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Global quantification of the dispersion effect
with POLDER satellite data
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Increased aerosols canmodify the shape of the cloud Particle SizeDistribution
(PSD), thereby influencing the radiative properties of clouds, known as the
Dispersion Effect (DE). However, a global, observation-based quantification of
its impact on Aerosol-Cloud Interactions (ACI) is lacking, leading to DE being
typically ignored in satellite-based estimates of ACI forcing. Herewepropose a
physics-based method that combines polarimetric satellite data on cloud PSD
to achieve global observational quantification of DE’s impact on ACI in liquid-
phase stratiform clouds. Globally, DE offsets ACI changes induced by droplet
number concentration variation and liquid water path adjustment by 7% and
−1.4%, respectively. Furthermore, a parameterization based on the global
dataset of PSD shape parameters is developed to improve DE estimation in
large-scale models. Both the quantification and parameterization enhance our
understanding of DE and facilitate the inclusion of this non-negligible impact
of DE on ACI in estimating aerosol climate forcing.

The increase in anthropogenic aerosols affects the radiative properties
of liquid clouds by altering their microphysical (cloud droplet con-
centration, Nd , and effective radius, Re) and macrophysical (liquid
water path, LWP, and liquid cloud fraction, f ) properties, phenomena
generically known as aerosol–cloud interactions (ACI). Additional
aerosols causeamonotonic increase inNd and, given a constant LWP, a
decrease inRe, leading to a net cooling effect on the earth-atmosphere
system, referred to as the Twomey effect1. Subsequently, LWP and f
respond to changes in Nd , and Re, known as rapid adjustments of
ACI2,3, which, together with the Twomey effect, contribute to esti-
mating the effective radiative forcing due to ACI (ERFaci). An example
of such an adjustment is the cloud lifetime effect4,5. The latest report of
the Intergovernmental Panel on Climate Change pointed out that ACI
is one of the largest sources of uncertainty in current climate
assessments6.

In fact, besidesNd , the shapeof the cloudparticle size distribution
(PSD) is also a key factor influencing the Twomey effect. Increased

aerosols change the cloudPSD shape, impacting cloud albedo and thus
contributing to ERFaci, referred to as the dispersion effect (DE). Liu and
Daum7 analyzed marine clouds sampled by aircraft and pointed out
that the DE can offset the number effect (i.e., considering only the
impact of Nd changes on Re in the Twomey effect) by 10–80%. As
research progressed, aircraft-based studies found such discrepant
results that DE not only offsets ACI8,9 but may also enhance it10–13 or
have no significant impact14,15. Considering the regional nature and
significant uncertainty of the DE, this effect is typically ignored when
estimating ERFaci based on satellite observations3,16.

By using parameterizations derived from the regional aircraft
data in general circulation models (GCMs), the global impact of
DE on ACI can be estimated. For instance, modelers applied dif-
ferent parameterizations17–21 in GCMs and found DE can offset the
number effect by −13–35%9,17,22; Xie et al.23 incorporated three
parameterizations17,19,20 into a GCM and demonstrated that DE
could offset ~7–14% of ACI globally. The high uncertainty in
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model evaluations may be related to the use of regionally
dependent cloud PSD parameterizations. Additionally, GCM
results can only provide the range of DE variations and generally
lack observational validation on a global scale.

DE can be characterized as the sensitivity of the cloud PSD para-
meter (commonly represented by the ratio of effective radius to
volume-mean radius, β) to the increasing aerosol number concentra-
tion (Na)

24,25. However, it is challenging to simultaneously obtain both
β and Na in clouds, so some cloud variables are commonly used as
proxies forNa. In the early stages,Nd waswidely used

9,17,20. As research
progressed, it was found that changes in the liquid water content per
cloud droplet (i.e., LWC=Nd , hereafter LN) could better reflect DE, with
a power–law relationship19,26:

β =aðLNÞb, ð1Þ

where a and b are fitting parameters and DE is closely related to the
parameter b19. Therefore, the key to quantifying DE is obtaining β and
LN, thereby determining parameter b.

The data of β and LN used in previous studies were mainly
obtained through regional aircraft observations9,17,19,20,27, which makes
DE quantification lack global representativeness. In satellite observa-
tions, the cloud PSD is typically described by Re and the effective
variance (Ve), with Ve being often fixed or discrete28,29, which hinders
the global analysis of DE. Recently, a global dataset with both Re and
continuous Ve available from the POLarization and Directionality of
Earth’s Reflectances (POLDER) instrument was established using arti-
ficial neural networks (NNs)30 (hereafter, POLDER-NNs, see Methods),
allowing us to provide a global estimate of the impact of DE on ACI.

Two steps are proposed for the global quantification (see Meth-
ods for more details):

Step 1: Using Re and Ve retrieved by POLDER-NNs over global
regions dominated by liquid-phase stratiform clouds, the cloud-top β
and LN can be determined as

βP = 1� Ve

� �
1� 2Ve

� �� ��1=3, LNP =A 1� Ve

� �
1� 2Ve

� �
Re

3� ð2Þ

Here, the subscript P indicates calculations based on the POLDER-NNs
dataset,A=4πρw=3,where ρw is thewater density. By using βP and LNP

for parameter fitting in Eq. (1), a cloud PSD parameterization based on
global observations can be obtained.

Step 2: In adiabatic clouds, the cloud optical thickness
(τc) depends on cloud-top β and Nd , as well as LWP

(τc / β�1LWP
5=6

Nd
1=3)31. By using the adiabatic liquid water lapse rate

(cw) to relate LWP to cloud-top LWC, τc canbe fully expressed in terms

of cloud-top variables, leading to τc / β�1LWC
5=3

Nd
1=3. Given that β

follows Eq. (1), based on the calculation of ERFaci
3, the impacts of DE on

the number effect (DONd , i.e., the impact of instantaneous DE) and the
LWP adjustment effect (DOLWP, i.e., the impact of adjusted DE) can be
expressed as

DONd = � 3b � 100%,DOLWP =
3
5
b � 100%, ð3Þ

where DO stands for the dispersion offset (in %), and b can be derived
from step 1.

Results and discussion
Global distribution of DE’s impact on ACI
First, we use POLDER-NNs data over global regions dominated by
liquid-phase stratiform clouds to calculate the spatial distribution of
the parameter b, and based on this, derive the global distributions of
DONd and DOLWP, as shown in Fig. 1.

