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Sociodemographic factors, biomarkers and
comorbidities associated with post-acute
COVID-19 sequelae in UK Biobank

Marta Alcalde-Herraiz1, Shahed Iqbal2, Jeffrey J. Wallin2, Yunhao Liu2,
Wildaliz Nieves2, Mark Berry2, Marti Catala1, Daniel Prieto-Alhambra 1,3 &
Junqing Xie 1

Long-term sequelae of COVID-19 remain critical public health concerns, with
limited therapeutic options available. We conducted two case-control studies
among COVID-19 infected individuals in the UK Biobank to explore the asso-
ciation of sociodemographic factors, clinical biomarkers, and comorbidities
with the risk of two key phenotypes: Long COVID (LC, defined by patient self-
report symptoms) and post-acute complications of SARS-CoV-2 infection
(PACS, defined by clinical diagnosis), separately. Our study included 8,668
participants in the LC cohort (32% classified as cases) and 108,407 in the PACS
cohort (with 2% being cases). Findings showed that age and sex were asso-
ciated with both LC and PACS but in opposite directions. Additionally, obesity,
socioeconomic deprivation, elevated C-reactive protein, triglyceride, vitamin
D, HbA1c, cystatin C, urate, and alanine aminotransferase, and decreased HDL
cholesterol and IGF-1, as well as CKD and COPD, were associated with LC.Most
of these factors were also significant for PACS, except for alanine amino-
transferase and vitamin D. These findings have potential mechanistic impli-
cations for the distinction between LC and PACS and can guide clinical
implementation of identifying high-risk groups for targeted vaccination or
other public health mitigation strategies.

Even though COVID-19 cases and deaths have significantly decreased
globally, long-term health consequences of SARS-CoV-2 infection,
commonly known as Post-COVID-19 Conditions (PCC), are emerging as
a critical public health issue1,2. An estimated 3% of the UK population
experienced symptoms for at least fourweeks after infection3, with risk
for PCC potentially not solely dependent on the severity of the acute
COVID-19 infection.

PCC can be classified into two main categories4–6: Long COVID
(LC) and post-acute complications of SARS-CoV-2 infection (PACS). LC
is defined by the persistence or onset of COVID-19-related symptoms
beyond one to three months after the initial infection. Common
symptoms include fatigue, shortness of breath, and other symptoms

that can significantly impact day-to-day functioning. In contrast, PACS
typically refers to more severe complications emerging in the same
time frame, such as thromboembolic or cardiovascular events,
including angina, myocardial infarction, or pulmonary embolism.

Previous studies have aimed to characterise patients with LC7.
Tsampasian et al. conducted a systematic review and meta-analysis of
41 studies to explore the risk factors of PCC in adult patients. Socio-
demographics such as female sex, age, high BMI, and smoking were
associated with an increased risk of PCC. The presence of comorbid-
ities like anxiety or depression, asthma, chronic obstructivepulmonary
disease (COPD), diabetes, immunosuppression, and ischaemic heart
disease was also linked to an increased risk for PCC.
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Identifying potential biomarkers for new conditions is key for an
early detection, better understanding of pathophysiology, and the
development of effective treatments. Several biomarkers have been
identified to date that can contribute to the study andmanagement of
LC. For example, peoplewith prolonged symptoms have shown higher
levels of inflammatorymarkers, like C-reactive protein and interleukin-
6, which points to ongoing low-grade inflammation8. Separately, bio-
markers tied to endothelial dysfunction, such as vascular adhesion
molecules and von Willebrand factor, have been reported in associa-
tion with LC9. However, the heterogeneous nature of LC and PACS
needs more intensive investigation, ideally in larger populations and
granular datasets. We therefore leveraged linked UK Biobank data to
perform a hypothesis-free analysis and explore the associations and
interplay between sociodemographic factors, biomarkers, and
comorbidities and the risk of LC and PACS.

Results
Study cohorts
See Fig. 1 formore details on the number of individuals for each linked
dataset.

Out of the 275,234 UK Biobank participants that had a valid link-
age with COVID-19 surveillance data, 46,793 had a positive test result
and had answered all the questions from the Health and Well-Being
online questionnaire. Among these participants, 8668 fulfilled the
selection criteria to be part of the LC base cohort. A total of 2751 (32%)
reported at least one symptomwhen answering the questionnaire and
hence were classified as LC cases. The remaining 5917 (68%) were
classified as LC controls (Supplementary Fig. 1A).

In total, 115,007 UK Biobank participants had a valid linkage to
Hospital Episode Statistics (HES) data and to the COVID-19 surveil-
lance data, and a positive COVID-19 test. Of these, 108,407 fulfilled
the selection criteria to be part of the PACS base cohort. A total of
1940 (2%) had at least one PACS diagnosis beyond 30 days after
infection and were therefore classified as PACS cases, whereas
106,467 (98%) were classified as PACS controls (Supplemen-
tary Fig. 1B).

Baseline characteristics of both study cohorts stratified by case-
control status are reported in Tables 1–3. LC cases had a higher pro-
portion of women compared to LC controls (54% and 52%, respec-
tively) and appeared to livemore often in socio-economically deprived
areas (index of multiple deprivation (IMD) of 15 and 13, respectively).
PACS cases were older compared to PACS controls, with amean age of
72 and 67, respectively, and with a higher proportion of men (57% and
44%, respectively).

