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Long-term and high-spatiotemporal-resolution 3D imaging of living cells

remains an unmet challenge for super-resolution microscopy, owing to the
noticeable phototoxicity and limited scanning speed. While emerging light-
field microscopy can mitigate this issue through three-dimensionally captur-
ing biological dynamics with merely single snapshot, it suffers from sub-
optimal resolution insufficient for resolving subcellular structures. Here we

propose an Adaptive Learning PHysics-Assisted Light-Field Microscopy (Alpha-
LFM) with a physics-assisted deep learning framework and adaptive-tuning
strategies capable of light-field reconstruction of diverse subcellular dynamics.
Alpha-LFM delivers sub-diffraction-limit spatial resolution (up to ~120 nm)
while maintaining high temporal resolution and low phototoxicity. It enables
rapid and mild 3D super-resolution imaging of diverse intracellular dynamics
at hundreds of volumes per second with exceptional details. Using Alpha-LFM
approach, we finely resolve the lysosome-mitochondrial interactions, capture
rapid motion of peroxisome and the endoplasmic reticulum at 100 volumes

per second, and reveal the variations in mitochondrial fission activity
throughout two complete cell cycles of 60 h.

In living cells, different organelles work together to execute diverse
and intricate physiological functions. Elucidating these fast dynamics/
interactions of organelles across the cell cycle needs the microscopes
to have sufficiently high spatiotemporal resolution in four dimensions
(time +3D space) and low phototoxicity rate for long-term
observation'™. This is highly challenging because current 3D micro-
scopy techniques are constrained to the maximal photon budget a
sample permits, which results in an inevitable trade-off among imaging
speed, spatial resolution, and photon efficiency’™. A series of 3D
microscopy implementations, including confocal microscopy™"”, 3D

structured illumination microscopy (3D SIM)*’* and light-sheet
microscopy (LSM)*'*7, have been intensively developed for live-cell
imaging beyond the diffraction limit, e.g., ~150 nm lateral and ~280-nm
axial resolutions by SIM mode of lattice light-sheet microscope (LLSM-
SIM)°. However, these scanning-based super-resolution (SR) approa-
ches often require recording hundreds of frames at different planes to
reconstruct a super-resolved volume, thereby showing compromised
temporal resolution limited to a few seconds and relatively high pho-
totoxicity limited to hundreds of volumes acquisition’. Therefore, it’s
difficult for these approaches to observe either long-term evolution
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during the cell cycle or instantaneous subcellular process occurred at
milliseconds timescale.

Unlike scanning-based microscopy, light-field microscopy (LFM)
provides photon-efficient direct volumetric imaging by encoding both
position and angular information of 3D signals on single 2D camera
snapshots without time-consuming axial scanning'®**, Benefiting from
the high-speed scanning-free 3D imaging, LFM has facilitated various
biological studies on neural activities, cardiac hemodynamics, and live
cells?***, In contrast to the superior temporal resolution and low
phototoxicity well-suited for live imaging, the spatial resolution of LFM
is often unsatisfactory, owing to the insufficient pixel sampling and
limited sub-numerical aperture existed in each simultaneously cap-
tured light-field view. Many efforts have been made to improve this
limitation of LFM?>**?, for example, DAOSLIMIT can yield a spatial
resolution of ~220 nm after a 9-times aperture scanning that slightly
lowers the imaging speed®. Meanwhile, the use of iterative light-field
deconvolution for 2D-3D image reconstruction is vulnerable to arti-
facts and incapable of surpassing the diffraction limit. There always
exists an “impossible performance triangle” which greatly limits the
design space of current 3D fluorescence microscopy techniques
towards high speed, high spatial resolution, and high photon efficiency
imaging.

The recent advent of deep neural networks for image recon-
struction enlarges the design space of microscopy by introducing
prior knowledge of high-resolution data for learning and inference?”’.
We previously reported view-channel-depth light-field microscopy
(VCD-LFM), in which a VCD network model is trained to learn the
nonlinear relationships between the 3D confocal ground truths (GTs)
and their 2D light-field projections, and afterwards, can directly
reconstruct high-resolution 3D volume from a single 2D light-field
image by using the well-trained channels in the VCD model to trans-
form the implicit features of the light-field views into depth informa-
tion of a 3D stack. With a deep-learning model combining the high-
resolution advances of scanning microscopy into high-speed imaging
of LFM, VCD-LFM holds the promise for high-speed and high-
resolution 4D imaging of live samples®**’. However, current end-to-
end supervised networks encounter constraints in terms of both
enhanced capabilities and the requirement for a large dataset. When
dealing with complex inverse problems, ensuring accuracy is challen-
ging. For instance, reconstructing a 3D SR image from a 2D under-
sampled light-field image with spatial bandwidth compressed by
around 600 times requires the recovery of various degradations
brought by noise, resolution, and dimensionality reduction. This pre-
sents a highly intricate, ill-posed problem with a huge solution space.
The fitting ability of the network depends on the model complexity,
the amount of prior data available, and loss constraints*. However,
traditional one-stage end-to-end networks, with a limited amount of
label data and model complexity, are difficult to find precise SR solu-
tions in such a huge space, resulting in either limited resolution or
reduced fidelity. Another typical challenge that supervised learning
has to face is the need for massive, high-quality data and extensive
training time. This arises from the network’s predominant focus on
learning high-dimensional features of specific training samples from a
large amount of high-quality data, thereby limiting their applicability
to new samples.

Here we propose an Adaptive Learning PHysics-Assisted Light-
Field Microscopy (Alpha-LFM), capable of accurately super-resolved
reconstruction of diverse subcellular structures. To enhance the net-
work’s fitting capability, we established an adaptive-learning physics-
assisted network framework (Alpha-Net) to increase model complexity
and the data constraint through decoupling the complex light field
inverse problem into multiple subtasks with multi-stage data guidance.
Instead of simply incorporating a 3D SR Net with VCD-Net, our
decomposition strategy is designed to progressively denoise, de-alias,
and reconstruct, facilitating a more precise 3D reconstruction by

effectively leveraging the angular information in light-field (LF) views.
To permit the implementation of this decomposition strategy, we
developed a physics-assisted hierarchical data synthesis pipeline to
introduce multi-stage data prior and a decomposed-progressive opti-
mization (DPO) strategy to enable the convergence of multi-stage
networks. We demonstrate that through carefully designing the model
and training strategies, our Alpha-Net can notably narrow down the
inversion space for seeking the correct solution more efficiently,
enabling 3D SR reconstruction of diverse samples with improved
fidelity. To tackle unseen structures, we further developed an adaptive
tuning strategy. It allows for fast optimization of new live samples with
the physics assistance of in situ 2D wide-field images. Alpha-LFM
demonstrates imaging of the dynamics of intracellular structures in
live cells at an isotropic spatial resolution up to ~120 nm and hundreds
of hertz volume rate, facilitating the analysis of the lysosome-
mitochondrial interactions as well as the rapid motion of peroxi-
some and the endoplasmic reticulum (ER). With minimized photo-
toxicity of Alpha-LFM, we achieve 3D live-cell imaging over 60 h for the
tracking of mitochondrial evolution across two complete cell cycles.