The variables directly provided by the POLDER-NNs dataset are
presented in Fig. 1a, b, including Re and Ve. The βP and LNP calculated
from Re and Ve are shown in Fig. 1c, d. Overall, the spatial distribution
of βP is similar to that ofVe, while LNP is similar toRe. Specifically, both
βP and LNP exhibit distinct land–ocean distribution characteristics,
which align with our general understanding of these variables (see
Methods). By fitting a power–law relationship between βP and LNP

within each grid point, the parameter b can be determined (Fig. 1e).
The dotted areas indicate that the fitting relationships are statistically
significant with a 95% confidence level. Overall, the spatial distribution
of the parameter b exhibits two characteristics: (1) b values across
different grid points are predominantly negative; (2) there is sig-
nificant spatial variability for the parameter b. Next, we conduct fur-
ther analysis focusing on the two characteristics.

In detail, the proportion of negative b values fitted using POLDER
data exceeds 97% (with the dotted areas being 100%) (Supplementary
Fig. 1). However, the parameter b calculated through aircraft obser-
vations could be negative19 or positive26. We think the discrepancy is
likely due to the fact that the previous in situ measurements were
primarily of local/regional scale with higher spatial resolution com-
pared to the POLDER-NNs30. Aircraft in situ observations typically
cover a range of kilometers, capturing fine-scale variations of β to LN
within clouds. Lu et al.32 and Zhang et al.33 demonstrated, through
in situ observations and numerical simulations, that the cloud PSD
parameter shows a positive correlation with LN for small cloud dro-
plets. The relatively coarse spatial grid of the POLDER-NNs can only
capture the dominant large-scale relationship, overshadowing the less
frequent positive correlations and leading to our generally negative
calculated b values (Fig. 1e). However, since the grid scale used in
GCMs is also relatively coarse and reflects the overall conditionswithin
large-scale grids of hundreds of kilometers, these results are appro-
priately matched for model evaluations.

Additionally, there is significant spatial dependency in the dis-
tribution of b values across different grid points (with a standard
deviation of 0.015 and 0.013 within the dotted areas). Overall, more
negative b values are predominantly concentrated in regions heavily
influenced by anthropogenic aerosols, indicating that the PSD shape
response to aerosol changes is more sensitive in these regions. To
explain the spatial distribution of b, we plotted the relative changes of
βP and LNP (Supplementary Fig. 2). Analysis revealed that the para-
meter b over land is determined by the combined variations of βP and
LNP , while over ocean, it is primarily determined by the variations in βP

(see Methods). However, current GCMs do not consider spatial varia-
tions in the parameter b, which could introduce biases in simulating
the cloud PSD and DE.

The spatial distribution of b can be used to estimate the spatial
distribution of DONd and DOLWP (Fig. 1f, g), indicating that the impacts
of instantaneous and adjusted DE also exhibit spatial variability. Con-
sidering only regions with high-reliability b values (dotted areas), DE
globally exhibits a 9.31% offset on the number effect and a 1.86%
enhancement on LWP adjustment effect.

Overall assessment of DE’s impact on ACI
Next, we examine all POLDER-NNs data collected throughout the year
over global regions dominated by liquid-phase stratiform clouds. By
fitting βP and LNP calculated from all the data, we find that they exhibit
a clear power–law relationship (Pearson correlation coefficient
r = −0.53, p <0.01), with the fitting equation being βP =0:68LNP

�0:024

(Fig. 2a). According to Eq. (3) andb= � 0:024,DE canoffset 7.2%of the
number effect but enhance the LWP adjustment effect by 1.44%.

Considering the impact of underlying surfaces on the cloud PSD,
we further conduct regressions for land and ocean separately
(Fig. 2b, c). The b values are −0.026 for land and −0.028 for ocean.
Correspondingly, the values of DONd and DOLWP are 7.8, −1.56% for
land and 8.4, −1.68% for ocean. Specifically, themean LNP for the land
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(5.2 ng) is lower than that for the ocean (7.3 ng), but the mean βP for
the land is slightly higher (1.098 vs. 1.095). Overall, the impact of
underlying surfaces on the parameter b is insignificant, changing the
b value by only about 0.002.

A linear regression in log-to-log space is applied to all the satellite
data directly in the above analyses. However, a more widely used
approach for calculating the sensitivity between two variables with
huge amounts of satellite data is the pre-binned method16,34–36. Here,
we also use the pre-binned method to fit the parameter b, as shown in
Fig. 2d–f. The values of the parameter b in global, land, and ocean
regions are −0.020, −0.024, and −0.023, with rj j not less than 0.87,
demonstrating a stronger power–law relationship. Comparing these
with Fig. 2a–c, the absolute biases between the twomethods for global,
land, and ocean regions are 0.004, 0.002, and 0.005, respectively,
suggesting that the calculation method of the fitting parameter influ-
ences the results, particularly in ocean regions. Additionally, the
empirical power–law appears to fit the oceanic data better than the
land data in the pre-binned method, which is more susceptible to

extreme values. We speculate that this is mainly related to retrieval
algorithm challenges in accurately retrieving large cloud droplets.
Compared to oceanic regions, retrieval uncertainty for large cloud
droplets over land is greater30. This increaseduncertaintymaycauseβP

over land to become less sensitive to LNP with a value greater than 5 ng
(see Methods), thereby weakening the fitted correlation coeffi-
cient (Fig. 2e).

