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Towards generalist foundation model for
radiology by leveraging web-scale 2D&3D
medical data

Chaoyi Wu1,2,3, Xiaoman Zhang 1,2,3, Ya Zhang 1,2, Hui Hui1,
Yanfeng Wang 1,2 & Weidi Xie 1,2

In this study, as a proof-of-concept, we aim to initiate the development of
Radiology Foundation Model, termed as RadFM. We consider three per-
spectives: dataset construction, model design, and thorough evaluation,
concluded as follows: (i), we contribute 4 multimodal datasets with 13M 2D
images and 615K 3D scans. When combined with a vast collection of existing
datasets, this forms our training dataset, termed as Medical Multi-modal
Dataset,MedMD. (ii), wepropose an architecture that enables to integrate text
input with 2D or 3D medical scans, and generates responses for diverse radi-
ologic tasks, including diagnosis, visual question answering, report genera-
tion, and rationale diagnosis; (iii), beyond evaluation on9 existing datasets, we
propose a new benchmark, RadBench, comprising three tasks aiming to
assess foundation models comprehensively. We conduct both automatic and
human evaluations on RadBench. RadFM outperforms former accessible
multi-modal foundation models, including GPT-4V. Additionally, we adapt
RadFM for diverse public benchmarks, surpassing various existing SOTAs.

Generalist foundation models1, the latest generation of artificial intel-
ligence models pretrained on large-scale dataset, have demonstrated
remarkable success in various domains, e.g., natural language pro-
cessing, computer vision2,3. Their ability to address diverse and chal-
lenging tasks has also attracted tremendous attention among
researchers in the field ofAI forMedicine (AI4Medicine)4–8. Despite the
promising clinical usage, developing medical foundation models has
been fundamentally hindered by three challenges:

• Lack of multimodal datasets for training: medicine by its nature,
requires understanding multimodal data, spanning text (electro-
nic health record, medical reports), 1D signals (ECG), 2D images
(ultrasound, X-ray), 3D images (CT or MRI scans), genomics, and
more. To support the training of the medical generalist founda-
tion model, a large-scale, diverse, multimodal dataset is despe-
rately required;

• Lack of general architecture formulation: in the literature of
AI4Medicine, various clinical tasks have largely been tackled by

following a divide-and-conquer paradigm, i.e., different architec-
tures are designed for the problem of interest, like diagnosis9,10 or
report generation11,12. In contrast, developing a medical founda-
tion model requires one general architecture that is capable of
tackling a wide spectrum of clinical tasks, by fusing information
from a mixture of different modalities;

• Lack of effective benchmark to monitor progress: benchmarking
the models’ clinical knowledge predominantly relies on task-
specific datasets with a limited number of testing cases. An high-
quality benchmark is yet to be established, to comprehensively
measure the progress of the development on medical foundation
model across a wide range of clinical tasks.

Considering the abovementioned challenges, in this paper, we
take a preliminary, yet realistic step toward developing a generalist
medical foundation model for radiology, which has shown to play a
vital role in clinical scenarios, for example, disease diagnosis,
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treatment planning, and monitoring patient progression. Specifically,
we present our progress towards building a Radiology Foundation
Model (RadFM), that aims to tackle a wide spectrum of clinical radi-
ology tasks, by learning frommedical scans (X-ray, CT, MRI, PET, etc.)
and corresponding text descriptions/reports.

To achieve this, as shown in Fig. 1, we start by constructing four
novel medical multimodal datasets, by exploiting the highly specia-
lised, high-quality radiological images on the Internet, where the
diagnosis labels have been extensively reviewed by a panel of experi-
enced clinicians, namely, PMC-Inline, RP3D, PMC-CaseReport and
MPx, consisting of 13M 2D and 615K 3D radiology scans. Additionally,
we combine a vast collection of existing datasets with our collections,
resulting in a large-scaleMedical MultimodalDataset, namedMedMD,
with totally 16M 2D and 3D radiology scans, accompanied with high-
quality textual descriptions, for example, radiology reports, visual-
language instruction, or crucial disease diagnosis labels. MedMD
encompasses a wide range of radiological modalities, covering 17
medical systems, e.g., breast, cardiac, central nervous system, chest,
gastrointestinal, gynecology, hematology, head and neck, hepatobili-
ary, musculoskeletal, obstetrics, oncology, pediatrics, spine, trauma,

urogenital and vascular featuring over 5000 diseases, thus potentially
serving as the cornerstone for developing foundation models in
radiology.

Architecturally, RadFM refers to a visually conditioned auto-
regressive text generationmodel, that enables seamless integration of
natural language with 2D or 3D medical scans, and address a wide
range of medical tasks with natural language as output. The proposed
model is initially pretrained on the large MedMD dataset, and subse-
quently trained with domain-specific visual instruction tuning on a
filtered radiology subset, comprising 3M meticulously curated multi-
modal samples with only radiologic cases, termed asRadMD, ensuring
a high-quality and reliable dataset.

To monitor the developmental progress of the foundation model
for radiology, in addition to using the existing benchmarks, we also
establish a comprehensive evaluation benchmark, spanning various
clinical task types, termed as RadBench, covering a variety of clinical
tasks, for example, report generation, and visual question-answering
on radiologic modalities and anatomical regions. All samples in Rad-
Bench have undergone meticulous manual verification to ensure data
quality. We conduct both automatic and human evaluation on
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Fig. 1 | The main figure demonstrates our contributions. a Dataset demonstra-
tion. The colored datasets are constructed by us in this paper. b Our training
procedure. For better radiologic performance, we first pre-train our model on the
whole medical domain with 16M scans (MedMD), then finetune on a cleaned
dataset with 3M radiologic scans (RadMD). c RadFM architecture. Our architecture

enables multi-image input interleaving with texts 2D or 3D images. d The human
rating comparison of five foundation models under three open-ended task types
(medical VQA, report generation, and rationale diagnosis), adding GPT-4V14 into
comparison. All evaluations have shown the superiority of RadFM.
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RadBench with powerful models that are publicly accessible, for
example, Open-flamingo13, MedVInT8, LLaVA-Med4, MedFlamingo6,
and GPT-4V14, and observe significant benefits across all considered
tasks. In addition, we perform task-specific finetuning of RadFM on
several public benchmarks, demonstrating its strong ability for
transfer.

Overall, in this work, we demonstrate a preliminary attempt for
building a generalist foundation model for radiology, by making con-
tributions from three key aspects: four new large-scale medical mul-
timodal datasets, covering both 2D and 3D medical images, namely,
PMC-Inline, RP3D, PMC-CaseReport, and MPx, a superior radiology
foundation model (RadFM), and a comprehensive benchmark for
radiology (RadBench).

Results
In this section, we start by presenting evaluation results on nine public
datasets, comparing them to the existing medical multi-modal foun-
dation models, together with ablation results on our training proce-
dure and our newly collected dataset from the Internet. Considering
existing medical datasets cannot comprehensively cover all medical
tasks, we further report the results on our proposed RadBench, with
three medical tasks, namely, medical VQA, report generation, and
rationale diagnosis, as demonstrated in Fig. 2.

We start by comparing the zero-shot prompting results for RadFM
with other foundation model baselines (both zero-shot and few-shot
settings). Following that, we perform task-specific finetuning experi-
ments to thoroughly evaluate the performance of our model with dif-
ferent state-of-the-art task-specificmodels. Additionally, to evaluate the
model’s generalization ability, we employed a zero-shot evaluation on
the unseen classes in the PadChest dataset. It is worth noting that the
results on PadChest have not undergone any task-specific finetuning.

Results on existing benchmarks
We compare ourmodel with other foundationmodels on nine existing
benchmarks, e.g., VinDr-Mammo, VinDr-SpineXr, VinDr-PCXR, CXR-
Mix, RadChest-CT, PMC-VQA, VQA-RAD, SLAKE, and MIMIC-CXR,
covering tasks like diagnosis, medical VQA, and report generation, as
shown in Table 1. In detail, we compare with the Open-flamingo13,
MedVInT8, LLaVA-Med4, and MedFlamingo6. For the flamingo-series,
we adopt the few-shot (three-shot) prompting setting, as the models
are supposed to demonstrate better performance under a few-shot
scenario, while for MedVInT, LLaVA-Med, and our RadFM, we adopt a
zero-shot prompting strategy, as both the two are trained to follow
semantic instructions rather than few-shot samples. The zero-shot
results for flamingo-series are also included in the Supplementary
Table 2.

Comparison with other foundation models. As shown by the results
in Table 1, our final model shows superior results on nine publicly
available datasets. First, for disease diagnosis, existing foundation
models perform poorly, with an accuracy score (ACC) of nearly 50%.
Considering that we prompt the problemwith a judgment format, i.e.,
“Does the patient have disease?”, this score is nearly random. In con-
trast, our proposed RadFM, exhibits evaluation results, with 59.96,
68.82, 56.32, 83.62, and 72.95% ACC scores on the five diagnosis
datasets, respectively. Second, for other long sentence generation
tasks, i.e., medical VQA and report generation, RadFM also surpasses
other models significantly on most metrics.

Ablation studies. In Table 1, we also carry out ablation studies on our
methods. First, we dismiss the domain-specific instruction tuning on
RadMD. Similar to the observation in language domain15–17, we find that
domain-specific instruction tuning is a critical step for building up a

Fig. 2 | Examples of inputs and outputs of three different evaluation tasks obtained fromRadFM.The figure shows input prompts and corresponding RadFMoutputs
for Medical VQA (top), Radiology Report Generation (middle), and Rationale Diagnosis (bottom).
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multi-modal foundationmodel that can rule variousmedical taskswith
proper instruction prompting. As shown by the results, without
domain-specific instruction tuning on RadMD, the model can hardly
respond correctly to diverse task instructions. Moreover, we evaluate
the effectiveness of our newly collected data, i.e., PMC-Inline, RP3D,
PMC-CaseReport, and MPx, by comparing the model trained with and
without them for auto-regressive pretraining and domain-specific
instruction tuning. As shown by the results, adding our new-collected
data can significantly improve the final results regardless of task types,
underscoring that, our newly collected datasets, though sourced from
Internet, are effective for improving model performance on existing
clinical datasets.

