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Black carbon emissions generally
underestimated in the global south as
revealed by globally distributed
measurements

A list of authors and their affiliations appears at the end of the paper

Characterizing black carbon (BC) on a fine scale globally is essential for
understanding its climate and health impacts. However, sparse BC mass
measurements in different parts of the world and coarse model resolution
have inhibited evaluation of global BC emission inventories. Here, we apply
globally distributed BC mass measurements from the Surface Particulate
Matter Network (SPARTAN) and complementary measurement networks to
evaluate contemporary BC emission inventories. We use a global chemical
transport model (GEOS-Chem) in its high-performance configuration (GCHP)
for high-resolution simulations to relate BC emissions to ambient concentra-
tions for comparison with measurements. Here we find that simulations using
the Community Emissions Data System (CEDS) emission inventory exhibit skill
(r2 = 0.73) in representing variability in SPARTAN measurements across pri-
marily developed regions with low BC concentrations but exhibit pronounced
discrepancy (r2 = 0.00019) across high-BC regions in the Global South,
underestimating BC by 38%. Alternative inventories (EDGAR, HTAP) yield
similar results. These findings motivate renewed attention to the challenging
task of characterizing BC emissions from low- and middle-income countries.

Black carbon (BC) is a distinct carbonaceousmaterial from incomplete
combustion1. BC contributes to the radiative forcing of climate by
absorbing solar radiation2, influencing cloud processes3, and reducing
snow albedo after deposition4. BC is also associated with adverse
health impacts, including increased risk of cardiovascular and
respiratory morbidity and mortality5,6, as well as cancer7. Accurate
estimates of BC emissions are essential to assess its impacts on climate
forcing and human health.

BC primarily originates from residential solid fuel combustion,
diesel engines, industrial sources, and open burning1,8. Estimates of
global anthropogenic BC emissions in bottom-up inventories are
challenging due to data limitations, particularly for residential and
industrial sectors in low- and middle-income countries (LMICs) (i.e.,
the Global South)9–11. For example, residential heating and cooking in

emerging economies heavily rely on wood, crop residue, and charcoal
combustion. However, tracking their consumption is challenging, and
the emission factors (EFs) arehighly dependent onburning conditions,
which may not represent the inefficiency of combustion conditions12.
In LMICs, local compliance with control technologies is often variable
or unknown. Applying default EFs derived from developed regions to
these areas introduces significant uncertainties in industrial sectors13.

Most prior evaluations of global BC emission inventories have
been conducted across developed regions in the northern mid-
latitudes due to the paucity of reliable long-term ambient measure-
ments in the Global South14–19. The Surface PARTiculate mAtter
Network (SPARTAN, https://www.spartan-network.org/) is unique in
providing a globally consistent BC dataset from sites in densely
populated regions, including rapidly changing cities in the Global
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South. SPARTAN is designed to provide long-term globally distributed
ground-based measurements of particulate matter (PM)
composition20–24. Its consistency in BC measurements and compar-
ability of data across globally distributed sites offers the possibility of
robust BC evaluation on a global scale.

Global BC simulations using chemical transport models (CTMs)
have historically beenperformed at a coarse resolutionof∼200 km17,25,
which causes artificial dilution within grid cells and limits the ability to
capture fine-scale patterns influenced by localized emissions, complex
meteorology, andnonlinear interactions26. Thismismatch introduces a
representativeness bias between grid-averaged model outputs and
pointwise measurements of BC concentrations27. Recent advance-
ments in a global open-source community model (GEOS-Chem) in its
high-performance configuration (GCHP)28 have enabled global BC
simulations at finer resolutions, such as cubed-sphere C360
(~25 × 25 km2) and C720 (~12 × 12 km2)29. This high-resolutionmodeling
capability enables better connections between global emissions and
localized pointwise measurements.