Linearity assessment
Results of the exploratory data analysis, data curation and correlation
analysis are reported in Supplementary Note 1.

We explored potential non-linear relationships between each
biomarker and the study outcomes using natural cubic spline curves.
For C-reactive protein andHDL cholesterol, the non-linear cubic spline
model provided a better fit for the logit function of LC compared to a
linear model (see Fig. 2A). For the other biomarkers, the linear logistic
regression model was a better fit. Similarly, we identified a potential
non-linear relationship for 12 out of the 17 biomarkers with
PACS (Fig. 2B).

Variable selection
LASSO regularisation identified all the sociodemographic factors, all
the biomarkers and 9 out of 17 comorbidities as associated with LC
(Supplementary Table 1). For PACS, LASSO regularisation selected all
sociodemographic factors, 15 out of 17 biomarkers, and 15 out of 17
comorbidities (see Supplementary Table 2).

Outcome model regression analyses
For LC, none of the variables exhibited high levels of multicollinearity
(see Supplementary Table 3). Full results, including crude and adjusted
odds ratios (ORs) are detailed in Fig. 3.

Regarding socio-demographics, younger individuals (<55) were
associatedwith an increased risk of LC compared to older people (≥75)
in the adjusted analysis (ORadjusted = 1.23, 95% CI = 1 to 1.42). Obesity
and deprivation were linked to an increased risk of LC

Fig. 1 | Scheme of the overall study design to create the cohorts. Note: PACS post acute COVID-19 sequelae, UK United Kingdom.
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(ORadjusted = 1.20, 95% CI = 1.02 to 1.41; ORadjusted = 1.41, 95% CI = 1.22 to
1.63). Female sex was associated with an increased risk of LC
(ORadjusted = 1.25, 95% CI = 1.14 to 1.35) (Fig. 3A).

Multiple biomarkers were associated with LC in the crude ana-
lyses. Higher levels of C-reactive protein and triglyceride were asso-
ciated with a higher risk of LC (ORcrude = 1.35, 95% CI = 1.17 to 1.55 per
quintile 5; ORcrude = 1.15, 95%CI = 1.10 to 1.21). Conversely, higher levels

of HDL-cholesterol were found to be associated with a lowered risk
(ORcrude = 0.73, 95% CI = 0.63 to 0.86 for quintile 5). Higher levels of
IGF-1 and SHBG also appeared associated with a decreased risk of LC
(ORcrude = 0.92, 95% CI = 0.88 to 0.97; ORcrude = 0.92, 95% CI = 0.87 to
0.97), whereas higher levels of hbA1c, cystatin C, urate and alanine
aminotransferase were associated with increased risks: ORcrude = 1.1,
95% CI = 1.04 to 1.17; ORcrude = 1.11, 95% CI = 1.04 to 1.17; ORcrude = 1.14,
95% CI = 1.07 to 1.2; and ORcrude = 1.07, 95% CI = 1.02 to 1.13,
respectively.

Most of these associations were attenuated and no longer sig-
nificant aftermultivariable adjustment. However, higher levels of HDL-
cholesterol remained associated with a decreased risk of LC
(ORadjusted = 0.83, 95% CI = 0.70 to 0.98 for quintile 4), as were higher
levels of IGF-1 (ORadjusted = 0.93, 95% CI = 0.88 to 0.98). Conversely,
high levels of triglycerides and of vitamin D remained associated with
an increased risk of LC: ORadjusted = 1.08, 95% CI = 1.01 to 1.15;
ORadjusted = 1.05, 95% CI = 1.00 to 1.11, respectively (see Fig. 3B).

For pre-existing comorbidities, chronic kidney disease (CKD) and
COPD were significantly associated with a higher risk of LC
(ORadjusted = 1.48, 95% CI = 1.11 to 1.97; ORadjusted = 1.29, 95% CI = 1.08 to
1.54) (see Fig. 3C). Conversely, metastatic cancer was associated with a
lower risk of LC (ORadjusted = 0.49, 95% CI = 0.28 to 0.86).

Results for PACS are presented in Fig. 4. We did not find any
evidence of multicollinearity with any of the studied covariates (Sup-
plementary Table 4). Older age was associated with a higher risk of
PACS: ORadjusted = 2.41, 95%CI = 1.70 to 3.42 for those aged ≥75 com-
pared to those <55. Obesity, living in socio-economically deprived
areas, and male sex were also linked to a higher risk of PACS:
ORadjusted = 1.39, 95% CI = 1.19 to 1.62; ORadjusted = 1.36, 95% CI = 1.17 to
1.58; and ORadjusted = 1.40, 95% CI = 1.24 to 1.59, respectively. Addi-
tionally, smoking was associated with a higher risk of PACS
(ORadjusted = 1.30, 95% CI = 1.11 to 1.51) (see Fig. 4A).