Results
Principle and implementation of Alpha-LFM
LFM encodes the spatial-angular patterns from a 3D sample into a
single 2D image***. This procedure contains multiple imaging degra-
dations, including dimension compression from the diffraction-
unlimited 3D objective to a diffraction-limited 2D LF projection, the
frequency aliasing induced by the undersampling of the microlens
array (MLA) during the encoding of spatial-angular information, and
the noises mainly from the camera exposure (Fig. 1a). In our study,
light-field reconstruction beyond the diffraction limit needs to invert
this compression with a space-bandwidth product (SBP) expansion
over 600 times (Methods). This intricate and ill-posed inversion pro-
blem has resulted in an extensive solution space that maps the
undersampled LF measurement to the possible 3D SR solutions,
thereby posing a big challenge to either deconvolution-based
approaches without data priors or standard end-to-end DL models
constrained by limited label data and model complexity*® (Supple-
mentary Note 1). This leads to an unsatisfactory reconstruction per-
formance, especially when imaging the fine subcellular structures,
where both high spatial resolution beyond the diffraction limit and
improved fidelity close to the GT are required for downstream tasks.
To improve the solving capability of the network and reduce the
solution space, we established a physics-assisted deep-learning fra-
mework to enhance the model complexity and the data constraint by
disentangling the complex light field inverse problem into multiple
subtasks with multi-stage data guidance and joint optimization (Fig. 1b,
Supplementary Note 1, Supplementary Movie 1, “Methods”). Instead of
simply using a 3D SR network to further improve the diffraction-
limited resolution of VCD results, we devised a multi-stage network
encompassing LF denoising, LF de-aliasing, and 3D reconstruction to
progressively solve the light-field inverse problem. In this case, we are
able to introduce more angular constraints in the de-aliasing network,
therefore demonstrating notably enhanced reconstruction fidelity.
Meanwhile, our decomposing strategy also achieves four-order-of-
magnitude higher inference speed by avoiding the use of complex 3D
blocks (Supplementary Fig. 1). To permit the implementation of this
decomposed strategy, we firstly need to develop a sub-aperture shif-
ted light-field projection (SAS LFP) strategy to generate light-field
images without frequency aliasing (De-aliased LF) to guide the LF de-
aliasing task, in which we projected the 3D SR images containing sub-
aperture shifts into a series of clean light-field images (Clean LF) and
rearrange them into a single one (Supplementary Fig. 2, Supplemen-
tary Note 1). This strategy serves as the cornerstone of our physics-
assisted hierarchical data synthesis pipeline that allows semi-synthetic
multi-stage data priors to be conveniently generated from the same 3D
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Fig. 1| Design of Alpha-LFM. The principle and architecture of Alpha-LFM and its
training strategy. a The stepwise network is designed based on the physical model
of the light-field imaging process. The light-field imaging process encodes multi-
dimensional degradation mainly including: (i) the frequency aliasing caused by the
limited NA of objectives and sub-apertures of microlens, (ii) dimension compres-
sion during light field encoding, and (iii) the noise addition by the camera
recording. b Three light-field-aware sub-networks with view-attention denoising,
spatial-angular de-aliasing, and VCD 3D reconstruction restoration tasks are
designed to disentangle and sequentially solve the complex light-field inversion
problem. Multi-stage training data, including De-aliased LF, Clean LF, and Noisy LF,

are synthesized from the same 3D SR data using a “physics-embedded hierarchical
data synthesis” to guide the training of the sub-networks. The decomposed-
progressive optimization strategy ensures the collaboration of the sub-networks
when training the multi-stage data. ¢ Direct Alpha-Net reconstruction when the
training and testing datasets are of the same type of structure. d The schematic
illustrates the adaptive inference strategy of Alpha-LFM. When inferring previously
unseen types of structures, experimentally-obtained 2D WF and corresponding LF
images of the new structure are used to instantly tune the pre-trained model,
making it adaptive to the unseen structures.

SR data based on the light-field model and then progressively guides
the sub-networks (Fig. 1b, “Methods”).

To achieve the SR light-field reconstruction that involves a 30-fold
increase in sampling and transformation from 2D to 3D, we devised
light-field-aware networks for each inversion task and a DPO strategy

to efficiently facilitate the collaboration of multiple sub-networks, thus
together ensuring the whole network can find an optimal solution with
improved resolution and fidelity (Fig. 1b, Supplementary Note 1). To
fully exploit the angular information from multiple views of LF image,
we incorporated view-attention denoising modules, spatial-angular
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convolutional feature extraction operators, and disparity constraints
for denoising and de-aliasing of 4D (X, y, u, v) LF images, showing
performance superior to modules that rely solely on spatial informa-
tion (Supplementary Figs. 3 and 4). We also optimized the VCD 3D
reconstruction sub-network by incorporating multi-res blocks to
extract features from more dimensions, ensuring the high quality of
the reconstruction results. Considering the different difficulty in each
task, the three sub-networks are jointly optimized using our DPO
strategy, in which, each sub-network was optimized independently to
ensure the high-quality solution for each sub-task at the beginning and
then the sub-networks were grouped into “denoising,” “denoising and
de-aliasing” and “denoising, de-aliasing and reconstruction” for being
optimized progressively (Supplementary Fig. 5). DPO facilitates the
collaboration of sub-networks while maintaining their independent
training, thus achieving reconstructions with improved resolution and
fidelity (Supplementary Fig. 6). It's noteworthy that DPO strategy is
also valuable to other image restoration networks. We also demon-
strate the superior performance on other image restoration networks,
such as RCAN networks®, for delivering SR results with higher fidelity
(Supplementary Fig. 7). With this strategy, Alpha-Net can successfully
resolve 137 nm line pairs of the synthetic resolution board (Supple-
mentary Fig. 8) and directly reconstruct SR images of diverse samples
(Fig. 1c, Supplementary Fig. 9).

Another inherent limitation of supervised learning is the
requirement for large datasets and extensive training time. Common
solutions that either include training a large amount of data from
diverse structures® or use a few 3D data points for transfer learning®
need the acquisition of 3D high-resolution data on static samples in
advance, suffering from low flexibility. We developed an adaptive-
tuning strategy in Alpha-LFM to reconstruct the types of structure that
were not included in the training datasets. When facing unseen types
of structures, Alpha-LFM adopted a few wide-field (WF) 2D images and
corresponding LF measurements of new samples to rapidly tune the
pre-trained model, adaptive to the new structure (Fig. 1d, Supple-
mentary Note 1 and “Methods”). In the adaptive-tuning phase, the WF
images of the new samples were readily obtained using the regular
port of the inverted microscope and performed deconvolution, ser-
ving as the lateral constraint of 3D reconstructions, which were used
for calculating the mean-square errors (MSE) with maximum projec-
tion and down-sampling of the network’s 3D inferences. To maintain
the mapping function from LF to 3D reconstructions and prevent over-
fitting by the lateral constraint, we employed an alternate training
strategy to incorporate a small amount of raw data used for the base
model into the training process, acting as the volumetric constraint.
The lateral and volumetric constraints were alternatively optimized
during the fine-tuning phase to together contribute to the optimized
results in 3D. Through this adaptive-tuning strategy, we tuned the
network trained on lysosomes for reconstructing light-field images of
fluorescent beads, yielding a resolution of ~120 nm (Supplementary
Fig. 10). Additionally, we successfully transferred the model trained on
the outer membrane of mitochondria to the outer membrane of
lysosomes and mitochondrial matrix, respectively (Supplementary
Fig. 10). The finely-tuned Alpha-Net showed significantly reduced
artifacts and enhanced fidelity, as compared with VCD-Net and Alpha-
Net without fine-tuning, yielding sharp but distorted reconstruction.
The finely-tuned Alpha-Net reconstructions allowed us to capture the
subcellular dynamics of mitochondrial fission and fusion, as well as
lysosomal movements.