Quantitative analysis of uncertainty
Currently, the quantifiable sources of uncertainty include: (1) the
inherent limitations of the POLDER-NNs30; (2) cloud heterogeneity37;
(3) the retrieval method, wavelength, and grid scale29; and (4) the fit-
ting method for parameter b34. Based on previous studies, we deter-
mined the uncertainty range of b caused by different sources by
considering a bias-corrected random Gaussian noise (Fig. 3a). Subse-
quently, a Monte Carlo method38 was applied to evaluate the overall
impact of the four uncertainty sources on the estimation of b. It was
assumed that the b values associated with each source follow a normal

μRe Ve

βP LNP

b

DONd DOLWP

Fig. 1 | Spatial distribution of annual mean values for variables related to
satellite data (POLDER-NNs) used in this study. The first row shows variables
directly provided by the POLDER-NNs dataset, including a the effective radius (Re)
and b the effective variance (Ve). The second row shows variables calculated from
Re and Ve, including c the particle size distribution parameter (βP ) and d the liquid
water content per cloud droplet (LNP). The third rowpresents e the parameter b by

fitting βP and LNP within each grid point (1° × 1°). The fourth row indicates variables
derived from the parameter b, including the impacts of the dispersion effect on
f the number effect (DONd) and g the liquid water path adjustment effect (DOLWP),
where the dotted areas indicate the fitting relationships are statistically significant
with a 95% confidence level. The global mean and standard deviation are shown in
the title of each plot, with those for the dotted areas provided in parentheses.
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distribution. A random sampling process was conducted 10 million
times, and for each iteration, the mean b value influenced by the dif-
ferent sources was calculated, resulting in a probability density dis-
tribution of b (Fig. 3b). The mean of this distribution is taken as the
best estimate of b, while the 5–95% confidence interval is used to
represent the uncertainty range. A detailed description of the method
is provided in the Methods section.

The results show that the best estimate of the b (with 5–95%
uncertainty in parentheses) is −0.024 (−0.026 to −0.022) globally,
−0.025 (−0.028 to −0.022) over land, and −0.029 (−0.031 to −0.026)
over ocean. The corresponding DONd values are 7.2% (6.6–7.8%), 7.5%
(6.6–8.4%), and 8.7% (7.8–9.3%), and the DOLWP values are −1.44%
(−1.56 to −1.32%), −1.50% (−1.68 to −1.32%), and −1.74% (−1.86 to
−1.56%), respectively, as shown in the Table 1. This indicates that the
dispersion effect caused by increased aerosols offsets the number
effect by ~7% and enhances the LWP adjustment effect by about 1.4%
globally, with a stronger impact on clouds over the ocean.

Comparison with previous studies
This section compares b and DO obtained by POLDER-NNs with those
by aircraft and GCMs (Table 1). In most studies, the b values were
derived from aircraft observations and DO values estimated in GCMs
(an exception is the study by Liu and Daum7, which derived DO from
aircraft data and theoretical estimation).

The aircraft data used to fit b in previous studies were conducted
in various regions. For instance, Liu et al. 19 obtained a value of −0.14 by
analyzing aircraft observations sampled in North America.Martins and

SilvaDias26fitted the relationship between β and LNby studying clouds
in the Amazon, obtaining a value of 0.072. In this study, whether fitting
globally different regions as a whole (−0.026 to −0.022) or fitting data
separately within each grid and then calculating the global mean
(−0.031 ± 0.013), the b values fall within the range of previously fitted
b values using aircraft observations (Table 1). Additionally, the b values
calculated in this study are predominantly negative across various
global regions, and their absolute values are smaller compared to
previous results.

Previous studies primarily focusedon the impact of instantaneous
DE (i.e., DONd), as shown in Table 1. In the early stages, Liu and Daum 7

suggested that DONd could even reach 80%. However, as research
progressed, the values for DONd consistently decreased. Recent
research based on GCMs shows that the impact of instantaneous DE
ranges from −13% (enhancement) to 35% (offset)9,17,22. Our results
(6.6–7.8%) fall within the range ofDONd calculated by previous studies.
However, previous estimations could only provide a range of DONd

calculated from different parameterizations, without validation with
global observations. The DONd obtained in this study could be a vali-
dation reference for the assessment of parameterizations, contribut-
ing to further improvements and developments in GCMs.

Previous parameterizations derived from aircraft in situ observa-
tions are all at a local/regional scale, which partially meets the
requirements for global simulations conducted by GCMs. This study
utilizes satellite data to obtain a global-scale fitting parameterization
(β =0:68LN�0:024 or β=0:73LN�0:020, see Fig. 2), which better meets
the requirements for GCM applications. In the future, the

(a) Global, b = −0.024 (b) Land, b = −0.026 (c) Ocean, b = −0.028

(f) Ocean, b = -0.023(d) Global, b = -0.020 (e) Land, b = -0.024
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Fig. 2 | Relationships between particle size distribution and liquid water con-
tent per droplet across regions. The x-axis represents the particle size distribu-
tion parameter (βP), while the y-axis represents the liquid water content per cloud
droplet (LNP ). The first row shows scatter density plots, and the second row dis-
plays joint histograms, all plotted with logarithmic scales on both axes. Panels
a, d correspond to the global region (60°S–60°N), b, e to land, and c, f to ocean.
The solid black lines represent the fitted curves, and the fitting equations along
with statistical parameters are labeled in the top right corner, where y means βP

and x means LNP . For the scatter density plots, the color represents the frequency
of data points within each small interval. And x avg and y avg means the averages
of LNP and βP , respectively. For the joint histograms, the color represents the
probability density within this range, wherein each column is normalized so that it
sums to 1. The black dot represents the median of βP with an equal number of
samples. The shaded area is the 95% confidence interval (according to a Student’s
t-test) to represent the fitting uncertainty.

Article https://doi.org/10.1038/s41467-025-62238-3

Nature Communications |         (2025) 16:7087 4

www.nature.com/naturecommunications


parameterization is expected to enhance the models’ ability to simu-
late cloud PSD for liquid-phase stratiform clouds, thereby reducing the
uncertainty in climate assessments.

To ensure the robustness and applicability of the conclusions, the
following sections provide a detailed discussion of the assumptions,
causal interpretation, limitations, and implications for future ACI
studies.

Assumption of adiabaticity of clouds
The derivation of DO is dependent on the assumption that the
observed clouds are under moist adiabatic conditions, wherein clouds
are not subject to the entrainment-mixing process. According to the

dependence of optical depth on the adiabatic liquid water lapse rate
(cw) in Eq. (15) as cw

�1=6, variations in sub-adiabaticity due to
entrainment-mixing are unlikely to significantly affect the albedo or
the results of this study when modifying the overall cw in the cloud
(Eq. (16)).

