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Direct high-throughput deconvolution of
non-canonical bases via nanopore
sequencing and bootstrapped learning

Mauricio Perez 1,6, Michiko Kimoto2,3,6, Priscilla Rajakumar1,6,
Chayaporn Suphavilai1, Rafael Peres da Silva 1, Hui Pen Tan2,3,
Nicholas Ting Xun Ong1, Hannah Nicholas1, Ichiro Hirao 2,3,7,
Wei Leong Chew1,4,7 & Niranjan Nagarajan 1,5,7

The discovery of non-canonical bases (NCBs) and development of synthetic
xeno-nucleic acids (XNAs) has spawned interest in many applications in viral
genomics, synthetic biology and DNA storage. However, inability to do high-
throughput sequencing of NCBs has been a significant limitation. We
demonstrate that XNAs with NCBs can be robustly sequenced on a MinION
system ( > 2.3×106 reads/flowcell) to obtain significantly distinct signals from
controls (median fold-change >6×). To enable AI-model training, we synthe-
sized and sequenced a complex pool of 1,024 NCB-containing oligonucleo-
tides with varied 6-mer contexts and high purity ( > 90%). Bootstrapped
models assisted in data preparation, and data augmentationwith spliced reads
provided high context diversity, enabling learning of generalizable models to
decipher NCB-containing sequences with high accuracy ( > 80%) and specifi-
city (99%). These results highlight the versatility of nanopore sequencing for
interrogatingunusual nucleic acids, and thepotential to transform the studyof
genetic material beyond those that use canonical bases.

Synthetic xeno-nucleic acids (XNAs) consist of unnatural bases (UBs)
beyond the canonical A, T, C, G, and U found in naturally occurring
DNA and RNA. Such non-canonical bases (NCBs) expand the informa-
tion space of the genetic code, offer novel biochemical properties, and
have opened up new fields in xenobiology, synthetic biology, and
biotechnology. Exemplary XNAs include the bases isoG and isoC
developed at the Swiss Federal Institute of Technology1, P and Z
developed at the Foundation for AppliedMolecular Evolution2,3, d5SICS
and dNaM developed at the Scripps Research Institute4,5, Ds and Pa/Px
developed at RIKEN6,7

, and 7‑Deaza-2′-deoxyisoguanosine developed at
the Center for Nanotechnology8. There are also naturally occurring

NCBs which have been found in bacterial tRNAs9 or predicted to be
part of the genomes of diverse viruses as a defense against host
restriction systems9–12, though direct detection and characterization of
their function has been hampered by the lack of appropriate sequen-
cing technologies. The use of NCBs to expand the genetic alphabet has
several applications in synthetic biology, including the development of
sensors, aptamers, nanostructures, and semi-synthetic organisms13–15.
With the advent of DNA storage as a paradigm to develop low-energy,
ultra-high-density systems16,17, reading and writing NCBs has another
potential application, however current approaches are limited in
speed, nucleotide-resolution, and throughput.
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A common early approach to detect NCBs (focusing on UBs)
was to use Sanger sequencing and decipher UB positions through
signal gaps stemming from the inability to sequence through these
UBs6,7,18,19. An alternative approach has involved using PCR to replace
UBs followed by sequencing and mutation analysis to detect them,
but with the drawback of introducing unintended errors during
amplification2,20. Both approaches suffer from the corresponding
limitations of sample processing, which introduce sources of error
and operational cost. Next-generation sequencing, while much less
limited in throughput, largely faces similar challenges due to its
inability to natively detect UBs21,22. In particular, the detection of UBs
in specific sequence contexts or in the presence of multiple UBs can
be challenging20,22. A potential alternative is direct single-molecule
interrogation of nucleic acids with third-generation technology
using nanopores, which have shown promise with canonical nucleic
acid base modifications (e.g. methylated DNA23–26), though
the ability to directly sequence XNAs, which contain a different
nucleic acid backbone, has not been demonstrated27. Although
PacBio is also a third-generation sequencing platform, its
sequencing-by-synthesis process may need major adaptations with
fluorescently labeled non-canonical bases to facilitate direct
sequencing of XNAs.

A major obstacle for direct single-molecule sequencing of non-
canonical bases is the ability to synthesize and utilize a sufficiently
complex dataset for training basecallingmodels. In this study, we have
addressed these challenges and developed technology that enables
direct sequencing of XNAs using a widely available nanopore
sequencing platform (Oxford Nanopore Technologies—ONT). Our
results suggest that NCB-containing XNA templates can be robustly
sequenced on an ONT MinION system, with yield similar to DNA con-
trols ( > 2 million reads per flowcell), without notable truncation of
reads, and with raw signals that are significantly different from cano-
nical bases (median fold-change > 6×). To enable direct decoding of
XNAs from these raw nanopore signals, we developed an XNA design
and synthesis framework that generates a complex library of XNA
oligonucleotides (n = 1024) containing all possible single-UB, 6-mer
sequences, which provides the critical materials to train a basecaller
model for XNAs. We have expanded the conventional basecaller
architecture decoding states for it to be able to learn how to also
decode the non-canonical bases X and Y, in addition to the canonical
bases (A, T, C and G). Via our bootstrapped training approach, which
retrieves additional accurate training data, and our read-splicing based
data-augmentation technique, responsible for generating reads with
high sequence context diversity, we show that a generalizable deep
learningmodel based on convolutional neural networks (CNNs) can be
trained to call non-canonical bases with high accuracy ( > 80%) and
specificity (99%). Our work provides the first example of direct high-
throughput deconvolution of non-canonical bases using nanopore
sequencing, enabling the determination of nucleotide-level identities
in XNAs needed for synthetic biology applications, and opening up the
possibility that other classes of synthetic and natural nucleic acidsmay
also be amenable to a bootstrapped and data-augmented learning
approach.

Results
Analysis of XNAs on a high-throughput nanopore sequencer
retains high fidelity
As a proof-of-concept to study the sequencing of NCB-containing
templates, we leveraged the Px-Ds (X-Y) architecture, one of the three
known classes of unnatural basepairs7 (Fig. 1A, Supplementary Fig. 1).
The Px-Ds basepair system was designed taking into consideration
hydrophobicity, shape, and electrostatic complementarity properties
that enable the basepair to be efficiently amplified with PCR7, facil-
itating synthesis of XNAs with NCBs in diverse sequence contexts. For
the initial experiment, we designed 20 individual templates with either

a single NCB (XNA01-XNA12), multiple NCBs at varying distances
(XNA13-XNA16), or four equidistant NCBs (XNA17-XNA20), flanked by
stretches of canonical bases in different combinations and tagged via
unique 24-nucleotide barcodes (Supplementary Fig. 2 and Supple-
mentary Data 1).

