach
enables its direct application to other practical PEPSs, such as the
44–58Hz oscillation event recorded in the Zhangbei project in China
from 2020 to 202250,51 (Supplementary fig. 3). This system integrates
large-scale wind and solar generation with modular multilevel
converter-based HVDC technology, representing a model for future
power systems that rely entirely on power electronic devices. Fur-
thermore, the analysis method of the LTI system is theoretically a
special case of the proposed method.

However, the proposed method still faces two main challenges.
The first is the growing need for real-time online analysis of the elec-
tromagnetic dynamics in large-scale PEPS. While the EP method sig-
nificantly enhances both accuracy and computational efficiency
compared to the widely used ER approach under typical hardware
conditions, real-time analysis remains a substantial challenge and does
not yet meet the operational requirements of power systems. Speci-
fically, existing standards for electromechanical dynamics require
rolling calculations to be completed within 15 minutes52, a timeframe
that would need to be significantly shorter to accommodate the faster
timescales of electromagnetic phenomena. Thus, further research into
advanced numerical algorithms is essential to make real-time appli-
cations of the proposed method feasible. The second challenge
involves the control of electromagnetic dynamic stability in PEPS.
Beyond fast computation, effectively damping and suppressing elec-
tromagnetic oscillations is crucial to ensuring system reliability53.
While the proposed LTP-based participation and sensitivity analysis
provide a strong theoretical basis for identifying optimal controller
locations and tuning parameters, further work is needed to translate
these insights into practical control strategies and develop effective
stabilizers for electromagnetic oscillations.

Although our methods were developed for electromagnetic
dynamic stability analysis in PEPS, the underlying framework is broadly
applicable. This generality stems from the fact that periodicity is a
fundamental and elegant principle in nature, and many physical and
engineering systems evolve under its influence. For instance, periodic
behavior underlies the dynamics of accelerator operation, flow around
circular cylinders, or aircraft design processes31,34–36. As long as the

system’s behavior can be modeled as the linear stability of NLTP sys-
tems or the dynamic stability of LTP systems, the proposed EP-LTP
framework can be effectively applied for stability analysis. Looking to
the future, we anticipate that as research shifts from small-scale to
large-scale periodic systems, the LTP theory will find increasing rele-
vance in a broad range of domains, such as biological systems54 and
chemical systems55, supporting their stable operation and further
development.

Methods
Linearization
The concept of linear stability addresses the dynamics near the steady-
state of nonlinear systems, whose nonlinearity is described by

_yðtÞ= f ðt; yðtÞÞ ð1Þ

where the vector y(t)=[ y1(t), y2(t),…, yn(t)]T describes the n states at
time t, f = [ f1, f2,…, fn]

T denotes the vector field.
The steady-state form yss(t) satisfies ẏss(t)=f(t; yss(t)). Applying

Lyapunov’s first method, the dynamics of the disturbance x(t)=y(t)-
yss(t) can be expressed as

_xðtÞ= _yðtÞ � _yssðtÞ=
∂f
∂y

����
yssðtÞ

xðtÞ+ oðxðtÞÞ ð2Þ

where ο(x(t)) denotes higher-order infinitesimals and is neglected in
the linearized system; ∂f/∂y is the Jacobian matrix of f concerning
states y.

When the steady-state form is a periodic orbit (i.e., yss(t)
=yss(t + T ), andT is theperiod), the linear stability isdeterminedby LTP
systems, when yss is a special periodic orbit, such as a constant value or
equilibrium point, LTI systems determine the linear stability.

LTI eigenstructure
With the constant statematrixA, ẋ(t)=Ax(t) represents the LTI systems.
Assuming thatA has n distinct (acceptable inmost real-world systems)
eigenvalues {λk, k = 1,2,…,n}, the eigenvalue matrix could be repre-
sented asΛ=R-1AR=diag(λ1, λ2,…, λn). The time-invariantmatricesR and
L =R-1 are the right and left eigenvector matrices. Furthermore, rk in
R = [r1, r2,…, rn] and lk in L = [l1; l2;…; ln] denote the right and left
eigenvectors corresponding to the eigenvalue λk. The eigenvalue and
eigenvector calculations are performed using MATLAB.