Causal analysis of aerosol effects on LN and β
First, this causal relationship aligns with the physical understanding of
cloud microphysical processes. The formation of the cloud PSD is
primarily controlled by, until collision-coalescence sets in, the con-
densation growth process19,21. And the negative relationship basically
reflects the fact that condensation leads to anarrowsizedistributionas

(b) Probability distribution function of b

(a) Flowchart of uncertainty quantification 

 ~ 

Fig. 3 | A frameworkofuncertainty quantification. aTheflowchart of uncertainty
quantification, where bs F and SEs F represent the fitting parameter b and its
standard error (SE) considering different sources of uncertainty (S= s1, s2, s3,
representing sources 1, 2, and 3) and using different fitting methods (F =p,d,
representing pre-binned and direct fitting methods). Nðbs F , SEs F

2Þ represents a

normal distribution with a mean of bs F and a standard deviation of SEs F . b The
probability distribution functions of the parameter b in ocean, land, and global
scales, where the point and errorbar represent the best estimate (i.e., the mean
value) and its 5–95% confidence interval.
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droplets grow. The empirical relationship between LN and β was
demonstrated by Wood 39, which was later supported by the theore-
tical analysis of Liu et al. 40 and further validated by aircraft observa-
tions from several campaigns by Liu et al. 19. A significant relationship
obtained using POLDER-NNs to some extent validates this assumption
(Figs. 1, 2). Therefore, we think the co-varying relationship between β
and LN has solid physics behind it, instead of being an observational
artifact.

In addition, this causal relationship can also be confirmed
through statistical analysis. To examine the relationship between
aerosols, we employ a POLDER aerosol product41–44 to calculate the
aerosol index (AI) and plot joint histogramsof AI versus LN and β (See
Methods). As shown in Fig. 4a, b, AI and LN exhibit a negative
power–law relationship, whereas AI and β show an overall positive
power–law correlation, which is consistent with theoretical analysis.
When aerosol increases and the LWC in the cloud remains relatively
stable, the liquidwater per cloud droplet (LN) decreases. At the same
time, β increases overall with AI, aligning with most previous studies
that reported aerosol-induced broadening of the cloud PSD7,9,19,20.
Given the negative power–law relationship between LN and β (Fig. 2),
it is hypothesized that LN plays a crucial mediating role in the impact
of AI on β.

To investigate this, we conducted a causal mediation analysis45 to
examine the role of LN as a mediator in AI’s impact on β, with the
results shown in Fig. 4c (see Methods). The average causal mediation
impact (0.0037) indicates the influence of AI on β transmitted through
the mediator LN, while the average direct impact (0.0041) represents
the direct influence of AI on β. The total impact is 0.0078, and all
results are statistically significant (p < 0.001). The results indicate that
LN plays a significant mediating role in the impact of AI on β, further
supporting the causality of the findings.

Limitations of this study
Some limitations of this study need to be pointed out. First, due to the
limited data resolution and the predefined data filtering criteria, this
studymainly focuses on liquid-phase stratiform clouds, which account
for over 78% of the samples (see Methods and Supplementary Fig. 3).
Accordingly, the cloud PSD analysis, quantification of the dispersion
effect, and parameterization proposed in this work are primarily
applicable to liquid-phase stratiform clouds. While some large-scale
cumulus clouds are included, the relevance of our findings to typical

cumulus clouds remains uncertain and warrants further investigation
using higher-resolution satellite observations46–48 (e.g., from themulti-
viewing multi-channel multi-polarization imaging49). Given that
cumulus clouds generally play a less significant role in ACI50, our focus
aligns with the core objectives of current ACI research. Second, the
analysis in this study is limited to 1 year of data (2006). Longer-term
datasets are needed in the future for further validation and trend
analysis. Finally, although the β values calculated based on Ve fall
within the uncertainty range of previous studies, the Ve in POLDER-
NNs has only been compared with synthetic data and has not yet been
validated against observational data. Despite these limitations, the
quantitative method and analytical framework proposed in this study
can still provide valuable insights for future DE research.

Implications for future ACI estimation
Additional aerosols can modify the shape of cloud PSD, thereby
modifying the cloud albedo and forcing, a phenomenon known as the
dispersion effect (DE). However, this effect is typically ignored when
calculating the ERFaci, largely due to a lack of global quantitative esti-
mations of DE’s impact on ACI. To address the gap, this study pro-
posed a quantitative method based on physical mechanisms, utilizing
physical equations and theoretical derivations. By using POLDER
satellite observations, this study quantifies the global impact of DE on
ACI over regions dominated by liquid-phase stratiform clouds. Based
on a comprehensive analysis from multiple perspectives, it can be
concluded that DE offsets the number effect by ~7% but enhances the
LWP adjustment effect by around 1.4% on a global scale. Hence, the DE
has a non-negligible impact on ACI, necessitating its consideration in
future ERFaci calculation.

Methods
POLDER retrievals
The POLarization and Directionality of Earth’s Reflectances (POLDER)
instrument, here in its versionmounted on the PARASOL (polarization
and anisotropy of reflectances for atmospheric science coupled with
observations from a Lidar) microsatellite51, provides global cloud
properties by multi-angle polarimetric observations52–54. Thanks to the
polarimetric measurements, POLDER can retrieve two pieces of
information on the cloud PSD at the cloud top, namely, besides the
cloud effective radius (Re), also the effective variance (Ve)

55,56.
Recently, Di Noia et al. 30 introduced a neural network algorithm

(NNs) to utilize multi-angle and multi-wavelength polarimetric mea-
surements from POLDER Level-1 data (5 km × 6 km) to retrieve high-
resolution, numerically continuous Re and Ve. Comparisons with cur-
rently available POLDER datasets indicate that the algorithmpossesses
improved capabilities in retrieving Re. Furthermore, the method can
provide continuous values of Ve from 0.03 to 0.35, which are often
fixed or discrete in others28,29. To ensure the accuracy of the retrieval
results, eliminate the influence of ice-/mixed-phase clouds, and facil-
itate subsequent data usage, ref. 30 performed strict data screening
and re-gridding on the retrieved data, resulting in a 1° × 1° dataset
containing only liquid cloud samples, referred to as L2-REGRID-REFF.
The screening and processing of data include:
1. The cloudbow scattering angle range observed by POLDER is

between 135° and 165°;
2. The total cloud cover is greater than 0.95;
3. The cloud phase index is less than 50 (excluding ice clouds and

mixed-phase clouds);
4. The cloud-top pressure is higher than 600hPa (further excluding

the influence of ice);
5. Data over the ocean is not affected by sun glint;
6. The data is frommid-to-low-latitude regions with ample sampling

points (60° S � 60° N);
7. Thedata is re-gridded to the 1° × 1° gridwith a daily (instantaneous)

temporal resolution.

