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Health risks and genetic architecture of
objectively measured multidimensional
sleep health

Shengkui Zhang 1, Manrui Zhang1, Yuxin Yuan 2, Zilin Li 2 ,
Xihao Li 3,4 & Xiaoyu Li 1

Amultidimensional sleephealth framework improves screening and treatment
efficacy by simultaneously addressing multiple sleep domains. However, lim-
ited studies have used objective measures to evaluate the co-occurrence of
diverse unhealthy sleep characteristics and their pleiotropic health effects. To
represent real-world sleep patterns, we introduce the Unfavorable Sleep Pro-
file (USP), an integratedmultidimensional sleep healthmetric developed using
accelerometer data in the UK Biobank (N = 85,233; aged 43–79 years). USP
captures five domains: sleep timing, efficiency, duration, rhythmicity, and
regularity. Phenome-wide association study found that USP was significantly
associated with 76 out of 526 incident health outcomes over 7.9 years of
follow-up. We identified several upstream environmental risk factors asso-
ciated with USP, including low socioeconomic status. Whole-genome
sequence analyses identified common variants in MEIS1 and rare coding var-
iants in TTC1 associated with USP. We validated the USP framework in an
independent cohort, the Multi-Ethnic Study of Atherosclerosis. Our findings
underscore the importance of multidimensional sleep health assessment in
predicting and potentially mitigating a wide array of health disorders and
advance genetic insights into sleep health.

Sleep is a fundamental biological necessity, essential for human life
and increasingly recognized as crucial to public health1. The American
Heart Association has acknowledged sleep’s substantial and indepen-
dent impact on overall health and cardiometabolic outcomes by
incorporating sleep health as the eighth metric in the Life’s Essential 8
framework2. This inclusion aligns with endorsements from the Eur-
opean Academy of Neurology and the World Health Organization,
emphasizing sleep’s vital role in brain health3. Globally, common sleep
insufficiency and sleep disorders pose significant challenges4.

Sleep health is a complex, multidimensional construct that
extends beyond individual sleep characteristics or specific sleep
disorders4. The RU-SATED model proposed by Buysee describes sleep
health through six domains: regularity, satisfaction, alertness, timing,

efficiency, and duration4,5. Additionally, rhythmicity, which char-
acterizes the strength of the overall sleep-wake rhythm in a 24 h cycle,
has also been proposed as an important domain6,7. However, previous
studies examining the associations between sleep and disease out-
comes have predominantly focused on specific sleep characteristics
such as sleep duration and insomnia8,9, overlooking the multi-
dimensional natureof sleep health.Moreover, prior researchhas relied
largely on subjective, self-reported measures of sleep, which often
correlate poorly with objective measures obtained through the gold-
standard polysomnography (PSG)10. The subjective sleep data also
have limitations in capturing the regularity and rhythmicity of sleep
patterns, as these domains require continuous, longitudinal 24-h
measurements.
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Actigraphy or accelerometer, which provides sleep-related data
often comparable to PSG11, offers unique opportunities to investigate
the associations between multidimensional sleep health and disease
outcomes, particularly regarding regularity and rhythmicity12,13.
Accelerometer data reduce reporting bias and provide objective,
noninvasive, and continuous measurements of sleep-wake patterns in
the home setting, enabling comprehensive analysis of sleep health
across multiple domains. Recent studies using wearable devices have
analyzed the relationships between objectively measured, separate
sleep characteristics and chronic disease risks7,14,15. However, these
studies, while informative, are limited by failing to consider sleep as a
multidimensional construct, relatively small samples, and restricted
range of disease outcomes. Thus, it is critical to adopt a multi-
dimensional approach to sleep health and to investigate the associa-
tion between sleep health and a broad range of future disease
outcomes, using objectively measured data from a large sample.

Understanding environmental and genetic factors that influence
sleep patterns can guide the development of tailored interventions
and therapeutic strategies to improve sleep and, consequently, overall
health. While genome-wide association studies have identified hun-
dreds of common and low-frequency variants associated with sleep-
related traits, these variants explain only a modest portion of the
heritability16. Rare variants (RVs) may explain additional unaccounted
heritability17 and provide insights into gene function in disease

pathophysiology, potentially revealing new therapeutic targets18–20.
Large-scale whole genome sequencing (WGS) studies and biobanks
now allow for examination of associations between sleep health and
both coding and noncoding RVs across the genome. However, the
upstream factors influencing multidimensional sleep health remain
underexplored.

In this study, we introduced a multidimensional sleep health
marker termed the Unfavorable Sleep Profile (USP) to capture real-
world sleep patterns. This marker consolidates multiple sleep dimen-
sions into a single comprehensivemetric by extracting and clustering a
multitude of objective sleep characteristics measured by accel-
erometer, using data from the large UK Biobank cohort (587,152 nights
of data from 85,233 participants). We employed a phenome-wide
association study (PheWAS) to examine the associations between USP
and future health outcomes. Additionally, we used multivariable
logistic regression to investigate environmental factors associated with
USP and conducted whole-genome sequence analyses to investigate
genetic factors linked to USP (Fig. 1). We assessed the effects of com-
mon and low-frequency variants individually through single variant
analysis and the aggregate effects of RVs using various coding and
noncoding functional categories. Our study highlights the importance
of adopting amultidimensional sleep health framework using objective
sleepmeasures in understanding both the downstream health risks and
the upstream environmental and genetic factors associated with sleep.

Fig. 1 | Study design schematic. Left: Workflow for identifying sleep profiles and
assessing the associated future health risks. A phenome-wide analysis was per-
formed to identify associations between sleep profiles and incident disease phe-
notypes (phecodes). Right: Workflow for analyzing upstream factors associated

with sleep profiles. Regression analysis examined associations between environ-
mental factors and sleepprofiles. Functionally-informedwhole-genomeassociation
analysis investigated the genetic factors associated with sleep profiles.
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Results
Description of the study participants
The study included 85,233 UK Biobank participants with valid accel-
erometer data. Participants had a median age of 63.48 years (inter-
quartile range: 56.32, 68.55) at accelerometry assessment, with 56.5%
being female and the majority being white (Table 1, Supplementary
Data 1). Accelerometry monitoring last a median of 7 days, generating
587,152 person-nights of data. For genetic analyses, 80,007 individuals
had whole-exome data available for coding variant association analysis,
and 35,556 had whole-genome data for noncoding association analysis.

Construction of USP
We developed a multidimensional sleep health marker, the USP, by
integrating multiple sleep dimensions into a single comprehensive
metric. First, using exploratory factor analysis (EFA), we extracted
factors representing sleep health domains through evaluating eigen-
values, visually inspecting scree plots, and ensuring interpretability
(Supplementary Fig. 1, Methods). Adhering to the multidimensional
sleep health framework4, we adopted a 5-factor model comprising 26
variables, with factors representing timing, efficiency, duration,
rhythmicity, and regularity (Fig. 2a, SupplementaryData 2). Thismodel
explained 77% of the total variance, with factor independence con-
firmed through multiple orthogonal rotations (Supplementary
Data 3–6). Notably, our analysis identified rhythmicity as a distinct
dimension of sleep health, a finding not previously confirmed in prior
studies, but one that supported recent calls to integrate circadian
rhythm characteristics into the multidimensional sleep health
framework6,7. As illustrated in Supplementary Fig. 2, a participant
randomly selected from the lowest quintile of rhythmicity scores
exhibited irregular, fragmented rest-activity cycles with low stability
across days. The time series appeared highly random, with little dis-
tinction between day and night. In contrast, a participant randomly
selected from the highest quintile of rhythmicity scores showed a
robust and consistent rest-activity pattern, with clear separation
between periods of rest and activity across the 24 h cycle.

Second, we performed latent profile analysis (LPA) to construct a
multidimensional sleep health marker. Building on the 5-factor model
identified in EFA, LPA determined the optimalmodel with twoprofiles:
a favorable sleep profile (n = 69,225) and an unfavorable sleep profile
(n = 16,008), based on the highest integrated completed likelihood
values (Supplementary Data 7, Supplementary Fig. 3). Compared to
favorable sleep profile, USP was characterized by later sleep timing,
lower sleep efficiency, shorter sleep duration, weaker rhythmicity, and
less regular sleep patterns with greater variability in both timing and
duration (Fig. 2b, Supplementary Data 8). These findings revealed that
sleep behaviors do not occur in isolation; instead, unhealthy sleep
characteristics tend to cluster together and form distinct sleep
profiles.