Beyond the data-centric ablation studies, we also conducted an
additional series of experiments to demonstrate the effectiveness of
our training design, as shown in Supplementary Table 3. Given the
computational cost of testing these settings across the entire training
dataset, we randomly sampled 10% of the RadMD dataset (using a 0.1
sample ratio) for these experiments. We used the default setup of our
method—specifically, a 3D ViT model with a patch size of 32 and the
prompting strategy described in the Methods section—and system-
atically varied the following factors: the image-encoder architecture,
the patch size, and the prompting strategy.

Specifically, we vary the following factors: (i) to investigate the
impact of the image-encoder architecture, we experimented with
more recent models, such as those proposed in ref. 18 and ref. 19, (ii)
we test the effects of increasing the patch size beyond 32, (iii) we
experiment with more complex prompts. For example, we tested
prompts with added role-play elements, such as “Assuming you are an
experienced radiologist reading modality images, please interpret the
following images and answer the related questions. This is a serious
clinical case, so please be as careful and disciplined as possible ques-
tion,” as well as incorporating varied, synonymous prompts generated
by GPT-4 and verified by human reviewers.

The results, summarized in Supplementary Table 3, show that
modifying the image-encoder architecture produced some slight gains
on certain datasets, but these improvements were not statistically
significant. Given that the focus of our work is not on architectural
design, we chose to retain the classic 3D ViT architecture, which offers
a solid baseline. When we tested the impact of increasing the patch
size, we observed that larger patch sizes beyond 32 actually led to a
degradation in performance. Notably, here, using smaller patch sizes
might be better but they will bring unacceptable computational cost
due to the increment of token number in ViT, this confirms our deci-
sion to use a patch size of 32. Lastly, variations in prompt complexity,
including the use of role-playing or diverse synonymous prompts, had
little to no effect on the model’s performance.

These additional ablation studies provide further validation for
the choices we made in model architecture, patch size, and prompt
design, supporting the robustness of our method.

Results on RadBench
In this section, we further assess the long sentence generation ability
for differentmodels on our proposed benchmarks, which compensate
for three medical tasks, i.e., medical VQA, report generation, and
rationale diagnosis.

Medical visual question answering (VQA). Medical VQA denotes a
comprehensive and versatile challenge in the field of medical image
analysis. In a clinical setting, patients and radiologists may pose a wide
variety of questions related to medical images, ranging from simple
inquiries about imagemodality tomore complex reasoning queries. In
contrast to the aforementioned existing medical VQA datasets, on
RadBench, the image input is more close to a clinical scenario with 3D
scan input.

As shown in Table 2, RadFM generally demonstrates superior
performance. Compared to the second best model, MedVInT, which
was specifically trained on visual question answering, despite achiev-
ing better results on its in-domain PMC-VQA test set, its generalization
to real 3D scans is relatively poor, even though the task is still medical
visual question answering. MedVInT struggles with real 3D medical
scans, which require a model capturing the information from an extra
image dimension. In contrast, our RadFM model shows a substantial
improvement in UMLS_Precision from 20.12 to 31.77% and UMLS_Re-
call from 15.82 to 24.93% across the whole test set, demonstrating its
proficiency to comprehensively understand the given textual infor-
mation and flexible adaptation to various complex clinical scenarios.

Report generation. Report generation is a crucial and prominent use
case for generativemedical foundationalmodels. UnlikeMedical VQA,
this application generally requires the model to emphasize clinically
significant observations based on the image. Considering that, current
report generation benchmarks are all concentrated on X-ray; in Rad-
Bench, we focusmoreon testing the report generation ability for other
imaging modalities. As shown in Table 2, RadFM shows significant
improvement over existing models, across various metrics, particu-
larly in relation to medical-specific terminology. For instance, RadFM
improves UMLS_Precision from 9.61 to 22.49%, and UMLS_Recall from
3.66 to 12.07% in the zero-shot setting.

Rationale diagnosis. In addition to basic diagnosis, the ability to
scrutinize diagnostic prediction outcomes is crucial, particularly in
light of the stringent demands for precision and interpretability within
medical contexts. Thus, onRadBench,we further evaluate the ability to
generate diagnosis rationale sentences for differentmodels.Much like
report generation, this task also requires proficiency in generat-
ing supplementary paragraphs and a comprehensive understanding
on medical knowledge.

As indicated in Table 2, RadFM is the only model that can effec-
tively respond on this task, outperforming other models on BLEU and
ROUGE scores by 16.50 and 12.87%, respectively, even comparing with
the few-shot case. Moreover, it exhibits significant improvements in
UMLS_Precision and UMLS_Recall scores, showcasing advancements
of 21.91 and 16.18%, respectively.

Human rating. In Fig. 3b, we show the human rating results on the
three generative tasks for all models. We choose OpenFlamingo to
denote the performance of the general-domain multimodal founda-
tion models, MedVInT for zero-shot-based medical multimodal foun-
dation models, MedFlamingo for few-shot-ones, and GPT-4V for best
close-sources multimodal foundation models. As shown on the left of
the figure, RadFM achieves higher scores on all three generative-based
tasks compared with existing open-sourcemodels, only falling behind
with GPT-4V in rationale diagnosis. On the right, we further show the
relative comparison between RadFM and a certain model. In most
cases, results from RadFM are preferred by human clinicians. It is
worth highlighting that we also show the comparison between RadFM
and GPT-4V(ison), which has been widely considered as the strongest
foundationmodel. As GPT-4V canonly input up to four 2D pictures per
query, we thus ask the radiologists to pick out the most informative
slices based on the reference’s answer from 3D volumes. With human
prior, answering questions becomes easier than directly inputting
original 3D volumes, which is used as the evaluation style for our
model. Despite this, RadFM still surpasses GPT-4V in average scores.

Results for task-specific finetunine
In Table 3, we treat RadFM as a pretrained model and task-specific
finetune it on various downstream datasets. For diagnosis, we use the
image-encoder weights as initialization for both 2D and 3D imaging
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modalities, for VQA and report generation, the whole model is further
finetuned on the specific dataset, as shown in the Table 3, our model
improves both diagnosis results and text generation quality, based on
the automaticmetrics. In general, the representation learned inRadFM
benefits various clinical tasks across diverse medical imaging mod-
alities, like CT, MRI, X-ray, or even rarely seen PET-CT, regardless of
whether they are presented in 2D slices or 3D scans. Consistent
improvement can be observed, across various task types, like diag-
nosis, VQA, and report generation.

Generalization to unseen classes of PadChest
In Fig. 4, we show the results of zero-shot evaluation of RadFM on
unseen classes from the PadChest dataset. We modify the task as an
induction task, for each disease, we randomly select a prompt sen-
tence like “Is {disease} shown in this image” as input, the network
outputs whether the case has this disease. Note that we balance the
ratio of “yes” or “no” in the test set, and all the disease classes never
appeared in the training set. The prompting utilized here are essen-
tially equivalent to traditional multi-label disease classification meth-
ods, with each disease’s performance being evaluated independently,

leading to a holistic outcome through sequential assessment of all
listed diseases. Following this same rationale, in our context, we can
provide comprehensive diagnosis results by iteratively employing the
“yes/no” prompting approach.

Qualitative results
In this section, we show the qualitative results for different free-form
text generation tasks.

For medical VQA, qualitatively, as shown in Fig. 5, RadFM
demonstrates the ability to comprehend the questions and provide
answers in a consistent format, accurately addressing the questions.
However, in some challenging cases, such as the first example, where
the question pertains to the type of abnormality, the model faces
difficulty predicting “ectopic ACTH-producing tumor” and mistakenly
identifies it as “primary lung neoplasm”, which requires fine-grained
discrimination within tumor types.

In Fig. 6, we provide qualitative examples of the radiology reports
generation taskbyRadFM. It can beobserved that themodel is capable
of identifying the underlying diseases and, in some cases, performs
exceptionally well. However, the report generated by RadFMmay lack
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Fig. 3 | The comparison of RadFM with other foundation models on machine
and human rating. a Comparison of RadFM with various foundation models on
different subsets under zero-shot evaluation with machine rating scores. The
detailed sample sizes for testing aremarked as “(n=…)” in the left corner of eachbar
plot. For the dataset involving diagnosis, like VinDr-Mammo, VinDr-SpineX, VinDr-
PCXR, CXR-Mix, RadChest-CT, ”ACC“ scores are plotted in the figure. For the left
datasets, “AVG” scores, denoting the average of the four word-overlap-based eva-
luation metrics, i.e., BLEU, ROUGE, UMLS_Precision, and UMLS_Recall, are plotted.
For each bar plot, the error bars represent the 95% confidence interval (CI) via 1000
technical replications, with the center of the error bars indicating the average score

across all test cases within each dataset. The exact number for each bar plot can be
found in Supplementary Tab. 2. b Comparison of RadFM with other methods on
human rating scores. On the left, we show the absolute human rating scores of
different methods on the three generative tasks. i.e., VQA, report generation and
rationale diagnosis. On the right, we show the relative comparison. Each sub-figure
in right shows the number of RadFM win/tie/lose cases when comparing against a
certain model. Note that, considering GPT-4V may refuse to answer medical
questions for safety, we dismiss such cases when calculating the scores or com-
parisons relating to GPT-4V. In detail, for 1200 testing cases, 22 cases were dis-
missed for GPT-4V due to safety.

Article https://doi.org/10.1038/s41467-025-62385-7

Nature Communications |         (2025) 16:7866 7

www.nature.com/naturecommunications


specific location information, such as the ‘left’ or “right” of an anato-
mical region.