Table 1 | Comparisons of results from this study, aircraft
observations, and general circulation models (GCMs)

Data source b DONd(%) DOLWP(%)

POLDER Global −0.024 (−0.026
to −0.022)

7.2 (6.6–7.8) −1.44 (−1.56
to −1.32)

Land −0.025 (−0.028
to −0.022)

7.5 (6.6–8.4) −1.50 (−1.68
to −1.32)

Ocean −0.029 (−0.031
to −0.026)

8.7 (7.8–9.3) −1.74 (−1.86
to −1.56)

Aircraft Ref. 19 −0.14 / /

Ref. 26 0.072 / /

Ref. 7 / 10–80 /

GCMs Ref. 9 / 33 /

Ref. 17 / 12–35 /

Ref. 23 / 7–14

Ref. 22 / −13–10 /

b is the fitting parameter. DONd and DOLWP are the impacts of the dispersion effect on the
number effect and the liquid water path adjustment effect, respectively. Values in parentheses
represent the 5–95% confidence interval. The b of ref. 26 is derived from the relationship
between relative dispersion and the liquid water content per cloud droplet. The result of ref. 23.
indicates the total impact of the dispersion effect on aerosol–cloud interactions.
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Due to the large volume of Level-1 data (several terabytes) and the
high computational burden of using the NNs algorithm, the L2-
REGRID-REFF provided by Di Noia et al. 30 only includes results from
2006. To ensure the subsequent analysis results have statistical sig-
nificance, we further excluded grid points with fewer than ten valid
samples throughout the year. Finally, we obtained 1,127,994 valid
samples, of which 400,776 are land data and 727,218 are ocean data.
This dataset is referred to as POLDER-NNs and has been used in
this study.

Cloud types in the POLDER-NNs dataset were classified based on
the International Satellite Cloud Climatology Project (ISCCP) cloud
classification scheme57. The results show that stratocumulus, altos-
tratus, cumulus, altocumulus, nimbostratus, and stratus account for
51.2, 22.2, 15.8, 5.7, 2.8, and 2.4% of the samples, respectively, as illu-
strated in Supplementary Fig. 3. Notably, stratocumulus clouds,
despite their partly cumulus-like appearance, are typically categorized
as stratiform clouds due to their broad horizontal extent and limited
vertical development58. In addition, due to the strict cloud cover cri-
terion (cloud cover >0.95 within the 5 km×6 km grid), the cumuliform
clouds included here are limited to those with relatively large hor-
izontal scales, while small, isolated cumulus clouds (e.g., significantly
smaller than 5 km×6 km) are excluded.

In summary, the results in this study are primarily applicable to
liquid-phase stratiform clouds (stratocumulus, altostratus, nim-
bostratus, and stratus, collectively accounting for over 78% of the
samples). While some large-scale cumulus clouds are included in
the dataset, the applicability of our findings to typical cumulus
clouds remains uncertain and warrants further investigation.
Additionally, this study specifically focuses on the impact of the
dispersion effect on ACI. Since cumulus generally play a less
dominant role in ACI due to their short lifetimes, small spatial
coverage, and weak coupling with large-scale radiative processes50,
our focus on liquid-phase stratiform clouds aligns well with the
primary goals of current ACI research.

β and LN derived from POLDER retrievals
InGCMs,Re is generally parameterized through a PSDparameter β that
relates Re to the volume-mean radius (Rv)

59,60:

Re =βRv =β
3LWC

4πρwNd

� �1=3

, ð4Þ

where LWC is the liquid water content (in kgm�3), ρw = 1000kgm�3 is
the water density, and Nd is the number concentration of cloud dro-
plets that are assumed spherical.β canbewell estimatedby the relative
dispersion (ε, defined as the ratio of the standard deviation to the

mean radius) by assuming a gamma distribution of the cloud PSD60:

β=
1 + 2ε2
� �2=3
1 + ε2
� �1=3 , ð5Þ

ε=
σ
Rm

, ð6Þ

where σ is the standard deviation, andRm is themean radius. However,
both σ and Rm cannot be obtained through prognosis in GCMs. In
order to calculate β in globalmodels, different parameterizations were
proposed.

In the early 21st century, parameterizations of the cloud PSD only
considered the relationship between ε or β and Nd

9,17,20. Later para-
meterizations gradually recognized the importance of LWC and began
linking β with LWC=Nd (the liquid water mass per cloud droplet,
hereafter LN), expressing their relationship in power–law form19,26, as
shown in Eq. (1). Additionally, two-moment cloud microphysics
schemes in GCMs can prognosticate LWC and Nd directly61, making
this form convenient for use in models.

According to the retrieval algorithm of POLDER, the PSD of liquid
clouds (ϕ) is characterized by a gamma distribution52,62:

ϕ rð Þ=Crcð1�3VeÞ=Ve e �rc=ðReVeÞð Þ, ð7Þ

where C is the intercept parameter, and rc is the cloud droplet radius.
Correspondingly, σ and Rm can be expressed in terms of Re and Ve

62:

σP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Ve

� �
Ve

q
Re, ð8Þ

RmP = ð1� 2VeÞRe, ð9Þ

where the subscript P indicates calculation using POLDER data.
Furthermore, ε and β can be derived from POLDER retrievals as

εP =
σP

RmP
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve

1� 2Ve

s
, ð10Þ

βP =
1 + 2ε2P
� �2=3
1 + ε2P
� �1=3 = 1� Ve

� �
1� 2Ve

� �� ��1=3, ð11Þ

It should be noted that the mode radius of the gamma function is
1� 3Ve

� �
Re

52, which means that the Ve should be less than 1/3 to
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Fig. 4 | Relationshipsbetween cloudparameters andaerosol, alongwithresults
of mediation analysis. Joint histograms for a the liquid water content per cloud
droplet (LNP ) and b the particle size distribution parameter (βP ) versus the aerosol
index (AI) over the global region (60°S–60°N),with both axes on logarithmic scales.

c The result of mediation analysis, where ACMI and ADI represent the average
causal mediation impact and average direct impact, respectively. The impact size
means the change in lnðβÞ due to a one-unit increase in lnðAIÞ. The bar represents
the mean impact size, and the error bar indicates the 95% confidence interval.
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ensure the existence of peaks in the gamma function (i.e., the mode
radius is greater than 0). In the data provided by Di Noia et al. 30, the
range of Ve is given as 0.03 to 0.35. When conducting subsequent
studies, the parts greater than 1/3 were excluded first.