Association of USP with incident diseases and mortality
Tosystematically examine the futurehealth risks associatedwithUSP,we
conducted a PheWAS using a Cox proportional hazardsmodel analyzing
526 diseases across 16 groups defined by the Phecode Map21,22. Over an
average follow-up period of 7.9 years, the PheWAS identified 76 sig-
nificant associations with USP at the Bonferroni-corrected significance
level of 0:05=526=9:51 × 10�5, after adjusting for multiple covariates
(Fig. 3). These associations comprised 17 circulatory, 11 endocrine or
metabolic, 9 respiratory, 7 mental, 7 genitourinary, 5 neurological, 4
dermatologic, 3 infectious, 3 hematopoietic, 3 digestive, 4 injuries and
poisonings, and 1 each of symptom, sense organ, and musculoskeletal
diseases (Fig. 4).

USPwasassociatedwith abroad rangeof chronic diseases, suchas
heart failure (hazard ratio [HR] 1.35, 95% confidence interval [CI]
1.20–1.51), atrial fibrillation and flutter (HR 1.18, 95% CI 1.09–1.29),
hypertension (HR 1.13, 95% CI 1.08–1.19), type 2 diabetes (HR 1.31, 95%

CI 1.19–1.43), chronic bronchitis (HR 1.34, 95%CI 1.19–1.51), and chronic
renal failure (HR 1.31, 95% CI 1.19–1.44) (Fig. 4, Supplementary Data 9).
These findings align with previous research linking sleep disturbances
to common chronic diseases23–26. In mental disorders, USP was asso-
ciated with 7 conditions, including anxiety disorder and substance-
related disorders. Among neurological diseases, USP was associated
with an increased risk of migraine, abnormal movement, and
abnormality of gait. Additionally, USP was associated with diagnosed
sleep apnea (HR 1.70, 95% CI 1.45–1.99) and sleep disorders (HR 1.55,
95% CI 1.34–1.81), indicating the interconnectedness of poor sleep
patterns.

We also expanded the evidence for associations between sleep
profiles and several conditions that have not been extensively studied
in previous sleep research. For instance, USP showed significant
associations with electrolyte imbalance (HR 1.30, 95% CI 1.17–1.44),
acidosis (HR 1.71, 95% CI 1.37–2.15), iron deficiency anemia (HR 1.38,
95% CI 1.24–1.53), blindness and low vision (HR 1.75, 95% CI 1.34–2.27),

Table 1 | Descriptive characteristics of study participants

Variable Overall,
N = 85,233a

Female,
N = 48,174a

Male,
N = 37,059a

Age at accel-
erometry (yr)

63.48
(56.32, 68.55)

62.68
(55.80, 67.97)

64.55
(57.12, 69.30)

Ethnicity

White 82,622 (96.94) 46,634 (96.80) 35,988 (97.11)

Other 2611 (3.06) 1540 (3.20) 1071 (2.89)

Education

No qualification 25,089 (29.44) 15,449 (32.07) 9640 (26.01)

Any other
qualification

23,082 (27.08) 12,253 (25.43) 10,829 (29.22)

Degree or above 37,062 (43.48) 20,472 (42.50) 16,590 (44.77)

TDI -2.45
(-3.82, -0.19)

-2.40
(-3.78, -0.12)

-2.51
(-3.86, -0.30)

Smoking status

Never 48,798 (57.25) 29,462 (61.16) 19,336 (52.18)

Previous 30,768 (36.10) 15,991 (33.19) 14,777 (39.87)

Current 5667 (6.65) 2721 (5.65) 2946 (7.95)

Alcohol consumption

Never 2501 (2.93) 1817 (3.77) 684 (1.85)

Previous 2286 (2.68) 1298 (2.69) 988 (2.67)

Current 80,446 (94.38) 45,059 (93.53) 35,387 (95.49)

Diet

Poor 71,343 (83.70) 40,140 (83.32) 31,203 (84.20)

Ideal 13,890 (16.30) 8034 (16.68) 5856 (15.80)

MVPA (min) 27.17
(19.83, 35.00)

28.50
(21.00, 36.00)

25.50
(18.50, 33.33)

Season of accelerometer wear

Spring 18,913 (22.19) 10,802 (22.42) 8111 (21.89)

Summer 23,544 (27.62) 13,333 (27.68) 10,211 (27.55)

Autumn 23,934 (28.08) 13,535 (28.10) 10,399 (28.06)

Winter 18,842 (22.11) 10,504 (21.80) 8338 (22.50)

Self-rated health

Excellent/Good 69,679 (81.75) 40,197 (83.44) 29,482 (79.55)

Fair/Poor 15,554 (18.25) 7977 (16.56) 7577 (20.45)

BMI

Normal/
underweight

33,715 (39.56) 22,602 (46.92) 11,113 (29.99)

Overweight 35,069 (41.14) 16,816 (34.91) 18,253 (49.25)

Obese 16,449 (19.30) 8756 (18.18) 7693 (20.76)
aAll values are reported asmedian (interquartile range) or n (%). TDI Townsend deprivation index;
MVPA moderate-to-vigorous physical activity (duration in minutes); BMI body mass index.
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injury (HR 1.45, 95% CI 1.22–1.71), and fracture of the lower limb (HR
1.37, 95% CI 1.17–1.59).

In stratified analyses of the significant associations, most of the
76 disease phenotypes remained significant in participants aged 65
or older and in male participants (Supplementary Fig. 4, Supple-
mentary Data 10). Among participants younger than 65 years and
female participants, associations were directionally concordant with

those observed in older adults and males. A subset of these asso-
ciations did not reach statistical significance after Bonferroni cor-
rection, possibly due to the fewer disease events observed in
younger and female participant groups. These findings were robust
after excluding participants with incomplete covariate data or his-
tory of shift work (Supplementary Fig. 5–6, Supplementary
Data 11–14).
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Fig. 2 | Sleep profile identification. a Factor analysis: Display of the 5-factormodel
results, labeled as timing, efficiency, duration, rhythmicity, and regularity. Numbers
indicate factor loadings; purple dashed arrows denote negative correlations
between the latent factor and its corresponding original variables. AD all days
average,WDweekdays average, WEweekend days average, WASOwake after sleep

onset, (sd) standard deviation, IV intra-daily variability, RA relative amplitude, IS
inter-daily stability. b Latent profile analysis: Identification of the optimal model
with two profiles, based on the best integrated completed likelihood values. The
x-axis shows the five factors obtained from the factor analysis, and the y-axis shows
the standardized factor scores. Source data are provided as a Source Data file.
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To examine the individual associations between each of the five
sleep domains constituting USP and health outcomes, we fitted
restricted cubic spline models for the 526 disease phenotypes. In each
model, the factor score of one domain was entered as the primary
predictor, adjusting for the other four domains and relevant covari-
ates. Overall, each individual dimension yielded fewer significant
findings than USP. Specifically, independent associations were
observed for 5 phenotypes with timing, 3 with efficiency, 64 with
duration, 19 with rhythmicity, and 21 with regularity (Bonferroni-cor-
rected P <9:51 × 10�5). Later timing was associated with increased
risks. Higher sleep efficiency consistently conferred lower risks. For
sleep duration, short sleep was consistently associated with adverse
health outcomeswhereas long sleepwas associatedwith some adverse
outcomes. Lower rhythmicity and greater irregularity were broadly
linked to adverse health outcomes (Supplementary Fig. 7).

As a sensitivity analysis, we constructed a continuous healthy
sleep score by weighting the harmonized factor scores of the five
domains according to their proportion of variance explained (Meth-
ods). In the PheWAS of 526 phenotypes, we identified 81 significant
associations (Bonferroni-corrected P <9:51 × 10�5), 47 of which over-
lapped with the 76 phenotypes identified using the binary USP (Sup-
plementary Fig. 8). Given that aggregating the five dimensions into a
singlemetric assumes linear relationshipswith health outcomes,which
may not capture more complex, non-linear associations, we present
the continuous score as a sensitivity analysis, while the binary USP
derived from LPA clustering is used as the primary metric.

We further examined the relationship between USP andmortality
risk using Cox regression analyses (Supplementary Data 15). USP was
associated with increased risks of all-cause mortality (HR 1.32, 95% CI
1.22–1.42) and cardiovascular disease (CVD) mortality (HR 1.55, 95% CI
1.32–1.83). The associations remained significant, albeit attenuated,
after excluding individuals who died within 1 year of accelerometer
monitoring (Supplementary Data 16).