This study evaluates BC emissions from widely used emission
inventories viamodeled concentrationswithmulti-yearmeasurements
from SPARTAN and other available measurements, focusing on the
understudied Global South. Our main analyses use the Community
Emissions Data System (CEDS) emission inventory30, with sensitivity
analyses using the Emissions Database for Global Atmospheric
Research (EDGAR) inventory31 and the Task Force on Hemispheric
Transport of Air Pollution (HTAP) inventory10 to better understand the
consistency of conclusions. We use GCHP to relate BC emissions to
ambient concentrations at the fine resolution needed for spatial
representativeness (“Methods section”).

Results and discussion
Global spatial distribution of surface BC
Figure 1 shows the global distribution of ambient ground-level BC
concentrations from SPARTAN and complementary measurements,
compared with a GCHP simulation at C360 (∼25 km) resolution using

theCEDS emission inventory. Themeasurements indicate pronounced
spatial heterogeneity of global BC concentrations with identified hot-
spots in cities in the Indo-Gangetic plains of South Asia, eastern China,
Southeast Asia, and sub-Saharan Africa. Supplementary Table S1
summarizes BC concentrations (mean, median, and standard error)
measured by Hybrid Integrating Plate/Sphere (HIPS) at each SPARTAN
site (“Methods section”). The Dhaka (Bangladesh) and Addis Ababa
(Ethiopia) sites have the highest measured mean BC concentrations of
~5μg/m3, followed by Kanpur (India), Bandung (Indonesia), and
Bujumbura (Burundi), with mean BC concentrations around 4μg/m3.
Relatively low BC concentrations are observed at sites in the US,
Canada, and Australia (Fajardo, Puerto Rico, US; Halifax, Canada;
Sherbrooke, Canada; Pasadena, US; and Melbourne, Australia) with
mean BC concentrations less than 0.5μg/m3. The simulation generally
represents the available measurements in North America and Europe
with low BC concentrations of less than 1μg/m3 across most of the US
and Canada. The simulation exhibits less skill elsewhere as will be
examined further below.

Developed regions of northern midlatitudes and Australia
In developed regions in northernmidlatitudes (i.e., theUS, Canada, the
Republic of Korea, Taiwan, and Israel) and Australia, there is a high
degree of consistency (r2 = 0.73) in the relative spatial distribution
between simulated BC concentrations and SPARTAN measurements
(Fig. 2). The simulated-to-measured ratios across these SPARTAN sites
are 1.45 ± 0.29 (mean± standard error) with a median of 1.52. Both the
ratio and slope exceed unity, primarily reflecting a simulation over-
estimate in East Asia that may arise from the recent adoption of BC
control technologies32. Evaluation of climatemodels from the Coupled
Model Intercomparison Project Phase 6 (CMIP6) also found an over-
estimation in East Asia17. In addition to the evaluation based on
SPARTAN, we extend the analysis by incorporating measurements
from other available sources for evaluation (“Methods” section). We
find that consistency exists when comparing simulated BC con-
centrations with additional complementary measurements from the
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Fig. 1 | Global black carbon (BC) distribution frommeasurements and simula-
tion using a widely-used emission inventory. This map shows ground-level BC
concentrations from SPARTAN measurements over 2019–2023, complementary
measurements using original data screening scheme with a six-month sampling
length criterion from adjacent years, and a GCHP simulation using the CEDS emis-
sion inventory for 2019. SPARTAN and additional measurements are represented by
colored circles and squares, respectively, surrounded by concentric circles and
squares indicating local coincident GCHP simulated concentrations. The GCHP

simulation is in the background. The inset value is the normalized mean difference
(NMD) across SPARTAN sites. Complementary measurements are sourced from the
Chemical Speciation Network (CSN) and the Interagency Monitoring of PROtected
Visual Environments (IMPROVE) network in the US, the National Air Pollution Sur-
veillance Network (NAPS) in Canada, the European Monitoring and Evaluation Pro-
gramme (EMEP) in Europe, the China Atmosphere Watch Network (CAWNET)64 and
Dao et al.65 in China; additional data, primarily covering Africa, South America, and
South Asia, are referenced from individual studies66–72,76–78.
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European Monitoring and Evaluation Programme (EMEP) (r2 = 0.93;
slope = 1.2). Other models using widely adopted emission inventories
have demonstrated similar skill in developed regions14,33. This con-
sistency reflects the availability of relatively accurate emission data in
these areas, which closely represent real-world conditions in these
developed regions11.