LTI participation factor
The time-invariant eigenvectors form the decoupled coordinate
transformation between states and modes. Various perspectives have
been proposed to evaluate the correlation between modes and states,
yet they predominantly lead to a unified form of the participation
factor matrix, that is P =R⊙LT (Supplementary Notes 4). This formula
exclusively incorporates the information of eigenvectors, thus
enabling direct derivation of the participation factors after calculating
the LTI eigenstructure.

LTI sensitivity
LTI sensitivity8 establishes the correlation between modes and para-
meters in LTI systems, which is derived as ∂λk/∂α=lk(∂A/∂α)rk. Apart
from the eigenvectors, it requires the partial derivative of the state
matrix with respect to the parameter α. In nonlinear dynamic systems,
the state matrix is the function of steady states and parameters10, i.e.,
A(yss, α).

Therefore, there are twopathways throughwhichα influencesA: a
direct path, denoted by AE, where α is explicitly incorporated into A,
and an indirect path, denoted by AI, where α is implicitly incorporated
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into A. Considering these two pathways, ∂A(yss, α)/∂α is

∂Aðyss,αÞ
∂α

=
∂AE

∂α
+
∂AI

∂y

����
yss

∂yss
∂α

ð3Þ

where both ∂AE/∂α and ∂AI/∂y could be derived using the Symbolic
Math Toolbox of MATLAB56. In the case where the steady-state form
represents an equilibrium point, the partial derivative of the
equilibrium points yss concerning the parameter α is described by

∂yss

∂α
= � A�1∂f

∂α

����
yss

ð4Þ

Applying these procedures to LTI systems enables the computa-
tion of sensitivities.

LTP eigenvalue calculation
The general solution of Floquet theory is not analytical; therefore,
numerical computation is required toobtain the LTP eigenvalues. First,
the linear systems’ state transition matrix (STM) satisfies

_Φðt, 0Þ=AðtÞΦðt, 0Þ ð5Þ

where Φ(t, 0) could map the states value from x(0) to x(t), that is
x(t) =Φ(t, 0)x(0).

Based on the Floquet theory, we have Φ(t, 0) =P(t)eQt for LTP
systems. With the boundary conditions P(0) =P(T) = I (I denotes the
identity matrix), the time-invariantmatrixQ is related to the STMΦ(T,
0) (i.e.,Φ(T, 0) = eQT). Hence, how to obtain theΦ(T, 0) is the focus of
the Floquet theory-based LTP eigenvalue calculation. Here, we apply
the discrete exponential expansionmethod57, whereΦ(T, 0) is divided
into the product of a series of STM.

ΦðT , 0Þ=
YNd

K = 1

ΦðKΔt, ðK � 1ÞΔtÞ ð6Þ

Within each interval (i.e., (K−1)Δt ~KΔt, Δt = T/Nd, Nd represents
the number of intervals), the variation of the state matrix A(t) is
neglected, and the STM of this interval could be calculated by

ΦðKΔt, ðK � 1ÞΔtÞ= eAðtK�1ÞΔt , tK�1 = ðK � 1ÞΔt ð7Þ

The matrix exponential replaces numerical integration to accel-
erate the calculation process. The accuracy could be ensured by
appropriately selecting Nd. Parallel computation could further accel-
erate the matrix exponential calculation at various time intervals. The
matrix Q is then calculated by ln[Φ(T, 0)]/T. The eigenstructure
decomposition of Q eventually leads to the LTP eigenvalues.

Choice of computational language
The proposed method was implemented in MATLAB, chosen for its
robust support for matrix-based computations and its widespread use
within the power systems research community. For the stability ana-
lysis,we utilizedMATLAB’s SymbolicMath Toolbox and LinearAlgebra
Toolbox. The functions in the Linear Algebra Toolbox are built on
optimized LAPACK routines, ensuring high computational efficiency
and numerical accuracy. In addition, the systemmodel was structured
to allow for easy data export and direct application of LAPACK-based
tools if needed.

Data availability
The source data underlying Figs. 2–4, and Supplementary Fig. 4 are
available at Figshare58. The authors declare that thedata supporting the
findings of this study are available within the supplementary informa-
tion files and Figshare. Source data are provided with this paper.

Code availability
The codes that support the findings of this study are available at
Figshare58.
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