Population attributable fraction of USP
Toassess the publichealth impact ofUSP,weexamined thepopulation
attributable fraction (PAF) for all-cause mortality, CVD mortality, and
the 76 USP-associated diseases. The PAF for USP was 5.66% for all-
cause mortality and 9.25% for CVD mortality. The PAF estimates indi-
cated that 2.3%–12.3% of incident cases across the 76 diseases could be
associated with USP (Supplementary Data 17). Blindness and low
vision, acidosis, sleep apnea, peripheral vascular disease, and type 2
diabetes with ophthalmicmanifestations showed the highest PAFs.We
also calculated the number of attributable cases per 100,000 person-
years for USP across the 76 disease phenotypes, accounting for both
PAF and incidence density. The greatest potential impact of eliminat-
ing USP was observed for common diseases including essential
hypertension, chronic renal failure, anxiety disorder, pneumonia,
osteoarthrosis, iron deficiency anemia, ischemic heart disease, and
type 2 diabetes. The top 20 phenotypes with the highest numbers of
attributable cases are presented in Table 2.

Upstream environmental factors associated with USP
We studied the associations between environmental factors and sleep
profiles, identifying several risk factors significantly associated with
USP at the nominal P <0.05 level (Methods, Supplementary Data 18).
Demographic risk factors included older age (adjusted odds ratio (OR)
1.06; 95% CI 1.01–1.11), male gender (OR 1.61; 95% CI 1.54–1.69), and
non-white ethnicity (OR 1.99; 95%CI 1.78–2.22). Socioeconomic factors
were associated with USP as well; higher education levels were pro-
tective (OR 0.94; 95% CI 0.89–0.99), while high deprivation increased
the risk (OR 1.23; 95% CI 1.17–1.30). Meanwhile, being married or
partnered was associated with lower risk (OR 0.70; 95% CI 0.65–0.76).
Among lifestyle factors, both current smoking (OR 1.64; 95% CI
1.51–1.79) and heavy alcohol consumption (>28 standard drinks/week:
OR 1.21; 95% CI 1.13–1.30) were significantly associated with increased
risk of USP. Obesity exhibited a strong association with increased risk
(OR 1.94; 95% CI 1.83–2.05), as did winter season (OR 1.15; 95% CI
1.08–1.23). We observed distinct seasonal variations in specific sleep
characteristics. Sleep timing was phase-advanced in spring, accom-
panied by the highest sleep efficiency. Summer was characterized by
the shortest sleepduration,whilewinter, despite being associatedwith
longer sleep duration, showed evidenceof circadianmisalignment and
poorer rhythmicity (Supplementary Data 19). Self-reported sleep
measures not captured by accelerometer, including sleep apnea,
daytime sleepiness, and ease of getting up, were also associated
with USP.

USP polygenic score and USP-linked phenotypes
To investigate whether the associations between USP and various
phenotypes could be explained by shared genetic components, we
conducted a genome-wide association study (GWAS) for USP and
derived a polygenic score (PGS) based on the identified genome-wide
significant variants. We then assessed the associations between the USP
PGS and 76 phenotypes previously found to be linked with USP at the
phenotypic level. These analyses followed the samemodeling approach
and covariate adjustments as used in the initial USP PheWAS, ensuring
consistency in the analytical framework. Among the tested phenotypes,
32 remained significantly associated with the USP PGS after Bonferroni
correction (P<6.6 × 10⁻⁴), covering domains such as metabolic dis-
orders, cardiovascular conditions, respiratory diseases, and mental
health traits (Supplementary Fig. 9, Supplementary Data 20).

Mendelian randomization analysis of USP and USP-linked
phenotypes
To further assess the potential causal relationships between USP and
its associated phenotypes, we performed two-sample Mendelian ran-
domization (MR) analyses. Using whole-genome sequencing data from
83,347 individuals in the UK Biobank, variants associated with USP at a

Fig. 3 | Phenome-wide analyses of the association between USP and future
disease risk.Manhattan plot-style visualization assessing the relationship between
sleep profiles and future disease risk. A Cox proportional hazards model was
applied to each phenotype using the two-sided Wald test, adjusted for age, sex,
ethnicity, diet, smoking status, alcohol consumption, education, self-rated health,
body mass index, season, moderate-to-vigorous physical activity, and Townsend
deprivation index. Uncorrected P-values are plotted, with a blue dashed line indi-
cating the Bonferroni-corrected significance threshold for α ≤0.05 and a red
dashed line representing the Benjamini-Hochberg false discovery rate (FDR) cutoff
at 0.05. USP: unhealthy sleep profile. Source data are provided as a SourceData file.
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significance threshold of P < 5 × 10⁻⁶ were identified via the
STAARpipeline27, resulting in 362 significant variants. After linkage
disequilibrium clumping, 16 independent variants were retained as
genetic instruments.

Using the inverse varianceweighted (IVW)method to evaluate the
potential causal effect of USP on 76 USP-linked phenotypes, we
observed suggestive evidence for associations with five outcomes:
other chronic nonalcoholic liver disease, iron deficiency anemias,

Fig. 4 | Forest plot of significant incident disease phenotypes in the phenome-
wide analyses. A Cox proportional hazards model was applied to each phenotype
using the two-sidedWald test, adjusted for age, sex, ethnicity, diet, smoking status,
alcohol consumption, education, self-rated health, body mass index, season,
moderate-to-vigorous physical activity, and Townsend deprivation index. The

significant threshold is defined by multiple comparisons using the Bonferroni
correction (0:05=526 =9:51 × 10�5). Uncorrected P-values are plotted. Left: Effect
sizes from the Cox models are presented as hazard ratios (HRs) with 95% con-
fidence intervals (CIs), using the favorable sleep profile as the reference. Right:
Significance of the effect size. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-62338-0

Nature Communications |         (2025) 16:7026 6

www.nature.com/naturecommunications


anxiety disorder, iron deficiency anemias (unspecified or not due to
blood loss), and migraine (Supplementary Fig. 10, Supplementary
Data 21).

Sensitivity analyses using alternative MR methods yielded gen-
erally consistent effect directions with the IVW estimates. No sig-
nificant heterogeneity (Cochran’s Q test P >0.05) or horizontal
pleiotropy (MR Egger intercept P >0.05) was detected for these five
outcomes, suggesting the validity of the instrumental variable
assumptions. The strength of the instruments was supported by mean
F-statistics exceeding 20 across analyses, indicating a low risk of weak
instrument bias (Supplementary Data 22). Leave-one-out analyses
further confirmed the robustness of these findings (Supplementary
Fig. 11–15).

Common and rare genetic variants associated with USP
To investigate the genetic architecture of USP, we first performed a
functionally informed analysis to detect coding variants associated
with USP, analyzing whole-exome sequencing (WES) data from80,007
individuals in the UK Biobank through STAARpipeline27 (Methods).
This analysis included single variant association analysis of individual
autosomal variant (minor allele count [MAC] ≥ 40) and variant set
analysis of aggregated rare autosomal variants (minor allele frequency
[MAF] < 1%) association. For rare variant analysis, STAARpipeline pro-
vides gene-centric analyses of seven coding functional categories of

protein coding genes (Methods). In the single variant analysis, none
achieved the genome-wide significant associations at a level of 5 × 10�9

(Fig. 5a, b). In the gene-centric coding analysis, a genome-wide sig-
nificant association was detected between protein-truncating (PTV)
and disruptive missense RVs in TTC1 and USP at the Bonferroni-
corrected level 0:05=20, 000=2:50× 10�6 (Methods, Fig. 5c, d, Sup-
plementary Data 23). All 25 PTV and disruptive missense RVs in TTC1
were extremely rare variants with MAC< 5, indicating the associations
were driven by the aggregated effect of multiple RVs and were inde-
pendent of any previously reported sleep health-related common
variants (Supplementary Data 24).

We then performed a functionally informed genetic analysis to
detect noncoding variants associated with USP, using whole-genome
sequencing (WGS) data from 35,556 individuals in the UK Biobank
through STAARpipeline (Methods). Analogous to the coding genome
analysis, we performed single variant analysis of variants with MAC ≥
40, and gene-centric noncoding analysis of RVs with MAF < 1%,
including seven noncoding functional categories of protein coding
genes, as well as one noncoding functional category of ncRNA genes
(Methods). For each variant set, we further incorporated 12 in-silico
variant functional annotation scores that prioritize functional variants
using multidimensional variant biological functions through the
STAAR framework28 to enhance analytical power (Supplementary
Data 25). The single variant analysis identified two intronic variants,
rs113851554 and rs11679120 in the MEIS1 gene that reached genome-
wide significance level of 5 × 10�9 (Fig. 5e, f, Supplementary Data 26).
These two variants are previously reported to be associated with sleep
health traits, such as, sleep duration29 and insomnia complaints30. In
gene-centric noncoding analysis of USP, although no noncoding
associations of protein-coding genes achieved genome-wide sig-
nificance at the level of 2:50× 10�6, the association between enhancer
RVs overlaid with DNase Hypersensitivity (DHS) sites of CDK8 and USP
approached significance with a P-value of 3:19 × 10�6, nearly reaching
the defined threshold (Fig. 5g, h). The most significant variant of
enhancer DHS RVs of CDK8 gene with USP, rs140365310, had an indi-
vidual P = 7:58 × 10�3, indicating that the association was driven by the
cumulative effects of multiple enhancer DHS RVs (Supplementary
Data 27). The gene-centric noncoding analysis of ncRNA genes did not
detect any significant associations at the genome-wide significance
level 2:50× 10�6 (Fig. 5i, j).