At last, Fig. 6 shows two rationale diagnosis cases. The first case is
a patientwith pulmonary embolismand the latter is with subarachnoid
haemorrhage. On both cases, RadFM can make accurate diagnosis in
free form and give further related radiologic reasoning. However, the
limitation can also be observed that the reasoning results are still
general andmore like backgroundmedical knowledge, yet not specific
to the input case.

Discussion
RadFM tries to develop a medical foundation model that enables
the processing of both 2D and 3D radiologic images with inter-
leaved texts. In the field of radiologic images, one significant chal-
lenge in developing a foundation model lies in the disparity of image

dimensions, i.e., medical scans are either 2D or 3D, posing challenges
in integrating real 3DMRI or CT images alongside 2D images likeX-rays
or ultrasounds. As a consequence, the development of foundational
models has been significantly impeded, withmost currentmodels only
accommodating 2D images. To overcome these limitations, we pro-
pose a new training structure that unifies 2D and 3D images, allowing
to process various clinical images. By unifying the training procedure,
our model benefits from a more comprehensive understanding of the
diverse clinical images, leading to improved performance and versa-
tility. Additionally, to facilitate research and foster collaboration in the
field, we collect fourmedicalmultimodal datasets, namely, PMC-Inline,
RP3D, PMC-CaseReport, and MPx, consisting of 13M 2D and 615K 3D
radiology scans with text descriptions or labels.

RadFM unifies the medical tasks with a generative model.
While developing AI for medicine, traditional approaches consider a

Table 3 | Comparison of RadFMwith SOTAmodels on disease diagnosis,medical visual question answering, report generation

Dataset Modality Metric SOTA RadFM

Disease diagnosis

VinDr-Mammo Mammography 2D AUC 64.550 64.76 (64.23, 65.88)

F1 N/A 39.42 (39.37, 39.59)

CXR14 X-ray 2D AUC 80.152 81.13 (81.07, 81.18)

F1 N/A 30.20 (30.17, 30.22)

LDCT CT 3D AUC 82.150 83.23 (81.97, 85.85)

F1 N/A 58.34 (57.38, 61.23)

MosMedData CT 3D AUC 77.4754 78.33 (76.37, 80.84)

F1 50.70 52.35 (49.26, 55.17)

COVID-CT CT 2D AUC 76.00† 81.37 (78.00, 82.49)

F1 73.35† 76.11 (74.30, 77.06)

BraTs2019 MRI 3D AUC 88.0668 90.61 (85.66, 92.13)

F1 90.3668 92.21 (91.01, 93.21)

ADNI MRI 3D AUC 79.3458 80.39 (78.26, 82.44)

F1 N/A 69.88 (68.43, 71.10)

BTM-17 MRI 2D AUC 92.80† 94.47 (92.60, 96.98)

F1 70.35† 74.19 (72.45, 76.31)

Lung-PET-CT-Dx PET-CT 3D AUC 53.44† 54.57 (51.31, 57.69)

F1 36.07† 37.24 (34.41, 41.53)

Medical VQA

MedDiffVQA X-ray 2D Comparison Bleu 62.8061 63.89 (62.27, 64.39)

Rogue N/A 65.90 (64.48, 63.39)

F1 N/A 59.19 (57.88, 60.43)

VQA-RAD Radiology 2D Bleu 71.0369 73.44 (66.04, 82.18)

Rogue N/A 73.81 (67.80, 80.04)

F1 N/A 78.09 (73.54, 81.90)

SLAKE Radiology 2D Bleu 78.670 83.16 (79.68, 87.10)

Rogue N/A 83.65 (80.39, 87.10)

F1 78.170 84.37 (81.60, 86.78)

PMC-VQA Radiology 2D Bleu 23.69 (20.70, 26.93)8 24.13 (21.01, 27.91)

Rogue 27.20 (24.09, 31.13)8 25.64 (22.73, 29.29)

F1 43.93 (41.16, 46.43)8 48.50 (46.19, 51.00)

Report Generation

IU-X-ray X-ray 2D Bleu-1 38.763 37.88 (35.96, 39.32)

Bleu-2 24.563 24.62 (22.73, 26.94)

Bleu-3 16.663 17.72 (15.77, 19.69)

Bleu-4 11.163 10.28 (8.89, 11.64)

Rogue-L 28.963 29.51 (28.09, 30.61)

Allmodelswerefinetunedandevaluatedon thesametrain/test set.AUC, F1, BLEU, andROUGEare reported, and themetrics refer to theaveragescoreonall test samples. Formultiple class tasks, the
macro-average on classes of the used metrics is adopted. Numbers within parentheses indicate 95% CI.
†These datasets are not considered a lot as classification tasks. Thus, these scores are obtained by training from scratch with the same architecture as ours to show the effectiveness of RadFM as a
pretrained foundation model.
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divide-and-conquer idea, that tackles a myriad of specific tasks
individually, such as diagnosis, report generation, and medical visual
question answering, resulting in separated approaches with limited
generalization ability and efficiency. Here, we formulate diverse
medical tasks as multi-modal question-answering and develop a
generative visual-language model, RadFM, that can answer arbitrary
questions or follow instructions. In contrast to existing works with
the use of exemplars in prompts, we use zero-shot prompts for all
tasks, allowing users to interact with the model without providing
any exemplar images, questions, and answers. Training models
support zero-shot prompts is certainly more challenging, however,
considering the user might be patients without no clinical back-
ground, or examplar images, zero-shot prompt would also be indis-
pensable for real-world applications. By unifying the tasks, RadFM

achieves promising performance across a wide spectrum of clinical
tasks. On themedical VQA task, RadFM surpasses the performance of
MedVINT, a pretrained model trained solely on a single Medical VQA
dataset.

RadFM supports multiple images as input. Till now, existing
multi-modal foundation models in the medical community have been
limited to supporting only a single image input per interaction. How-
ever, such adesignposes critical challenges inmedical scenarioswhere
diagnosis and treatment decisions often necessitate longitudinal clin-
ical follow-ups, that comprise a series of radiologic images. To over-
come this limitation and pave the way for more comprehensive
medical image analysis, our proposed RadFM supports multi-image
input. To support the training, our constructed dataset is largely
composed of multi-image input data, and our innovative training flow

Fig. 4 | Zero-shot evaluationofRadFMon the unseen classes in the PadChest dataset.Weevaluate themodel on the human-annotated subset of the PadChest dataset,
and ACC scores are shown for the radiographic findings or diagnosis. The top 100 classes in the test dataset are shown in the figure.
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seamlessly accommodates this unique medical scenery, fostering
advancements in medical image analysis.

A general evaluation benchmark for radiology foundation
models. Evaluating the performance of medical foundation models is
challenging, due to the specialized nature of medical tasks. In the
pursuit of advancing radiology foundation models, we propose Rad-
Bench, a novel benchmark that encompasses a diverse range of med-
ical scenarios. By incorporating both 2D and 3D images, RadBench
offers a more comprehensive and realistic evaluation platform com-
pared to existing benchmarks. Combining with the existing medical
benchmarks, we comprehensively evaluate models for four medical
tasks, namely plain diagnosis, visual question answering, report gen-
eration, and rationale diagnosis, coveringmultiple imagingmodalities.

Additionally, as existing evaluation metrics are primarily designed for
general natural language tasks, which may not adequately capture the
intricacies and nuances specific to medical image analysis, thus may
not reflect themodel’s true capabilities in real-world clinical scenarios.
To address this limitation, we propose two new evaluation metrics,
namely UMLS_Precision and UMLS_Recall. Unlike conventional
metrics,UMLSPrecisionandRecall are tailored tomeasure themodel’s
performance in medical tasks. By leveraging the Unified Medical Lan-
guage System (UMLS), a comprehensive medical knowledge resource,
these metrics provide a more tailored evaluation, ensuring that the
model’s outputs align with medical domain expertise.

The superiority of RadFM. As shown in Tables 1, 2 and Fig. 1,
while evaluating on our proposed comprehensive benchmark for

Fig. 5 | Qualitative examples ofmedical visual question answering (VQA).Wepresent several exampleswith answers generated byRadFMalongwith the target ground
truth. The green color highlights accurate keywords, while the red color indicates prediction errors.
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Fig. 6 | Qualitative examples of report generation and rationale diagnosis.We
present several examples with reports generated by RadFM and reference reports.
The green color highlights accurate keywords, while the red color indicates

prediction errors. Additionally, the blue color denotes instances where the model
missed this information that has been mentioned in the reference reports.
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radiology, namely, RadBench, and nine existing radiological datasets,
RadFM outperforms previous methods by a significant margin
across all five tasks, showcasing its exceptional capabilities. Notably,
RadFM excels in particularly challenging tasks such as medical VQA,
report generation, and rationale diagnosis, which demand a pro-
found understanding of both textual information and images. The
average human evaluation score for RadFM in these tasks surpasses
that of GPT-4V, especially in the medical VQA task, where RadFM
achieves a score of 2.87 compared to GPT-4V’s score of 2.13. In
medical VQA, the questions can be drastically varying, from simple
queries like “What modality is the given image?” to more complex
and context-rich questions, such as “Based on the provided images,
patient data (age, gender, and medical history), can you identify the
disease that is commonly associated with such radiological mani-
festations?” The complexity of questions makes medical VQA a
comprehensive and versatile task. By integrating visual and textual
information, RadFM can handle these varying question types, deli-
vering accurate and meaningful answers. Similarly, in report gen-
eration, RadFM showcases significant improvement. The model’s
ability to discern relevant information from the provided images
and weave it cohesively with textual prompts leads to highly infor-
mative and contextually rich reports, setting it apart from traditional
methods. Overall, the performance of RadFM across these diverse
tasks confirms its versatility and transformative potential in radi-
ology image analysis.