Discrepancies across the Global South
Despite the model-measurement consistency in developed regions in
northern midlatitudes, we find a pronounced discrepancy between
simulated BC concentrations and SPARTAN measurements across the
Global South (r2 = 0.00019), with underestimates at most sites (Fig. 2).
Notably, the average simulated-to-measured ratios are biased low in
Dhaka, Bangladesh (0.25), Addis Ababa, Ethiopia (0.31), Ilorin, Nigeria
(0.48), Mexico City, Mexico (0.57), Abu Dhabi, the United Arab Emi-
rates (0.63), Bujumbura, Burundi (0.69), and Kanpur, India (0.70).
Across 10 Global South sites excluding Beijing, the normalized mean
bias (NMB), defined in Supplementary Text S1 of the Supplementary
Information, is −38%. The simulated-to-measured ratios across these
Global South sites are 0.67 ±0.09 (mean ± standard error) with a
median of 0.66. Conversely, the simulation exhibits substantial over-
estimation in Beijing by a factor of 7.4. Evaluation using com-
plementary measurements also suggests a model-measurement
discrepancy in the Global South, with additional details discussed in
Supplementary Text S2 of the Supplementary Information.

We test how other widely used global anthropogenic emission
inventories (i.e., EDGAR v6.1 and HTAP v3) affect the discrepancies in
the Global South. Supplementary Fig. S1 compares simulations using
EDGAR and HTAP with measurements across SPARTAN sites for 2019.
Despite slight differences at individual sites, the comparisons using
CEDS, EDGAR, and HTAP in simulations generally exhibit similar
results. The simulations remain biased low in most African and
Southern Asian sites (e.g., average simulated-to-measured ratios of
0.25, 0.085, and 0.31 in Dhaka for CEDS, EDGAR, and HTAP, respec-
tively) and biased high in Beijing (e.g., average simulated-to-measured

ratios of 7.4, 5.1, and 6.1 for CEDS, EDGAR, and HTAP, respectively).
This suggests that the accurate characterization of BC emissions in the
Global South is a common challenge across widely used global
inventories.

The pronounced discrepancy between simulations and measure-
ments across theGlobal South is primarily attributed to thedifficulty in
collecting necessary data for estimating BC emissions. BC emissions in
these regions are dominated by diffuse and inefficient combustion
sources, including household burning of wood, crop residue, and
charcoal, and open trash burning in the absence of refuse collection
services and infrastructure12,34,35. The misrepresentation or absence of
representing these informal economic activities and the use of dirty
fuels have been a persistent challenge in generating BC emission
inventories, leading to pronounced underestimates in these
regions13,36. For example, in Dhaka, Bangladesh, poorly regulated brick
kilns and the burning of agricultural waste, crop residue, fuel wood,
and cow dung are major local contributors to BC emissions35. In Addis
Ababa, Ethiopia, substantial uncontrolled BC emissions come from
heavy-duty diesel vehicles and the widespread use of fuel wood (e.g.,
eucalyptus) for residential cooking and heating37. Nigeria has an
extensive but poorly managed oil and gas exploitation infrastructure,
leading to substantial uncontrolled BC emissions due to flaring and
illegal oil refining activities34,38. In Burundi, access to reliable electricity
is less than 10%39; the inadequate electricity supply and regular power
outages lead to dependence on diesel for backup generators and
kerosene for lighting in Bujumbura.