We then used a commercially available high-throughput nano-
pore sequencer (ONT MinION) to analyze the XNA molecules and
control DNA (NCB replaced by canonical base), initially using stan-
dard sequencing protocols and basecalling pipelines (Fig. 1A,
“Methods”). The XNA sequencing process generated data con-
tinuously with no unexpected interruptions, with each flow cell
yielding a total of >2 million raw reads ( > 5 Gbp of data), similar to
yields from other sequencing runs with DNA templates28 (Supple-
mentary Fig. 3). However, XNA containing libraries had lower
throughput as a function of time relative to the DNA libraries
(mean = 81%, 95% CI = 69–99%), potentially due to a higher number of
pore blockage and saturation events (39% vs 27% for control DNA).
Despite this, in libraries containing equal concentrations of DNA and
XNA templates, no strong bias was observed against XNA templates,
with similar numbers of XNA and DNA reads being sequenced and
successfully aligned to reference templates (2.3 vs 2.4 million reads).
Read lengths for XNAs and DNAs were also very similar (median
length 2.7kbp), with a substantial fraction of XNA reads ( > 75%)
providing near full-length ( ± 5%) template sequences (Fig. 1B). A
slightly higher fraction of XNA reads were shorter (1.2kbp) than the
DNA reads recovered, due to incomplete fusion PCR19 in the XNA
synthesis process (Fig. 1B, “Methods”).

Alignment of reads to reference sequences provided similarly
high coverage for XNA and DNA templates (median > 97%; Fig. 1C,
“Methods”), though a higher fraction of XNA reads (33% vs 21%)
exhibited incomplete coverage ( < 95%), potentially due to higher
fragmentation rate or inability of conventional analytics to decode
canonical bases correctly (particularly around NCBs). Demultiplexing
successfully identified templates for a high proportion of both XNA
andDNA reads (92.5% vs 93.1%, edit distance < 5 bp; Fig. 1D), while the
distribution of XNA and DNA reads also did not show a strong bias
across the barcodes/templates where they were pooled together for
sequencing (Fig. 1E). In terms of basecalling accuracy, we noted that
error rates were similar but slightly higher for canonical bases in XNA
libraries versus control libraries (5% vs 3%; Supplementary Fig. 4),
consistent with the expectation that the presence of NCBs could
induce basecalling errors in related signals. Taken together, these
results highlight the ability to generate signal data for XNAswith high
fidelity on a high-throughput nanopore sequencer, despite the sys-
tem not being designed for it, and correspondingly, the native
basecaller’s inability to appropriately analyze NCB-containing
signals.

Nanopore sequencing generates distinct electrical signals and
reproducible errors near NCBs
After aligning reads to templates, we analyzed the corresponding raw
electrical signal data measured by the nanopore sequencing device as
a function of various sequence contexts (“Methods”). XNA signals
showed NCB-specific divergence in contexts containing a single NCB
(XNA01), as well as multiple NCBs that were close together (XNA13) or
more spacedout (XNA16), and this patternwas seen forDs aswell as Px
bases (upper and lower panels; Fig. 2A). However, the largest differ-
ence was not necessarily observed when the NCB was in the middle of
the kmer (Fig. 2A), and specific patterns of divergence varied in dif-
ferent sequence contexts (Supplementary Figs. 5–7). Overall, the
average signal-level difference between XNA and DNA control
sequences was observed to be greater near NCB positions (±3 bp) than
away from it (mean signal difference of 5.3 vs 0.7, median fold-
change > 6×), and the impact of sequence context was also seen in the
form of larger variance for the distribution (43 in NCB context vs 0.4 in
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canonical context, Fig. 2B). These results verify that the raw electrical
signals generated from nanopore sequencing in the presence of NCB-
containing XNAs can be notably distinct from those generated from an
analogous DNA template.

Subsequently, we investigated if signal-level distributions for
NCB-containing kmers were distinguishable from reference distribu-
tions for kmers containing each of the canonical bases, based on a
nanopore signal model25. In general, we noted a pattern where XNA-
containing kmers exhibited signal distributions with distinct modes
compared to canonical bases in several (but not all) kmers surrounding
a NCB (similar signals when NCB is at end of the kmer and generally
larger differences when NCB is at the center, Fig. 2C). The fold-change
per template between the non-canonical base and the mode for each
canonical base had median value > 5% for both Px and Ds bases
(Fig. 2D). These observations indicate that these NCBs are associated
with electrical signal traces potentially distinguishable from all four
canonical bases.

We next assessed the impact of signal-level differences on base-
calling with the standard basecaller model and whether they intro-
duced reproducible errors. In agreement with the signal-level
comparisons (Fig. 2A), XNA basecalling error rates also diverged from
control DNA basecalling error rates in contexts containing a NCB
(Fig. 2E). Several templates exhibited very high error rates ( > 60%;
Fig. 2F) in the neighborhood of a single NCB (XNA01) as well as when

multiple NCBs were present at varying distances to each other (XNA13
and XNA16). Notably, in contexts where canonical bases are between
NCBs that are moderately spaced apart ( > 5 bp), we observed only a
marginal effect for basecalling of those bases (XNA16, <10% error rate;
Fig. 2E), highlighting that the basecallermodel can performreasonably
well even in regions flanked by NCBs.