Sensitivity analyses of genome-wide significant loci from the pri-
mary analyses, excluding shift workers or individuals reporting sleep
or psychiatric medication usage, and further adjusting for potential
confounders (Methods), did not substantially alter the effect estimates
of the identified signals (Supplementary Data 28, 29).

External validation of the USP framework
We analyzed actigraphy data from an independent cohort, the Multi-
Ethnic Study of Atherosclerosis (MESA), to evaluate the external
validity of the USP framework. Factor analysis captured the same five
latent sleep dimensions (Supplementary Fig. 16). The factor structure
and directionality of the loadings were consistent with those from the
UK Biobank (Supplementary Data 30–33). The LPA also identified USP
(Supplementary Data 34), consistent with the UK Biobank findings,
with 470 (21.8%) participants in the MESA classified as USP, similar to
the 18.9% observed in the UK Biobank. Individuals in USP exhibited
later sleep timing, lower sleep efficiency, shorter sleep duration,
weaker rhythmicity, and less regular sleep patterns, mirroring the
patterns observed in the UK Biobank (Supplementary Fig. 17). We
further examined USP associations with incident CVD events and
mortality in MESA. While some results did not reach statistical sig-
nificance, possibly due to MESA’s smaller sample size and shorter
follow-up (mean: 4.9 years), all HR point estimates exceeded 1.0 and
aligned with the UK Biobank findings, supporting the generalizability
of the USP framework (Supplementary Data 35, 36).

Table 2 | Population attributable fractions for select outcomes

Outcomes PAF
(%)

Per 100,000 person-years

Incidence
density

Attributable cases
(95% CI)

Mortality

All-cause mortality 5.66 529.28 29.98 (27.84–32.11)

CVD mortality 9.25 108.55 10.04 (8.56–11.52)

Phenotype

Hypertension 2.31 1793.91 41.41 (39.40–43.42)

Essential hypertension 2.30 1793.98 41.22 (39.22–43.23)

Renal failure 5.62 592.09 33.26 (30.95–35.57)

Anxiety disorders 7.07 453.97 32.10 (29.37–34.83)

Anxiety disorder 7.03 441.58 31.03 (28.35–33.71)

Other mental disorder 2.43 1215.10 29.56 (27.93–31.18)

Acute renal failure 7.43 349.82 25.97 (23.72–28.23)

Other anemias 7.15 356.58 25.51 (23.23–27.79)

Disorders of fluid, elec-
trolyte, and acid–base
balance

5.23 445.35 23.29 (21.42–25.16)

Pneumonia 5.44 415.74 22.63 (20.77–24.49)

Osteoarthrosis 3.00 731.46 21.97 (20.41–23.52)

Other chronic ischemic
heart disease,
unspecified

4.28 507.10 21.71 (20.00–23.42)

Diabetes mellitus 4.75 426.63 20.26 (18.61–21.91)

Irondeficiency anemias 6.50 308.21 20.03 (18.07–21.98)

Iron deficiency ane-
mias, unspecified or
not due to blood loss

6.50 308.21 20.03 (18.07–21.98)

Ischemic Heart Disease 3.47 561.65 19.50 (18.01–20.99)

Chronic renal
failure [CKD]

5.38 357.20 19.21 (17.47–20.95)

Type 2 diabetes 5.29 362.76 19.19 (17.52–20.87)

Hypotension NOS 6.29 302.20 19.02 (17.15–20.90)

Hypotension 5.56 339.70 18.87 (17.09–20.66)

The top 20 phenotypes with the highest numbers of attributable cases are shown. Population
attributable fractions are calculated based on the hazard ratio (HR). PAF population attributable
fraction, CI confidence interval.
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Discussion
In this study, we analyzed objective accelerometer-derived sleep data
from85,233UKBiobank participants and identified five sleep domains:
timing, efficiency, duration, rhythmicity, and regularity. We developed
the USP, a multidimensional sleep marker integrating these five
domains to reflect real-world sleep patterns. Our analysis revealed that

18.9% of the participants exhibited USP, characterized by later sleep
timing, lower sleep efficiency, shorter sleep duration, weaker rhyth-
micity, and greater sleep irregularity. Over an average follow-up period
of 7.9 years, USP was associated with all-cause and CVD mortality,
together with 76 out of 526 disease phenotypes (14%) across the
human phenome. These associations were particularly pronounced in
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Fig. 5 | Manhattan plots and Q-Q plots for variants associated with USP.
aManhattan plots for WES single variant analysis. The horizontal line indicates the
genome-wide significant level of 5 × 10�9. b Quantile-quantile plots for WES single
variant analysis. c Manhattan plots for WES gene-centric coding analysis. The
horizontal line indicates a genome-wide STAAR-O P-value threshold of 2:5 × 10�6.
The significant threshold is defined by multiple comparisons using the Bonferroni
correction (0:05=20, 000=2:50× 10�6). d Quantile-quantile plots for WES gene-
centric coding analysis. e Manhattan plots for WGS single variant analysis. The
horizontal line indicates the genome-wide significant level of 5 × 10�9. f Quantile-
quantile plots for WGS single variant analysis. g Manhattan plots for WGS gene-
centric noncoding analysis. The horizontal line indicates a genome-wide STAAR-O

P-value threshold of 2:5 × 10�6. The significant threshold is defined by multiple
comparisons using the Bonferroni correction (0:05=20, 000=2:50× 10�6).
h Quantile-quantile plots for WGS gene-centric noncoding analysis. i Manhattan
plots forWGS ncRNA analysis. The horizontal line indicates a genome-wide STAAR-
O P-value threshold of 2:5 × 10�6. The significant threshold is defined by multiple
comparisons using the Bonferroni correction (0:05=20, 000=2:50× 10�6).
jQuantile-quantile plots for WGS ncRNA analysis. In panels, (a−i) the chromosome
number are indicated by the colors of dots. In all panels, STAAR-O is a two-sided
test. USP: unfavorable sleep profile; WES: whole exome sequencing; WGS: whole
genome sequencing; STAAR-O: omnibus test in the STAAR framework.

Article https://doi.org/10.1038/s41467-025-62338-0

Nature Communications |         (2025) 16:7026 8

www.nature.com/naturecommunications


older adults and men. Furthermore, by transitioning to a Favorable
Sleep Profile, an estimated 2.3% to 12.3% of cases across the 76 USP-
associated diseases could potentially be prevented, as estimated by
the PAF. We investigated the upstream environmental risk factors and
examined the genetic architecture of USP. A few environmental factors
were found to be related toUSP, such as low socioeconomic status and
obesity. Genetic analyses revealed that common variants inMEIS1 and
rare coding variants in TTC1 were associated with USP. External vali-
dation in the MESA replicated the five-domain structure and identified
a similar USP, supporting the applicability of the USP framework to
diverse populations of adults in midlife and older age.

Recent studies have applied the RU-SATED model to investigate
multidimensional sleep health31–34. However, the representative sleep
characteristics used to define each dimension vary across studies,
complicating the reproducibility of findings. The RU-SATED model
outlines six dimensions of sleep health, including regularity, satisfac-
tion, alertness/sleepiness, timing, efficiency, and duration. Among
these, satisfaction can only bemeasured through self-report, while the
other dimensions can be assessed using both subjective and objective
measures. Napping plays an important role in overall sleep health and
alertness. However, napping behavior is highly variable and can be
influenced by a variety of factors, including individual sleep patterns,
cultural norms, and the availability of time to nap4. As a result, without
concurrent sleep diary entries during accelerometer wear, napping
could not be reliably detected. Although baseline napping data are
available in the cohort, they were self-reported and were collected
~5.7 years before accelerometer assessment for over 90% of partici-
pants,making themunsuitable for integration into the current analytic
framework. Future studies may benefit from using concurrent sleep
diary to collect information including nap-related behaviors alongside
accelerometer monitoring, enabling a more accurate and compre-
hensive assessment of daytime sleepiness, total sleep duration, and
rhythmicity.