Characterization of Alpha-LFM

We demonstrated the performance advances of Alpha-Net through a
comparison with end-to-end VCD on both Argolight resolution board
and organelle data. To quantitatively illustrate the performance of the
network in the process of solving inverse problems, we developed a
network comprehensive performance pyramid (NCPP) method based

on the comprehensive evaluation of the fidelity and resolution changes
during the network training (Fig. 2a, Supplementary Movie 1, “Meth-
ods”). We quantified the fidelity and resolution of the reconstruction
results during the network’s convergence process by calculating the
differences in structural similarity (ASSIM, with O indicating the best
similarity) and cut-off frequency (AKc, with O indicating the highest
resolution) between the inference results of 196 regions of interest
(ROIs) and the GTs. The position of the data point on the coordinate axes
reflects the network fitting ability, while the concentration of the dis-
tribution represents the robustness of the network across different
datasets. Through the NCPP metric, we verified that it’s indeed difficult
for the original VCD to find high fidelity, SR solutions through a one-
stage supervision, as evidenced by the premature convergence and
halting at inferior resolution and fidelity (Fig. 2a, NCPP map, left). In
contrast, Alpha-Net under multi-stage data supervision achieved sig-
nificant improvements in fidelity and resolution right after the initial task
optimization (Initial stage, Fig. 2b). The progressive optimization strat-
egy further reduced the unnatural high-frequency artifacts caused by
such local optimization in the sub-networks. With the decomposed and
progressive optimization of Alpha-Net, the network rapidly approached
the global optimum (Fig. 2a, NCPP map, right), yielding SR reconstruc-
tions with improved fidelity in the last stage (Last stage, Fig. 2b).

Through a simple retrofit of a commercial inverted microscope
(Olympus 1X73) using a designed compact light-field add-on
(220 x 140 mm in size, full design in Supplementary Fig. 11 and “Meth-
ods”), we conducted LF imaging of the Argolight resolution board, which
features adjacent lines with known distances, to quantify our resolution.
Alpha-Net successfully resolved adjacent lines with distances ranging
from 120 nm and 360 nm (Fig. 2c-e). In contrast, VCD-Net could only
resolve lines spaced 240 nm apart and produced ambiguous recon-
structions for lines spaced 120 nm apart (Fig. 2d, e). These results vali-
date the capability of Alpha-LFM to achieve a resolution of 120 nm.

Furthermore, we imaged the lysosomes in a fixed U20S cell and
reconstructed their 3D distributions using Alpha-LFM (Fig. 2f-h). The
raw LF image of the lysosome was effectively denoised, de-aliased, and
finally transformed into fine 3D structures (Fig. 2g, Supplementary
Figs. 12 and 13). To validate the resolution enhancement and fidelity by
Alpha-LFM, we also obtained the in situ Airyscan®*” images of lysosomes
in the same fixed U20S cell and enhanced them through an axial-to-
lateral isotropic learning (Methods). As verified by calculating the
structure similarity (SSIM) using enhanced Airyscan microscope’s results
as references, the fine structures of lysosomes were accurately recon-
structed throughout the 3D volume (Fig. 2i). The fidelity of Alpha-Net
reconstruction was quantified to be significantly higher when compared
to current leading light-field reconstruction techniques, including LFD,
virtually-scanning LFD (VS-LFD)*, and VCD (Fig. 2j, “Methods”). Addi-
tionally, while LFD, VS-LFD, VCD yielded average lateral resolutions of
780 nm, 315nm, 261nm, and average axial resolution of 1021 nm,
440 nm, 277 nm, respectively, Alpha-Net achieved a near isotropic
resolution of 120 nm, which is far superior to all the alternative
approaches and close to the resolution of GT (Fig. 2k, “Methods”).

We further evaluated the performance of Alpha-Net across dif-
ferent LFM configurations, including various spatial LFM and Fourier
LFM systems®. To validate its adaptability, we first constructed an
LFM system using an MLA with a pitch size of 45.5 um and a focal length
of 1.6 mm (Methods). When reconstructing LF images of lysosomes
acquired with this setup, Alpha-Net still demonstrated superior reso-
lution and fidelity compared to state-of-the-art light-field reconstruc-
tion algorithms, including LFD, VS-Net, and VCD-Net (Supplementary
Fig. 14). In addition to spatial LFM, we built a Fourier LFM system by
incorporating a Fourier lens to perform an optical Fourier transform of
the image at the native image plane and placing the MLA (pitch =
3.25mm, f = 120 mm) at the back focal plane of the Fourier lens
(Methods). By adapting the data synthesis strategy and view extraction
method in the network to align with the wave optics model of Fourier
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LFM, Alpha-Net accurately reconstructed fine microtubule structures,
using 3D SIM results acquired under high light dose as GT (Fig. 2I,
“Methods”). In contrast, VCD-Net introduced high-frequency artifacts
and produced discontinuous signals, resulting in low fidelity.

The high fidelity achieved by Alpha-LFM under low light dose
required for volumetric acquisition highlights its advantages in ima-
ging speed and reduced photobleaching. To evaluate these benefits,
we assessed the imaging performance of Alpha-LFM across varying
total light doses used for volumetric acquisition and compared it to
the state-of-the-art live-cell imaging technique, 3D SIM’*, under
identical light dose conditions (Fig. 2I, “Methods”). While 3D SIM
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achieves high-quality reconstructions with superior resolution of
(<123 +5nm) under high light dose conditions, its reconstruction
fidelity deteriorates as the light dose decreases. In contrast, Alpha-LFM
fully utilizes photons emitted from the entire volume, achieving a
higher signal-to-noise ratio (SNR) under the same low light dose. The
SSIM and peak signal-to-noise ratio (PSNR) metrics presented in
Fig. 2m confirm more stable reconstruction fidelity and resolution of
Alpha-LFM compared to SIM and SIM-denoise* under low light dose
conditions (Fig. 2m, Supplementary Fig. 15). The resolution of Alpha-
LFM was quantified to be -126 £+ 6 nm under high light dose and
showed a slight variation in resolution (-135+15nm) across various
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Fig. 2 | The resolution and structural fidelity of Alpha-LFM. a The comparative
NCPP map evaluating the fitting capability of previous end-to-end VCD-Net and
Alpha-Net during the optimization process (n =196 ROIs). b The 2 charts show the
network performance at the initial optimization stage (10th epoch) and final stage
(well-convergence at 250th epoch). ¢ Resolution characterization of Alpha-LFM
using Argolight resolution board featuring adjacent lines with known distances
ranging from 120 to 360 nm. d Regions of interest (ROIs) showing lines spaced 120
and 240 nm apart, imaged using VCD-Net and Alpha-Net. e Intensity profiles along
the lines indicated in (d), quantifying the resolution of Alpha-Net and VCD-Net.

f The experimental Noisy LF image and extracted views of lysosome outer mem-
branes in a fixed U20S cell. g The Noisy, Denoised, De-aliased LF views (indicated by
dotted boxes in f) and h the 3D SR results from three sub-networks of Alpha-Net.
i The comparison of reconstructions by Alpha-Net, LFD, VS-LFD, and VCD. The
white arrows indicate the noticeable errors in LFD, VS-LFD, and VCD results

whereas being accurately resolved by Alpha-Net. j Structure similarity (SSIM)
metric quantitatively comparing the fidelity of Alpha-Net and other approaches
using enhanced Airyscan data (GT) as reference (n =15 volumes). k Decorrelation
analysis quantifying the lateral and axial resolution of reconstructions by Alpha-
Net, LFD, VS-LFD, VCD, and GT (n > 30). I MIPs of microtubules in a fixed COS-7 cell
obtained by 3D SIM under high (1.6 J/cm?) and low (0.02J/cm?) light dose, as well as
by VCD-LFM and Alpha-LFM under a low light dose (0.05J/cm?) used for volumetric
acquisition. The magnified view of ROl indicated by the white box and the Fourier
spectra are shown at the bottom. m SSIM and PSNR metrics quantifying the fidelity
of 3D SIM and Alpha-LFM across varying light doses, using 3D SIM with Al denoising
under high light dose as reference. Boxes are median + i.q.r.; whiskers represent the
min and max values (j, k). Scale bar, 5 pum (f-h), 2 pm (i)10 pm (spatial domain), and
1/100 nm™ (Fourier domain) (I).

light doses. The combination of high photon efficiency and robust
denoising capabilities enables Alpha-LFM to deliver superior resolu-
tion and reconstruction fidelity, making it particularly well-suited for
high-speed or long-term imaging applications.