In the crude analyses, higher levels of C-reactive protein, lipo-
protein (a) and triglyceride were associated with higher risks of PACS

Table 1 | Sociodemographic characteristics of the study
cohorts

Risk factor Long COVID PACS

Controls Cases Controls Cases

N 5917 2751 106,467 1940

Sociodemographic factors

Age [Mean (SD)] 66.56 (7.24) 66.31 (7.53) 67.3 (8.2) 71.63 (7.71)

Sex (%)

Female 3061 (51.73) 1486 (54.02) 59,547 (55.93) 834 (42.99)

Male 2856 (48.27) 1265 (45.98) 46,920 (44.07) 1106 (57.01)

BMI [kg/m2]
[Mean (SD)]

25.85 (3.85) 26.43 (4.15) 27.28 (4.56) 28.94 (4.85)

Index of multiple
deprivation

13.43 (10.71) 14.83 (11.55) 16.76 (13.17) 19.22 (14.38)

Ethnic background (%)

White 5698 (96.3) 2628 (95.53) 100,694 (94.58) 1827 (94.18)

Non-white 219 (3.7) 123 (4.47) 5,773 (5.42) 113 (5.82)

Smoking status (%)

Never 3899 (65.89) 1713 (62.27) 61,364 (57.64) 918 (47.32)

Previous 1676 (28.33) 866 (31.48) 35,975 (33.79) 785 (40.46)

Current 342 (5.78) 172 (6.25) 9128 (8.57) 237 (12.22)

Age ismeasured at the index date (positive COVID-19 result). BMI, index ofmultiple deprivation,
and smoking status were measured at the UK Biobank baseline assessment.

Table 2 | Previous comorbidities of the study cohort

Risk factor Long COVID PACS

Controls Cases Controls Cases

N 5917 2751 106,467 1940

Comorbidities [Cases (%)]

Acquired immunodeficiency syndrome (AIDS) 2 (0.03) 1 (0.04) 36 (0.03) 0 (0)

Asthma 338 (5.71) 205 (7.45) 10,438 (9.8) 312 (16.08)

Cancer 1356 (22.92) 640 (23.26) 29,673 (27.87) 778 (40.1)

Cancer - metastatic 63 (1.06) 16 (0.58) 2006 (1.88) 83 (4.28)

Cerebrovascular disease 121 (2.04) 46 (1.67) 4029 (3.78) 188 (9.69)

Congestive heart failure 50 (0.85) 27 (0.98) 1251 (1.18) 176 (9.07)

Chronic kidney disease 125 (2.11) 90 (3.27) 5544 (5.21) 327 (16.86)

Chronic obstructive pulmonary disease (COPD) 363 (6.13) 226 (8.22) 12,508 (11.75) 456 (23.51)

Dementia 2 (0.03) 0 (0) 1029 (0.97) 58 (2.99)

Diabetes 154 (2.6) 92 (3.34) 7008 (6.58) 383 (19.74)

Diabetes - organ damage 10 (0.17) 12 (0.44) 832 (0.78) 62 (3.2)

Fracture 412 (6.96) 173 (6.29) 7971 (7.49) 208 (10.72)

Hemiplegia 11 (0.19) 8 (0.29) 695 (0.65) 47 (2.42)

Liver disease - mild 65 (1.1) 46 (1.67) 2558 (2.4) 109 (5.62)

Liver disease - moderate to severe 31 (0.52) 23 (0.84) 1224 (1.15) 57 (2.94)

Myocardial infarction 104 (1.76) 52 (1.89) 3100 (2.91) 285 (14.69)

Peptic ulcer 345 (5.83) 198 (7.2) 9710 (9.12) 390 (20.1)

Peripheral vascular disease 52 (0.88) 23 (0.84) 1666 (1.56) 121 (6.24)

Rheumatoid arthritis 57 (0.96) 41 (1.49) 2889 (2.71) 138 (7.11)

Comorbidities were measured before the positive COVID-19 result.
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(ORcrude = 2.04, 95% CI = 1.76 to 2.37 for quintile 5 (Fig. 4B);
ORcrude = 1.05, 95% CI = 1.00 to 1.1; ORcrude = 1.33, 95% CI = 1.15 to 1.55
for quintile 5, respectively). Conversely, elevated levels of LDL and
HDL-cholesterol were found to be associated with a reduced risk
(ORcrude = 0.69, 95%CI = 0.60 to 0.79 for quintile 5; ORcrude = 0.57, 95%
CI = 0.49 to 0.67 for quintile 5). Higher alkaline phosphatase levels
were also associated with an increased PACS risk (ORcrude = 1.8, 95%
CI = 1.54 to 2.1 for quintile 5), whereas high levels of calcium and vita-
min D were associated with a decreased risk (ORcrude = 0.86, 95%
CI = 0.75 to 1 for quintile 4; ORcrude = 0.95, 95% CI = 0.9 to 0.99). IGF-1
and SHBG were associated with a lower risk of PACS (ORcrude = 0.72,
95% CI = 0.62 to 0.83 for quintile 5; ORcrude = 0.88, 95% CI = 0.83 to
0.93). Finally, high levels of HbA1c, cystatin C, and urate were also
found to increase PACS risk (ORcrude = 2.04, 95% CI = 1.74 to 2.38 for
quintile 5; ORcrude = 1.35, 95% CI = 1.29 to 1.42; ORcrude = 1.70, 95% CI =
1.43 to 2.03 for quintile 5).