According to Eqs. (4) and (11),we canobtain cloud-top LNusingRe

and Ve provided by POLDER (denoted as LNP):

LNP =
4πρw

3
1� Ve

� �
1� 2Ve

� �
Re

3� ð12Þ

Exponentially fitting the βP and LNP yields parameter b (Eq. (1)),
which can be used to quantitatively assess the global impact of DE on
ACI, as described below.

Impacts of DE on ACI
The effective radiative forcing of aerosol–cloud interactions (ERFaci)
can be represented as the forcing sum of the Twomey effect (instan-
taneous effect) and the associated rapid adjustments3,16:

ERFaci = FNd + FLWP + Ff , ð13Þ

where FNd, FLWP, and Ff are the radiative forcing of the Twomey effect,
and the radiative adjustments of LWP, and f , respectively.

Considering thedependenceof cloud albedo (αc) on cloudoptical
depth (τc)

63 and the relationship between τc with LWP and Nd
31, there

are relationships in adiabatic clouds3,64:

dlnαc

dlnτc
= 1� αc, ð14Þ

τc =
6
5
πQextB

2
3β�1LWP

5
6Nd

1
3, ð15Þ

whereB= 4=3
� �

πρw

� ��1 2cw
� ��1=4, cw is the adiabatic liquid water lapse

rate (cw =dLWC=dz, z is the height above the cloud base) and is con-
sidered to be constant through the cloud64, Qext is the Mie efficiency
factor and is usually set to 231,65, β is often set as a constant in ERFaci
calculation3,16, and Nd is assumed vertically uniform in adiabatic
clouds. Thus, Eq. (15) can be rewritten as

τc / LWP
5
6Nd

1
3� ð16Þ

Correspondingly, FNd and FLWP can be represented as3

FNd =
1
3
αc 1� αc

� � � cNd � ΔlnNd,ant , ð17Þ

FLWP =
5
6
αc 1� αc

� � � cLWP � ΔlnLWPant, ð18Þ

whereΔlnNd, ant andΔlnLWPant are the anthropogenic perturbations of
Nd and LWP. And cNd and cLWP are the effective cloud fractions for Nd

and LWP, respectively. Its “effectiveness” stems not solely from the
partial coverage offered by liquid clouds but also from considering the
spatial correlations among other pertinent factors in deriving FNd and
FLWP

3. It should be noted that FNd here only considers the impact ofNd

changes on Re and consequently αc, without accounting for β. There-
fore, it can be regarded as part of the Twomey effect (referred to as the
number effect).

In adiabatic liquid clouds, the vertical profile of LWC is termed the
adiabatic condensation profile with a constant cw:

LWCðzÞ=
Z z

0
cwdz = cwz, ð19Þ

and for LWP:

LWP=
Z H

0
cwzdz =

1
2
cwH

2, ð20Þ

where H is the cloud depth and cw is approximately 2mgm�3 m�1.
Considering that satellite observations mainly capture information at
the cloud top, here we relate Eq. (16) to the cloud-top LWC and Nd ,
denoted as LWCtop andNd top, respectively. SinceNd remains constant
in the adiabatic cloud,Nd top equalsNd . Utilizing Eq. (19), we canderive
LWCtop as:

LWCtop = cwH: ð21Þ

Combining Eqs. (20) and (21), we obtain:

LWP=
LWCtop

2

2cw
: ð22Þ

Substituting Eq. (22) and Nd top into Eq. (16), we get:

τc / LWCtop
5
3Nd top

1
3, ð23Þ

Although Eq. (23) incorporates β in the definition of τc (Eq. (15)), β
is treated as a fixed parameter during practical implementation. As a
result, variations in β cannot be accounted for when evaluating τc
under anthropogenic aerosol perturbations (Eq. (16)), thereby
neglecting the influence of the dispersion effect in the estimation of
ERFaci (Eqs. (17, 18)). When the dispersion effect is considered (i.e.,
when β is treated as a variable rather than a constant), τc can be
represented as64:

τc / β�1LWP
5
6Nd

1
3� ð24Þ

Given β=a LWCtop=Nd top

	 
b
(Eq. (1)), and utilizing Eq. (23), we

now can rewrite τc in terms of LWCtop, Nd top, and the b parameter as

τc / LWCtop
5
3�bNd top

1
3 +b� ð25Þ

Correspondingly, FNd and FLWP, when considering the dispersion
effect (i.e., Fdisp

Nd
and Fdisp

LWP), can be written as

Fdisp
Nd

=
1
3
+ b

� �
� αc 1� αc

� � � cNd � ΔlnNd, ant = FNd + 3bFNd, ð26Þ

Fdisp
LWP = ð

5
6
� b

2
Þ � αcð1� αcÞ � cLWP � ΔlnLWPant = FLWP �

3
5
bFLWP, ð27Þ

where 3bFNd and �3=5 � bFLWP represent the radiative forcing caused
by the instantaneous DE (FDE Nd) and the adjusted DE (FDE LWP).
Accordingly, the total radiative forcing caused by the dispersion effect
(FDE) can be expressed as:

FDE = FDE Nd + FDE LWP = 3bFNd � 3
5
bFLWP� ð28Þ

To quantify the impact of the dispersion effect on ACI, we define
the dispersion offset (DO):

DONd = � FDE Nd

FNd
� 100%= � 3b � 100%, ð29Þ

DOLWP = � FDE LWP

FLWP
� 100%=

3
5
b � 100%, ð30Þ
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whereDONd andDOLWP indicate the impact of DE on the number effect
(i.e., the impact of instantaneous DE) and LWP adjustment effect (the
impact of adjusted DE), respectively. Positive values indicate off-
setting, while negative values indicate enhancement. The parameter b
can be obtained by fitting the βP and LNP from POLDER-NNs, as
described in Eqs. (11) and (12).

Explanation of the spatial distributions of βP and LNP
In the main text, we pointed out that βP and LNP exhibit distinct
land–ocean distribution characteristics. Here, we further discuss these
characteristics.