Comparative performances of Alpha-LFM and other approaches
Alpha-LFM enabled 4D imaging of large-scale mitochondrial dynamics
in dozens of cells with a volumetric imaging rate up to 333 Hz and a
field of view (FOV) of ~ 220 x 220 x 10 um? (Fig. 3a). We compared the
reconstruction of Alpha-LFM with those from the alternative LFM
reconstruction approaches, including VS-LFD** and VCD* based on an
end-to-end network model (Fig. 3b, Supplementary Movie 2). While
Alpha-Net reconstruction clearly showed the outer membranes of
mitochondria, these structures remained unresolvable in LFD, VS-LFD,
and VCD reconstructions, owing to their suboptimal resolutions and
noticeable artifacts. Alpha-LFM yielded a near isotropic lateral and
axial resolutions of ~-120 nm, which were compared with 230 nm and
370 nm by VS-LFD, 180 nm and 350 nm by VCD, respectively (Fig. 3c).
The ultrafast light-field imaging rate together with subcellular-
resolution reconstruction thus allowed the visualization of the fast
morphology changes of the mitochondria, such as fission and fusion,
occurred in three dimensions and at milliseconds timescale (Fig. 3d).
Since LFM only requires light exposure once per volume, its photo-
bleaching is notably lower than the scanning-based 3D microscopy
(Fig. 3e). Meanwhile, the inclusion of denoising module in Alpha-LFM
ensures stable light-field reconstruction from low-exposure, noisy
measurements (Supplementary Fig. 16). As a result, low-
photobleaching imaging combined with low-exposure reconstruc-
tion capability together permitted high spatiotemporal resolution live-
cell imaging in long term, yielding over 40000 SR volumes with less
than 50% photobleaching (Supplementary Movie 3). In contrast, plane-
scanning-based light-sheet fluorescence microscopy (LSFM)*’, 3D
SIM”?8 (15 exposures for each plane) and point-scanning-based Air-
yscan microscopes” suffered from noticeable photobleaching after
imaging merely 500, 6, and 50 volumes, respectively (Fig. 3e, f,
“Methods”). We compared the resolution and volumetric speed of our
Alpha-LFM with current leading 3D fluorescence microscopy techni-
ques for live-cell imaging, including scanning-based SR microscopes
such as Airyscan microscope, Instant SIM (iSIM)® and LLSM-SIM’ and
LFM modalities such as sLFM*, Fourier light-field microscopes
(FLFM)*, and VCD-LFM** (Fig. 3g). While scanning-based SR micro-
scopes exhibit trades-off among spatial resolution and imaging speed,
Alpha-LFM has apparently enlarges this limitation, showing spatial
resolution as well as volumetric speed far superior to not only SR
microscopes, but also other LFM modalities (Fig. 3g).

High-speed 3D imaging of peroxisomes and ER enabled by
Alpha-LFM

The ultrafast volumetric imaging rate combined with subcellular-
resolution reconstruction provided by Alpha-LFM enabled the

visualization of rapid dynamics of peroxisomes and the ER in three
dimensions.

Without requiring scanning, Alpha-LFM successfully demon-
strated its capability to capture peroxisomes (tagged with SKL-mAp-
ple) in live U20S cells at 100 volumes per second (vps) over a 1-min
duration, yielding 6000 volumes (Fig. 4a, Supplementary Movie 4).
This high imaging rate allowed the extraction of spatiotemporal pat-
terns of peroxisome motion in 3D on a millisecond timescale (Fig. 4b).
In contrast, current scanning-based 3D microscopy techniques’*°
achieve imaging speeds up to 10 vps. To evaluate the impact of ima-
ging speed on peroxisome analysis, the 100-vps data was down-
sampled to 10 vps, and peroxisome tracking was performed on both
datasets. While analysis of the 10-vps data revealed a velocity limited to
1um/s, the 100-vps data captured velocities as high as 10 um/s (Fig. 4c,
d). This discrepancy arose from missed movements and reduced tra-
jectory accuracy caused by the lower imaging speed (Fig. 4e, f).

Additionally, we recorded the dynamics of the ER (tagged with
Sec61B-EGFP) in a live COS-7 cell at 100 vps using Alpha-LFM (Fig. 4g,
Supplementary Movie 5). The rapid growth and remodeling of the ER,
with velocities reaching ~3.5 um/s, have previously been observed in
2D using 2D SIM microscopes®***. Alpha-LFM’s volumetric imaging
capability at high resolution provided a clear visualization of ER
tubules in 3D. The 100-vps speed allowed us to resolve the remodeling
of individual ER tubules within milliseconds, which appeared blurred
at 1 Hz, the maximum volumetric imaging rate achievable by current
3D SR microscopes”” (Fig. 4h, i). Leveraging this high speed, we
observed the stretching of an ER tubule and the formation of a new ER
tubule, both occurring in less than 50 ms (Fig. 4j, k). These experi-
ments underscore the essential role of Alpha-LFM in capturing highly
dynamic biological processes.

Dual-color Alpha-LFM for 5D in-toto imaging and quantification
of lysosome-mitochondria interactions

The high spatiotemporal resolution of Alpha-LFM allowed the visuali-
zation of rapid morphological changes in mitochondria, such as fission
and fusion, in three dimensions. We validated the fidelity of dynamic
Alpha-LFM imaging for identifying mitochondrial activities using in
situ WF images (Supplementary Fig. 17) and co-expression of Drpl
(Supplementary Fig. 18). Notably, we observed 48 mitochondrial fis-
sion events, with ~96% of these events (n=46) marked by Drpl, con-
sistent with previous studies**. These results confirm that the fission
events identified by Alpha-LFM are genuine.