We additionally identified rhythmicity as a distinct sleep health
dimension, extending beyond prior studies and aligning with recent
calls to incorporate circadian rhythm characteristics into the multi-
dimensional sleep health framework6,7. The rhythmicity domain was
characterized by established parametric and non-parametricmeasures
that assess fragmentation and synchronization35. Accelerometer-based
circadian rhythm measurement is based on the principle that move-
ment increases during wake periods and decreases during sleep, a
validated approach35. The recognition of rhythmicity advances the
multidimensional framework of sleep health by incorporating the
regulation of both homeostatic processes and the circadian system, a
24 h rhythm that regulates most physiological systems3. Although our
study did not capture satisfaction and sleepiness dimensions, the
composite USP, derived from five objectively measured dimensions,
showed significant associations with diagnosed sleep disorders and
future health risks. This suggests that USP provides a comprehensive
measure of sleep health with potential for standardization and clinical
application.

By integrating multiple dimensions of sleep, USP effectively cap-
tures the combined impacts of various sleep patterns. Our findings
showed that USP was associated with multiple chronic diseases,
advancing beyond previous studies that examined relationships
between self-reported single sleep variables and specific chronic
conditions36,37. Notably, our analyses identified associations between
USP and both coronary atherosclerosis (HR 1.20, 95% CI 1.09–1.32,
P = 1:22 × 10�4) and type 2 diabetes (HR 1.31, 95% CI 1.19–1.43,
P = 1:40× 10�8), associations that were not detected in a previous
study of 6,785 adults utilizing commercial wearable devices to analyze
six single-dimension sleep metrics15. The inclusion of rhythmicity
characteristics in our analytic framework may have enhanced our
ability to detect these associations, which aligned with established
links between circadian disruption and type 2 diabetes38, as well as

known circadian regulation of major cardiovascular functions25,39. Our
sensitivity analyses provided further support, showing that poor
rhythmicity alonewas significantly associatedwith higher risks of heart
failure and type 2 diabetes. In addition, insufficient sleep duration,
another key dimension of USP, was independently linked to elevated
risks of these cardiometabolic conditions. These results are consistent
with prior evidence on the adverse health consequences of sleep
deprivation. Sleep loss impairs insulin and glucose homeostasis, dis-
rupts metabolic hormones such as leptin and ghrelin, alters adipose
tissue function, and contributes to the development of type 2
diabetes mellitus37. Moreover, elevated cardiovascular risk has been
linked to hyperactivation of the sympathetic nervous system and
increased oxidative stress in response to insufficient sleep
duration40.These results highlight the value of incorporating multiple
sleep dimensions, including rhythmicity, in capturing complex sleep-
health relationships.

The PheWAS found USP extensively associated with a broad
spectrum of diseases, including mental, neurological, endocrine/
metabolic, hematopoietic, infectious, respiratory, and cardiovascular
diseases. USP’s associations with worsened mental health outcomes
aligned with previous research on sleep’s role in cognitive function
through neurophysiological changes and memory consolidation3,41–45.
In addition to cognitive pathways, evidence also supports sleep’s
essential role in emotion regulation. Sleep disruption not only worsens
existing psychiatric conditions but also independently increases the
risk of anxiety, depression, bipolar disorder, substance use disorders,
and suicide3. These impairments in emotional regulation, recognition,
and reasoning are thought to arise fromneurophysiological alterations
in cortical and subcortical structures affectedby acute or chronic sleep
deprivation41. Moreover, sleep disorders not only increase the risk of
stroke and worsen patient outcomes but are also prevalent among
stroke patients, highlighting the critical link between sleep and neu-
rocognitive health1,46. Our results also supported the connections
between poor sleep and metabolic diseases, as sleep disturbances
affect glucose homeostasis and hormone regulation37. The significant
associations between USP and various infectious and hematopoietic
diseases reinforced previous evidence that sleep is crucial for immune
function and that sleep deprivation induces a proinflammatory
state47–49. Notably, both USP and the rhythmicity domain were asso-
ciated with septicemia and urinary tract infection, whereas the other
four domains showed no such associations. This may be explained by
the role of circadian disruption in impairing immune function and
increasing susceptibility to infection48. Our findings on USP’s rela-
tionship with cardiovascular diseases corroborated earlier research
linking sleep patterns to conditions such as myocardial infarction and
hypertension50. In respiratory health, USP was associated with condi-
tions such as respiratory insufficiency, obstructive chronic bronchitis,
and chronic airway obstruction, reflecting sleep’s influence on venti-
lation and respiratory control through impaired respiratory muscle
function and increased upper airway resistance51–53.

Beyond well-documented sleep-health relationships, our analyses
revealed novel associations between USP and less frequently studied
conditions. For instance, USP was associated with an increased risk of
electrolyte imbalances, possibly due to sleep-related alternations in
chemoreceptor sensitivity to hypoxia and hypercapnia, leading to
hypercapnia52,53. In addition, USP was associated with increased risk of
lower limb fractures (HR 1.37, 95% CI 1.17–1.59,P =4:69× 10�5) and
injuries (HR 1.45, 95% CI 1.22–1.71, P = 1:54 × 10�5). These risks may be
partially explained by establishedmechanisms linking sleep deficiency
to cognitive-motor impairments, including slowed reaction times and
poor judgment, whichhave been associatedwith elevated risks of both
workplace accidents and unintentional injuries3. These findings
underscore the broader implications of sleep health, extending
beyond chronic diseases to include critical considerations for public
safety and injury prevention strategies.
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Although prior literature has frequently reported associations
between sleep disorders and both obesity and depression54–57, neither
condition was reported among the USP-linked phenotypes in the
present study. In our prospective analyses, USP was associated with an
increased risk of incident obesity (HR = 1.10; 95% CI: 1.02–1.19;
P =0.017). However, this association did not meet the Bonferroni-
corrected significance threshold and was therefore not highlighted
among the primary findings. For depression, only 24 incident cases
occurred at least 1 year after accelerometer wear, which did not meet
the threshold for inclusion in the prospective analyses. Both condi-
tions warrant further investigation in future research.

Given that sleep profiles affect health throughmultiple pathways,
identifying upstream determinants holds significant potential for
improving sleep and overall health. Historically marginalized popula-
tions face heightened risks from adverse environmental and social
factors affecting health, including sleep health, acrossboth developing
and developed nations58. Our findings reflect these disparities, show-
ing that individuals with higher Townsend deprivation index (TDI),
lower levels of education, and thosewithout partners weremore likely
to exhibit USP.While previous research has linked caffeine and alcohol
to fragmented, poor-quality sleep59, this study found no evidence that
caffeine or tea intake increases the risk of USP. These divergent find-
ingsmay arise fromdifferences in sleepprofile definitions and changes
in lifestyle habits over time. We also observed significant associations
of smoking, overweight/obesity, and heavy drinking (>28 standard
drinks/week) with USP. Current smoking was associated with a higher
risk of USP, and nicotine, known to cause sleep fragmentation, may be
a potential mechanism underlying this association60. These findings
suggest potential sleep health benefits from weight management,
reducing excessive alcohol intake, and smoking cessation. We also
observed seasonal variations in sleep characteristics. Ourfindings align
with previous studies, such as the observation of shorter sleep dura-
tion during summer months61. These seasonal differences may be
driven by environmental factors, such as temperature, humidity, and
photoperiod, which are known to influence sleep quality and circadian
regulation4. Additionally, we found significant associations between
self-reported sleep apnea, sleepiness, and ease of getting up with USP.
This support the hypothesis that sleep patterns across different
dimensions are interrelated and may influence each other
synergistically62. Hence, investigating comprehensive sleep patterns is
both valuable and essential for a thorough understanding of sleep
health.

While our initial analyses identified phenotypic correlates of USP,
prior evidence has suggested that these associations may be partially
underpinned by shared genetic factors. Large-scale genomic studies of
insomnia and related sleep traits have reported substantial polygenic
overlap with psychiatric disorders56. Building on this evidence, we
examined the polygenic architecture of USP and its pleiotropic rela-
tionships. Notably, the USP PGS showed significant associations with
anxiety disorders, aligning with known genetic correlations between
sleep and psychiatric conditions55–57. These findings indicate that
sharedgenetic factors likely drive a substantial portionof theobserved
USP-phenotype associations. Mendelian randomization analyses fur-
ther supported potential causal links, particularly suggesting USP as a
contributor to anxiety risk.