Overall, in comparison to control sequences, the bases sur-
rounding a NCB ( ± 5 bp) showed substantially higher basecalling error
rates (mean of 18% vs 3%; Fig. 2F). The observed error rates are parti-
cularly high for the closest neighbors but quickly decrease with
increasing distance away from the NCB (from 1 to 3 bp distance,
median of 30%, 18% and 12%, respectively). In contrast, basecalling for
positions far from theNCBwas not impactedby its presence, obtaining
error rates not significantly different from those for the control DNA
templates ( > 6 bp; Fig. 2F). Finally, for most templates ( > 90%) the
native basecaller repeatedly miscalled the same canonical base more
than 40% of the time (Supplementary Fig. 8), emphasizing the con-
sistency of the underlying signal data. These observations demon-
strate that the performance of the standard basecaller is strongly and
reproducibly impacted when deconvoluting NCB signals (i.e., bases
affected by a NCB), while it is not impacted at positions sufficiently
distant from NCBs, a feature that is ideal for bootstrapping the pre-
paration of training data for learning a basecaller that can natively
decode NCBs.
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Generation of a complex template library to enable training of
XNA basecaller models
To obtain a basecaller for XNAs (i.e. capable of natively basecalling
canonical as well as non-canonical bases) we needed training data with
enough reads and diversity of sequence contexts containing NCBs
such that a neural network model with sufficient generalization cap-
ability could be developed. Since nanopore signal levels are known to
be affected by the identity of at least the 6 adjacent bases in the pore
during sequencing (Fig. 2A), we designed a complex library where a

NCB is flanked by 5-mers of the same sequence identity on both sides
(45 = 1024 templates containing N1N2N3N4N5-M-N1N2N3N4N5 sequence,
where: Ni = A, T, G, or C; M=Ds or Px; Supplementary Fig. 2, Supple-
mentary Data 2, 3), such that a rolling 6-nt window places the NCB in
every position within the 6-mer resulting in all possible 6144 single-
NCB 6-mer sequence contexts being represented. Synthesizing such a
large library would have been infeasible by employing the chemical
synthesis approach that is typically used for obtaining high-fidelity
XNAs, which was used for the initial proof-of-concept library here (20
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Fig. 2 | Nanopore sequencing generates distinct electrical signals and repro-
ducible basecalling errors for non-canonical bases. A Average signal level
comparison between XNA and control DNA reads for representative templates
(other templates in Supplementary Figs. 5–7). Data are presented asmean values ±
standard deviation. Vertical dashed lines indicate the location of the NCB, shaded
areas indicate ±3 bpwindows around the NCB, and asterisks (*) indicate Bonferroni
adjusted two-sided Wilcoxon p-value < 0.05 and signal fold-change > 2%.
B Boxplots showing signal differences between XNA and DNA libraries for a tem-
plate in the context of NCBs (±3 bp window) and in canonical sequence contexts.
C Signal level distributions based on read data for kmers containing NCBs and
corresponding Nanopolish model distributions for kmers where the NCB is
replaced by one of the canonical bases. D Boxplots showing average signal fold-
change per template between read data for NCB kmers and corresponding

Nanopolish model distributions for kmers where the NCB is replaced by one of the
canonical bases. E Error rates per base position for selected templates with one or
two NCBs. The NCB position is indicated by a vertical dashed line and shaded areas
indicate 5 bpwindows around theNCB.FBoxplots showing error rates as a function
of distance from the non-canonical base across all templates (****: One-sided Wil-
coxon p-value < 0.0001, *”:p-value < 0.05, ns: p-value > 0.05). P-values from dis-
tances 1 to ≥10 respectively: 9e–42, 6e–33, 1e–29, 3e–19, 3e–10, 0.02, 0.1, 0.2, 0.5
and 1. Sample sizes per distance are equally divided between XNA and DNA.
Summary statistics were computed based on a sub-sampling of 5k reads per tem-
plate and strand. Boxplots show first and third quartiles (box), median (line), and
±1.5× the interquartile range (whiskers). Source data are provided as a Source
Data file.
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templates). We therefore designed and developed a cost-effective
enzymatic synthesis scheme to generate this much larger complex
library ( > 50× in size; Fig. 3A; “Methods”).

The proposed scheme consists of enzymatically inserting the Ds
base at the 3’-end of a fixed DNA sequence. For this insertion, we
explored two methods using different templates (31-mer and 20-mer;
Fig. 3B). In the first method, we used 31-mer templates containing the
Pa nucleotide (more stable alternative to Px). However, only a mod-
erate yield for the Ds-inserted product could be obtained from the
reaction mixture (even after purification by denaturing gel electro-
phoresis; T-Temp31Pa; Fig. 3C). Subsequently, we designed a second
method, using a 20-mer template with amini-hairpinDNA sequence to
stabilize the structure at the insertion target site (20-mer; Fig. 3B). This
method resulted in higher Ds insertion efficiency (T-MH-
Temp20; Fig. 3C).

To assess the insertion efficiency of the proposed enzymatic
synthesis scheme, we estimated the purity of Ds insertion per pool of
templates (Fig. 3D, “Methods”), where each pool was comprised of
subsets of templates with the same first and fifth bases in the target
sequence (N1N2N3N4N5, 16 = 42 pools with 64 = 43 fragments each,
Supplementary Fig. 9). Considering the proportion of pools with high
NCB retention rate ( > 85%), the 20-mer (mini-hairpin) method pro-
vided a substantial improvement over the 31-mer (Pa)method (median
of 94% vs 67%; Fig. 3D). Overall, a great majority of XNA templates
(91%) synthesized via the mini-hairpin method were estimated to have
high-purity ( > 85%). These results emphasize how an enzymatic
synthesis scheme with the right design can still enable generation of a

substantially more complex template library reliably, and with purity
high enough that it could enable effective training of a XNA base-
caller model.

Bootstrapping and data augmentation enables training of an
accurate generalized XNA basecaller
The complex template library was sequenced on a MinION sequencer,
generating >6 million reads, with similar level of success as the proof-
of-concept library in terms of long read lengths, near full-length tem-
plate coverage and successful barcode identification (Supplementary
Fig. 10). The distribution of reads across templates was found to be
relatively similar, with hundreds of reads being available per template
for most templates, after preprocessing and filtering of short reads
(Supplementary Fig. 10, “Methods”). XNA training data was prepared
by pre-processing reads selected for training by splitting them into
signal chunks and attributing ground-truth sequence based on the
library reference template sequence, discarding chunks that matched
poorly to the reference (Supplementary Fig. 12, “Methods”). A sig-
nificant fraction of readswasdiscarded in this way in an initial roundof
training (29%), as the baseline DNA model is prone to high error rates
within NCB regions (Fig. 2E, F, Supplementary Table 1). Nevertheless,
the resulting model was able to substantially improve basecalling in
bases adjacent to the NCB (93.8%, Round 1) versus the baseline model
(75.6%, Round 0; Fig. 4A). The updated basecaller model was used to
repeat the pre-processing of reads, resulting in much fewer reads
being discarded (11%), and retraining of a basecaller model with
improved accuracy for calling NCBs and neighboring bases ( > 94% in