Using Alpha-LFM, we conducted simultaneous 5D (3D space +
time + spectrum) SR imaging of the outer membranes of lysosomes
(tagged with Rab7-mCherry2) and mitochondria (tagged with
Tomm20-EGFP) in live U20S cells (Fig. 5a, Supplementary Movie 6).
The isotropic subcellular resolution presented in five dimensions then
permitted in-toto visualization of the Lysosome-Mitochondria (Lyso-
Mito) interactions (Fig. 5b, ¢). While 2D microscopes merely provided
projection images of Lyso-Mito contacts, our ability to reconstruct 3D
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bar, 5 um. ¢ Decorrelation analysis quantifying spatial and axial resolution of VS-
LFD, VCD-Net, and Alpha-Net. n =20 volumes were analyzed at both xy and xz
planes. The center line represents the median, the box limits represent the lower
and upper quartiles, and the whiskers represent the min and max values. d Time-
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lapse 3D visualization captures the rapid morphological transformations of the
mitochondrial outer membrane occurred at milliseconds timescale, illustrating
both the processes of mitochondrial fission and fusion. Scale bar, 2 pm.

e Comparisons of the photobleaching rates between Alpha-LFM, LSFM, Airyscan,
and 3D SIM. f Max intensity projection of images of lysosomes in live U20S cells
imaged via 3D SIM (30 s every volume for a whole cell), Airyscan (4 min every
volume for a whole cell), LSFM (4 s every volume for a whole cell), and Alpha-LFM
(3 ms every volume for at least a whole cell). Scale bar, 2 pm. g The comparisons of
the performance in resolution and volumetric imaging speed between Airyscan,
iSIM, LLSM-SIM, FLFM, sLFM, VCD-LFM, and Alpha-LFM.

processes eliminated false judgments and yielded more accurate
analytic results (Fig. 5d). By measuring the distance between lysosome
and mitochondriain 2D and 3D (Methods), respectively, we identified a
24% margin of inaccuracy in 2D results (Fig. Se, 11 false cases in 41
events from 17 cells), proving the significance of Alpha-LFM for
investigating organelle interactions in 4D. Recent research has
revealed that lysosome-mitochondria contact sites may serve as a
marker for mitochondrial fission*>. We scrutinized 35 fission cases
from 17 cells reconstructed by Alpha-Net to measure the proportion of
Lyso-Mito contact in the mitochondrial fission events. We found that
lysosomes contacted mitochondria at 48% of mitochondrial fission

sites, which was significantly lower than the rate obtained via 2D ana-
lysis of our own images (71%) (Fig. 5f). This was presumably due to the
tendency of 2D imaging methods to misidentify the Lyso-Mito contact.
We also analyzed the Lyso-Mito contacts at mitochondrial fusion sites,
and the proportion was 41% in our statistics. With the high spatio-
temporal resolution of Alpha-LFM, we also perform 3D tracking of the
endpoints of mitochondrial fission and fusion and analyze whether
Lyso-Mito contact would affect the speed of mitochondrial fission and
fusion (Fig. 5g, Supplementary Movie 7). While there is no significant
difference in fission speed was found when 2D analysis was performed
(P>0.05, one-way ANOVA), the results based on our 3D images
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h Projection of skeletonized images over 1s, with time encoded by color, visualizing
ER dynamics. Scale bar, 5 pm. i Comparison of ER dynamics of the ROI (marked by
white boxes in g, h) acquired at 100 vps versus 1 vps (downsampled). White arrows
and circles highlight dynamics resolved at 100 vps but blurred at 1 vps. Scale bar,
2 pm. j, k Magnified time-lapse images of the ROl marked by the orange box in (g).
White arrows in (j) indicate the stretching of an ER tubule within 40 ms, while
orange arrows in (k) show the formation of a new tubule within 40 ms. Scale

bar, 2 pm.
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Fig. 5 | Alpha-LFM enabling 5D in-toto imaging and quantitative analysis of
mitochondria-lysosomes interactions at high spatiotemporal resolution. a A
dual-color volume rendering of the outer membranes of mitochondria (Tomm20-
EGFP) and lysosomes (Rab7-mCherry2) in a live U20S cell. Scale bar, 10 pm.

b, ¢ Time-lapse images of typical lysosomes-mediated mitochondrial fusion and
fission events, respectively. Volume rendering shows the first volume of the events
in 3D. The xy and xz slices of the ROl indicated by white boxes in the volume
rendering show the interactions between the lysosome and the fission/fusion sites
of mitochondria. d A false positive case where the lysosome appears to be in
contact with the fission sites in a 2D projection, but in fact there is a significant
distance between them in a 3D observation. e The 3D distances between the lyso-
somes and mitochondrial contact sites reveal the inaccuracies in the identification
of Lyso-Mito contacts in 2D. The dashed line indicates the close proximity

(<240 nm) between lysosomes and mitochondrial constriction sites that can be
identified as Lyso-Mito contacts. f The proportion of mitochondrial fission and

[l Fusion with Lyso contact

Fusion without Lyso contact

fusion events occurred with and without Lyso-Mito contacts identified in 3D and 2D
projections, respectively. The results of 3D indicate a lower contact rate during
mitochondrial fission and fusion than the rate obtained via 2D measurements

(n =35 fissions and 31 fusions from 17 cells). g 3D tracking of mitochondrial fission
and fusion with and without Lyso-Mito contact. The fission and fusion velocities are
represented by color. The hotter color, when in contact with the lysosome, indi-
cates a higher fission and fusion velocity compared to without the lysosome’s
contact. Scale bar, 500 nm. h, i The velocity of mitochondrial fission and fusion with
or without Lyso-Mito contact via 2D and 3D analysis (n =35 fission and 31 fusion
events). The velocity is significantly higher when in contact with lysosomes via 3D
analysis, while there is no significant difference in fission velocity based on 2D
results (P=0.062410; 0.039430 in h, P=0.03074; 0.00017 in i). Boxes are med-
ian +i.q.r.; whiskers represent the min and max values. ns P>0.05, *P<0.05,

***P < 0.001 (one-way ANOVA).

showed a positive correlation between lysosome contacts and fission
(P < 0.05)/fusion velocity (P < 0.001) (Fig. 5h, i). These findings suggest
that interactions with lysosomes might accelerate mitochondrial fis-
sion and fusion. However, this hypothesis requires further validation
through systematic physiological and biochemical experiments.

Long-term imaging and quantitative analysis of mitochondrial
fates across cell cycles

The low phototoxicity and robust denoising capability of Alpha-LFM
enable 3D imaging of mitochondria evolution (tagged with Cox4-
EGFP) in live U20S cells across a long timescale up to 60 h. Considering
both rapid mitochondrial dynamics and their long-term fates need to

be studied, we specifically designed an automatic imaging strategy to
track the high-speed fission and fusion process throughout the entire
cell cycle with minimal phototoxicity (Fig. 6a, “Methods”). During each
cycle of 4h, we continuously imaged the mitochondria for 30 min
across 8 FOVs, with exposure time of 500 ms and a temporal resolu-
tion of 10 s (Fig. 6b). During this 30-min mid-term observation window,
the imaging pipeline included the following steps: (i) Implementing an
Alpha-Net-based focusing strategy to correct sample drift along z-axis.
Mitochondria were imaged and quickly reconstructed by Alpha-Net to
calculate the z-drift distance, which would be further corrected by
moving the objective. This process typically takes merely 1s. (ii) Ima-
ging the mitochondria dynamics at fixed depth of interest for 30 min,
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Fig. 6 | Long-term imaging of mitochondrial fates and morphology changes
across cell cycles using Alpha-LFM. a Automatic Alpha-LFM imaging pipeline
designed for the long-term imaging (up to 60 h) of mitochondria (tagged with
Cox4-EGFP) and chromosomes (tagged with H2B-mCherry). In each cycle of 4 h, the
cells were continuously imaged for 30 min. The 30-min observation majorly
includes the following steps: (i) An instant VCD-based auto-focusing strategy to
correct sample drift along the z-axis. Quick light-field imaging and reconstruction
of mitochondria were performed to calibrate the z-axis drift of the system. The drift
was then corrected by moving the objective using a piezo scanner. (ii) Alpha-LFM
imaging of the mitochondria dynamics and chromosomes in cell nuclei for 30 min.
Eight FOVs were sequentially imaged in each cycle with an interval time of 10 s for
mitochondria and 100 s for chromosomes and an exposure time of 500 ms for
both. b The MIPs of 8 FOV imaged in the first cycle. ¢ The volume renderings of
time-lapse images visualizing diverse cell viabilities with one undergoing
2-generation divisions (the first FOV in b) and another showing inertia without cell