Many associations were attenuated after multivariable adjust-
ment. Here, we summarise the associations that remained significant.
Higher levels of alkaline phosphatase, HbA1c, and cystatin C remained
statistically significantly associatedwith an increased risk of PACS after
adjusting for other variables (ORadjusted = 1.35, 95% CI = 1.14 to 1.59 for
quintile 5; ORadjusted = 1.29, 95% CI = 1.09 to 1.54 for quintile 5;
ORadjusted = 1.09, 95% CI = 1.03 to 1.15). Higher levels of IGF-1 remained

associated with a decreased risk of PACS: ORadjusted = 0.84, 95% CI =
0.72 to 0.98 (see Fig. 4B).

Almost all the comorbidities explored were associated with an
increased risk of PACS, except cerebrovascular disease, dementia,
fracture, hemiplegia and liver disease (see Fig. 4C).

Sensitivity analysis
After removing liver transaminases and diabetes biomarkers (glucose,
IGF1, and HbA1c) from the analysis, our adjusted results remained
consistent with the main analyses (see Supplementary Figs. 3 and 4).

We also conducted a sex-stratified analysis to examine the asso-
ciations of SHBGand testosteronewith the respective studyoutcomes.
However, as testosterone was excluded from the analysis because it
was highly correlated (|r|>0.5) with creatinine, we focus solely on
SHBG. In these sex-stratified analyses, higher SHBG was associated
with a decreased risk of LC and PACS in females only (Supplementary
Figs. 5 and 6).

We modified the definition of LC cases to minimise the risk of
misclassification. We included only participants reporting at least
three World Health Organisation (WHO) LC symptoms at the time of
answering the online questionnaire. Those reporting two or fewer
symptoms were classified as LC controls. This resulted in a set of 594
LC cases (3%) and 8,079 LC controls (97%). The associations observed

Table 3 | Biomarker levels in the study cohorts

Risk factor Long COVID PACS

Controls Cases Controls Cases

N 5917 2751 106,467 1940

Biomarkers [Mean (SD)]

Alanine aminostransferase −0.1 (0.94) −0.06 (0.99) −0.01 (1.01) 0.1 (1.04)

Albumin 0.17 (0.99) 0.13 (0.99) 0.05 (0.99) −0.1 (1.02)

Alkaline phosphatase −0.22 (0.93) −0.19 (0.91) −0.1 (0.97) 0.13 (1)

Apolipoprotein A 0.08 (0.96) 0.04 (1) −0.01 (0.98) −0.16 (0.97)

Apolipoprotein B −0.08 (0.94) −0.03 (0.97) −0.02 (0.97) −0.08 (1.05)

Aspartate aminotransferase −0.1 (0.9) −0.09 (0.94) −0.05 (0.98) 0.09 (1.06)

C-reactive protein −0.22 (0.79) −0.15 (0.86) −0.05 (0.95) 0.21 (1.18)

Calcium −0.01 (0.98) 0.01 (0.97) −0.02 (0.99) −0.01 (1.02)

Cholesterol −0.02 (0.92) 0.01 (0.95) −0.02 (0.96) −0.18 (1.08)

Creatinine 0.01 (0.94) −0.01 (0.94) −0.03 (0.96) 0.2 (1.11)

Cystatin C −0.33 (0.82) −0.29 (0.85) −0.17 (0.92) 0.31 (1.1)

Direct bilirubin 0.07 (1.02) 0.07 (1.04) 0.01 (1.01) 0.07 (1.01)

Direct low-density lipoprotein −0.03 (0.93) 0 (0.95) −0.01 (0.96) −0.14 (1.06)

Gamma glutamyltransferase −0.16 (0.85) −0.11 (0.92) −0.06 (0.95) 0.18 (1.08)

Glucose −0.15 (0.82) −0.11 (0.84) −0.08 (0.92) 0.19 (1.2)

HbA1c1c −0.27 (0.79) −0.22 (0.83) −0.13 (0.93) 0.28 (1.14)

HDL cholesterol 0.14 (0.98) 0.08 (1.01) 0.01 (0.98) −0.22 (0.95)

IGF-1 0.25 (0.95) 0.19 (0.97) 0.1 (0.99) −0.1 (1.02)

Lipoprotein (a) −0.02 (0.98) 0.02 (1.02) −0.01 (1) 0.05 (1.05)

Phosphate 0 (0.98) 0.01 (0.98) 0.01 (1) −0.01 (1)

SHBG 0.06 (1.03) 0.02 (1.01) −0.01 (1.02) −0.19 (0.89)

Testosterone 0.07 (1.02) 0.02 (1.01) −0.03 (0.99) 0.16 (0.98)

Total bilirubin 0.1 (1.02) 0.09 (1.05) 0.02 (1.01) 0.02 (0.99)

Total protein 0.01 (0.99) 0.01 (0.99) 0 (0.99) −0.03 (1.02)

Triglycerides −0.2 (0.92) −0.1 (1) −0.05 (0.99) 0.16 (1.07)