In contrast to underestimations found at most sites in the Global
South, the simulations substantially overestimate BC concentrations in
Beijing (Fig. 2). BC measurements from SPARTAN align with other
regional datasets (Supplementary Fig. S2c). Previous studies using the
CEDS inventory have also noted model overestimates in Beijing. For
example, Ikeda et al.25 evaluated the BC simulation in GEOS-Chem
using six widely used emission inventories and found that CEDS
reported the highest emissions, overestimating BC in China by a factor
of 2.2. China has implemented stringent clean air policies in Beijing,
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Fig. 2 | Comparison of black carbon (BC) concentrations from SPARTAN mea-
surements and GCHP simulation. Annual mean BC concentrations across SPAR-
TAN sites (2019–2023) are compared with those from the 2019 GCHP simulation.
Annotations include the line of best fit (y), coefficient of variation (r2), and number
of comparison points (N). The lowest half of the measured concentrations are

indicated in blue and the upper half in red. The Beijing site, marked in gray, is
excluded from statistical calculations due to anomalies in its emissions estimates.
Symbols indicate different regions (diamonds for North America, star for Australia,
triangles for East Asia, pentagons for theMiddle East, circles for Africa, and squares
for South Asia).
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including the Clean Air Action Plan (2013–2017), the Work Plan for Air
Pollution Prevention and Control in Beijing-Tianjin-Hebei (BTH) and
Surrounding Areas (2017–2018), and the Action Plan for Blue Sky
Defense (2018–2021), leading to a 71% decline in BC concentrations in
Beijing from 2012 to 202040. However, these reductions may not be
fully captured in the CEDS inventory, which reports only a 35%
decrease from 2012 to 2020 and a 2.4% decrease from 2020 to 2022 in
total BCemissions acrossChina41. Moreover, using spatial proxies such
as population for emissiondistributions can introduce anomalies in BC
emissions estimates and further contribute to the discrepancies.

Recent advancements in data collection for emission activities
and EFs have facilitated efforts to improve BC emission estimates. For
example, updates to global BC emission estimates increased them by
32% by incorporating recently available information on residential
energy transitions, household stove upgrades, field-measured EFs for
residential stoves, differentiated EFs for motor vehicles, and imple-
mentationof end-of-pipemitigation actions in industry32. Similarly, the
Dynamics-aerosol-chemistry-cloud interactions in West Africa (DAC-
CIWA) inventory inclusion of open solid waste burning and flaring
sources withmore recent fuel consumption data and EFs increased BC
emissions in Africa by 96% in 2015 compared to the regional Diffuse
and Inefficient Combustion Emissions for Africa (DICE-Africa)
inventory42. Despite these improvements, they remain insufficient to
reconcile the 2- to 4-fold underestimation in simulations across the
Global South identified in this study. Our findings reveal limited
accuracy in representing BC across the Global South, highlighting the
need for improved characterization of BC emissions and more rigor-
ous monitoring in these regions.

Alternative explanations to the discrepancies in the Global South
arising from BC loss through wet deposition, meteorology, measure-
mentprotocol, or representativeness bias areunlikely. The similarity in
model performance across sites with diverse precipitation and
meteorological environments, such as semi-arid locations (e.g., Addis
Ababa, Ethiopia) and moist locations (e.g., Dhaka, Bangladesh), indi-
cates that precipitation and meteorology are unlikely explanations.
Sensitivity tests with alternative meteorology (NASA GEOS Forward
Processing (GEOS-FP) vs Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2)) indicate high con-
sistency in simulated BC concentrations, with an r2 of 0.89 for January
and July 2019 despite a difference in January that partially reduces the
anomaly at Beijing (Supplementary Fig. S3). Additional sensitivity tests
with an alternative wet deposition scheme43 also yield similar conclu-
sions, with an r2 of 1.0 for January and July 2019 (Supplementary
Fig. S4). The consistency inmeasurement protocol across all SPARTAN
sites ensures comparability across locations. These conclusions are
robust to tests of potential representativeness bias between mea-
surements and simulation, as discussed in Supplementary Text S3 of
the Supplementary Information.

Uncertainties
SPARTAN incorporates multiple non-destructive methods to measure
BC, including Hybrid Integrating Plate/Sphere (HIPS)44, Fourier trans-
form infrared spectrophotometer (FT-IR)45,46, and UV-Visible
spectrophotometer47 (UV-Vis) (“Methods” section). We find high con-
sistency in BC concentrations determined by these methods (Supple-
mentary Fig. S5), with an r2 = 0.82 for HIPS vs FT-IR and r2 = 0.85 for
HIPS vs UV-Vis, providing an indication of the reliability of BC mea-
surements within SPARTAN. The slope of 1.3 in the UV-Vis vs HIPS data
suggests that the underestimates of BC emissions in the Global South
found here could be 30% larger.