division (the second FOV in b) during the same 60-h imaging. The inset numbers
indicate three cells and their later generations. d The 3D visualization of a repre-
sentative mitochondrion during 30 min. The mitochondria are highlighted in the
3D rendering of the whole cell. e Detailed lineage tracing of the selected single
mitochondrion with seven generations traced. The mitochondria daughters ren-
dered by magenta were from the same source mitochondrion (leftmost one), while
the yellow rendering was a foreign mitochondrion. f Schema depicting the different
fates of the daughter mitochondria in different stages of interphase G1 and G2 in
the cell cycle. Mitochondria were tracked for 30 min. Both the quantities and
portions of the specific mitochondrial events were calculated. g The morphology
changes (Major axis length and minor axis length) of mitochondria during two
entire cell cycles throughout 60 h (n =255). The solid lines represent the median,
and the dashed lines represent quartiles. The spots indicate all calculated values.
Scale bar, 10 pm.
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with an exposure time of 500 ms and an interval time of 10 s. Mean-
while, we imaged in situ chromosomes of the same FOV for identifying
the related cell stage with an exposure time of 500 ms and an interval
time of 100 s (Supplementary Movie 8). After 36-h observation con-
taining 9 cycles of 30-min continuous recording, we discovered
diverse viabilities of the cells within one batch, identifying both inertia
without cell division and active 2-generation divisions across one
entire cell cycle (Fig. 6c).

Smart Alpha-LFM imaging of live cells, as such included capture of
instantaneous mitochondrial fission/fusion events (500 ms), lineage
tracing of single mitochondrion’s change in the middle term (30 min),
and evolution mapping of all mitochondria in the long term (60 h),
thereby enabling in-toto investigation of the mitochondrial fates dur-
ing the entire cell cycle. For example, up to seven generations of the
fissions/fusions of an individual mitochondrion were recorded during
the 2nd 30-min observation. Each fission/fusion activity of the selected
mitochondrion and its resulting later generations were successfully
visualized in three dimensions (Fig. 6d). We casted lineage tracing of
these mitochondrial activities (Fig. 6e, Supplementary Movie 9). In this
case, we observed that majority of subsequent generations of the
source mitochondrion (the Magenta ones in Fig. 6e) fused with their
relatives with only one exception being fused with a foreign mito-
chondrion (the yellow one in Fig. 6e). Furthermore, we followed the
fates of the daughter mitochondria from peripheral and midzone fis-
sions at whole-cell scale. After analyzing 108/113 mitochondrial at G1/
G2 stages, we validated that most of the small peripheral daughter
mitochondria were excluded from further fusions or divisions, con-
sistent with a previous study**. Also, we observed a significant differ-
ence in the rates of no event occurring in these small peripheral
daughters between the G1 (92%) and G2 (80.7%) phases (Fig. 6f, Sup-
plementary Fig. 19). This is probably because the G2 phase is the phase
before the cell division, in which the mitochondria are more active to
prepare for the cell division*’. Furthermore, Alpha-LFM results also
allowed us to study the morphology changes of mitochondria,
including variations in major and minor axis length, throughout two
entire cell cycles (Fig. 6g, Supplementary Fig. 20). The significant
variations in mitochondria morphology and event rates highlight the
importance of long-term imaging facilitated by Alpha-LFM in advan-
cing biological research and applications.

Discussion

Sustained observation of the subcellular biological dynamics at their
physiological status is essential to investigating diverse organelle
functions and their interactions in cell biology. This is difficult for
either scanning-based SR microscopes with suboptimal speed and
phototoxicity, or high-speed light-field microscopes with limited
single-cell resolution. Alpha-LFM circumvents this compromise
between speed, resolution, and photon efficiency based on the new
development of a deep-learning VCD pipeline, now with efficient
solution-seeking abilities. We’d like to summarize the following tech-
nical advances of Alpha-LFM enabled by our new developments of
physics-assisted network framework and adaptive tuning strategy.
First, Alpha-LFM includes new physics-assisted model design, hier-
archical data synthesis procedure, and DPO strategy to maximize the
network’s solving ability to the light-field inversion problem with a
huge solution space, thereby efficiently pushing the resolution of LFM
beyond the diffraction limit. Meanwhile, the strong denoising by the
network in conjunction with photon-efficient LFM modality together
enables ultra-long-term cell observation under physiological status,
wiping off the phototoxicity issue existed commonly in scanning-
based SRM with allowing over 10-fold more measurements. We also
demonstrated the broad adaptability of the Alpha procedure to var-
ious LFM configurations, including spatial LFM excelling in imaging
large fields of view and Fourier LFM being well-suited for resolving
denser signals. Furthermore, the requirement of a large dataset and

extensive training time by a supervised network is also mitigated in
Alpha-LFM by using readily-accessible WF and LF measurements of live
samples to instantly tune the model adaptive to new types of signals. It
is worth noting that Alpha-LFM has been wrapped into a fully open-
source program with a user-friendly GUI provided. With Alpha-LFM, we
four-dimensionally imaged the rapid motion of peroxisomes and the
ER at 100 vps and highly dynamic interactions between lysosomes and
mitochondrial membranes at isotropic 120-nm spatial resolution. We
also demonstrated SR fluorescent imaging of live cells with probably
longest observation time of 60 h. The image results support lineage
tracing of both short-term changes and long-term fates of mitochon-
dria at single-mitochondrion resolution and across an entire cell cycle.

While Alpha-LFM demonstrates improved performance com-
pared to existing LFM approaches, it still faces inherent limitations
stemming from supervised deep-learning approaches. Although the
adaptive-tuning strategy mitigated the requirement of a large dataset
and training cost of the supervised network, the fidelity on unseen data
is still constrained by limited information. It is envisaged that the
incorporation of more data, especially those with higher resolution
and volumetric prior, will further improve the performance of fine-
tuning. Meanwhile, it's noted that Alpha-LFM still requires a con-
siderable amount of high-resolution label data to initiate the training
of the base model and encounters the inherent generalization issue of
supervised networks. Like most deep-learning-based computational
super-resolution approaches, whose reconstruction quality depends
on signal properties, Alpha-LFM also experiences reduced resolution
and fidelity when reconstructing highly dense or low-SNR signals
(Supplementary Fig. 15). It should also be noted that Alpha-LFM pri-
marily enhances the imaging of subcellular structures within live cells.
The in vivo imaging of animals involves light scattering and requires
additional optimization of the approach, which is beyond the scope of
this study.

We anticipate that the generalization issue and dependency on
external data of Alpha-LFM will be circumvented by full-cycle self-
supervision reconstruction strategies, in which the in situ WF mea-
surements of the samples can be used as internal training labels to
further improve the resolution of LF views and lead to reconstruction
with higher quality. A completely unsupervised deep-learning light-
field reconstruction could also be made possible by using implicit
network representation (INR)***’. It's promising because the intrinsic
view synthesis capabilities in INR are indeed helpful to the enhance-
ment of axial resolution and reduction of reconstruction artifacts. But
the learning-and-representing mode for each single LF image is very
time-consuming and computationally demanding. INR-based recon-
struction needs to solve this efficiency problem before it becomes as
practical as DL and deconvolution approaches. Given that a lot of
in vivo biological dynamics occur in the deep tissues, we also expect
the combination of Alpha-LFM with more advanced LFM techniques,
e.g., LFM with AO or two photon excitations, or even a system working
at the NIR-Il window, to observe the subcellular dynamics inside living
animals. Taken together, we believe Alpha-LFM has strongly pushed
the spatiotemporal limit of current SRM/3D fluorescence microscopy
and could be a powerful and accessible tool that helps a broad range of
biology research to demystify the worlds inside the cell. The paradigm
shift it shows could also be beneficial to propelling other microscopy
techniques towards deeper, faster, and clearer imaging.