Urate −0.12 (0.97) −0.07 (1.01) −0.05 (0.99) 0.28 (1.02)

Urea −0.11 (0.92) −0.12 (0.92) −0.08 (0.96) 0.16 (1.07)

Vitamin D 0.07 (0.97) 0.08 (0.97) 0.02 (0.99) 0.03 (1.02)

Biomarkers were measured at the UK Biobank baseline assessment. Notice that biomarkers levels have been standardised using z-scores.
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in these analyses were consistent with those from the main results
(see SupplementaryFig. 7), althoughwith an increase in the confidence
interval values. Additionally, we also modified the LC definition
to include participants reporting symptoms after 3 months (90 days)

of the infection. This yielded a cohort of 2383 cases (31%) and
5286 controls (69%). The direction and association observed
were consistent with those from the main results (see Supplemen-
tary Fig. 8).

Fig. 2 | Linearity assessment. Evaluationof the non-linear relationshipbetween the
biomarkers and A Long COVID or B PACS using a natural cubic spline model. Error
bands were calculated using 95% confidence intervals. The two-sided P-value was
calculated using ANOVA. Red colour indicates a P-value smaller than 0.05, indi-
cating that the non-linear model is a better fit compared to the linear model. Blue
colour indicates a P-value higher than 0.05, suggesting that the non-linear model

and the linearmodel are similar.Note: Notice that the non-linear testwasperformed
between the log-odds of the outcome model, not the probability of the outcome
itself. However, the probability of the outcome is plotted as it is more intuitive and
accessible for interpretation. Notice that the shape of the curve is similar when
plotted on the log-odds scale.
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Finally, after adjusting for multiple testing, LC results still showed
a statistically significant association with socio-economic deprivation
and sex (see Supplementary Fig. 9). For PACS, the results adjusted for
multiple testing showed a positive statistically significant association
with older age, obesity, deprivation, and sex. Higher levels of alkaline
phosphatase remained statistically significantly associated with an
increased risk of PACS. The results for comorbidities were consistent
with those observed in the main analysis (see Supplementary Fig. 10).

Discussion
We conducted a data-driven hypothesis-free analysis to explore the
association of 55 prespecified candidate determinants, including
6 socio-demographics, 30 clinical biomarkers, and 19 comorbidities,
with the risk of LC and PACS, separately.

Among the socio-demographic factors, we found younger age
(<55), obesity, deprivation, female sex and smoking associated with an
increased risk of LC. Regarding the biomarkers, elevated levels of
cardiovascular biomarkers of C-reactive protein, lipoprotein (a), and
triglycerides were linked to a higher LC risk, whereas higher HDL-
cholesterol levels were associated with a decreased risk. Additionally,
higher levels of cystatin C, urate, HbA1c, vitamin D, and alanine ami-
notransferase were found to be linked to higher LC risk. Finally, higher
levels of IGF-1 and SHBG were associated with reduced risk, although
the association with SHBG was only observed in females. When it
comes to comorbidities, a history of CKD or COPD prior to COVID-19
infection was also associated with an increased risk. The direction of

these associations remaineddespite applying a stricter definition of LC
(requiring at least three self-reported symptoms) in the sensitivity
analyses, except for lipoprotein (a).

For the PACS outcome, older age, obesity, deprivation, male sex,
and smoking were associated with an increased risk. Most cardiovas-
cular and inflammation biomarkers, including C-reactive protein, LDL,
HDL-cholesterol, lipoprotein (a), and triglycerides, all showed an
association with a higher risk of PACS. Additional biomarkers asso-
ciated with a higher PACS comprised HbA1c, alkaline phosphatase,
cystatin C, urate, calcium, or vitamin D. Similar to LC, IGF-1 and SHBG
were associated with a decreased risk of PACS, with the latter only in
females. A history of several comorbidities, such as cancer, congestive
heart failure, CKD, and others, was also found to increase the risk
of PACS.

Despite the retrospective design of our study, most of our find-
ings are consistent with previous evidence7, supporting female sex,
obesity, and socioeconomic deprivation as key socio-demographic
factors associatedwith LC. In addition, prior studies have also reported
that smoking or having a Black or Hispanic ethnic background is
associated with an increased risk10. Our research also verified both of
these, albeit with nominal statistical significance.

Notably, although old age has been an established risk factor for
severe COVID-19 in the acute phase, its role in long-term outcomes
remains unclear. A systematic review andmeta-analysis of nine studies
found that adults older than 40 had a higher risk of LC compared to
younger adults7. However, our study found that ageing was only

Fig. 3 | Forest plot of Long COVID regression results. Long COVID cohort
included 8668 participants, with 2751 (32%) classified as cases and 5917 (68%) as
controls. Data is presented as an odds ratio (OR)with 95% confidence intervals (CI).
ORwas calculated using a logistic regression. The two-sided p-value was calculated
using ANOVA. A Results including only baseline characteristics and risk factors.