Clinical impact. In contrast to all existingmedicalmodels, RadFM
is the first attempt towards developing foundation models that
simultaneously satisfies three important criteria in clinical practice: (i)
in support of both 2D and 3D data, for example, 2D chest-X-ray, 3D CT
or MRIs; (ii) be able to process multiple scans from various imaging
modalities; (iii) to support interleaved data format, for example,
allowing the user to freely input additional background information in
text form, along with radiology scans, the model enables to accom-
polish complex clinical decision-making tasks. Overall, RadFM allows
users to input 3D multiple scans interleaved with texts per query,
which can greatly benefit its clinical usage.

Limitations. Despite our efforts in developing a foundation
model for radiology and surpassing former medical foundation mod-
els significantly, RadFM is still a proof-of-concept model design
towards medical generalist AI (GMAI) and need more efforts for real
clinical usage. In detail, it may exhibit the following limitations:

First, the capacity to generate meaningful and accurate long
sentences remains underdeveloped, causing the foundationmodels to
be still far from clinically useful. As demonstrated in Supplementary
Tab. 2, for rationale diagnosis and report generation, the quantitative
results surpass previous works but are still far from practically satis-
factory. In human rating, similar results are also observed. As shown in
Fig. 3, none of the models gets over score 3 which represents mod-
erately accurate, showing that there is still a long way to go for
developing generalist medical foundation models. For real clinical
usage, we suggest future improvements, including scalingmodel sizes,
increasing image resolutions, and expanding clinical data, as outlined
by the scaling laws20.

Second, the proportion of actual 3D images in the data remains
limited. As illustrated in Fig. 7, althoughwe attempt to compensate for
the lack of 3D images, 2D images remain to be dominating.

Third, the automatic evaluationmetrics fall short of expectations.
Compared to general contexts where the emphasis is placed on the
overall coherence and fluency of sentences, medical texts prioritize
precision in key statements and contain many synonyms, like “MRI”
and “magnetic resonance imaging”, overlooking minor syntax errors.
Althoughwe employ UMLS_Precision andUMLS_Recall tomitigate this
issue, they do not fully reflect true performance. On the other hand,
though human evaluation is flexible and accurate, it is costly and
cannot be carried out on a large scale. A robust automatic evaluation

metric is essential to guide the construction of reliable and robust
medical foundation models.

Fourth, as the 3D images in our dataset are downloaded from the
internet, somemetadata is missing, for example, the imaging spacing.
Such a lack of precise distance measurement makes it impossible to
make certain statements, such as “The tumor is 3-cm large”. This
specification is crucial for report writing, particularly for tasks requir-
ing precise spatial information, such as tumor size estimation, cur-
rently, we acknowledge that our model cannot be used in this way. We
propose several potential solutions to address this limitation in future
work, for instance, one way is to explore incorporating registration or
spacing predictionmodels to generate thepseudo-spatial information,
allowing the model to make more accurate numerical predictions
related to physical measurements (e.g., tumor size). Another promis-
ing direction is to enhance the model’s ability to interact with external
tools or agents. For example, the model could use segmentation
models alongside coding functions to calculate physical spacing
directly, providing precise numeric feedback to assist in tasks like
report generation or anomaly detection.

Lastly, due to the scale of the dataset (16M image-text pairs),
model size (14B parameters), investigating the effects of different
components becomes increasingly challenging and prohibitively
expensive in terms of both time and computational resources. As
future work, we will further break down the problem and investigate
each component, ultimately enhancing our understanding and refin-
ing the model’s performance. This includes, but is not limited to,
improved 2D and 3D unified encoding methods, more effective choi-
ces for LLMbasemodels, and enhanced training pipelines that address
data imbalance arising from data combination.

Related works. With the success of generative language founda-
tion models such as GPT-416 and PaLM-221, there has been a surge of
interest in multi-modal foundation models. Significant strides have
beenmade in the realmof natural scenery, as evidenced by BLIP-23 and
Flamingo22. Though in the context of the medical language-only
models, great steps have been made, like Med-PALM series23,24, PMC-
LLaMA25, Meditron-70b26, the development of multimodal medical
artificial intelligence is still in its nascent stages5. The relevant research
canbe bifurcated into twoprimary areas, namely, dataset construction
and model training.

• Dataset Construction. Contrary to the natural scenery domain,
which boasts numerous large-scale multi-modal datasets such as
MMC427, Visual Genome28, and LION-5B29, the medical domain is
somewhat lacking. The most widely utilized medical multi-modal
dataset is MIMIC-CXR30, which only contains chest X-ray images
with caption reports, and its quantity (224K) is relatively small. In
PMC-OA31, the authors have compiled a dataset containing 1.6M
image-caption pairs. Although it encompasses various image
modalities, many 3D medical scans are presented as 2D slices
since the images are extracted from papers. There are also some
medical VQA datasets, such as VQA-RAD32, SLAKE33, and PMC-
VQA8, but they are also limited to 2D images. In Med-Flamingo6,
they have collected a dataset, MTB, consisting of approximately
0.8M images interleaved with texts while it is not open-source.
Consequently, due to the limitations on data availability, existing
medical foundationmodels have concentrated on a narrow range
of data modalities. For example, LLaVA-Med4 and MedVInT8

utilize image captions in PubMed Central, which exists a
significant domain gap between real-world clinical data. In Med-
PaLM M7, the authors amalgamate existing medical images or
multi-modal datasets, but themajority of images are X-rays,which
are not sufficiently accurate for clinical practice.

• Model Training. To date, several works have focused on building
medical foundationmodels, yetmost of theseworks are limited to
support for 2D images4,6–8. An ideal foundation model should
exhibit a comprehensive set of capabilities: it should support both
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Fig. 7 | The overview of our proposed datasets and benchmarks. a Overview of
Medical Multimodal Dataset (MedMD). Our collected data covers the majority of
radiologicmodalities and anatomical regions of the humanbody, such as the brain,
head andneck, thorax, spine, abdomen, upper limb, lower limb, and pelvis, etc. The
datasetmixes two types of datasets, i.e., interleaved datasets and visual instruction

datasets. T refers to the text of interleaved data, I refers to the instruction input
text, and R refers to the response text. b The data statistics of RadMD and Rad-
Bench. The left image shows the distribution of differentmodalities of RadMD, and
the center image shows the distribution of 2D and 3D sample pairs of RadMD. The
right image shows the distribution of the anatomy of the samples in the RadBench.
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2D and 3D image inputs, multi-image input per case, and images
interleaved with text inputs. Currently, there exists nomodel that
can simultaneously support this series of heterogeneous input
forms. This paper aims to address these gaps, aligning more
closely with clinical practice and we are very glad to see many
current works34–37 have been inspired based on our efforts.

In conclusion, this paper serves as a proof-of-concept initializa-
tion for building medical generative vision-language foundation
models. Specifically, our work demonstrates:

• Data collection: Highlighting the importance of leveraging and
combining web-scale radiology data sources to ensure robust and
comprehensive model training.

• Architecture formulation: Proposing the unification of all radi-
ology tasks within a generative architecture formulation, carefully
designedwith task-specific instructions, to develop a versatile and
generalist model.

• Evaluation: Underlining the need tomonitormodel performance
across a diverse rangeof radiology tasks to ensure comprehensive
validation and broader applicability.

While our model significantly outperforms existing open-source
multimodal foundation models, we acknowledge that it does not yet
meet clinical criteria. Nevertheless, we believe this work provides a
starting point for future research and development toward more
generalist medical AI models. With the remarkable and rapid
advancements in this field, there will be continuous progress in
several key areas. For example, more practical and invaluable data-
sets, such as CT-RATE38, are expected to be released. Similarly, more
powerful general multimodal foundation models, such as the latest
DeepSeek-VL39 and Qwen2-VL40, will likely emerge, serving as stron-
ger base models along with increasingly sophisticated imaging
encoders, like CT-ViT38 and LongViT41. By consistently integrating
these distinct impressive advancements in future work, we, together
with the entire research community, can drive the evolution of
radiology foundation models toward broader adoption in practical
clinical applications.. We will release all corresponding data, codes,
and models. We believe this can greatly promote the development of
medical foundation models.

Methods
In this section, we will detail our method. Notably, our study is based
on data obtained from open-source websites, as listed in Supple-
mentary Table 5. Therefore, the relevant ethical regulations are
governed by the original data-uploading processes outlined in each
dataset’s collection pipeline (please refer to each dataset website in
Supplementary Table 5 for more details). Specifically, for the data
from Radiopaedia, which forms the main component of our newly
proposed dataset, Radiopaedia is a peer-reviewed, open-edit radi-
ology resource collection website. Its mission is to “create the best
radiology reference available and to make it available for free, for-
ever, and for all.” We have obtained non-commercial use permission
from various uploaders as well as the founder of Radiopaedia. The
relevant ethical regulations are governed under Radiopaedia privacy-
policy.

Dataset
Here, we describe the procedure for constructing the datasets and
benchmark. In the section “MedicalMultimodal Dataset (MedMD)”, we
present several medical multimodal datasets and merge them with an
extensive collection of preexisting datasets, resulting Medical Multi-
modalDataset (MedMD). MedMD is a large-scale, high-qualitymedical
vision-language dataset, covering a wide range of anatomies with over
5000 diseases, as shown in Fig. 7a. We further construct a filtered
radiology subset Radiology Multimodal Dataset (RadMD). In the

section “Radiology EvaluationBenchmark (RadBench)”, we introduce a
new Radiology Benchmark for evaluation, termed RadBench, with
three distinct tasks, e.g., visual question answering, report generation
and rationale diagnosis, aiming tomonitor the progress of developing
foundation models.