The optical measurements depend on the mass absorption cross
section (MAC), which varies with aerosol composition, mixing state,
and morphology to estimate BC concentration. SPARTAN uses the
widely accepted MAC value of 10m2/g at 633 nm for HIPS measure-
ments, as recommended by the U.S. Interagency Monitoring of

PROtected Visual Environments (IMPROVE) network44,48–50. However,
the use of fixed and varying MAC values across different studies
introduces uncertainty and complicates the intercomparison of
measurements15,51. Some other studies use MAC values that deviate
from the traditional 10m2/g, which are described below and for con-
sistency are adjusted to 633 nm by assuming an inverse wavelength
dependence. We summarize recent laboratory and field-measured
MAC values across different regions and combustion sources in Sup-
plementary Table S2. For freshly emitted BC, Bond and Bergstrom52

suggested a MAC of 6.52 ± 1.05m2/g, and Liu et al.53 recommended a
MAC of 6.95 ± 0.608m2/g. Once released into the atmosphere, aerosol
undergoes processes of condensation, aggregation, and aging, which
may cause the MAC value to increase due to coating or decrease
due to particle coagulation and aggregate collapse. In developed
regions, MAC variation is limited, with absolute values generally close
to 10m2/g. Singh et al.54 found a stableMAC value of 10.9m2/gwith 11%
spatial variability across four Arctic sites, which further aligns within
10% with prior studies at northern mid-latitudes and Arctic sites.
Similarly, White et al.44 found a coefficient of 10.2m2/g for babs/MEC

across 110 IMPROVE sites in the US. In the Global South, despite the
limited number of studies, available data generally report MAC values
with an uncertainty range of 7m2/g to 13m2/g, with MAC values from
inefficient combustion sources often reported to be lower than 10m2/
g. For example, average MAC values from residential biofuel stoves,
diesel trucks, and non-roadmobile machinery are reported to be 8.03,
7.25, and 9.99, respectively55,56. These lower MAC values would
strengthen our conclusion about underestimates in BC emissions in
the Global South as discussed further below.

Given the limited regional variation, we apply the best available
MAC value of 10m2/g and conduct a sensitivity test using an uncer-
tainty range of 7m2/g to 13m2/g (Supplementary Fig. S6). In this study,
using the traditional MAC of 10m2/g results in high model-
measurement consistency in developed regions (r2 = 0.73; slope =
2.2) but reveals substantial discrepancies across the Global South.
Alternatively, applying a MAC of 7m2/g in SPARTAN would improve
the model-measurement slope in developed regions (r2 = 0.73;
slope = 1.5) and partially address the model overestimation in Beijing,
by reducing the simulated-to-measured ratio from7.4 to 5.2, butwould
increase the model-measurement bias in the Global South such as in
Dhaka (0.17), Addis Ababa (0.22), Ilorin (0.34), andMexico City (0.40),
thus strengthening the conclusions of this study. Conversely, using a
MACof 13m2/g would slightlymitigate the pronounced discrepancy in
the Global South (e.g., increasing the simulated-to-measured ratio in
Dhaka from0.25 to0.32). UnrealisticMAC values of 40m2/g for Dhaka,
32m2/g for Addis Ababa, and 21m2/g for Ilorin would be needed to
achieve unity simulated-to-measured BC ratios. Thus, despite uncer-
tainties surrounding the exact MAC value, the overall conclusion
remains that BC emissions are generally underestimated in the
Global South.

We examine the potential effect of COVID-19 lockdowns on our
analyses. Exclusion of the period Jan 2020 – Jul 2021 that may have
been affected by COVID-19 lockdowns would reduce the total number
of samples by 7.8%, and would introduce a NMB versus the full dataset
of only −3.2% without affecting our conclusions. Thus we err on the
side of inclusion and present the full dataset for completeness.