The values of βP over land are generally higher than those over
ocean, reflecting the broadening effect of aerosols on the cloud PSD,
which is consistent with previous analyses based on aircraft
observations8,9. However, even within the same oceanic or terrestrial
region, βP exhibits regional variations. For instance, over oceans,
coastal areas, and regions affected by aerosols (such as the North
Pacific) have higher βP values compared to more open ocean areas
(like the Southern Ocean). Similarly, over land, βP also shows regional
differences. For example, βP values are higher in East Asia and India
compared to the relatively cleaner Europe. Notably, βP is higher over
India than over the more polluted regions of China, which we think
could be related to the abundant moisture conditions in India, though
the specific mechanisms need further investigation. The LNP , which
physically represents the amount of water vapor each cloud droplet
can obtain, also shows land–ocean distribution characteristics. As
shown in Fig. 1d, LNP values are generally lower over land compared to
ocean, which is associated with relatively less moisture and higher
aerosol concentrations over land.

Explanation of the spatial distribution of the parameter b
The distribution of the parameter b varies significantly across different
grid points (standard deviation of 0.015, with 0.013 in the dotted
areas), exhibiting distinct spatial distribution characteristics. Overall,
regions with b

�� �� are primarily located in areas heavily influenced by
anthropogenic aerosols, such as ocean regions near continental
coastlines, the northern Indian Ocean, the North Atlantic, the North
Pacific, and low-latitude regions of the South Pacific, as well as land
areas including East Asia, South Asia, the Indian subcontinent, central
Africa, and southern North America. This indicates that the cloud PSD
in these regions is more sensitive to changes in aerosols.

To explain the spatial distribution of the parameter b, we plotted
the relative changes in LNP and the corresponding βP (denoted as
ΔlnðLNPÞ and Δln βP

� �
, respectively) as shown in Supplementary

Fig. 2a, b. The ΔlnðLNPÞ represents the difference between the mean
lnðLNPÞ of the highest 10% and the lowest 10%within a grid point, while
Δln βP

� �
represents the corresponding difference in ln βP

� �
. With a

constant LWC, an increase in LN indicates a decrease in cloud droplet/
aerosol number concentration. Mathematically, using the principle of
invariance of differential forms, we have dlnðLNP Þ=dðLNPÞ=LNP ,
meaning ΔlnðLNPÞ represents the relative change in average cloud
droplet water content due to a decrease in aerosols. Similarly,Δln βP

� �
indicates the relative change in cloud PSD due to a decrease in
aerosols.

By slightly transforming the power–law relationship between β
and LN (Eq. (1)), we get b=dlnðLNÞ=dlnðβÞ. We attempt to approximate
b using ΔlnðLNPÞ=ΔlnðβPÞ (Supplementary Fig. 2c), thereby explaining
the spatial variation of parameter b through the spatial distributions of
ΔlnðLNPÞ and ΔlnðβPÞ. Comparing Supplementary Fig. 2c and Fig. 1e,
the ratio of Δln LNP

� �
and ΔlnðβPÞ shows a similar global mean and

spatial distribution to the parameter b, indicating that our analytical
method is reasonable.

In general, the variation of ΔlnðLNPÞ exhibits a clear land–ocean
distribution pattern. Compared to land regions, oceanic regions have
generally lower values with less pronounced regional distribution

features (Supplementary Fig. 2a). However, the variation of ΔlnðβPÞ in
oceanic regions shows distinct regional distribution characteristics,
with larger absolute values mainly occurring in the northern Indian
Ocean, the North Atlantic, the North Pacific, and low-latitude regions
of the South Pacific, ultimately leading to larger absolute values of b in
these areas. This indicates that the spatial distribution of the fitting
parameter b in ocean regions is primarily determined by the relative
variation of βP , while the relative variation of LNP across different
regions is not significant.

In contrast to oceanic regions, the spatial distribution of the fit-
ting parameter b in land areas is determined by the relative changes in
both βP and LNP . For instance, in the Indian subcontinent, a relatively
small relative change in LNP (Supplementary Fig. 2a) leads to a larger
relative change in βP (Supplementary Fig. 2b), resulting in a more
negativeb in this region. In Europe, although the relative change inLNP

is similar to that in the Indian subcontinent, the relative change in βP is
relatively weaker, leading to a smaller absolute value of the parameter
b. Similar results are observed in other land areas. Overall, in land
regions, thefitting parameterb is determinedby the combined relative
changes in βP and LNP .

It is important to note that due to the limited variables provided
by the POLDER-NNsdataset, our analysis remains relatively coarse, and
further analysis of the physical mechanisms is necessary in the future.

Factors influencing the β� LN relationship over land and ocean
In this study, we consider LN to be the dominant factor influencing β,
and their relationship can be represented by a power–law relationship.
However, when LN is either small or large, the relationship between β
and LN appears to deviate from this power–law fitted using the pre-
binned method, particularly over land (Fig. 2e). In other words, when
LN reaches extreme values, β may be significantly affected by other
factors. We speculate that this is related to the following three factors:
1. Bias of the retrieval algorithm: Compared to the ocean, the

retrieval uncertainty, especially for large cloud droplets over land
is greater30. Further analysis suggested that this may be linked to
the influence of aerosols above clouds in these regions on the
POLDER-NNs method30. This effect may cause β over land to
become insensitive to LN when greater than 5 ng (Fig. 2e), thereby
reducing the fitted correlation coefficient.

2. Condensation (evaporation) occurring simultaneously with new
activation (deactivation) for small droplets: Lu et al.32 and Zhang
et al.33. demonstrated through in situ observations and numerical
simulations that ε, which is proportional to β, shows a positive
correlation with LN for small cloud droplets. Thismay deviate the
β� LN relationship away from a negative correlation. Compared
to oceanic clouds, cloud droplets over land tend to be smaller
overall, whichmay contribute to the different fitting performance
in land and ocean.

3. Collision-coalescence process for large droplets: When LN is large
enough, the collection process (precipitation initiation) may
occur66, thereby disrupting the original characteristics of β.
Considering that the retrieval of large cloud droplets over land
is inherently less accurate, this effectmay be further exacerbated.

The above hypotheses regarding the land–ocean differences
require further in-depth investigation for validation.