Medical multimodal dataset (MedMD). To start, we construct a can-
didate data pool by pulling a variety of existing visual-language med-
ical datasets together, for example, MIMIC-CXR30 and PMC-OA31.
Despite the scale of thesehigh-quality datasets, they are fundamentally
limited in several aspects: (i) Data format. These datasets are only
composed of 2D medical images, which do not fully capture the
complexities in clinical use cases, for example, 3D medical imaging
modalities, like CT, MRI; (ii) Modality diversity. A noteworthy limita-
tion arises from the fact only chest X-ray images are provided with
medical reports, training models on such data will clearly pose lim-
itation on the generalizability to a broader range of imagingmodalities
and anatomical regions; (iii) Report quality. Another critical limitation
lies in the use of data extracted from figures and captions from
research papers. The gap between research-oriented data and real-
world clinical scenarios may not support accurate and reliable clinical
diagnoses. Therefore, to support the training of our proposed Radi-
ology Foundation Model (RadFM), we augment the dataset with four
new ones, including PMC-Inline, PMC-CaseReport, RP3D-Series, and
MPx-Series, resulting in MedMD. MedMD has a total of 16M 2D image-
text pairs, including around 15.5M 2D images and 500k 3D scans with
corresponding captions or diagnosis labels, as shown in Supplemen-
tary Table 3. More detailed introduction of different data sources can
be found in the Supplementary Section “Detailed Introduction for
Different Data Sources”.

Generally speaking,we split the candidate data pool into twoparts
(i) interleaved image-language data that is collected from academic
papers and (ii) image-language data constructed for visual-language
instruction tuning, as detailed below.

Interleaved dataset. PMC-Inline. PMC-Inline contains 11M 2D radi-
ology images that are collected from PubMed Central papers. In con-
trast to existing work, for example, PMC-OA31, that only contains
figures and corresponding captions, here, we focus on the inline
reference from the main body of papers. For example, one paper may
contain many sentences like “As shown in Fig. 2, we can see …”, we
localise the keyword “Fig. 2” and link its corresponding figureback into
sentences, ending up with interleaved images and texts, with rich
context. This dataset shares the same format as MMC427, which has
shown to be effective in training foundation models in the computer
vision community, for example, Flamingo22.

Visual-language instruction tuning dataset. PMC-CaseReport.
Inspired by former works leveraging clinical case reports42, PMC-
CaseReports is a filtered subset of PMC-Inline with around 103K case
reports, where the doctors typically document the valuable clinical
cases, based on their contact with the patients, such as family medical
history, preliminary diagnosis, radiographic exam results, surgical
records, etc., together with critical radiologic scans, that generally
follows the real timeline.

Similar to PMC-VQA8 that generates VQA pairs by querying
ChatGPT with image captions, we also generate 1.1M question-answer
pairs by querying ChatGPT with the sentences containing inline
references in case reports. However, in contrast to PMC-VQA, we keep
background information of the patients to simulate the clinical diag-
nosis scenario, thus can be seen as a medical contextual VQA dataset.
For example, a question-answer pair may like “Question: A 58-year-old
woman presented to the emergency department …Postoperatively,
her pain significantly relieved. What did theMRI indicate? Answer: The
MRI indicated tumor recurrence at L2 and S1-S2.”
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RP3D. RP3D (RadioPaedia 3D) is a novel dataset with 3D radiology
scans, sourced from theRadiopaediawebsite (https://radiopaedia.org/
). All privacy issues have already been resolved by the clinician who
uploaded the case. Specifically, each patient case comprises one or
more images from the same or different modalities, accompanied by
high-quality captions that have been meticulously peer-reviewed by
experts in the Radiopaedia Editorial Board (https://radiopaedia.org/
editors). We have included a response letter from Radiopaedia, with
the agreement for us to use the dataset for training under non-
commercial cases. In addition, for each disease, we can get corre-
sponding radiological features across differentmodalities. We convert
the image-caption pairs into a variety of formats, namely, RP3D-Cap-
tion, RP3D-Modality, RP3D-Rationale, and RP3D-VQA, depending on
their corresponding text content. Specifically, RP3D-Caption denotes
the images paired with their corresponding captions; RP3D-Modality
refers to images with modality labels; RP3D-Rationale incorporates
radiological features with disease labels for each case; RP3D-VQA
involves visual question-answering pairs generated from captions by
querying ChatGPT, as illustrated in Supplementary Fig. 1.

MPx. MPx is collected from the MedPix website (https://medpix.
nlm.nih.gov/) and organized by cases. Each case contains multiple
radiologic scans, along with general clinical findings, discussions, and
diagnostic results. In addition, MPx also provides annotations on the
scan level, including information such as image modality, shooting
plane, and captions for each scan. Thus, we separate it intoMPx-Single
and MPx-Multi, containing annotations on the case-level and scan-
level, respectively.

Radiology multimodal dataset (RadMD). For domain-specific fine-
tuning, we filter out the non-radiology images from MedMD, and
construct a clean subset, named Radiology Multimodal Dataset
(RadMD), dedicating to supervised visual instruction tuning. It con-
tains a total of 3M images, spanning various data formats, modalities,
and tasks, featuring over 5000 diseases, as shown in Fig. 7b.

In general, we have conducted the following filtering process: (i)
remove non-radiologic images; (ii) remove the entire PMC-OA and
PMC-Inline datasets, as the images in PubMed are 2D-only, thus differ
from real clinical cases, additionally, the writing styles between aca-
demic papers and real clinical reports are inconsistent; (iii) remove a
large portion of 2D image cases fromPMC-Series, to emphasize the 3D
images in training. (iv) filter out the information about patient age or
structure size, as the image spacing and patient background infor-
mation are not provided. Specifically, we applied string matching
techniques using Python’s regular expressions to remove any sen-
tences containing terms related to physical measurements, such as
“mm”, “cm”, or decimal numbers (e.g., “2.5 cm”), as these are indicative
of missing or incomplete metadata related to patient age, structure
size, or image spacing. This step primarily addresses the problem in
the report generation tasks, where such metadata would otherwise
cause incorrect or unpredictable descriptions.; (v) balance the number
of normal and abnormal patients in the diagnosis datasets, as gen-
erative models are sensitive to data imbalances. More comprehensive
details regarding the filtering process and the resulting dataset sizes
can be found in Supplementary Table 3.

Radiology evaluation benchmark (RadBench). In addition to the
training set, we also introduce RadBench, a comprehensive evaluation
benchmark for monitoring progress in the development of radiology
foundationmodel for generative tasks. Considering thatmost existing
medical benchmarks may only include a plain label (like disease cate-
gories), that are not suitable to assess the models’ long sentence
generation ability, our RadBench is targeted at compensating for this.

In detail, RadBench is first randomly sampled from the RP3D
dataset. Then, We further carry out meticulous manual verification to
ensure data quality on all the samples. Specifically, we developed a

human evaluation interface, visually presenting the data source,
image, question, and answer of each case. Eight human annotators
were asked to assess the quality of these cases by addressing the fol-
lowing criteria:

• Image types: remove the images that do not fall in radiology.
• Question reasonability: keep the questions that can be answered
from the given radiology image, for example, on visual question
answering, remove the question related to size; on report gen-
eration, remove cases containing sentences like “Compared with
previous cases”; on rationale diagnosis, remove cases lacking
corresponding radiological features are filtered out.

• Answer correctness: keep those with correct answers based on
the given text reports.

As a result, we have obtained 4229 for visual question answering,
1468 for report generation, and 1000 for rationale diagnosis. Addi-
tionally, we also consider nine existing tasks for our evaluation, which
include plain diagnosis and medical VQA tasks. A detailed breakdown
of eachdataset, including taskdescriptions andmodalities, is provided
in Supplementary Table 4. Combining them with our RadBench, in
evaluation, we will comprehensively assess models for four tasks, i.e.,
disease diagnosis, medical VQA, report generation, and rationale
diagnosis. The details of the four evaluation tasks and metrics are
introduced in the following.

Disease diagnosis. This task involves analyzing the radiology images
to determine the likelihood of specific diseases. Here, we modify this
task to an induction task, which uses introductory text explaining the
classification task and providing the name of the queried disease at
the beginning of the prompt. Given a medical image, we randomly
select a disease and a prompt sentence like “Is {disease} shown in this
image” as input, querying the model to determine the existence of a
certain disease. Due to this being formulated as a generation task,
“AUC” cannot be calculated, so we match the output with ground-
truth to calculate the ACC and F1 score. Similarly, we match the
output with a closed ground-truth list {“yes”, “no”} using dif-
flib.SequenceMatcher, and choosing the most similar one as the
prediction of the model. Considering ACC scores may suffer from
data unbalancing, we keep the same ratio to sample positive and
negative cases. In our dataset, we do not put prior on the disease, and
over 5000 diseases are considered, with a balanced ratio of “yes” or
“no” responses.

Medical visual question answering. This task is a combination of
popular visual question-answering challenges. Given a medical image
and a clinically relevant question in natural language as a prompt, the
medical VQA system is expected to predict a plausible and convincing
answer.

Radiology report generation. This task focuses on the automatic
generation of reports, i.e., summarizing the radiologic findings based
on radiology images, such as X-rays, CT scans, and MRI scans. Given a
medical image, we randomly select a prompt sentence like “Please
caption this scan with findings” as input.

Rationale diagnosis. This task involves analyzing radiology images to
predict both the underlying disease and the typical radiologic features
of different modalities, such as X-rays, CT scans, and MRI scans asso-
ciated with that disease. Specifically, we randomly select a prompt
sentence like “Determine the disease that corresponds to the given
radiographic images, starting with the established radiological fea-
tures and concluding with the ultimate diagnosis.” Since we have
evaluated disease diagnosis accuracy in the common “Disease Diag-
nosis” setting, for rational diagnosis, we mainly focus on how well the
foundation model can give reasons.
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Building generalist foundation model for radiology
In this section, we start by describing the paradigm for unifying dif-
ferentmedical tasks into a generative framework, followedbydetailing
the proposed RadFM model, and its training details. Our training
adopts two types of datasets, namely, interleaved datasets and visual
instruction datasets. It is worth noting that their training objectives
differ slightly, which will be detailed in the following.