Dust, in addition to BC, contributes to absorption and can inter-
fere with BC determination in any absorption-based measurement.
Among major dust elements, iron (Fe) serves as a tracer for absorbing
dust and has a distinct association with absorption15,44, independent of
BC. To account for this, we apply a dust correction by subtracting Fe’s
contribution to absorption and use the adjusted BC concentrations for
comparison with simulations (Supplementary Text S4). While this
correction leads to a slight decrease in BC concentrations (with a NMB
of −9.7%), its impact on emission evaluations is negligible. Consistency
remains high for primarily developed regions, while discrepancies
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persist across most Global South sites, with r2 values changing only
slightly from 0.71 to 0.74 and 0.00019 to 0.00035, respectively
(Supplementary Fig. S7). Although the total Fe content used for cor-
rection is an imperfect indicator of absorbing dust, as it includes both
(hydr)oxides responsible for absorption and structural Fe in non-
absorbing clays, the minimal impact of this correction confirms that
dust interference in BC determination is negligible in this study, rein-
forcing our conclusion that BC emissions are generally under-
estimated in the Global South.

Implications
Evaluation of global BC emissions requires long-term, globally con-
sistent measurements of ambient BC concentrations, with emissions
and concentrations linked through high-resolution simulations for
spatial representativeness. We evaluated widely used global emission
inventories (CEDS, EDGAR, HTAP) against a dataset of globally dis-
tributed SPARTAN measurements using GCHP simulations at the fine
resolution of C360 (∼25 km). In contrast to the general model-
measurement consistency found in primarily developed regions in
northern midlatitudes and Australia, we found a pronounced dis-
crepancy between simulated BC concentrations using current emis-
sion inventories and ground-based measurements across regions with
high BC concentrations in theGlobal South. BC emissions in the Global
South are largely dominated by diffuse and inefficient combustion
sources, the misrepresentation or absence of which complicated the
generation of accurate BC emission inventories and likely contributed
to the discrepancy identified in this study. This highlights the need for
renewed efforts to accurately characterize BC emissions in LMICs.

The consistent and substantial underestimation in BC at most
Global South sites is of global relevance. The widespread 2- to 4-fold
underestimation in BC across sites in Bangladesh, Ethiopia, Nigeria,
andMexico suggests that the radiative effect and health impacts of BC
may be larger than previously expected, which highlights the con-
tinued importance of BC mitigation efforts with potential co-benefits
for both climate and health that warrants further investigation.

Despite SPARTAN’s efforts to provide long-term reliable mea-
surements across globally distributed sites, additional geographic
coverage in Africa and South America remains desirable. Additionally,
variations in instrumentation, sampling objectives, andmethodologies
among other individual studies create challenges for intercomparison
and model evaluation. This highlights the need for expanded mea-
surement networks across additional locations to improve our
understanding of BC concentrations and emissions, particularly in the
Global South.

Methods
SPARTAN filter measurements and analysis
SPARTAN is a long-term project that measures the ground-based
chemical composition of PM at globally dispersed sites in densely
populated regions. Overviews of SPARTAN are provided by Snider
et al.22,23, Weagle et al.24, McNeill et al.21, and Liu et al.20. Supplementary
Table S3 provides specific location details for globally distributed
SPARTAN sites. High population density and poorly sampled regions
are two key factors in site selection. Rooftop placement enhances
spatial fetch, better represents urban background, and offers instru-
ment security. The PM2.5 is collected on 25mm Teflon filters
(PT25DMCAN-PF03A, Measurement Technology Laboratories) using
AirPhoton (Baltimore, MD) SS5 sampling stations at a target flow rate
of 5 L/min. The sampling station follows either a standard sampling
protocol or theNationalAeronautics andSpaceAdministration (NASA)
− Italian Space Agency (ASI) Multi-Angle Imager for Aerosols (MAIA)
sampling protocol. Under the standard sampling protocol, PM2.5 is
collected at staggered 3-hour intervals over a 9-day period, generating
a 24-hour PM2.5 sample covering a full diel cycle. Under the MAIA
sampling protocol, PM2.5 is collected continuously for 24 h from 9 am

to 9 am at amission-defined frequency, which has been typically every
3 days during the sampling periods used here.