Fig. 3 | Generation of a complex XNA template library. A Schematic overview of
XNA synthesis process, where DNA fragments phosphorylated at the 5’-end and
containing the template and barcode sequences undergo enzymatic single-
nucleotide insertion of Ds at 3’-terminus. The resulting XNA fragments are then
subjected to circular self-ligation followed by PCR using canonical and non-
canonical base substrates to obtain the double-stranded XNA. B Figure depicting
the two alternative strategies that were explored for enzymatic single-nucleotide
insertion, using a 31-mer (Pa) and a 20-mer (mini-hairpin) template. C Gel

electrophoresis results for single-nucleotide insertion products using the two
alternative strategies. The experiment was performed once. The uncropped gel is
provided as a SourceDatafile.DBoxplots depictingDs insertion efficiencyper pool
of templates (N = 16) for the two alternative strategies. Insertion efficiencies were
estimated via replacement PCR and Ion PGM sequencing. Boxplots show first and
third quartiles (box), median (line), and ± 1.5× the interquartile range (whiskers).
Source data are provided as a Source Data file.
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Round 2; Fig. 4A). Further rounds of train data preparation and base-
caller fine-tuning had limited impact on the number of reads added
( < 1%) and improvement of model performance (Round 3, Fig. 4A),
indicating that one round of bootstrapping was sufficient to obtain an
accurate model for the complex library.

Model training based directly on XNA reads from the complex
library is expected to have lowgeneralizability as the sequence context
surrounding the NCB containing kmers is fixed. Correspondingly,
testing on reads from the proof-of-concept 20-member library
demonstrated low accuracy for both NCBs and canonical bases (5%
NCB accuracy, 71% DNA accuracy; Complex Library, Fig. 4B). To
overcome this limitation, we supplemented model training with dif-
ferent data augmentation approaches, allowing us to generate artificial
reads with raw signals corresponding to NCB containing kmers placed
in diverse sequence contexts. Initially, fully synthetic signals were
simulated based on a signal-level model trained on real signal data
from the complex library (Fully Synthetic, Supplementary Fig. 13,
“Methods”). This approach notably improved NCB and DNA accuracy

(24%and89% respectively) relative to themodel traineddirectly on the
complex library, where the proportion of NCBs was kept constant
(0.3%; Fully Synthetic, Fig. 4B). However, as DNA accuracy was lower
than the baselineDNAmodel (94%),we investigated a hybrid approach
containing a mixture of real DNA signals with simulated XNA signals
that were generated by replacing specific positions in real DNA chunks
with synthetic signals representing NCB kmers (Hybrid, Supplemen-
tary Fig. 13, “Methods”). This approach provided slightly lower NCB
accuracy relative to the fully synthetic version, but higher DNA accu-
racy that matched the baseline model (14% and 94% respectively;
Hybrid, Fig. 4B). Thefinal strategy thatwas tested involved splicing real
DNA and XNA signals together to generate artificial XNA reads with
high context diversity while retaining the fidelity of real sequencing
data (Spliced, Supplementary Figs. 13, 14, “Methods”). Training based
on these spliced chunks resulted in substantial improvement in NCB
accuracy without compromising DNA accuracy (34% and 94% respec-
tively), indicating that it provides the most robust and generalizable
approach for data augmentation andmodel training (Spliced, Fig. 4B).
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Fig. 4 | Training of a high-accuracyXNAbasecallingmodel. A Line plot depicting
base-level accuracy per round of training for non-canonical bases, canonical bases
within 5 bp of a non-canonical base andmore distant canonical bases. The baseline
round of training depicts results using the Bonito Super Accuracy DNA model.
B Line plots depicting performance on the proof-of-concept (POC) library using
basecaller models trained with different sets of real and artificial reads, with
increasing proportion of NCBs per read. The following figures are based onmodels
trained with spliced data and 9% NCB proportion. C Line plots depicting the per-
formance of models trained jointly for both NCBs or separately, with an increasing
number of layers frozen. Subsequent analyses are based on models with 6 frozen

layers.D Boxplots depicting performance of the final model, based on the complex
and proof-of-concept libraries for testing with diverse templates and held-out
reads. Boxplots show first and third quartiles (box), median (line), and ± 1.5× the
interquartile range (whiskers). E Basecalling confusion matrix for NCBs and cano-
nical bases. The last column represents deletion errors. F Barplots depicting per-
formance analysis for reads withmultiple NCBs. Data are presented asmean values
± standard deviation. NCB proximity, number and order did not seem to have a
strong impact onNCB accuracy, indicating that the final trained basecaller is robust
in handling reads with multiple NCBs. Source data are provided as a Source
Data file.
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Leveraging the flexibility of this approach for data augmentation,
we next explored various ways to improve model performance. By
increasing the proportion of NCBs in each generated read, in contrast
to using a single NCB per read, substantial gains in NCB accuracy were
noted ( ~ 2× to 64% at 4% NCB) with only a slight reduction in DNA
accuracy ( ~ 1%; Fig. 4B). While NCB accuracy can be further improved,
this comes with diminishing returns at higher NCB proportions (66%
NCB accuracy and 90% DNA accuracy; trained with 11% NCB propor-
tion, Fig. 4B). As baseline models are well-adapted to call DNA bases,
we next explored a domain adaptation approach by preserving these
pre-trained weights for some layers during fine-tuning (“Methods”).
Successively freezing layers of the basecaller architecture up to layer 6
(out of 9; Supplementary Fig. 15) helpedboostmodel accuracywithout
substantially altering DNA accuracy (70% NCB accuracy for XY model
with 6 frozen layers; Fig. 4C). Not surprisingly, models trained sepa-
rately for each of the NCBs achieved even higher accuracy (77% for X
and 81% for Y), which could be leveraged for highly accurate joint
basecalling when both strands of the XNA are sequenced in duplex
mode (Fig. 4C).

Using the complex library to evaluate model performance across
diverse sequence contexts further confirmed that highNCB accuracies
are typically obtained by our model across templates (median accu-
racy = 86% and 82% for X and Y, and 73% for XY model; Fig. 4D). In
addition, this comes with very high specificity (99%), and thus cano-
nical bases are rarely miscalled as one of the NCBs (Fig. 4E). Instead, a
significant proportion of the errors involve NCBs being missed (i.e. a
base deletion), similar to what is seen in nanopore basecalling models
for canonical bases as well (4–7%; Fig. 4E). In addition, NCBs are more
likely to be miscalled to a canonical base, relative to the canonical-
base-to-canonical-base miscall rate (2-6% vs 0–2%; Fig. 4E), suggesting
that our models are conservative. Nevertheless, our models achieve
good recall rates (77% and 81% for X and Y models, and 75% for XY
model). Finally, we did not observe a strong influence from the order
of NCBs in a template, or the number of canonical bases between
consecutive NCBs, in terms of X and Y basecalling accuracy (Fig. 4F).
Moreover, model performance was also comparable for templates
containing multiple NCBs (including a 6-mer with two NCBs), despite
these configurations not being present in the training data (Fig. 4F),
highlighting the generalization capability of the model. Overall, these
results highlight the ability to learn a high-accuracy generalized direct
basecalling model for XNA sequences using bootstrapping and data
augmentation to increase data complexity.