These population-level genetic insights guided our subsequent
variant discovery. We characterized the genetic architecture of USP
through a functionally informed association analysis by integrating
multiple variant functional annotations with WES and WGS data, uti-
lizing single variant analysis and rare variant analysis of comprehensive
coding and noncoding units provided in STAARpipeline. Two intronic
variants in gene MEIS1, rs113851554 and rs11679120, have been detec-
ted to be associated with USP at genome-wide significance level. Pre-
vious research has recognized MEIS1 as a susceptibility gene for
restless legs syndrome, a common sleep disorder63. We also detected

associations that have not been previously reported for sleep health in
genetic studies, including PTV and disruptive missense RVs in TTC1
(P = 1:47× 10�6), and enhancer DHS RVs of CDK8 (P =3:19 × 10�6).
Previous studies have demonstrated that TTC1 is associated with
depressive and anxiety disorders through its interaction with CRY264.
Furthermore, the stability of CRY2, which is regulated by FBXL3, plays a
crucial role in controlling human sleep-wake behavior65. This evidence
supports our findings that TTC1 is linked to sleep health. CDK8 is a
colorectal cancer oncogene66, but there are no studies that focus on its
role in sleep health.

This study has several limitations. First, the observational design
precludes establishing causal relationships between sleep profiles and
health outcomes. However, we strengthened the analyses by investi-
gating longitudinally the associations between USP and incident dis-
eases to establish temporality, and applied the phecode scheme
exclusion criteria to the control cohort tominimize contamination.We
also limited enrollment to individuals whose first diagnostic event
occurred at least 1 year after accelerometer assessment to address
potential reverse causation. In addition, we conducted MR analyses to
explore potential causal relationships, providing complementary evi-
dence. Second, potential volunteer bias may affect generalizability, as
participants in the accelerometer study may differ from non-
participants. Nevertheless, similar sleep dimensions have been iden-
tified in other studies using accelerometer, with results replicated
across diverse groups without significant gender differences6, sug-
gesting that our multidimensional sleep measures are likely repre-
sentative. Third, although we validated the USP framework in an
independent multi-ethnic cohort (MESA), both UK Biobank and MESA
participants were predominantly older adults. Given that sleep pat-
terns can vary across the lifespan, future research is needed to char-
acterize multidimensional sleep profiles in younger populations.
Fourth, the up to 7 day accelerometer data may not capture long-term
sleep patterns.While previous research has suggested that some sleep
characteristics tend to remain relatively stable in adults over periods of
several years15, those characteristics did not encompass all the sleep
variables included inUSP. Additionally, thoughweaccounted formany
covariates including seasonality, other unobserved factors (e.g., sub-
clinical disease) may also have influenced sleep patterns. Fifth, while
actigraphy provides practical sleep-wake estimates based on move-
ment patterns, its indirect nature and reliance on algorithmic proces-
sing, including parameters choices for classifying transitions between
wakefulness and sleep and procedures for non-wear detection, might
introduce measurement variability. We followed GGIR protocols used
in previous UK Biobank studies67,68. These analytical choices, though
empirically validated, may influence parameter estimates and should
be corroborated with complementary neurophysiological measures in
future research. Finally, the use of Electronic Health Record (EHR)
diagnosis codes may result in incomplete case ascertainment.

This study offers several key strengths. Our proposed multi-
dimensional sleep health metric USP can serve as a foundation for
future sleep health research by capturing the combined effects of real-
world sleep patterns. As one of the largest studies analyzing objec-
tively measured sleep patterns, our findings provide robust evidence
with clinical relevance. We performed comprehensive evaluations of
the associations between integrated sleepbehaviors and a broad range
of future health outcomes using longitudinal data, advancing beyond
previous cross-sectional studies. Furthermore, our whole-genome
sequence analysis, incorporating both common and rare variants
(coding and noncoding), expands understanding of sleep health’s
genetic architecture.

In summary, this study emphasizes the importance of considering
the multidimensional nature of sleep health and its extensive impact
onwell-being. Considering that sleep profiles affect health viamultiple
mechanisms, implementing large-scale screening and sleep promotion
programs may lead to considerable public health gains. The genetic
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architectureunderlying our defined sleepprofile provides insights into
the biological foundations of sleep health and potential therapeutic
strategies.

Methods
Study participants
The UK Biobank is a large prospective cohort study of over 500,000
middle-aged adults in Great Britain69. The initial assessment was con-
ducted during 2006–2010. The UK Biobank has received approval
from the North West Multi-centre Research Ethics Committee (MREC)
as a Research Tissue Bank (RTB). Written informed consent was
obtained from all participants. BetweenMay 2013 and December 2015,
about 240,000 participants were invited to wear the Axivity AX3wrist-
worn triaxial accelerometer on their dominant wrists for seven con-
secutive days. A total of 103,720 participants returned their activity
monitorswith data covering at least three complete 24-hperiods. After
excluding those who withdrew from the study, we obtained raw
activity monitor data for 103,626 participants (data-field 90001) in the
form of binary Continuous Wave Accelerometer (cwa) files. After
applying data quality control procedures recommended by the UK
Biobank accelerometer working group and following data processing
approaches used in previous studies based on UK Biobank accel-
erometry data, a total of 85,233 participants were retained for the final
analysis67,68 (Supplementary Fig. 18).

For the whole-exome and whole-genome sequence analyses (UK
Biobank Field #23158 and #24304), a series of quality control proce-
dures were implemented to filter out low-quality variants and samples
(see the corresponding section below for details). We did not use any
study design that required randomization or blinding.

Accelerometer-based sleep variables
The GGIR R package was utilized to extract raw accelerometer data,
enabling thorough quantitative assessments of sleep patterns70. This
tool uses an algorithm validated against polysomnograms in an
external cohort to accurately detect sleep periodswithout the need for
a sleep diary, thus minimizing potential biases11. Median z-angle
changes over 5-min rolling windows across a 24-h period were calcu-
lated to ensure activity monitor orientation insensitivity. Inactivity
bouts lasting ≥30min were documented, with consecutive bouts
<60min apart combined into blocks. The sleep period time-window
(SPT-window) was defined by the onset and conclusion of the longest
continuous inactivity block.

Building on the SPT, variables such as sleep onset time, wake-up
time, sleep midpoint, sleep duration, and sleep efficiency were
derived. Utilizing the time series of raw accelerometer data and an
extended cosine model, circadian rhythm analyses were conducted to
obtain metrics such as intra-daily variability (IV), inter-daily stability
(IS), relative amplitude (RA), amplitude, acrophase,midline estimating
statistic of rhythm (MESOR), and pseudo-F71,72. Detailed definitions and
significance of the sleep variables extracted in this study are provided
in Supplementary Data 37. Sleep variables derived from the SPT-
window underwent thorough screening to exclude outliers, ensuring
the inclusion of valid data for statistical analysis. Based on the data
quality metrics provided by the UK Biobank accelerometer working
group, the exclusion criteria were as follows: (1) data not well cali-
brated; (2) data with poor wear time; (3) unreliable data size; (4) data
affected by daylight savings crossover; (5) data not calibrated on own
data; (6) data with interrupted recording periods >0; and (7) data with
excessively numerous recording errors (>Q3 + 1.5 × IQR). Individuals
were additionally excluded if their mean sleep duration was shorter
than 3 h or longer than 12 h, if they had fewer than 5 or >30mean sleep
episodes per night, or if they had fewer than 3 valid days of data67,68.
Detailed configuration parameters for GGIR used in this study can be
found in Supplementary Data 38.

Although accelerometry algorithms provide daily sleep-wake
characteristics, we focused on summary measures across the obser-
vation period to examine habitual sleep patterns. These summary
measures are commonly used in sleep health research due to their
interpretability and their effectiveness as predictors of key health
outcomes. As accelerometers only capture lack of movement, GGIR
refers to classified sleep periods as sustained inactivity bouts (SIB),
making it unable to accurately identify naps. Therefore, in the absence
of sleep diary entries during accelerometer wear, nap-related variables
cannot be extracted. We selected accelerometer summary variables
for EFA based on their relevance to current research on sleep health
and their clinical or scientific significance6,72.

Phenotypes and mortality
This work used data provided by patients and collected by the NHS as
part of their care and support.We leveraged the full available historical
EHR data spanning multiple decades to identify the earliest diagnosis
dates for each participant and phenotype. Diagnosis events were
assessed in subjects starting 1 year after accelerometer monitoring
through linkage to EHRs. Events extracted from hospital inpatient
data, death register, and cancer register were categorized into phe-
notypes (phecodes) using their corresponding International Classifi-
cation of Diseases (ICD) codes with the Phecode Map 1.221,22. The
phecode map provides exclusion criteria for each phenotype, identi-
fying similar conditions that may suggest the likelihood of undiag-
nosed patients with the phenotype under consideration. An example
of applying phecode exclusion criteria is demonstrated in a type 2
diabetes study using EHRs21. To define cases of type 2 diabetes,
patients with ICD codes mapping to phecode 250.2 “Type 2 diabetes”
were included. For the control cohort, only participants without phe-
notypes in the “Diabetes”group (phecodes 249-250.99)were included,
preventing contamination by diseases such as “Type 1 diabetes”
(phecode 250.1) and “Secondary diabetes mellitus” (phecode 249).
Additionally, participants with signs and symptoms commonly asso-
ciated with type 2 diabetes, like “Abnormal glucose” (phecode 250.4),
were excluded to avoid including those who may be undiagnosed. In
this study, all subjects meeting any exclusion criteria for a phenotype
were excluded from the analysis of that phenotype to avoid including
likely or potential prior cases. Detailed exclusion criteria for each
selected phenotype are provided in Supplementary Data 39. Subjects
excluded from one phecode analysis were not excluded from others
unless they also met the exclusion criteria for those phecodes.