SPARTAN incorporates multiple techniques to measure BC,
including HIPS, FT-IR, and UV-Vis. HIPS determines absorption from
the backscattered as well as transmitted and forward-scattered He-Ne
laser light (633 nm), with rigorous calibration (Supplementary Text S5)
and using a MAC of 10m2/g as recommended by the IMPROVE
network44,48–50. FT-IR collects transmission scans from 4000 cm−1 to
420 cm−1 in themid-infrared region and calculates absorbance spectra,
which are calibrated to accurately predict thermal optical reflectance
(TOR) elemental carbon (EC) measured as part of the IMPROVE
network45,46. UV-Vis measures the transmittance and reflectance from
300 to 900 nm at 1 nm resolution and calculates optical depth and
MAC for each filter. The BC fraction is determined as the ratio of the
calculated MAC to the analytical MAC value of 4.58m2/g for EC at
900 nm47. A potential drawback of the UV-Vis method is the assump-
tion of MAC contribution from BC only at near-IR (>800 nm) wave-
lengths. Recent studies have shown that strongly absorbing organics,
called dark brown carbon, could contribute to enhanced near-IR
aerosol absorption57,58. Details on analysis procedures and calibration
information for each method can be found in Supplementary Text S5
and White et al.44 for HIPS, Dillner and Takahama45 and Debus et al.46

for FT-IR, and Pandey et al.47 for UV-Vis. All these methods are non-
destructive, and filters aremeasured by all threemethods according to
protocol. This allows for independent measurements of filters and
enables intercomparison of BC measurements within SPARTAN. We
use the HIPS data for comparison with simulations due to its greater
number of measurements and broader usage, and apply the FT-IR and
UV-Vis data for intercomparison with HIPS. This study includes 2257
filters from 22 SPARTAN sites with BC measurements between 2019
and 202359. Specific locationdetails for SPARTAN sites are summarized
in Supplementary Table S3. The sampling period and number of
samples for each site are summarized in Supplementary Table S1.

Emission inventory
We evaluate three widely used global anthropogenic emission inven-
tories (CEDS v2, EDGAR v6.1, and HTAP v3) gridded at 0.1 × 0.1°
(~10 km) resolution with monthly seasonality. All three inventories are
developedusing abottom-up approachwhere emissions areestimated
using reported activity data (e.g., fuel consumption) and source- and
region-specific EFs (i.e., the mass of pollutant emitted per unit of fuel
consumed). TheCEDS v2 inventory30 provides BC emissions from1980
to 2019 as a function of anthropogenic sectors (energy generation;
industry; transportation; residential, commercial, and other; solvents;
agriculture; waste; and shipping) and fuel categories. CEDS scales
default emission estimates to align with reliable regional and national
inventories, thus producing global emissions that closely reflect con-
temporary and regionally specific estimates. The EDGAR v6.1
inventory31 independently estimates BC emissions from 1970 to 2018
using a globally consistent methodology across all regions, offering
sector-specific data with enhanced transparency and comparability.
The HTAP v3 inventory10 provides BC emissions from 2000 to 2018 by
integrating six official inventories covering North America, Europe,
and parts of Asia (China, India, Japan, and South Korea) with the
EDGAR v6.1 for the remaining regions. Sector definitions for CEDS v2,
EDGAR v6.1, and HTAP v3 are detailed in Supplementary Table S4.

Despite variations among global inventories, an overall assess-
ment of the 2019 BC emissions indicates that residential, transporta-
tion, and industrial sectors are the dominant anthropogenic sources,
while energy and waste contribute relatively smaller fractions (Sup-
plementary Fig. S8). The relative contribution of these sectors also
exhibits considerable regional variations. For example, the residential
sector plays a larger role across South Asia and Sub-Saharan Africa,
while transportation accounts for a relatively greater share in North
America, North Africa, and the Middle East. In addition to
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anthropogenic sources, biomass burning contributes significantly to
total BC emissions in Central Sub-Saharan Africa, Tropical and Andean
Latin America, and Australasia.