Dark blue corresponds to crude findings; light blue corresponds to adjusted find-
ings. B Results including only biomarker results. Dark maroon corresponds to
crude findings; light maroon corresponds to adjusted findings. C Results including
only the comorbidities results. Orange corresponds to crude findings; yellow cor-
responds to adjusted findings.
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Fig. 4 | Forest plot of PACS regression results. PACS cohort included 108,407
participants, with 1940 (2%) classified as cases and 106,467 classified as controls
(98%). Data is presented as an odds ratio (OR) with 95% confidence intervals (CI).
ORwas calculated using a logistic regression. The two-sided p-value was calculated
using ANOVA. A Results including only baseline characteristics and risk factors.

Dark blue corresponds to crude findings; light blue corresponds to adjusted find-
ings. B Results including only biomarker results. Dark maroon corresponds to
crude findings; light maroon corresponds to adjusted findings. C Results including
only the comorbidities results. Orange corresponds to crude findings; yellow cor-
responds to adjusted findings.
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positively associated with the PACS phenotype. In contrast, it was
negatively associated with LC. This is in line with our previous
research11 and other studies12. One possible explanation for this dis-
crepancy could be either differential mortality rates in older groups
compared to younger ones or differences in defining LC phenotypes;
most prior studies relied on clinical diagnosis from primary or sec-
ondary care data, whereas our study used patient self-reported out-
comes. Reporting bias may also play a role, as older individuals with
more severe outcomes may have been less likely to complete the
health and well-being questionnaire. Importantly, we found females
were more prone to LC and males to PACS. Similar results have been
seen in previous studies, where the likelihood of developing long
COVID syndrome was significantly higher in females compared to
males13, although endocrine and renal disorders were higher among
males. Generally, femalesmount stronger innate and adaptive immune
responses to infections and vaccinations compared to males14,15. This
can be beneficial in clearing acute infections, but it may also predis-
pose females to prolonged immune dysregulation and a higher risk of
developing persistent inflammation or even autoimmune conditions.
Instead, males are more likely to experience severe acute COVID-19,
with higher rates of hospitalisation, ICU admission, and death com-
pared to females. This increased severity during the acute phase can
lead tomore significant organ damage, which predisposesmoremales
to PACS.

Regarding biomarker findings, inflammatory biomarkers have
been most frequently reported to be elevated in acute severe COVID-
1916. Our study suggests that baseline inflammation, measured by
C-reactive protein levels in plasma before COVID-19 infection, is
associated with an increased risk of LC. Importantly, two cardiometa-
bolic biomarkers (lowHDL and high triglycerides) were also associated
with an increased risk of LC in our study, corroborating previous
reports17,18. We also observed that most pre-existing comorbidities are
risk factors for the development of LC after the infection. For example,
CKD and COPDwere the two conditionsmost strongly associated with
LC in this study. Similar results were found in a prospective UK cohort
study, where COPD and benign prostatic hyperplasia showed the
strongest associations with an increased risk of LC symptoms10.

Reassuringly, most factors linkedwith LC also appeared to impact
the PACS in a similar direction, except for age and gender. This finding
is important to highlight the similarities anddifferences of two types of
traits occurring during the post-acute stage of COVID-1919.

Our study focused on identifying determinants of LC and PACS,
but it is important to consider the broader context of interventions
that may influence these outcomes. For example, vaccination before
infection has also been reported to partially mediate the risk of
sequelae at 6 months by 15%20. A recent study that conducted a mul-
tinational staggered cohort study21 suggested that vaccination could
mitigate the risk of acute and subacute post-COVID-19 venous
thromboembolism and heart failure by 40% and 30%, respectively, for
90–180 days post-COVID-19 infection. However, we did not have data
regarding vaccination, so we could not explore how it affects the
outcomes.

Additionally, the use of antivirals (molnupiravir or nirmatrelvir)
within 5 days after infection has also been associated with a lower risk
of sequelae by 14% and 26%, respectively22. However, only patients at
risk of progression to severe COVID-19 are eligible for these drug
interventions during the acute phase, and their risk-benefit in a wider
population with milder infection, as well as the post-acute stage of
disease, remains unclear. Importantly, while most post-COVID symp-
toms are more common following severe cases, the highest overall
burden is still among those with a history ofmild-to-moderate COVID-
19 illness, as they represent most infected individuals now and likely in
the future. Ourfindings on potential biomarkers in general support the
promise of drug development targeting inflammation, the immune
system, or blood clots-pathways currently under clinical

investigation23. However, the efficacy of these approaches remains
unpredictable due to the interplay and complexity of the underlying
mechanisms4,24,25.

This study has several strengths that enhance the reliability of its
findings. First, we used unique linked UK Biobank data, which included
extensive biomarker measurements, sociodemographic factors and
comorbidity information. This comprehensive dataset enabled us to
investigate awide rangeof variables associatedwithbothLCandPACS.
Additionally, we used a study specifically designed to detect LC
symptoms within the UK Biobank cohort, providing a robust pheno-
type for LC. Second, we separately examined LC and PACS, being, to
our knowledge, the first study to date to explore the key variables
associated with these two outcomes independently. Importantly, we
identified keydifferences in the associations between the variables and
these outcomes.