Discussion
In this work, we provide the first demonstration of direct high-
throughput sequencing and deconvolution of non-canonical bases
that can be readily performed on a commercial sequencer. This
effectively expands the set of bases that can be natively read by
nanopore sequencers paving the way for in-depth exploration of other
classes of non-canonical bases as well29,30. The workflow used here can
serve as a general template for this, including (i) systematic assessment
of the ability of a nanopore sequencing system to process NCB con-
taining templates with high fidelity (section 1), (ii) evaluation of the
resulting signals for distinctness and reproducibility (section 2), (iii)
synthesis of a complex training library using a mini-hairpin sequence
to enable high efficiency (section 3), and (iv) training of a high-
accuracy model using bootstrapping and signal splicing to boost data
complexity (section 4). More specifically, our results highlight that
ONT’s nanopore sequencing device can be applied out-of-the-box to
XNAs containingmultiple Ds-Px unnatural base pairs, processing them
to generate raw electrical signals without significant disruption, and
with only a slight reduction in throughput to produce >2 million reads
and >5Gbp of data in a single MinION run (Supplementary Fig. 3). The
resulting read sets were frequently near full-length ( > 75%within 5% of
expected length) and showed no notable biases in data generation

efficiency compared to their DNA controls (Fig. 1B–E). These results
bodewell for the useofnanoporearchitectures as versatile systems for
natively reading and decoding diverse non-canonical bases.

The raw signal data, however, does not directly provide nucleo-
tide base identities. To assess if it could be used for training a base-
caller that could directly deconvolve signals into bases, we first
systematically assessed the distinguishability, fidelity and reproduci-
bility of the signal data. We found that the native basecaller was robust
enough to produce DNA reads that were largely accurate, except in
regions surrounding the NCB (Fig. 2F). This enables accurate align-
ment of signal data to reference bases, and consequently preparation
of training data formachine learningwith NCB containing XNA signals.
Notably, signal data around a NCB ( ± 3 bp) is substantially different
relatively to control DNA reads (median fold-change > 6×; Fig. 2A, B),
and these differences are not apparent outside the NCB region. We
further noted that the native basecaller makes reproducible errors in
XNA containing reads indicating that the underlying signal patterns
could be reproducibly re-interpreted with an appropriately trained
basecaller (Supplementary Fig. 8).

Training a basecaller that directly deconvolves NCBs along with
canonical bases requires training data that contains signals from XNA
reads with known sequences in a sufficiently complex library. While
chemical synthesis approaches have high efficiency, they can be pro-
hibitively expensive for generating large-scale libraries. Enzymatic
synthesis approaches are generally known to providemodest insertion
efficiencies (7%-73%)30 at a lower cost. Here we demonstrated that a
complex XNA library (n = 1024 templates) can be generated with high
insertion efficiency ( > 85%) by designing a custom insertion template
and a mini-hairpin to stabilize the NCB at the target site (Fig. 3C, D). A
similar strategy could be useful for designing complex libraries for
other NCBs as well. We chose to design our library to capture signals
generated by all 6144 single-NCB 6-mers sequence contexts (Fig. 3A,
Supplementary Fig. 2). This improves on previous work based on
4-mers30, and is expected to benefit model training by capturing
greater sequence context diversity in critical bases impacting signal
data31. In principle, generating data with 6-mers containing multiple
and consecutive NCBs would also benefit model training. However,
this is currently infeasible with even modest levels of efficiency7 and
therefore, a limitation of our work is that we are currently unable to
assess the capabilities of our model with such XNAs. Since directly
sequencing XNAs containing consecutive NCBs would expand the
utility of this model for synthetic biology applications, such as while
creating XNA enzymes or genomes, we aspire to address such limita-
tions when advances in the synthesis process allows the generation of
datawith suchcharacteristics. Noteworthily, priorwork using different
classes of NCBs and a non-commercial nanopore demonstrated that
having homopolymers with NCBs increases premature nanopore dis-
sociation, resulting in many incomplete reads32. Thus, in order to
successfully sequence NCB homopolymers, future adaptations to
nanopore chemistry or the NCB structure itself might be required.

Despite the sequence diversity in the immediate neighborhood of
the NCB in our complex library, the XNAs that we sequence still have a
predictable sequence backbone (Supplementary Fig. 2). Not surpris-
ingly, therefore, using this read data directly provides a high-accuracy
model for reads from the library (94% for UBs; Fig. 4A), but does not
generalize to other sequence contexts. Nevertheless, this initial model
based on bootstrapped learning allows us to align signal data from the
complex library to its corresponding reference bases accurately and
thus enables further robust training. As generalizability is a common
problem for training XNA models with limited training data com-
plexity, we explored several strategies for data augmentation, includ-
ing generating fully synthetic signals, as well as signals that splice
combinations of real and synthetic data. Our results suggest that
retaining signals from real XNA readswhile embedding them indiverse
DNA read contexts provides higher accuracy relative to synthetic data
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( > 80%) and robust generalizability for the model (Fig. 4B–F). The
models reported here also exhibit very high specificity (99%) relative
to prior work30 (80–93%), while demonstrating the capability for the
first time, to the best of our knowledge, to directly deconvolve signals
and read NCBs and canonical bases in an XNA. Our strategy for data
augmentation is versatile and can be adjusted to different require-
ments. For example, lower NCB proportions can be used when prior-
itizing DNA accuracy over NCB accuracy, while NCBs that were not
synthesized together can be incorporated into the same artificial read
to improve model accuracy for more densely packed NCBs and dif-
ferent classes of NCBs. Notably, data augmentation might be even
more important aswe seek to expand the alphabet of bases that can be
directly read by nanopores 5,30, and the corresponding demands for
library complexity go up rapidly.