GEOS-Chem simulation
We use GCHP (http://www.geos-chem.org), the high-performance
configuration of the GEOS-Chem model, that operates with a dis-
tributed memory framework for massive parallelization28 to simulate
ground-level BC concentrations. GCHP enables the fine resolution
needed to interpret global BC measurements. We use GEOS-Chem
13.4.160 which includes developments for improved resolution, per-
formance, and useability29. The simulation is driven by assimilated
meteorological data from GEOS-FP (https://gmao.gsfc.nasa.gov/) at a
resolution of 0.25 × 0.3125° (~25 km) with 72 hybrid sigma-pressure
vertical levels up to 0.01 hPa. We use the standard full chemistry
aerosol-oxidant scheme with the BC simulation as described by Wang
et al.61. Emissions for GEOS-Chem are configured using the Harmo-
nized Emissions Component (HEMCO) module v3.4.062. Global
anthropogenic emissions are from the CEDS v2 inventory30 (https://
www.pnnl.gov/projects/ceds/) at 0.1 × 0.1° (~10 km) resolution. Open
fire emissions are from thedailyGlobal Fire EmissionsDatabase (GFED)
v4.1s63 at 0.25 × 0.25° resolution. The BC simulation covers the entire
year of 2019 at a cubed-sphere resolution of C360 (~25 km) following a
1-month spin-up.

In addition toCEDS, alternative simulationswere conducted using
widely used global anthropogenic emission inventories, including
EDGAR v6.1 at 0.1 × 0.1° resolution31 and HTAP v3 at 0.1 × 0.1°
resolution10. These simulations are conducted at a cubed-sphere
resolution of C360 (~25 km) for 2019. Additional sensitivity tests
include simulations with the highest available resolution of C720
(~12 km) using CEDS for January and July 2022, simulations with alter-
native meteorology (GEOS-FP and MERRA-2) at C180 resolution
(~50km) using CEDS for January and July 2019, and simulations with
additional wet deposition developments as described by Luo et al.43 at
C360 resolution (~25 km) using CEDS for January and July 2019.

Other available measurements
We compare measured BC concentrations at globally distributed
SPARTAN sites with those reported in regional networks and indivi-
dual studies. Measurements are sourced from the Chemical Specia-
tion Network (CSN) (2019) (https://www.epa.gov/amtic/chemical-
speciation-network-csn/) and the IMPROVE network (2019) (https://
vista.cira.colostate.edu/Improve/) in the US, the National Air Pollu-
tion Surveillance Network (NAPS) (2019) (https://data-donnees.az.ec.
gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-
program/) in Canada, the EMEP (2019) (https://www.emep.int/) in
Europe, the China Atmosphere Watch Network (CAWNET)64 (2017)
and Dao et al.65 (2022) in China; additional data, primarily covering
Africa, South America, and South Asia, are referenced from indivi-
dual studies66–78 (Supplementary Table S5). To maximize site repre-
sentativeness, the data are screened to only include ambient
measurements from urban, suburban, semi-rural, and rural locations.
We prioritize measurements from 2019 to ensure comparability, but
we also include data from adjacent years if 2019 data are unavailable.
We require measurements to have continuous sampling periods over
at least six months and for use in calculating an annual average. To
improve regional coverage, we further relax the sampling length
criterion to two months for an additional complementary
dataset alongside the original. Both datasets are used for model
evaluation. Both thermal measurements representing EC and optical
measurements representing BC are included.

Data availability
The BC data used in this study have been deposited in the Zenodo
repository under accession code https://doi.org/10.5281/zenodo.

15345524. The complete BC dataset from SPARTAN is publicly avail-
able at https://www.spartan-network.org/.

Code availability
GEOS-Chem in its high-performance configuration version 13.4.1 can
be downloaded at https://doi.org/10.5281/zenodo.6564711. All plots in
this manuscript are generated using open-access Python libraries
Cartopy (https://scitools.org.uk/cartopy/) and Matplotlib (https://
matplotlib.org).
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