The limitations of the study must be considered when interpret-
ing the findings. First, our analysis describes associations, not causal
effects. Further research is needed to establish the nature of these
associations. Second, UK Biobank participants are known to be heal-
thier and older than the general population, which limits the gen-
eralisability of our results. Third, some sociodemographic data and all
biomarker’ measurements were collected at the UK Biobank’s first
assessment, and may have changed over time, potentially introducing
bias. However, the time span between measurement and outcome is
likely attenuating associations due to random misclassification.
Fourth,most of the participants recruited in theUKBiobank areWhite,
and other ethnic backgrounds, such as Asian or Asian British, Black or
Black British, or Chinese, may be underrepresented. Fifth, patient-
reported outcomes (PROs) are inherently subjective, whichmay result
inmisclassification of LC cases due to variability in symptomreporting.
Additionally, the self-reported nature of the questionnaire can intro-
duce recall bias, as participants may not accurately remember the
symptoms or their length. Sixth, the definition of PACS relies on
electronic medical records captured during hospitalisation, likely
leading to an underestimation of patients with milder complications.
Finally, we did not have data on participants’ vaccination status. Vac-
cination has been previously linked to a reduced risk of both LC and
PACS and may have an impact on our results21,26.

This study reports differences in the risk factors contributing to
LC and PACS, with young age and female sex identified as risk factors
for LC, while male sex and older age are associated with an increased
risk of PACS. We also report novel biomarkers associated with LC and
PACS. Specifically, results suggest an association between inflamma-
tion, cardiovascular, and liver function markers and the risk of LC.
Conversely, higher levels of IGF-1 and SHBG were associated with a
decreased risk of LC. Findings for PACS are similar, with the additionof
increased risks associated with high levels of HbA1c, cystatin C, or
urate. These results have significant potential to inform clinical and
public health practices to identify high-risk groups for LC and PACS,
with the aim of targeting interventions, including booster vaccination.
This studywill also informfuture research onpotential drug targets for
the prevention of LC or PACS.

Methods
Data sources
UK Biobank is a large-scale, population-based prospective cohort of
over 500,000 individuals aged 40–69 years on recruitment
(2006–2010)27. It contains detailed information on sociodemographic,
lifestyle factors, biomarkers, and a range of patient-reported out-
comes. Follow-up is primarily conducted through linkage to electronic
health records from primary and secondary care. In the present study,
we used Hospital Episodes Statistics (HES), which includes diagnostic
and procedure data from 1997 until October 2022 for all participants
resident in England. In addition, the Public Health England’s Second-
Generation Surveillance System was linked to UKBB28, providing

Article https://doi.org/10.1038/s41467-025-62354-0

Nature Communications |         (2025) 16:7009 8

www.nature.com/naturecommunications


additional information on PCR-confirmed COVID-19 infection status
for UKBB participants. This latter linkage included three different
datasets: one covering England (with available data from early 2020
until September 2022), Scotland (2020–November 2022), and Wales
(2020–December 2022).

Additionally, an online survey was performed among UK Biobank
participants to actively collect patient-reported data on health and
well-being during the pandemic. In this survey, 201,684 participants
completed the questionnaire between June 2022 to May 2023,
including 45 questions related to COVID-19 symptoms. More infor-
mation on each question is provided in Supplementary Table 5.

Study design
We designed two case-control studies nested within a cohort of UK
Biobank participants infected with COVID-19 during the period from
2020 until the end of 2022. Figure 1 and Supplementary Figs. 11 and 12
illustrate the study design.

Covariates and outcomes
Definition of Long COVID. We first curated a base COVID-19 infection
cohort including all participants who completed the Health and well-
being survey (around 200,000), had a valid linkage to COVID-19 sur-
veillance data, and with a positive COVID-19 PCR test result 1 year to
30 days before completing the survey. Only the most recent infection
closest to the survey completion data was considered for the analysis
(see Supplementary Fig. 11).

Among the COVID-19 infection cohort, we identified LC cases
based on the WHO Delphi consensus definition29. Specifically, we
mapped the available symptoms from the Health and Well-Being sur-
vey to the WHO definition (Supplementary Table 6). Participants who
did not answer or preferred not to answer any of the questions
regarding symptoms were excluded. Participants reporting pre-
existing symptoms were also excluded (see Supplementary Note 2
for more details on how pre-existing symptoms were defined). The
infected participants who had one or more WHO-listed LC symptoms
beyond the acute period (30 days) were classified as cases, whereas
others were included as controls. Notice that our definition differs
slightly from that of the WHO, which defines LC as symptoms per-
sisting beyond 90 days post-infection. At the time this study was
conducted, there was no universally accepted definition. Previous
studies have used a 30-day threshold, and current NHS guidance
advises individuals to consult a GP if symptoms persist beyond
30 days30.

Definition of PACS. Similarly to the above, we generated a COVID-19
infection cohort for the sampling of PACS cases, now including all UK
Biobank participants with a positive COVID-19 test result. Participants
with a PACS diagnosis one year before or within 30 days after the
infection date were excluded (see Supplementary Fig. 12). Cohort
participants with a PACS diagnosis recorded between 30 days and 1
year post-infection were classified as cases, whereas all other partici-
pants in the COVID-19 cohort were classified as controls. In cases of
multiple COVID-19 infections, only the earliest infection was con-
sidered for analysis. The diagnoses associated with PACS outcome
were selected based on clinical knowledge and prior literature17,18,31–38.
Supplementary Table 7 provides a list of ICD-10 codes used in this
study11,39.