Methods

LFM optical setup

An add-on device was designed to provide easy light-field imaging of
live cells on a commercial inverted fluorescent microscope (Olympus
1X73), thus enabling wider applications for biology researchers without
an optics background. The device only requires the assembling of off-
the-shelflenses into a customized mounting base without any complex
alignment of the optical path. To precisely position MLA at the native
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image plane of the microscope, a customized lens tube 1 was designed
to fix the MLA (RPC Photonics, MLA-S100-f28) at the Flange focal
distance away from the camera port. Then, a pair of relay lenses
(Thorlabs, TTL100-A) was integrated into another customized lens
tube 2 to 1:1 relay the back focal plane of MLA (light-field image plane)
onto the camera sensor. A high-precision zoom housing (SM1ZM,
Thorlabs) was used to interconnect the 2 lens tubes and allow fine
focusing of the light-field image plane (Supplementary Fig. 11). The
complete add-on device containing the two lens tubes and the zoom
housing was then mounted between the microscope’s camera port and
the sCMOS camera (Photometrics Prime BSI Express), converting the
ordinary inverted microscope into an advanced light-field microscope.
This setup contains 15x15 views (Nnum=15). An alternative LFM
configuration was implemented by replacing MLA with one featuring a
pitch size of 45.5um and a focal length of 1.6 mm, containing 7 x7
views (Nnum =7) (Supplementary Fig. 14).

Additionally, a Fourier LFM system was constructed by adding a
Fourier lens (Thorlabs, AC508-250-A) to perform a Fourier transform
of the native image plane, placing MLA (pitch =3.25 mm, f = 120 mm)
at the back focal plane of the Fourier lens, and using a 100x/NALS5
objective lens (Olympus UPL, APO100XOHR). This setup was used for
imaging microtubules and ER in Figs. 2 and 4, and Supplemen-
tary Fig. 15.

Training data processing pipeline

A data processing pipeline was developed to generate all training data
(including Noisy LF, Clean LF, De-aliased LF, and 3D SR) from the 3D SR
data. It’s noteworthy that the 3D SR data could be acquired from any
SR microscopy with a resolution of around 120 nm. In our study, we
provide an easily accessible solution that is acquired from commercial
Airyscan confocal microscopy™?’ (Zeiss, LSM900) by imaging fixed
cells and enhanced through applying a well-established self-learning
network>***%, thereby achieving an isotropic resolution of 120 nm. We
also demonstrate that our strategy can perform well on raw Airyscan
data (Supplementary Fig. 21), 3D SIM data acquired from a commercial
SIM  microscope (HIS-SIM, Guangzhou Computational Super-
resolution Biotech) (Fig. 2I, Supplementary Fig. 15) or SR data
acquired from 4-beam SIM* (Supplementary Fig. 22).

A SAS LFP pipeline was designed to create De-aliased LF images to
guide the LF de-aliasing task. The 3D SR volumes were shifted by a
distance less than the size of the microlens along the horizontal (both x
and y, respectively) and then were projected by convolving with a 5D
PSF of LFM to yield multiple light field projections that included more
spatial information through multiple sampling. The shifted times
depended on the undersampling rate of the microlens, which is 5x 5
times with a step of 3 pixels for the setup of Nnum =15 and 3 x 3 times
with a step of 2 for the setup of Nnum=7 in this paper. The SAS LF
projections were then realigned to generate the De-aliased LF images
according to the arrangement of the light.

Then, Clean LF images (the center ones with shift =0 of the De-
aliased LF images) were used to guide the denoising task. To generate
Noisy LF with accurate SNR matched with the experimental LF, the
Clean LF images were normalized to the same range of experimental
LFs, and various noises in the range of the highest and lowest noise in
the experimental LFs during long-term observation were added to the
Clean LFs to generate Noisy LFs. The SNR was calculated by:

S— Ibackground

SNR== =
2
\/5 - Ibackground + Obackground

Q=

@

where S is the average signal intensity value in the image, /y,cground and
Opackground ar€ the mean and the standard deviation of the background,
respectively. Finally, we obtained De-aliased LF images, Clean LF
images, and Noisy LF images, which were all conveniently generated

from the same 3D SR images, for the network training of Alpha-LFM.
The rationality of the synthetic pipeline was validated by the high
similarity between synthetic LFs and experimental LFs (Supplemen-
tary Fig. 23).

For Fourier LFM, the LF projections were generated by using the
PSF of FLFM. The high-resolution (HR) LF images used to guide the LF
de-aliasing network were generated by squaring the PSF of the Fourier
LFM and convolving it with 3D SR data.

For adaptive tuning shown in Supplementary Fig. 10, the training
dataset for the base model included outer membranes of lysosomes
(panels b-d) and outer membranes of mitochondria (panels e-h). For
all other figures, the training and testing datasets consisted of the same
sample type.

The network design of Alpha-LFM

Previous deep-learning-based light-field reconstruction networks
enabled resolution enhancement by training the light-field projections
and high-resolution GTs in an end-to-end manner. This one-step net-
work produces hallucinations or artifacts when solving a hard inverse
problem. Simply increasing the number of model parameters leads to
over-fitting without incorporating physical priors (Supplementary
Fig. 24). Considering the physical process of light-field imaging, our
Alpha-Net disentangles this inverse problem into four sub-problems:
denoising, de-aliasing, and 3D reconstruction. The three sub-problems
are divided and conquered by jointly optimizing task-specific networks
with a weighted objective function.

The architecture of the denoising sub-network was based on an
attention mechanism***°, which consisted of dual branches (channel-
attention and view-attention) to extract the view-wise features from
input views with different SNR. The denoising module can be for-
mulated as

X, =Fusion(CAB(ConvV gijaceq (X)) + (VAB(CONV gigiareq (X)) 2)

where Conv gi,...eq Means a dilated convolution operation that enlarges
the receptive field. Fusion is feature element-wise adding. CAB and
VAB are the channel-attention branch and view-attention branch. In
order to suppress the noise fluctuation, L1 and L2 loss is used as loss
function during denoising stage:

Lossdenoising = MAE(XI'yI) + MSE(xlryl) (3)

For LF de-aliasing, how to effectively utilize the angular and spatial
information encoded in LFs poses a challenge when using conven-
tional 2D super-resolution networks, such as ResNet™ and RCAN*?,
directly on the extracted views. These approaches often fail to fully
leverage the rich angular features inherent in LFs. In FLFM, we used the
dual-attention network structure as a denoising sub-network to extract
angular features from FLFM views, taking advantage of the distinct 4D
representation in the Fourier domain®. To increase the sampling rate
of LFs, an additional upsampling layer was integrated at the end of the
dual-attention network, forming the FLFM de-aliasing network. In
spatial LFs de-aliasing, considering the interleaved arrangement of
angular and spatial information in spatial light-field images, we
employed two types of dilated convolution operations to disentangle
2D spatial information and 2D angular information®. These two con-
volutions and a series of activation functions and feature fusion layers
form the Spatial-Angular block (SAB). According to the sequential
connection of four SAB and upsampling convolution, the aliased spa-
tial information caused by the sparse sampling rate of MLA can be de-

Nature Communications | (2025)16:7132

12


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62471-w

aliased:

X, =Upsampling | Fusion | CONVgjaeq (X1) + SAB(... SAB(x;))
—

nxSAB
“4)

where Fusion is a channel concatenate operation. Considering the
potential parallax information across different views, epipolar con-
straint (EPl ongiseency) ON de-aliasing prediction is proposed to keep the
geometry relationship among various views. The objective function of
de-aliasing can be formulated as:

Lossde—aliasing =MSE (xzd’z) + EPlconsistency (xz,yz) (5)

where MSE means mean squared error between network output and
de-aliased LF.