A unified learning paradigm. In both of our proposed multimodal
datasets, i.e., MedMD and RadMD, each training sample is essentially
consisting of two elements, i.e., X = fT ,Vg, where T refers to the lan-
guage part in the case, with special placeholder tokens for images, e.g.,
“The patient is 47-year-old. 〈image-1〉 〈image-2〉We can see opacity on
theX-ray”. V refer to the visual parts containing a set of 2D or 3D image
scans, i.e., V = fv1, v2, . . . , vNg, vi 2 RH ×W ×C or vi 2 RH ×W ×D×C ,
H, W, D, C are height, width, depth, and channel, respectively, corre-
sponding to the “〈image-i〉 ” token in T . In general, T and V can be
considered as prompts input to model with interleaved language
and image.

The goal is to model the likelihood of generated text tokens in T ,
conditioned on interleaved scans as:

pðT jVÞ=
Y

pðT l jV < l , T < lÞ, ð1Þ

where T l represents the l-th token in T and V < l , T < l represent the
image and language text appearing before the l-th token. We use a
generative model (ΦRadFM) to parameterize the probability p, and our
final training objective can be expressed as the negative log-likelihood
of the correct next token in the text sequence:

Lreg = �
X

wl logΦRadFMðT l jV < l , T < lÞ, ð2Þ

where wl refers to a per-token weighting, aiming to either emphasize
key tokens or skip special tokens. Its value differs for different datasets
and we detail this in the following.

Interleaved datasets. For samples in visual-language interleaved
dataset, i.e., PMC-Inline, there are no strong question-and-answer
relationships between contexts, we extract medical-related words in
each sentenceby using unifiedmedical language system (UMLS)43, and
give them a high loss weights. Additionally, we avoid calculate loss on
the image placeholder token. Overall, wl can be formulated as,

wl =

3, T l 2 USML

1, T l =2USML

0, T l = h image-i i

8
><

>:
: ð3Þ

Note that, PMC-Inline is the only dataset fit in this case.
Visual instruction datasets. For samples from visual instruction

datasets like PMC-VQA8 or PMC-CaseReport, they are often in the
format of dialogue, for example, “What can you see from the image?
〈image-1〉 I can see lesions.” or “Please describe the scans 〈image-1〉.
The scan is …”, we further separate the language part T into instruc-
tion and response, denoted as I andR respectively. For example, as in
the former two cases, I refers to “What can you see from the image?
〈image-1〉 ” and “Please describe the scans 〈image-1〉 ”. In a practical
scenario, I is expected to be given by users, and the model is only
required to output correct responses. Overall,wl canbe formulated as,

wl =

3, T l 2 R & T l 2 USML

1, T l 2 R & T l =2USML

0, T l 2 I

8
><

>:
: ð4Þ

Most samples fromMedMD fit the weighting formulation. All prompts
used for instruction tuning are listed in the Supplementary Tables 8–11.
We describe the detailed prompting for different problem settings:

• Modality recognition. Here, we adopt two types of prompts, (i)
we use inductive prompts, and the 2Dor 3Dmedical scan as input,
for example, “〈image-1〉 Is this image captured by {modality}?”,
and themodality category is randomly sampled fromthemodality
set, forming the text input I and if the modality matches the
ground truth labels we set the R as “yes” otherwise “no”. (ii) we
use open prompts, like “What’s the modality of the input scan
〈image-1〉 ?” to form the I , and translate the corresponding
modality label intoR. Samples for training such functionality are
from RP3D-Modality and MPx-Single, with modality annotations
available.

• Disease diagnosis. All the datasets listed as “image data” in Sup-
plementary Table 3 are built for diagnosis, they only have binary
labels for diseases. Similarly to modality recognition, we use two
prompts to transform them into our desired format, (i) we use
inductive prompts, like “〈image-1〉 Does the patient have {dis-
ease}?” and the disease category is randomly sampled from a
disease set, forming the text input I and if thediseasematches the
ground truth labelswe set theR as “yes”otherwise “no”, note that,
during sampling, we balance the positive and negative ratio, (ii)
weuseopendiagnosis prompts, like “Pleasemakediagnosis based
on the images 〈image-1〉 〈image-2〉.” to construct the instruction
(I), and translate the positive disease labels into response (R), by
simply using their category names. A simple example is, I="Please
make diagnosis based on the image 〈image-1〉.” withR = “Edema,
pneumothorax.”. With such instruction, the model is thus
required to complete a difficult task, i.e., directly outputting the
disease name.

• Visual question answering. Beyond the abovementioned task
formulation, there aremore complex questions that can be asked,
such as those about the spatial relationships among objects
("What is the location of the lesion?”) and common sense rea-
soning questions ("Given the image context and patient history,
what is likely to be the cause of the observed symptoms?”). A
robust medical VQA system must be capable of solving a wide
range of classic medical diagnosis tasks, as well as the ability to
reason about images. Existing medical VQA datasets like VQA-
RAD32, SLAKE33, PMC-VQA8 and RP3D-VQA naturally fit into this
paradigm. They contain a mixture of question types, thus the
language questions can naturally be treated as text instruction (I)
and the corresponding answer as response (R). It is worth noting
that, our constructed PMC-CaseReport dataset also falls into this
category, with more contextual information available for instruc-
tion, for example, history diagnosis, is also available, thus
providing critical information for answering the question.

• Report generation. MIMIC-CXR30, RP3D-Caption, PMC-OA31,
MPx-Multi, and MPx-Single are all captioning datasets, the task
is to write a long caption or report given one or a set of images.
The language instruction for this task are like “What can you find
from the scans 〈image-1〉 〈image-2〉?”.

• Rationale diagnosis. We construct RP3D-Rationale based on the
RP3D dataset. This task encompasses disease prediction and
the generation of typical radiological features associated with the
diagnosed disease. Specifically, we design some prompts like
“What disease can be diagnosed from these radiological images
and what specific features are typically observed on the images?
〈image-1〉 〈image-2〉 ” as instruction (I), and response (R) refers to
the disease label along with radiological features collected from
the Radiopaedia website.

Architecture detail. In this section, we aim to describe the proposed
model in detail. As shown in Fig. 1c, our proposed RadFM model
consists of a visual encoder Φvis, that can process both 2D and 3D
medical scans; a perceiver44moduleΦper for aggregating a sequenceof
scans into a fixed number of tokens, for example, taken with different
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modalities (CT,MRI) or various time point; and a large languagemodel
(LLM)Φllm that enables to generate free-form text responses, based on
the input visual-language information.

Visual encoding. Given one sample instance from our dataset,
denoted as X = fT ,Vg, where V = fv1, v2, . . . , vNg, we first encode each
input image separately with an image-encoder Φvis. Specifically, we
adopt 3D ViT here to be compatible with both 2D and 3D image input.
For 2D images, we expand a new dimension for depth by replicating
the slices. Therefore, each image scan can be denoted as
vi 2 RH ×W ×Di ×C , where C denotes the image channels andH,W,Di are
the height, width, and depth of the image, respectively. The rationale
behind this design choice is as follows: (i) increasingly more radiology
diagnosis rely on 3D scans, for example, CT, MRI, the foundation
model should certainly be able to process 3D data input; (ii) in 3D data,
consecutive slices are highly similar, thus padding 2D into 3D, on the
one hand, does not lead information loss, on the other hand, resem-
bles a good approximation of 3D data; (iii) padding 2D imageswill only
affects the tokenization layer, i.e., converting image patches into
continuous embedding, while still keep the rest of model shared with
3D scans, thus facilitating knowledge share.

Note that, comparing to the typical visual encoding scenario that
assumes different images have unified shape, we do not normalize the
depth dimension into an exact size, only round into a factor of 4,
depending on their original resolution. Note that, all the 2D images are
padded into four slices on the depth channel. We convert the image
into 3D patches, embed them into a token sequence, and feed into the
encoder (Φvis). To retain the 3D position of these tokens, we adopt
learnable 3D position embeddings, the detailed procedure can be
formulated as:

vi =ΦvisðviÞ 2 RPi ×d , ð5Þ

where vi is the output embedding for image vi, encodedwith 3DViT, Pi
is the total number of tokens, and d is the feature dimension. Due to
the inconsistency in depth dimension, Pi varies across 2D and 3D
images, and the model can get to know the original image size by
positional encoding.

Aggregation with perceiver. After visual encoding, we adopt a
perceiver44 module Φper to aggregate visual representation. Specifi-
cally, Φper follows the classical perceiver architecture with a fix
number of learnable queries as the latent array input, and the visual
embedding vi is treated as the byte array input, so that the final
output embeddings will be normalized into the same length with the
pre-defined learnable query sequence. The aggregation procedure
can be formulated as:

ui =ΦperðviÞ 2 RP ×d , ð6Þ

where ui refers to the aggregated visual embedding, P denotes the
number of learnable queries. Leveraging perceiver architecture, we
can map an arbitrary number of patch tokens into the same length,
such that images of different sizes can be treated equally in the fol-
lowing fusion flow.

Multimodal fusion. To fuse the visual-language information, we
interleave the visual embedding with text embeddings from tokeni-
zation, where the special image placeholder token is simply replaced
with the corresponding visual embedding. The resulting interleaved
sequence is then passed into a decoder-only large language model
(Φllm), the self-attention transformer layers in LLM can thus naturally
be reused as multi-modal fusion modules:

p=Φllmð concat ðt1,u1, t2,u2, t3, . . .ÞÞ, ð7Þ

where ti, ui refer to the text and visual embeddings, p is the probability
distribution for the next token.