With ongoing advances in nanopore sequencing technology,
there are several opportunities to further enhance capabilities to
sequence NCB-containing templates by directly optimizing the
design of motor enzymes, pores and signal modalities (e.g. variable-
voltage33). Additional measurements (e.g., duplex-basecalling,
translocation time and backwards step) could also substantially aid
in closing the gap between NCB and canonical basecalling accuracy.
Since the signal trace corresponding to a particular nucleobase
sequence greatly influences basecalling performance, a deeper
understanding of the underlying physicochemistry could help to
significantly improve basecalling of XNAs. This knowledge would
enable the development of NCBs that produce electrical signalsmore
distinct from those produced by canonical bases, thereby reducing
or eliminating ambiguities that often cause sequencing errors.
Advances in the deep learning architecture of basecallers can also be
beneficial for modeling NCB signals, especially if future models
become more generalizable without needing extensive amounts of
training data.

High-throughput NCB sequencing can, in turn, pave the way for
advances in various fields. For example, DNA storage applications can
greatly benefit from the much higher information density that an
expanded alphabet enables17,29. In synthetic biology, the development
of new UBs, novel XNA synthesis methods, and the creation of syn-
thetic genomes that exploit UBs can be transformed by the ability to
directly sequence XNAs. Finally, the development of NCB-containing
aptamers21,34 and other DNA therapeutics would benefit from easier
access to direct XNA sequencing. More broadly, we hope that the
proof-of-concept shown in this work further accelerates the use of
nanopore sequencing techniques to interrogate the role of non-
canonical basepairs across various domains of life, particularly for viral
genomics11 as well as for sequencing tRNAs9.

Methods
Preparation of XNA fragments containing canonical and non-
canonical bases
XNA fragments containing Ds or Diol-Pa were chemically synthesized
with an automated DNA synthesizer (H-8 SE DNA/RNA synthesizer,
K&A Laborgeraete) using Ds and Diol-Pa phosphoramidite prepared
in-house6,35 and commercially available canonical base phosphor-
amidites (Glen Research), or purchased from Gene Design. In-house
synthesized oligonucleotides were purified by denaturing gel elec-
trophoresis after deprotection with concentrated ammonia solution.
The non-canonical base substrates, dDsTP, dPxTP, and dPa’TP, were
prepared in-house as described previously6,36. DNA fragments con-
sisting of canonical base sequences were purchased from Integrated
DNA Technologies (IDT) and used to prepare short and long XNAs
(Supplementary Data 4).

Preparation of proof-of-concept 20-member XNA library
Using chemically synthesized DNA fragment sets, we first prepared
short XNAs with barcode sequences, through primer extension in

the presence of dPxTP and then PCR amplification in the presence of
dDsTP and dPxTP as additional non-canonical base substrates, as
described previously19. Combinations of Ds-containing templates
and the barcode fragments are summarized in Supplementary
Data 5. The presence of non-canonical bases at specific positions in
the PCR-amplified short XNAs ( ~ 97% purity) was confirmed by an in-
house Sanger gap sequencing method19. For nanopore sequencing
analysis, we prepared long XNAs by fusion PCR as described
previously19, in the presence of dDsTP and dPxTP, using three DNA
blocks: short XNAs prepared as described above, left-arm DNA
fragments, and right-arm DNA fragments. The presence of non-
canonical bases at specific positions was confirmed by an in-house
Sanger gap sequencing method19. The control long DNAs, where
the non-canonical bases were replaced by canonical bases,
were prepared by fusion PCR in the absence of non-canonical sub-
strates, using the short DNA blocks with chemically-synthesized
templates comprising of canonical base only (for XNA01–XNA16) or
prepared by replacement PCR in the presence of dPa’TP22 (for
XNA17–XNA20).

Preparation of complex XNA library
Ds insertion. Synthetic 90-mer oligonucleotide pools (oPoolsTM Oligo
Pool, Supplementary Data 2,3 and Supplementary Fig. 9) were pur-
chased from IDT, as mixtures of 50pmol fragments. DNA fragments
with phosphorylation at the 5’-end (ordered with phosphorylation or
phosphorylated by T4 DNA polynucleotide kinase followed by dena-
turing gel purification) were directly used for single-Ds nucleotide
insertion by exo-nuclease-deficient Klenow Fragment DNApolymerase
(KFexo-, New England Biolabs).

In the initial trial, each 90-mer DNA pool was annealed with the
corresponding 31-mer template (5’-TG(Diol-Pa)NNNNNTATGG-
CAGCTGTTTCATGTGTGA-3’, N = A, G, C, orT), positioningPaopposite
the site intended for Ds insertion. The Ds insertion was performed
through the incubation of the 90-mer DNA pool (2μM) with 31-mer
template (20μM) in the presence of 100μMdDsTP and0.2U/μl KFexo-
in the reactionbuffer (25mMTris-HCl pH7.5, 10mMMgCl2, 1mMDTT,
50mM NaCl) for 60min at room temperature. The inserted products
were purified by denaturing PAGE. However, we found that Ds inser-
tion rate was relatively low, so we designed a template for Ds insertion
using a 20-mer containing amini-hairpin DNA sequence at 5’ terminus,
X-MH-temp20 (5’- GCGAAGCGTNNNNNTATGG(ddC)-3’, N = A, G, C, or
T, underlined: mini-hairpin sequence). The design was based on three
points: (1) themini-hairpin sequenceat the 5’-terminus allowed specific
and stabilized hybridization to the 3’-region of 90-mer pool, (2) the use
of 2’,3’-dideoxy C at the 3’-terminus prevents additional Ds insertion,
and (3) Ds insertion opposite T is allowed since we add only dDsTP
(Fig. 3A, B). As expected, theDs insertion in the presenceof the 20-mer
template was much improved compared with that in the presence of
the 31-mer (Fig. 3C, D). Finally, the Ds insertion to 90-mer pool was
performed through the incubation of the 90-mer DNA pool with 20-
mer template (75μM) in the presence of 100μM dDsTP and 0.5U/μl
KFexo- in the reaction buffer for 30min at 37 °C.

Circligation. The prepared Ds-inserted DNA pools (around 1.5 to 2.5
pmol) were subjected to self-ligation (10μl) by 50 Units of Circligase II
(Lucigen) in the circligation buffer supplemented with 2.5mM MnCl2
and 1M Betain for 16 h at 60 °C, followed by heat inactivation of the
ligase at 80 °C for 10min. The unligated fragments were removed by
treatment with Exonuclease I (NEB) and Exonuclease III (NEB) at 37 °C
for 45min, followed by heat inactivation of the nucleases at 80 °C
for 20min.