Candidate covariates. Several socio-demographic characteristics (6),
clinical biomarkers (30) and comorbidities (19) were pre-specified for
the analysis of associationswith LC and PACS andmodelled separately.
Socio-demographic characteristics and biomarkers were extracted
from the baseline UK Biobank assessment (conducted between 2006
and 2010), where information was collected through touchscreen
questionnaires and biological samples. Biomarkers were selected for

the analysis based on their availability in the UK Biobank. The UK
Biobank selected these biomarkers because they represent established
risk factors for disease and are clinical diagnostic measures. Comor-
bidities were selected based on the Charlson Comorbidity Index40 and
phenotyped using linked HES data.

Statistical analysis
Exploratory data analysis. We performed a descriptive analysis for
each of the covariates of interest to understand the extent of missing
data, examine the distribution, and identify outliers. Variables with a
value of “I don’t know” or “I prefer not to answer” were considered
missing. Variables with more than 50% of missing data were excluded
from further analysis. Multiple imputation was used for variables with
less than 50% of missing data. For continuous variables, we calculated
the mean, standard deviation, quantiles, and their distribution. For
categorical variables, we report proportions and depict the data using
histograms.

Data curation and correlation analysis were performed before the
main analysis. See Supplementary Note 3 for more information.

Linearity assessment. We explored potential non-linearities between
each biomarker and both study outcomes using natural cubic spline
curves (adjusted using 3 knots). We compared the natural cubic spline
model to the logistic regression model, and used ANOVA to assess
whether therewas a statistically significant difference between the two
models. A p-value < 0.05 was used to indicate that the non-linear
model provided a better fit to the data, suggesting a potential non-
linear association between the biomarker and the logit (log-odd)
function of the study outcome.

Variable selection. We used logistic regression with LASSO penalisa-
tion to select key variables for modelling. Three separate regressions
were performed, one for each group of covariates, with the aim of
identifying as many risk factors as possible: sociodemographic, bio-
markers, and comorbidities. The biomarker and comorbidity models
were further adjusted for age and sex. We used k-fold cross-validation
to tune the lambda parameter, choosing the value that minimised the
cross-validated error (calculated based on squared error for Gaussian
models).

Variables that showed a non-linear relationship with the study
outcomes were included in the LASSO model using spline functions.

Outcome modelling. Covariates selected from the LASSO were
included in a logistic regression model to estimate associations with
LC and PACS, respectively. To improve model interpretability, body
mass index, age when infected by COVID-19, IMD and biomarkers
showing a potential non-linear relationship were categorised. Details
of the specific criteria used to categorise the variables can be found in
Supplementary Note 4.

We performed two regression model analyses. First, in what we
called a crude analysis, wemodelledeachvariable separately, adjusting
only for age (as a continuous variable) and sex. The second model
(adjusted analysis) included all variables simultaneously, excluding
those with a variance inflation factor (VIF) greater than 5 to minimise
collinearity and overfitting.

Sensitivity analyses
First, we conducted a sensitivity analysis, removing the biomarkers
known to be associated with specific comorbidities from the multi-
variable adjusted regressionmodel. These include HbA1c, glucose and
IGF-1 with diabetes and alanine aminotransferase, alkaline phospha-
tase, aspartate aminotransferase and gamma glutamyltransferase with
liver disease.

Second, analyses of testosterone and SHBGwere stratified by sex,
given their known association with sex.
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Thirdly, we repeated the main analysis using an alternative LC
definitionwhereparticipantswere classified as cases if they reported at
least three WHO proposed symptoms. Given the reliance on self-
reported data, this approach aimed to reduce the risk of mis-
classification. Those with fewer than two symptoms or who did not
report any symptoms were classified as controls.

Fourth, we repeated the main analysis using the WHO definition
for LC, where participants were classified as cases if they had the
symptoms after three months (90 days) post-infection.

Finally, we applied Bonferroni corrections for multiple compar-
isons, and adjusted p-value thresholds and 95% confidence intervals
accordingly. The number of comparisons was determined by the
number of variables selected by the LASSO in each subgroup (socio-
demographics, biomarkers, and comorbidities).

Software and implementation
Data manipulation was done with R software (version 4.3.0), and the
main packages used for analysis and reporting include mice41, dplyr42

(version 1.1.3), ggplot243 (version 3.5.1), and glmnet44,45 (version 4.1.8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheUKBiobank patient-level data are available under restricted access
for bona fide researchers; access can be obtained by applying at http://
ukbiobank.ac.uk/register-apply/. Raw data are protected and are not
available due to data privacy laws. All participants provided informed
written consent to take part in the study. Ethics approval for the UK
Biobank was granted by the North West Multi-Centre Research Ethics
Committee in 2006 andwas updated regularly after that (https://www.
ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/ethics). This
study was conducted after approval by the UK Biobank under appli-
cation reference 151425.

Code availability
All the analytical code is publicly available in GitHub46, which is in line
with current recommendations to increase transparency and
reproducibility47.
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