Training procedure. Our training procedure includes two stages,
namely, pretraining, and domain-specific finetuning, as shown in
Fig. 1b. Note that, all training settings remain identical at two stages,
with the only distinction lying in the training data, from generalist to
radiologic-specific.

Generally, all the data used for model training is listed in Sup-
plementary Table 2 with citations indicating their sources (those
without citations denoting the data are contributed by this work). For
pretraining, all the listed data are employed. While for domain-specific
instruction tuning, we further filter out some relatively low-quality
data, i.e., generated data without human verification or non-radiology
data, focusing more on high-quality question-answering pairs. Next,
we will describe this in detail.

Pretraining. At this stage, we use all available data in MedMD as
listed in Supplementary Table 3, the main components of the data are
PMC-Inline and PMC-OA31, which are all collected from 2.4M PMC
papers. These two datasets contain diverse medical vocabularies and
images with cutting-edge medical knowledge, however, they are rela-
tively noisy, so we only use them during pretraining in the hope that
the network can accumulate enough knowledge about medical-
specific terminologies and images. Additionally, we also include
other VQA, captioning, and diagnosis datasets, as they are much
cleaner.

Domain-specific Instruction Tuning. At this stage, we adopt
RadMDfor domain-specific instruction tuning,whichcontainsover3M
radiologic images, with high-quality language instructions and
responses. In this stage, we utilize RadMD for domain-specific
instruction tuning, which includes over 3M radiological images
accompanied by high-quality language instructions and responses.
Notably, we filter out PMC-Inline and PMC-OA, as these datasets are
not derived from real clinical scenarios. For the remaining data sour-
ces, we primarily filter out non-radiology-related content. Specifically,
the filtering process targets the MPx-series, RP3D-series, and PMC-
CaseReport datasets. For both MPx-series and RP3D-series, the filter-
ing is straightforward since the original websites provide related
imaging modalities for each case. For PMC-CaseReport, which is gen-
erated from the case reports subset of PMC-Inline using ChatGPT, we
rely on the image captions to filter the cases. Only those with captions
explicitly mentioning radiology-related terms—such as “MRI”, “CT”,
“X-ray”, “ultrasound”, or “mammography”—are retained. We acknowl-
edge that some noisy cases may still remain in the dataset. Therefore,
in our evaluation dataset, RadBench, the selected test cases undergo
additional manual inspection to further ensure quality.

Training details. Image preprocessing. To dismiss the differences of
medical images in differentmodalities, certain preprocessing steps are
applied. Specifically, (i) to align the intensity distributions, we employ
min-maxnormalizationof all images; (ii) given thatmedical images can
exist in either 3D or 2D formats (such asMRI being 3D and X-ray being
2D), we convert all 2D images to 3D simply by expanding an extra
dimension. Consequently, all images, irrespective of their original
format, can be processed uniformly as 3D images; (iii) to
ensure consistent sizes across all images, we resize them using the
torchvision.transforms.Resize function. For height and weight
dimensions, we resize them to 512 × 512 for 2D images and 256 × 256
for 3D images because 3D data has more slices, thus taking more
computational memorization. For the depth dimension, since our
visual encoder, a 3D vision transformer (ViT), requires the input image
sizes to be divisible by the patch size of 32 × 32 × 4, we resize the depth
dimension to the nearest multiple of 4 and will not surpass 64. Please
check the Supplementary Table 6 to obtain more details.

A detailed forward example. To better illustrate our model
architecture, we present a simple instruction tuning example: a radi-
ology image paired with the text prompt “Does the case 〈image〉 have
pneumonia?”, with the ground truth response “Yes.” The model
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forward procedure will include three main steps, i.e., visual encoding,
text fusion, and loss calculation. Visual encoding: A 2D image is first
expanded into a pseudo-3D format by adding an extra dimension of
size 4. It is then processed by a 3DVision Transformer (ViT) to produce
visual tokens. These are compressed to a fixed length of 32 using a
perceiver module, ensuring consistent input regardless of image size.
Text fusion: The text prompt is tokenized using the LLM’s embedding
layer, and the “〈image〉 ” placeholder is replacedwith the visual tokens.
This fused sequence is input to the LLM’s causal self-attention layers
for multimodal understanding. Loss calculation: The model predicts
the next tokens auto-regressively, and the loss is computed against the
ground truth “Yes”. During pretraining, the same forward process is
used, but the loss is calculated over all text tokens except the image
placeholder, following GPT-style training.

Implementation. For the visual encoder, we adopt a 12-layer 3D
ViT with 768 feature dimensions and the perceiver is chosen as a six-
layer transformer decoder with a learnable latent array in 32 × 5120
dimensions, so that all images will be embedded as a 32 × 5120 feature
embedding after passing visual encoding and perceiver aggregation.
When inserting them into the text embedding, we will add two extra
special tokens 〈image〉, 〈/image〉 at the beginning and ending,
respectively, to distinguish them from common text tokens. For the
large language model, we initialize it with the MedLLaMA-13B model
introduced by PMC-LLaMA25, which has further finetuned the LLaMA-
13B2 model on the medical corpus. Our final model has 14B
parameters.

In training, we vary the batch size, i.e., one batch size per device
for 3D images and four batch size per device for 2D images with four-
step gradient accumulation, and the max token length is set to be
2048. We totally train the model for eight epochs, four epochs for
pretraining and four epochs for instruction tuning. In the first one
epoch, we freeze the languagemodel to align image embedding space
with that of texts, in the following epochs, all parameters are updated.
To improve the training speed, we adopt FSDP acceleration strategy45,
together with automatic mixed precision (AMP) and gradient
checkpointing46. All models are implemented in PyTorch and trained
on 32 NVIDIA A100 GPUs with 80 GB memory.

Evaluation
In this section, we introduce three evaluation settings, i.e., zero-shot,
few-shot and task-specific evaluation, together with the models in
comparison. Note that, the first two evaluations require no further
training, while the last requires additional finetuning on specific tasks.
Afterward, we introduce the automatic metrics and human rating
progress.

Zero-shot and few-shot evaluation. Foundation models, as a gen-
eralist model, the most appealing characteristic is that they can be
applied to various tasks just with proper prompting strategies, like
zero-shot or few-shot prompting, without any specific training. In the
zero-shot setting, models will be given task-related semantic instruc-
tions to indicate which task it is expected to perform, and in the few-
shot prompting scenario, some similar cases related to the task will be
given instead. The insight of both is to use appropriate textual
instructions to prompt the model on what tasks to perform, while
which one is more suitable for a certain model depends on its training
approach.

Baselines. For our RadFM, we mainly adopt zero-shot evaluation,
as in the instruction tuning step, we focus on promoting the model to
understand diverse zero-shot instructions. For other baselines, we
compare with the following publicly accessible foundation models
under these two settings, as follows:

• OpenFlamingo13. This is an open-source implementation of the
prior state-of-the-art generalist visual-languagemodel Flamingo22,
that was trained on large-scale data from general visual-language

domain. We utilized the released checkpoint for zero-shot and
few-shot evaluation in our study.

• MedVInT8. This is a visual instruction-tuned visual-language
model based on LLaMA2, which was trained on PMC-VQA8.
Considering that the PMC-VQA data does not contain any few-
shot cases, mainly targeting at zero-shot prompting cases, we
directly use the released checkpoint of the MedVInT-TD model
with PMC-LLaMA and PMC-CLIP backbone for zero-shot
evaluation.

• LLaVA-Med4. LLaVA-Med is a medical-specifical vision-language
foundation model trained based on LLaVA47 leveraging zero-shot
instruction tuningdataset generated frompubmed image-caption
pairs. Similar to MedVInT, it also mainly targets zero-shot
prompting cases and we directly use the released checkpoint
LLaVA-Med-v1.5 for zero-shot evaluation.

• Med-Flamingo6. This is a multimodal model developed based on
OpenFlamingo-9B13, that can handles multi-image input interleav-
ing with texts. We use the released checkpoint for zero-shot and
few-shot evaluation.

• GPT-4V14. GPT-4V is widely considered as the most powerful
multi-modal foundation model, released by OpenAI. Since until
our submission, GPT-4V can only input 4 images which can hardly
allow few-shot cases with multiple images, thus we evaluate it in
zero-shot cases Besides, GPT-4V can be only accessed through
the online chatting website, therefore, large-scale auto-evaluation
is not feasible. In thispaper, weonly use it for evaluationunder the
human rating setting.

For OpenFlamingo and Med-Flamingo, we perform both zero-
shot and few-shot evaluations in our study. Specifically, we follow the
prompts derived from the official Med-Flamingo repository. The
example prompt for zero-shot evaluation: ‘You are a helpful medical
assistant. Please answer the question about the given image. 〈image〉
Question: the query question. Answer:”. In the few-shot setting, we
expand upon this format by supplying the models with additional
examples to guide their responses. This is structured as follows: “You
are a helpful medical assistant. You are being provided with images, a
question about the image, and an answer. Follow the examples and
answer the last question. 〈image〉 Question: [the first question].
Answer: [the first answer]. 〈 —endofchunk—〉 〈image〉 Question: [the
second question]. Answer: [the second answer]. 〈 —endofchunk—〉
〈image〉 Question: the query question. Answer:”.

To our knowledge, there are currently no existing foundation
models that can effectively handle both 2D and 3D radiology images.
For comparison, we have strong baseline models that are publicly
accessible, for example, OpenFlamingo13, MedVInT8, LLaVA-Med4, and
Med-Flamingo6, which have demonstrated efficacy in processing slices
and making predictions. In addition, we also compare with GPT-
4V(ision)14 use its online chatting website version.