Preparation of short and long XNA pools. The reaction aliquots were
subjected to 12-cycle PCR amplification in the presence of dDsTP and
dPxTP, using two primers, pUC19rev-47 and pUC19fwd-42. The PCR-
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amplified products (short XNA pools) corresponding to 135-bp (with-
out Ds-Px) /136-bp (with Ds-Px) were purified by denaturing PAGE,
followed by fusion PCR to prepare long XNAs, as described above. The
presence of non-canonical bases at specific positions in the PCR-
amplified short/long XNA pools were confirmed by an in-house Sanger
sequencing method supplemented with ddPa’TP19 or Ion PGM deep
sequencing after replacing the non-canonical bases with canonical
bases22.

Nanopore library preparation and sequencing
XNA library samples were sequenced on Oxford Nanopore Technolo-
gies (ONT) MinION Mk1B or Mk1C devices using MinION R9.4.1 flow
cells. These samples were prepared using the ONT Ligation Sequen-
cing Kit (SQK-LSK109 or SQK-LSK110) following standard library pre-
paration protocol instructions provided by the vendor. The nucleic
acid concentration of each sample was measured using the QubitTM

dsDNA HS kit on a QubitTM 3 Fluorometer (Invitrogen).
In total, we ran five different synthesis and sequencing batches: 1)

XNA+DNA #01-16; 2) XNA #17-20; 3) DNA #17-20; 4) Complex library;
5) Complex library subset (Supplementary Fig. 2 and Supplementary
Fig. 9). Run #5was needed to replenish someof the templates (n = 214)
with low read counts in run #4.

Nanopore data pre-processing
To prepare XNA sequence reads for raw nanopore signal analysis and
basecaller training, we used Guppy (v4.0.14) with the
dna_r9.4.1_450bps_hac profile for initial basecalling. The output base-
called sequences were then aligned to template references using
Minimap237 (v2.17-r941; parameters -x map-ont -c -secondary = no -w
5). For alignment, we used only template-specific regions as refer-
ences, i.e., the sequences corresponding to the left and right armswere
omitted from the reference targets, as this helped to avoid misalign-
ment to the wrong target. After alignment, the barcode region was
located and used to compute the number of mismatches with the
reference barcode to obtain edit distances. Reads with low template
coverage ( < 85%), high barcode distance ( > 5) or unexpected read
length ( < 1k or >3k)werefiltered out, before counting thefinal number
of reads per template (Supplementary Fig. 11). Nanopolish25 (v0.13.0;
parameters eventalign -samples -scale-events -print-read-names) was
used to obtain the mapping between read bases and raw signals.

XNA training data preparation
We randomly sampled 316k reads from the complex XNA library
sequencing batches, of which 297k reads were used for training and
19k reads for validation, with respective medians of 170 and 10 reads
per template and strand. We prepared the input for training the
basecaller byfirstdividing the raw signals into chunkswith a chunk size
of 3600 and an overlap of 900 signal points. Each chunk was then
basecalled andmapped to the library reference to retrieve the ground-
truth sequence. We retained only the chunks that contained an NCB
and had at least 90% coverage and accuracy relative to the aligned
reference (Supplementary Table 1). Each chunk of signals
S= fS1, . . . , Schunksizeg was normalized via SMAD (Scaled Median Abso-
lute Deviation) normalization38, as defined below:

smad Sð Þ= k*medianð Si �median Sð Þ
�� ��Þ ð1Þ

Snorm =
Sraw �median Sraw

� �

smadðSrawÞ
ð2Þ

where, for consistency with the Gaussian distribution, we used 1.4826
as the scale factor k. We employed SMAD normalization to comply
with Bonito’s signal pre-processing step before basecalling using its
pre-trained models.

XNA basecaller architecture and training
We used Bonito39 (v0.5.0) Super Accuracy (SUP) as the backbone
architecture for our XNA basecaller models. We chose Bonito for the
backbone because it is the state-of-the-art in terms of basecalling
accuracy40, and ONT’s recommended basecaller for training new
models and method development. We made certain adaptations to
Bonito’s implementation and basecaller architecture (Supplementary
Fig. 15) to enable training with data containing a six-letter alphabet.
The baseline model, trained solely on DNA data, was used as the
default set of initial weights for fine-tuning with the XNA data. After
round 1, rounds 2 and 3 of the bootstrapping strategy used theweights
from the previous round to extract training chunks and initialize the
model for fine-tuning (Fig. 4A). Unless otherwise specified, we fine-
tuned the weights from all layers. However, in some cases, we partially
froze the network and only fine-tuned the weights from the top layers
(Fig. 4C).Wefine-tuned thenetwork for 5 epochswith a learning rate of
5e-4, applying dropout rates of 50% to the top layer and 5% to any
remaining unfrozen layers.

Performance evaluation
To comprehensively evaluate our basecaller models, we assessed their
performance on both XNA libraries (proof-of-concept and complex).
For performance evaluation over the proof-of-concept XNA library, we
randomly sampled 10k reads, consisting of 250 reads per NCB and
template (Supplementary Fig. 16). For the complex library, we ran-
domly sampled 40k reads (median of 20 reads per NCB and template).
Each model was used to basecall the two test sets, and evaluation was
conducted on the reads successfully aligned to reference templates.
To evaluate how well our models can basecall canonical bases (ACGT)
and NCBs (XY), we calculated base-level accuracy and reported the
average accuracy per template and strand for each group of bases
(canonical and non-canonical). We categorized canonical bases within
5 bases of an NCB into a separate group (i.e., NCB-adjacent bases) due
to their susceptibility to the influenceof theNCBat the signal level and,
consequently, in terms of basecalling. We computed recall and speci-
ficity metrics considering NCBs as positives and canonical bases as
negatives.

Refined signal-to-sequence alignment
We used Nanopolish on the reads from the complex XNA library to
obtain an initial signal-to-sequence alignment, whichwas subsequently
refined. In order to obtain an alignment with higher quality, we used
the sequences basecalled by the XNA model from round 2 of the
bootstrapped training procedure, and we substituted the NCBs in the
reference sequences with the canonical base that minimized the
average standard deviation per kmer (A for both X and Y). We filtered
out reads with alignments that have coverage <75%, a position with
signal count >50, an average variance per position >20 or a signal
match score >2. We also computed an alternative score by matching
the signals to a reference sequence without the NCB, representing the
mis-insertion case, and discarded the reads where the difference
between the alternative and original scores was less than −0.25, cap-
ping discarded reads at 15% of the total. The signal match score for a
given sequence of signals grouped by kmer is the average z-score
based on kmer model mean and standard-deviation and is defined as:

score=

PL
i

μ̂ki�μk
σk

���
���

L
ð3Þ

whereL is the sequence length, μ̂ki is theobservedmeansignal level for
kmer k at position i of the sequence, μk is the model mean signal level
for kmer k and σk the model standard deviation. We used the kmer
signal model parameters employed by Nanopolish.