Process of uncertainty quantification
The first source of uncertainty (Src1) arises from the inherent uncer-
tainty in the POLDER-NNs method. The POLDER-NNs dataset
employed in this study is generated via a neural network algorithm.
Discrepancies between this dataset and the exact solution derived
from the radiative transfer model introduce uncertainty in the retrie-
vals of Re and Ve. Based on Table 3 from Di Noia et al. 30, Src1 is found
to cause a bias (Bias) and root mean square error (RMSE) in Re/Ve of
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0.08/−0.01 and 0.92/0.03, respectively, as shown in Supplementary
Table 1. Based on this, we introduce a bias-corrected random
Gaussian noise for each Re/Ve value in POLDER-NNs, denoted as
Nð�Bias, RMSEÞ, whereN represents a normal distributionwith amean
of �Bias and a standard deviation of RMSE1=2. Using the corrected
values, we calculate β and LN, then fit the data to obtain the parameter
b and its corresponding standard error (SE) while accounting for the
impact of Src1. To ensure the robustness of the results and avoid
potential biases froma single randomsampling, we repeat this process
10,000 times (Fig. 3a). The final estimates of b and SE, considering
Src1, are obtained by averaging all sampled results and are denoted as
bs1d and SEs1 d , where s1 refers to Src1 and d indicates the use of the
direct fitting method (Supplementary Table 1).

The second source of uncertainty (Src2) stems from the impact of
cloud heterogeneity. The POLDER-NNs data utilized in this study are
characterized by a relatively coarse resolution, which may introduce
errors by assuming homogeneity within the retrieval area (~6 km
resolution). Therefore, it is essential to account for the effects of cloud
heterogeneity on the retrievals of Re and Ve. Shang et al.37 evaluated
this impact by modeling a cloud field comprising several equal-area
subregionswith constant cloud optical thickness but varyingRe andVe

values. Based on the differences between the actual and retrieved
Re/Ve (as shown in Table 2 in Shang et al. 37), Src2 is found to cause the
Bias and RMSE in Re/Ve of −0.71/0.02 and 0.88/0.04, respectively
(Supplementary Table 1). Following the uncertainty quantification
framework from Src1, the uncertainty in b caused by Src2 is then
determined, and the bs2 d and SEs2 d are provided, as shown in Sup-
plementary Table 1.

The third source of uncertainty (Src3) arises from the use of the
POLDER retrieval method, wavelength selection, and grid-scale pro-
cessing. The POLDER-NNs data are derived by applying machine
learning to the multi-angle, multi-wavelength polarimetric measure-
mentswith a grid scale of 1° × 1°. Shang et al.29 introduced an enhanced
primary cloudbow retrieval (PCR) algorithm to estimate Re and Ve

from POLDER, creating a global retrieval dataset for four months
(February, May, August, and November 2008) (denoted as POLDER-
PCR). Unlike POLDER-NNs, POLDER-PCR employs traditional retrieval
methods, clearly differentiating between various retrieval wavelengths
(670/865 nm),with a grid resolutionof 0.7° × 0.7°. Data fromPOLDER-
PCR for low- and mid-latitude regions (60°S–60°N) were selected for
fitting parameter b. Based on the fitting outcomes across two wave-
lengths, the uncertainty in b due to Src3 is determined, and the cor-
responding b and SE are provided (denoted as bs3 d and SEs3 d), as
shown in Supplementary Table 1. Although POLDER-NNs and POLDER-
PCR utilize different wavelengths and grid scale configurations, as well
as distinct retrieval methodologies, the derived b values are relatively
consistent. Compared to POLDER-NNs, the b values obtained from
POLDER-PCR exhibit larger SE, likely due to the smaller sample size of
the POLDER-PCR dataset (68,555 valid samples) and discontinuous Ve

values (intervals of 0.02). However, this convergence in b values
obtained from two independent retrievals provides a basis for evalu-
ating the potential influence of Src3.

The fourth source of uncertainty (Src4) arises from the fitting
method used for parameter b. As discussed before, commonly
used fitting methods for large satellite datasets include direct and
pre-binned fittings, though which of the two is the superior
method remains unclear. Therefore, both fitting methods were
employed to derive b and SE using Src1–Src3, as shown in Supple-
mentary Table 1.

Finally, the overall impact of four sources on the estimation of b is
quantified using aMonte Carlomethod, similar to that of Boucher and
Haywood 38 and Bellouin et al. 3. It is assumed that the b values induced
by different sources, as shown in Supplementary Table 1, follow a
normal function (i.e., b � NðbSF , SESF

2Þ, where S represents different
sources, and F indicates the fitting method). A random sampling

process is then performed 10 million times, and for each random
result, the mean value of b affected by different sources is calculated,
resulting in a probability density distribution of b. The mean is then
computed as the best estimate of b (−0.024), and the 5–95% con-
fidence intervals aredetermined as the uncertainty range for b (−0.026
to −0.022), as shown in Fig. 3b and Supplementary Table 1.

Similar uncertainty quantification has also been applied to clouds
over ocean and land, with the relevant parameters listed in Supple-
mentary Table 2 and the probability density distributions shown
in Fig. 3b.

Causal mediation analysis
To examine the relationship between aerosols, LN, and β, aswell as the
mediating effect of LN on the impact of aerosols on β, we use the
POLDER Level 3 aerosol products, generated using a generalized
retrieval of atmosphere and surface properties “components”
approach, gridded at a 1° × 1° resolution (POLDER-3/GRASP, version
1.1)41–44. This product is officially recommended for studies involving
both theÅngströmexponent (AE) and aerosoloptical depth (AOD) and
demonstrates a high consistency with the aerosol robotic network
(AERONET) on a global scale44,67.

To better characterize the properties of aerosols that can be
activated as cloud droplets, this study uses AE and AOD at 565 nm
from the POLDER-3/GRASP to calculate the aerosol index (AI,
AI =AE×AOD)34. Before analysis, AI were matched with POLDER-NNs
on a daily basis within a 1° × 1° grid to ensure full spatiotemporal
alignment between the two datasets. The results of the matched data
analysis are shown in Fig. 4, where the power–law fitting of LN and β
with AI is performed using the pre-binned method, and the mediation
effect analysis is conducted using the R package for a causalmediation
analysis45.

Data availability
The POLDER-NNs dataset used in this study can be downloaded pub-
licly from ftp://ftp.sron.nl/open-access-data/antonion/10.5194-amt-
2018-345 (last access: 4 January 2024). POLDER-3/GRASP dataset is
from “CNES/GRASP/LOA/Cloudflight/ICARE” (last access: 10
March 2025).

Code availability
The code used to replicate the figures in this study is available at
https://doi.org/10.6084/m9.figshare.2864859868.
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