Datasets.We evaluate the above foundationmodelsonRadBench
and 9 exising datasets as introduced in section “Radiology evaluation
benchmark (RadBench)”. Additionally, we also evaluate them on
PadChest48. It is a labeled large-scale, high-resolution chest x-ray
dataset including 160,000 imagesobtained from67,000patients,with
174 different radiographic finding labels. We dismiss the classes with
cases fewer than 10 together with the seen classes appearing in our
training set, resulting in 163 totally unseen classes. We therefore
ensure that not only images, but also categories in the texts never
appear in the training, which requires more generalization ability of
models.

Task-specific evaluation. In addition to directly evaluating different
foundation models using zero-shot or few-shot prompting, without
any training, our model can also serve as a pretrained model, that can
be adapted to different specific tasks by further finetuning on its
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corresponding training set, giving up the ability to generalize between
tasks, but getting better performance on a specific task. In such a case,
we compare our final results with different task-specific state-of-the-
arts (SOTAs) according to the related datasets. In detail, we use the
following datasets, and the corresponding SOTAs for comparison are
listed in Table 3 with citations:

• VinDr-Mammo49 is a mammography diagnosis dataset compris-
ing 20,000 images (5000 four-view scans). Each scan was
manually annotated with a five-level BI-RADS score. We view this
as a multi-class classification task with the official split following
the BenchMD50.

• CXR1451 is a widely-used chest X-ray diagnosis dataset containing
112,120 frontal-view X-ray images of 30,805 (collected from the
year of 1992 to 2015) unique patients with 14 finding labels. We
follow its official split and evaluate the SOTA52 on the split.

• LDCT53 Low dose computed tomography (LDCT) is a procedure
that uses an x-ray machine linked with a computer to create 3D
images of a patient’s tissues and organs. LIDC-IDRI53 dataset is
used here, containing 1018 low-dose lung CTs, where each CT has
small/large/no nodule labels. We follow BenchMD50 to set this
dataset as a 3D diagnosis task and split it follow BenchMD.

• MosMedData54 is a set of 1110 3D CT cases labeled with COVID-19
related findings, as well as without such findings. We view it as a
classification task and split it randomly with 8:2 for training and
testing following54.

• COVID-CT55 is a set of 349 2D CT slices labeled with COVID-19
collected from 216 patients. We split it randomly with an 8:2 ratio
for training and testing.

• BraTs201932 is an MRI dataset with four MRI modalities T1WI,
T2WI, T2FLAIR, and T1 contrast-enhanced(T1CE). There are 259
volumes of high-grade glioma (HGG) and 73 volumes of low-grade
glioma (LGG). We follow the setting as DSM56 that uses T1CE to
diagnose the HGG or LGG. Due to the original paper did not
release their splits we randomly split the dataset following 7:3 for
training and testing and re-tested the SOTA on it.

• ADNI (Alzheimer’s disease neuroimaging initiative)57 is a large
collection alzheimer’s disease datasetwith 3DbrainMRI scans.We
follow the setting introduced in ref. 58and split it randomly8:2 for
training and testing.

• BTM-17 (Brain-tumor-17)59 is a challenge about classifying anMRI
case into 17 tumor types, with 4449 real images. We adopt its
official split.

• Lung-PET-CT-Dx60 consists of CT and PET-CT DICOM images of
355 lung cancer subjects. We treat it as a diagnosis dataset to
further distinguish whether one patient is diagnosed with
Adenocarcinoma, small cell carcinoma, large cell carcinoma, or
squamous cell carcinoma. Considering its limited case number,
we split it with 7:3 (train:test) to ensure enough cases for
evaluation.

• VQA-RAD32 is a radiology VQA dataset containing 3515 questions
with 517 possible answers. We follow the official dataset split for
our evaluation.

• SLAKE33 is an English-Chinese medical VQA dataset composed of
642 images and 14K questions. There are 224 possible answers in
total. We only use the “English” part, and follow the official split.

• PMC-VQA8 is an English medical VQA dataset generated with
auto-nlp methods containing 149K images with 227K questions.
Its answers are diverse for different questions. Considering its test
set is also auto-generated, we have manually cleaned it as
mentioned in section “Radiology Evaluation Benchmark (Rad-
Bench)” and retest the SOTAMedVInt8 checkpoint on the cleaned
test set.

• MedDiffVQA61 is a large-scale dataset for difference medical
VQA (involving historical comparison) in medical chest x-ray

images with 700,703 pairs of question-answer. We follow its
official split.

• IU-X-ray62 is a set of chest X-ray images paired with clinical
reports. The dataset contains 7470 pairs of images and reports.
We follow the setting and split as CDGPT263 wherewe use a single-
view image to generate the reports.

Evaluation metrics. Machine rating. We evaluate on four distinct
tasks, e.g., disease diagnosis, visual question answering, report gen-
eration and rationale diagnosis. The details of the four tasks and
automatic metrics are introduced in section “Radiology Evaluation
Benchmark (RadBench)”. To evaluate the model’s performance across
a range of tasks, distinct evaluationmetrics are employed based on the
task type. For tasks with pre-defined answer choices, such as disease
diagnosis, we adopted standard metrics developed in the community,
for example, F1 stands for “F1 score”, and ACC stands for “Accuracy”.
Conversely, for tasks involving open-ended responses, like report
generation and visual question answering (VQA) and rationale diag-
nosis, alternative evaluation metrics, like BLEU, ROUGE and BERT-sim
are employed. BLEU stands for “BiLingual Evaluation Understudy”64,
ROUGE stands for “Recall-Oriented Understudy for Gisting
Evaluation”65. BERT-sim stands for “BERT similarity score”, the F1 BERT
score between the generated answer and the correct answer66. For
BLEU and ROUGE, if not specific pointing, we all use 1-gramby default.

In addition, inspired by the score RadCliQ12 designed specifically
for evaluating generated chest X-ray reports, we also propose two new
metrics, UMLS_Precision and UMLS_Recall, which aim to measure the
overlapping ratio of medical-related words between ground truth and
predicted response. Specifically, given a pair of ground-truth and
prediction, we extract the medical-related words from them by using
unified medical language system (UMLS)43, and count the overlap
words as true-positive. UMLS_Precision is defined with the classical
precision concept, i.e., the number of true-positive divides the whole
generated medical-related word number. On the other hand, UMLS_-
Recall also follows the recall concept, i.e., the number of true-positive
words divides the total number of medical-related words in the
ground truth.

Discussion on automatic metrics. Despite these automatic
metrics have been widely adopted by the community, they often
struggle to capture the semantic accuracy in generative tasks, for
example, question answering, report generation, and rationale gen-
eration. To address these limitations and ensure a more accurate
evaluation of system performance, we incorporate human evaluation,
leveraging the expertise of radiologists, to get a professional evalua-
tion on the quality of generated answers.

Human rating. For the sake of clinical utility, we further involve
manual checking in the evaluation stage and compute the human
rating score. Three radiologists were asked to rate the quality of the
generated answers using a 0–5 scale. Each radiologist has five years of
clinical experience in radiology departments. One is affiliated with
Shanghai General Hospital, and the other two are from Shanghai Sixth
People’s Hospital. All three completed their studies in “Medical ima-
ging and nuclear medicine” at Shanghai Jiao Tong University. Here are
the specifics of each rating:

1. Garbled - The content is incomprehensible and lacks any
readability.

2. Inaccurate - While readable, the content is entirely incorrect and
lacks meaningful information.

3. Partially informative - The content holds some reference value,
yet its correctness is subpar.

4. Moderately accurate - The content provides reference points,
with approximately half of the information being correct, but
containing several errors.
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5. Mostly accurate - The content is almost entirely correct, with
only a few omissions or errors present.

6. Completely correct - The content is accurate in its entirety,
without any mistakes.

To facilitate this assessment, we have developed a human
evaluation interface, visually presenting the generative instances
with images, as depicted in Supplementary Fig. 2. Prior to the full
evaluation, we conducted a preliminary exam involving 20 ran-
domly sampled test cases. This exam was designed to ensure that
the radiologists understood the evaluation criteria. All three radi-
ologists showed consistent results, with one exception: for one
case, one radiologist rated the answer as 2 while the others rated it
as 3. This indicates that our five-point rating system was sufficiently
clear for evaluating the model’s outputs. The exam results were also
reviewed by a senior radiologist with over 10 years of experience
from the radiology department of Shanghai Sixth People’s Hospital,
further confirming the validity of the evaluation process. In the
evaluation, raters are provided with images, the question, the
correct answer, and a set of generated responses from different
models, arranged in a randomized order. The evaluation score
given by the professional radiologists differs from the automatic
evaluation metrics, offering greater accuracy and flexibility. In the
context of the report generation example shown in the figure, they
focus on the most crucial aspects, rather than solely on word
matching, recall or precision.

Note that, human rating is only performed for the open-ended
tasks, i.e., medical VQA, report generation and rationale diagnosis. As
for disease diagnosis, their answers are fixed without confusion; thus,
the automatic metrics can already well reflect the performance. Con-
sidering the cost for human rating, for each open-ended task, we
randomly sample 400 test cases from RadBench, as they are generally
collected from clinical practice across the world, and can represent
real scenarios, resulting in 1.2K cases for human rating in total.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study can be downloaded via the links provided in
Supplementary Table 5. Most datasets can be directly downloaded
from the listed websites and used for non-commercial purposes. For
the RP3D and MPx datasets, due to licensing restrictions, we cannot
release the original data directly. However, links to the official websites
are provided. For MPx, please ensure you review the official MedPix
license andmail us to request the download link to the data. For RP3D,
users can contact the official Radiopaedia licensing team at licen-
se@radiopaedia.org to obtain usage approval. Once approved, the
confirmation can be shared with us, and we will provide the detailed
data download link. Commonly, wewill respond to inquiries regarding
the two datasets within 3–5 business days. Most figures in this paper
includedetailed numerical annotations; theonly exception is Fig. 4, for
which the data is provided in the Source Data file. Source data are
provided with this paper.

Code availability
The code is available on GitHub at https://github.com/chaoyi-wu/
RadFM67.
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