Since Nanopolish was designed solely for canonical bases, the
output alignment is not very accurate around non-canonical bases,
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necessitating additional steps to improve it. After filtering the reads,
we employed dynamic time warping (DTW)41 in two iterations to refine
the signal-to-sequence alignment in the region comprising the NCB
kmers and the 5 kmers before and after. Initially, we substituted both
the NCBs with the canonical base A (since it minimized kmer standard
deviation for bothX andY) andused themodelmeansignal level as the
reference signal for each kmer. Subsequently, we updated the refer-
ence corresponding to the NCB kmers with the observed mean signal
level, computed from the signals aggregated across all reads after the
first iteration. We ran the DTW algorithm with Euclidean distance and
an asymmetric step pattern, which ensures that every signal is always
matched to a single kmer. Additionally, to enforce that each kmer
would bematched to at least three signals, we repeated each reference
signal three times.

Synthetic signal generation
We simulated nanopore signals using the modeled signal distribution
(mean and standard deviation) of each 6-mer. ForDNA kmers, we used
themodel availablewith theNanopolish tool. However, forXNAkmers,
we had to generate our ownmodel covering the NCBs explored in this
work (Px-Ds).Wemodeled the XNA kmers by first applying our refined
signal-to-sequence alignment on the sequenced reads from the com-
plex XNA library. We then grouped the observed XNA signals per 6-
mer, removed outliers ( ± 3× stdev), and extracted the mean and
standard deviation from the remaining samples (Supplemen-
tary Data 6).

Using the 6-mer signal model for DNA and XNA, we simulated the
signals for a specific kmer by sampling from a truncated normal dis-
tribution, with the kmer model mean and standard deviation as para-
meters, and then adding Gaussian noise42. The generation of a
synthetic signal esk for kmer k is defined as follows:

esk =μk + σk × truncnorm �ω+Δ,ω+Δð Þ+noise ð4Þ

where ω and Δ are the window size and shift value, respectively, for
defining the truncation lower and upper bounds. We used a window
size of 1.5 and a shift value randomly chosen from -0.5, 0 and 0.5. The
Gaussian noisewas also sampled froma truncated normal distribution,
with a standarddeviation scale randomly selectedwithin the rangeof0
to 1 and lower and upper bounds of ± 3. The random parameters
(window shift and noise standard deviation) vary between reads but
are chosen once and fixed for each read.

Fully synthetic XNA chunks
We used the DNA training data from Bonito as the source for the
reference sequences for which we generated fully synthetic nanopore
reads. Adhering to a target NCB proportion for the simulated XNA
reads, we randomly selected multiple positions from the source
reference sequence to be replaced by X or Y, ensuring that no 6-mer
contained more than one NCB by maintaining a minimum of 5 bases
between selections. We also used Bonito’s data to determine the
number of signal points each kmer instance should have. To estimate
this information, we segmented the chunk of raw signals corre-
sponding to the source sequence into kmers. Finally, we normalized
the resulting chunk of signals using SMAD normalization.

Hybrid XNA chunks
We created hybrid reads by replacing specific signals in DNA chunks
from Bonito training data with synthetically generated XNA signals.
Given a DNA chunk and its reference sequence, we selected multiple
positions from the sequence to be replaced by NCBs and then sub-
stituted the signals corresponding to these positions with nanopore
simulations for the NCB kmers resulting from the replacement. To
determine which signals correspond to the replaced positions, we
segmented the DNA signal chunks into kmer instances employing

DTW, with the model mean signal level serving as the reference signal
for each kmer. Similar to the final step of our refined signal-to-
sequence alignment, we ran the DTW algorithm with Euclidean dis-
tance, an asymmetric step pattern, and repeating each reference signal
three times.

Spliced XNA chunks
To achieve more diverse sequence contexts while maintaining high
nanopore signal fidelity, we assembled spliced reads by replacing
specific signals in DNA chunks from Bonito training data with XNA
signal slices extracted from our nanopore XNA reads. We used the
chunks from the complex XNA library, obtained with the basecaller
model from round 2 of bootstrapped training, as the source for the
signal slices for NCB kmers. The refined signal-to-sequence alignment
approach was used to identify XNA signal slices that likely contain an
NCB. To extract the XNA slices, we kmer-segmented the chunks
employingDTWwith our XNA kmermodel.When selectingwhich XNA
slices will be used to substitute the DNA signals, we randomly sampled
five slices and then selected the one with the number of signals closest
to the length of the insertion region. If the selected XNA slice was
longer than the insertion region, we removed evenly spaced signal
points as needed. Conversely, if the slice was shorter, we used linear
interpolation to add evenly spaced signal points.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The
Investigators were not blinded to allocation during experiments and
outcome assessment. All statistical analyses performed are described
in the figure legends or “Methods” section. The exclusion criteria for
aligned reads and training signal chunks are described in the Meth-
ods section. These data were excluded to eliminate noisy samples
that might mislead the analyses and compromise basecaller perfor-
mance. Signal and error rate analyses presented in Fig. 2 were con-
ducted on a randomly selected sample of reads. Training and
validation sets were randomly sampled from reads in the complex
XNA library. Test sets were randomly sampled from reads in the
proof-of-concept and complex XNA libraries. Reads sampled for the
test and validation sets were randomly selected from a pool of reads
with high template coverage and low barcode distance. The input
order of the training data was randomized during training, which can
lead tominor variations in final performance. The data augmentation
techniques proposed in this work include random components
(described in the Methods section), which are controlled by a hard-
coded random seed in the provided code (see the ‘Code Availability’
statement).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Nanopore sequencing data is available from the European Nucleotide
Archive (ENA—https://www.ebi.ac.uk/ena/browser/home) under pro-
ject accession number PRJEB82716. Source data for figures are pro-
vided with this paper. Source data are provided with this paper.

Code availability
Source code for scripts used to obtain the XNA basecaller and analyze
the data are available in a GitHub project at https://github.com/CSB5/
XNA_Basecaller43.
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