Among the 502,250 participants in the UK Biobank, we identified
1695 specific phecodes. Of the 85,233 subjects meeting the inclusion
criteria for this study, we retained samples where genetic sexmatched
the recorded sex and excluded individuals with mismatched sex-
specific diagnosis codes or those who withdrew. Consequently, 1633
disease phenotypes were extracted from EHRs at the time of data
download on January 8, 2024, and grouped according to the phecode
map, with an average follow-up of 7.92 years. To exclude participants
with subclinical disease at the time of accelerometer monitoring, we
limited enrollment to those whose first diagnostic event occurred at
least 1 year after accelerometer wear, resulting in 526 phecodes with at
least 200 cases.

Date of death and primary cause of death were obtained through
linkage to national death registries. Cardiovascular disease (CVD)
mortality was defined by ICD-10 codes: I00-I99.

Covariates
Most participants completed a touchscreen questionnaire and under-
went anthropometric assessments at initial recruitment. Subsequently, a
subset of included participants in the present study also engaged in first
repeat assessments, imaging visit, andfirst repeat imaging visit (n= 7464,
n=22,822, and n=2611, respectively). The time differences and number
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of participants between accelerometry and the four recruitment assess-
ments for the included study participants are detailed in Supplementary
Data 40 and Supplementary Fig. 19. Covariates included age, sex, ethni-
city (white or non-white), TDI, education (no qualification, any other
qualification, degree or above), diet (poor, ideal), physical activity,
smoking status (never, previous, current), alcohol consumption (never,
previous, current), self-rated health (excellent/good, fair/poor), body
mass index (BMI), and season (spring forMarch toMay, summer for June
to August, autumn for September to November, and winter for Decem-
ber to February; UK Meteorological Office definitions) (Supplementary
Data 41). A healthy diet was defined as consuming at least 5 out of 10
recommended food groups9,73. Intake goals for each food group are
detailed in Supplementary Data 42. BMI categories were classified as
normal/underweight (<25 kg/m²), overweight (25–30kg/m²), and obese
(≥30kg/m²). Physical activity was quantified using accelerometer-
derived moderate-to-vigorous physical activity (MVPA) duration in min-
utes, with a threshold of 100mg for MVPA classification.

Covariate data from the interview conducted closest in time prior
to the accelerometry assessment were used as the baseline for this
analysis. Exceptions included self-reported sex and TDI, which were
obtained only at baseline, as well as self-reported ethnicity (assumed
unchanged). Smoking status, alcohol consumption, and education
remained stable between baseline and additional visits, while diet, self-
rated health, and BMI exhibited some variability over time (Supple-
mentary Figs. 20–22). In the final analysis, time-varying covariates
comprised 90.53% from the initial assessment, 7.94% from the first
repeat assessment, and 1.53% from the imaging visit (Supplementary
Data 43). The number and combinations of missing covariates are
shown in Supplementary Data 44 and Supplementary Fig. 23. The
highest proportion of missing covariates does not exceed 1%
(0–0.74%). We performed multiple imputations to assign missing
covariate values using the mice package in R.

Statistical analyses
EFA was employed to extract representative sleep domains using
selected sleep variables from accelerometer. We used the principal
function in the psych package with a “quartimax” rotation (an ortho-
gonal rotation), without imposing specific domains on the data. The
number of factors was determined by examining eigenvalues, visually
inspecting scree plots, and considering our hypotheses. Variableswere
assigned to a factor if they had a loading >0.50. If a variable loaded on
multiple factors, we assigned it to the factorwith the highest loading. If
the highest and second highest loadings were close, we considered the
factor’s interpretability for the assignment. Subsequently, we used the
standardized factor scores (mean of 0 and standard deviation of 1)
derived from the factor analysis as new variables for LPA using the
mclust package in R to identify distinct sleep patterns in the partici-
pants. The number of latent profiles was selected based on the inte-
grated completed likelihood criterion.

In the PheWAS analysis, a Cox proportional hazards model was
conducted for each phecode with at least 200 cases. This threshold
was determined through a power analysis via simulation to detect a
0.2 log (hazard ratio) effect size with 80% power74. The endpoint was
the diagnosis of the phenotype, with censoring by death or the end of
data collection. The timescale used was years since the accelerometer
measurement. The independent variable was the sleep profile identi-
fied from LPA. To test the proportionality of hazards assumption,
Schoenfeld residuals were examined using the cox.zph function. For
variables displaying significant (P <0.05) non-constant violations, a
second accelerated failure time model was rerun and compared with
the original model to determine the optimal fit. Bonferroni and FDR
adjusted significance thresholds were utilized. To check for sex- and
age-specific effects, we further conducted subgroup analyses based on
sex and age (<65 years, ≥65 years).

To examine the associations between upstream environmental
factors and sleep profiles, we used multivariable logistic regression
analysis with USP as the dependent variable.

We also conducted several sensitivity analyses. First, we analyzed
the relationship between USP and outcomes in a population without
missing covariates. Second, we further excluded individuals with a
history of shift work from the complete data set. Third, to address
potential reverse causality, we excluded individuals who died within
1 year after wearing the accelerometer and analyzed the relationship
between sleep profile and risks of all-cause and CVDmortality. Fourth,
we applied restricted cubic spline models to examine the shape and
strength of associations between each of the five sleep domains con-
stituting USP and 526 disease phenotypes, allowing for potential non-
linear relationships. Fifth, we derived a continuous healthy sleep score
by linearly combining the harmonized factor scores of the five USP
domains, weighted by their proportion of variance explained in the
factor analysis. We then conducted PheWAS using Cox models to
estimate hazard ratios per standard deviation increase in the healthy
sleep score, with covariate adjustment consistent with the binary USP
analyses. Finally, follow-up analyses of genome-wide significant loci
from the primary analyses were conducted, excluding shift workers
and users of sleep or psychiatric medications. These analyses incor-
porated additional covariate adjustments for smoking status, alcohol
consumption,marital status, education, seasonof accelerometerwear,
TDI, BMI, sleep apnea, sleepiness, and ease of getting up, in addition to
the initial adjustments for age, sex, and 10 principal components75–77.
Definitions of additional covariates and the list of medications can be
found in the Supplementary Note. All P-values were two-sided and
analyses were conducted using R v4.3.3.

Calculating PGS
PGS for USP were derived using individual-level genotype data from
the UK Biobank dataset ukb22418. Variant-level quality control (QC)
was performed using PLINK, excluding SNPs with minor allele fre-
quency (MAF) < 1%, minor allele count (MAC) < 100, genotype miss-
ingness >10%, or Hardy-Weinberg equilibrium P < 1 × 10�15. Individuals
with >10% missing genotypes were also excluded.

Following QC, the dataset was randomly partitioned into a train-
ing set (80%) for GWAS and a tuning set (20%) for PGS parameter
optimization. GWAS was conducted in the training set using Regenie78

under a logistic regression frameworkwith Firth correction to account
for case-control imbalance. GWAS summary statistics from this ana-
lysis were used to construct the USP PGS using a clumping and
thresholding (C + T) approach implemented in RICE79. Linkage dis-
equilibrium (LD) clumping was performed in PLINK80 with an r²
threshold of 0.1 within a 500 kb window. PRSs were generated at nine
GWAS P-value thresholds: P < 5× 10�8, 5 × 10�7, 5 × 10�6, 5 × 10�5,
5 × 10�4, 5 × 10�3, 0.05, 0.5, and 1.0. The optimal P-value threshold
(P <0:05) for inclusion of SNPs in the final score was selected based on
performance in the tuning set. The final PGSwas then computed in the
study cohort andused to assess the association betweenpolygenic risk
of USP and phenotypes identified in the PheWAS analysis.

MR
We conducted two-sample MR analyses using the TwoSampleMR81 R
package to investigate the potential causal effects of USP-associated
genetic variants on the USP-linked phenotypes. Genetic instruments for
the exposure (USP) were derived from our single variant analysis based
on whole genome sequencing (WGS) data from the UK Biobank (Field
#24304), as described below. For the outcomes, GWAS summary sta-
tistics were downloaded from the GWAS Catalog. To ensure consistency
with the disease phenotype definitions used in our PheWAS, we selected
outcome GWASs based on phecode-matched traits and included only
those conducted in European ancestry populations82. Genetic variants
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reaching a P< 5 × 10⁻6 threshold in the USP WGS single variant analysis
were first clumped to ensure independence (r² <0.01 within 10Mb,
using 1000Genomes EUR as the reference panel). The alleles of variants
were harmonized between the exposure and outcome datasets using
the default allele alignment method (action= 2) to account for palin-
dromic variants based on allele frequencies.

For each of the phenotype, we applied fiveMRmethods: IVW, MR
Egger, weighted median, weighted mode, and simple mode. IVW
served as the primary analysis method, while the others were used as
sensitivity analyses to assess the robustness of the results under dif-
ferent assumptions about instrument validity. We further conducted
heterogeneity testing using Cochran’s Q test, evaluated horizontal
pleiotropy via the MR Egger intercept, and calculated the mean
F-statistic to assess instrument strength. Additionally, leave-one-out
analyses were performed to identify influential variants that might
disproportionately affect the results.

Whole exome sequence analysis of coding variants associated
with USP
We used the PLINK format files for WES data of UK Biobank partici-
pants (UK Biobank Field #23158). Quality control measures were per-
formed in the following steps. We first removed the variants with
Hardy-Weinberg Equilibrium P < 1 × 10�15. Second, we removed var-
iants for which > 10% of all genotypes for that variant had a read
depth < 10 (ukb23158_500k_OQFE.90pct10dp_qc_variants.txt). We
finally excluded the variants with > 10% missing genotypes and the
samples with 10% missing genotypes.

WeusedSTAARpipeline toperformgenetic association analysis of
USP. STAARpipeline is a regression-based framework that allows for
adjustment of covariates, population structure, and relatedness by
fitting linear and logistic mixed models for quantitative and dichot-
omous traits27,28. Specifically,wefitted a logisticmixedmodel adjusting
for age, sex, the first 10 ancestral principal components to account for
population structure, and a variance component for a sparse genetic
relatedness matrix to account for sample relatedness83.

For single variant analysis, we calculated individual P-values of
variants with MAC ≥ 40. We first used the normal approximation to
calculate the P-value, and when it is <0.05, we applied the saddlepoint
approximation to recalculate it84,85. The gene-centric coding analysis of
variants, including both single-nucleotide variants (SNVs) and indels,
provided seven coding functional categories of protein coding genes,
including putative loss of function (stop gain, stop loss and splice)
variants, missense variants, disruptive missense variants, putative loss
of function and disruptive missense variants, synonymous variants,
protein-truncating RVs (stop gain, stop loss, splice, frameshift deletion
and frameshift insertion), and protein-truncating RVs and disruptive
missense RVs. The putative loss of function, missense, synonymous,
and protein-truncating RVs were defined by GENCODE VEP
categories86,87. The disruptive variants were further defined by
MetaSVM88, which measures the deleteriousness of missense muta-
tions. For each variant set, we calculated the STAAR-Burden P-value.
Same as the single variant analysis, we first used the normal approx-
imation to calculate the P-value, and when it is <0.05, we applied the
saddlepoint approximation to recalculate it.

Whole genome sequence analysis of noncoding variants asso-
ciated with USP
Weused the pVCF formatfiles forWGSdata ofUKBiobankparticipants
(UK Biobank Field #24304)89. We followed the same quality control
procedure in previous study of UK Biobank WGS data90. We kept all
variants with pass indicated by QC label and AAScore >0.5, where
AAScore was generated by GraphTyper, the software used by the UK
Biobank to perform genotype calling.

We used STAARpipeline27 to perform genetic association analysis
of USP. We fitted the null model in the same way as the WES analysis.

For single variant analysis, we calculated individual P-values of variants
with MAC ≥ 40. The gene-centric noncoding analysis provided eight
genetic categories of SNVs, including promoter or enhancer overlaid
withCAGEorDHS sites,UTR, upstream,downstreamof protein coding
genes, and noncoding RNA genes. The promoter RVs were defined as
RVs in the +/- 3-kilobase (kb) window of transcription start sites with
the overlap of CAGE sites or DHS sites. The enhancer RVs were defined
as RVs in GeneHancer predicted regions with the overlap of CAGE sites
or DHS sites91–94. We defined the UTR, upstream, downstream, and
ncRNA RVs by GENCODE Variant Effect Predictor (VEP) categories86,87.
For the UTR mask, we included RVs in both 5’ and 3’ UTR regions. For
the ncRNA mask, we included the exonic and splicing ncRNA rare
SNVs. We considered the protein-coding gene for the first seven
categories provided by Ensembl95 and the ncRNA genes provided by
GENCODE86,87. We incorporated nine annotation Principal Compo-
nents (aPCs)28 and three integrative scores (CADD96, LINSIGHT97, and
FATHMM-XF98) as weights in constructing STAAR-Burden statistics28.

Genome build
All genome coordinates are given in NCBI GRCh38/UCSC hg38.

Replication of the USP framework
To further examine the robustness and generalizability of the USP
framework, we validated our findings in an independent multi-ethnic
cohort, the MESA (BioLINCC Application ID: 15959). We selected the
MESA cohort for validation due to its diverse demographic composi-
tion and independent data collection setting, which provided a
meaningful test of the framework’s robustness across different
populations and measurement environments. This cohort included
2237 participants who wore wrist-worn actigraphy devices (Actiwatch
Spectrum, Philips Respironics) for up to seven consecutive days
between 2010–2012. All recordings were scored by trained technicians
at the Boston Sleep Reading Center. Institutional Review Boards of all
participating MESA sites approved the study, and all participants
signed informed consent. The validation analysis included 2152 parti-
cipants aged 54–93 years with complete data. The sample comprised
37.4% white, 11.3% Chinese, 27.8% African American, and 23.4% His-
panic individuals.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings from this study are available within
the manuscript and its supplementary information. The UK Biobank
data were obtained under application 91486 (release date: 8 Jan 2024).
The MESA data were obtained under application 15959 (BioLINCC
Application ID). The functional annotation data are publicly available
at the Functional Annotation of Variant-Online Resource (FAVOR)
site99 (https://favor.genohub.org) and the FAVOR database100 (https://
doi.org/10.7910/DVN/1VGTJI). Source data are provided with
this paper.

Code availability
GGIR is implemented as an open-source R package available at https://
github.com/wadpac/GGIR. GGIR v3.0.2 was used to extract raw accel-
erometer data. createUKBphenome is implemented as an open-source
R package available at https://github.com/umich-cphds/createUKB
phenome. createUKBphenomewas used to extract andmap ICD-coded
hospital records in the UK Biobank to phecodes, enabling harmonized
case/control phenotypes for phenome-wide association analyses.
vcf2agds is implemented as a collection of applets in the UK Biobank
Research Analysis Platform (RAP) available at https://github.com/
drarwood/vcf2agds_overview. vcf2agdswas used to preprocess the UK
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Biobank WGS data. PLINK2 is implemented as part of the swiss-army-
knife applet in the UK Biobank RAP available at https://ukbiobank.
dnanexus.com/panx/tool/app/swiss-army-knife. PLINK2 was used
preprocess the UK Biobank WES data. STAAR is implemented as an
open-source R package available at https://github.com/xihaoli/STAAR.
STAARpipeline is implemented as an open-source R package available
at https://github.com/xihaoli/STAARpipeline, and as an applet in the
UK Biobank RAP available at https://github.com/xihaoli/staarpipeline-
rap. STAARpipelineSummary is implemented as an open-source R
package available at https://github.com/xihaoli/STAARpipeline
Summary, and as an applet in the UK Biobank RAP available at
https://github.com/li-lab-genetics/staarpipelinesummary_varset-rap
and https://github.com/li-lab-genetics/staarpipelinesummary_indvar-
rap. STAAR v0.9.7, STAARpipeline v0.9.7, and STAARpipelineSum-
mary v0.9.7 were used for performing WES and WGS data analysis in
the UK Biobank RAP. The following tools were used to construct the
USP PGS: Regenie v4.1 https://rgcgithub.github.io/regenie; PLINK 1.9
https://www.cog-genomics.org/plink; and RICE https://github.com/
jwilliams10/RareVariantPRS/blob/main/DNANexus/CT_Binary.R. R pack-
age TwoSampleMR v0.6.14 (https://mrcieu.github.io/TwoSampleMR)
was used to conduct the two-sample MR analyses.
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