For the 3D reconstruction model, we extended the original VCD to
handle super-resolution reconstruction. According to adding MultiRes
blocks™ and modifying activation function, the capability of VCD
network is enhanced, achieving lower fitting errors when solving SR
reconstruction:

X3 = UNety;,ires(CONV(SubpixelConv(x,))) (6)

where SubpixelConv refers to the subpixel convolution operation of
the input.

Correspondingly, for the 3D reconstruction task, we adopt MSE
loss and lateral gradients loss to preserve the structural information of
the GT.

Lossreconstruction = MSE(X3,y3) + gradient(x3,y3) (7)

These three networks are optimized synchronously based on the
designed weighted objective function:

Loss = Lossdenoising + l-Ossde—aliasing + Lossreconstruction (8)

The architecture of the three modules exhibited task-specific
capabilities (Supplementary Fig. 25). Benefiting from the rationality of
the model design, repeated training yielded highly consistent predic-
tions, indicating low model uncertainty (Supplementary Fig. 26).

For Alpha-Net training, all models were trained on NVIDIA
GeForce RTX 3090 or 4090 with Python version 3.8 and Tensorflow
version 1.15.0. The training process of an Alpha-Net model was com-
posed of two stages. First, pretrain 3 sub-networks, including a
denoising network, a de-aliasing network, and a 3D reconstruction
network. Specifically, the denoising network was trained with a learn-
ing rate of 1x10™* and a training epoch of 51. For de-aliasing network
and 3D reconstruction network, they used the same learning rate
(5x10™) but different training epochs (51 and 151, respectively). The
pretraining process lasted for 16 h. Secondly, train Alpha-Net with
these pre-trained models under the designed weighted loss. During
this DPO, we adopted step-based learning rate schedules with a decay
factor of 0.5 and a decay step of 25 to enhance model performance.
The initial learning rate was set to 1x10™* and the total training epoch
was 101. The training time of the second phase was roughly 2 h.

Once the model was trained, the captured LFs could be recon-
structed into 3D volumes through network inference. The inference
time was determined by the computational capacity of the device and
the voxel count of the reconstructed volume, for example, recon-
structing a 3D volume with a size of 2040 %2040 x161 (height x
width x depth) from captured LF (1020 x 1020, height x width) took
~0.5405s (-0.062s for LF denoising, ~0.080s for LF de-aliasing and

~0.398's for 3D Reconstruction). For more details about Alpha-Net
implementations, see Supplementary Note 1 and our open-
source code.

Adaptive-tuning strategy for reconstruction of unseen samples
Unlike previous supervised learning strategy* only solving the inverse
problem for specific samples similar to the training data, Alpha-LFM
adopted an adaptive-tuning strategy to overcome the hallucination
and abnormal structure features when facing unseen data for the
trained model. We developed an adaptive-tuning strategy to recon-
struct 3D signals from LF captures of unseen types of structure that
were not included in the training data via the fine-tuning model, in
which only an in situ 2D WF image captured together with the LF
imaging was required, instead of the supervision of 3D label data from
another scanning microscope. During the adaptive-tuning phase, we
adopted an alternative optimization approach to re-update the para-
meters of the trained model. The paired synthetic training data (e.g.,
the outer membrane of mitochondria) containing 3D stack were used
to provide the volumetric priors to ensure the fidelity of 3D prediction
of original model while the experimental LF captures and corre-
sponding WF images act as prior knowledge of new domain (e.g., the
outer membrane of lysosome) to prevent data bias brought by trained
model. For synthetic data training, the designed weighted loss of the
original model was adopted:

Losssynthetic = Lossdenoising + Lossde—aliasing + l-Ossrecm'nstruction (9)

For the new domain transfer, reprojection loss was to provide
constraints on the different structure of unseen samples:
LoSSprojection = MSE(reprojection, WF ;eeen) 10)
where reprojection was computed from the maximum projection
and down-sampling of network 3D prediction of LF.,. The WF
images were processed by a deconvolution algorithm to suppress
out-of-focus signals. To ensure the accuracy of this loss computation,
the two detection modalities (LF and WF) were pre-aligned with the
aid of fluorescent beads to yield paired LF images and registered WF
images. The paired LF-WF dataset in the fine-tuning phase contained
-3 cells. In this work, LoSSgynmerc and LOSS,gjection Were calculated
every two consecutive iterations, N and N+1, respectively. The
effectiveness of the alternative optimization strategy was validated
through an ablation study on the reconstruction of unseen samples
(Supplementary Fig. 27). The training time of the fine-tuning phase
was typically 70-100 folds less than the consumption of building a
new model, with a total mini-batch iteration of ~30,000 finished in
10-15 min.

Network comprehensive performance pyramid (NCPP)

The NCPP visualized the model’s ability by quantifying the resolution
and fidelity of network inference results between Alpha-LFM and VCD-
LFM during model optimization. To clarify the fitting ability of these
two models on label data, such resolution and fidelity metrics were
derived from the cut-off frequency difference (AKc) and the structural
similarity discrepancy (ASSIM =1-SSIM) between the 3D reconstruc-
tion of the network and corresponding GT, where Kc is computed by
decorrelation analysis*. Both AKc and ASSIM range between 0 and 1,
where values close to O indicate a favorable combination of resolution
and fidelity, while values close to 1 signify a low-quality image recon-
struction. In our study, 196 LF patches (Size: 360 x 360) of mitochon-
drial outer membrane data were reconstructed by VCD and Alpha-Net
during the whole model training process. Specifically, we chose five
different epochs (10, 100, 200, 210, and 300) to track this compre-
hensive performance of two models: For Alpha-Net, 10-100 epochs
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denoted the decomposed optimization on each sub-network while
200-300 epochs represented the progressive optimization process
with multi-stage data (Noisy LFs, Clean LFs, De-aliased LFs, and 3D SR);
For VCD, 10-300 epochs denoted the optimization process under SR
stacks and corresponding Noisy LFs. By calculating AKc and ASSIM of
network inferences under the epochs, the performance scattering
plots in the network optimization process were produced (Fig. 2a).
Besides, the convex hull computation of these scattering plots was
used to generate the boundary line of the statistics distribution and
evaluate the performance deviation.

Assessment of the resolution, fidelity, and SBP of Alpha-LFM

In Fig. 2, we used the structural similarity (SSIM) and PSNR function in
Matlab to assess the fidelity of our Alpha-Net reconstructions and other
LFM techniques, including LFD, VS-LFD, and VCD, utilizing the Airyscan
data as reference in both the xy and yz planes. In Supplementary Fig. 10,
the resolution-scaled Pearson coefficient was quantified by SQUIRREL
analysis™ using WF as reference. We applied decorrelation analysis to
quantify the resolution of Alpha-Net results and other 3D microscopy
implementations. The analysis was conducted using MATLAB. The axial
resolution was measured by the sectorial resolution mode of the dec-
orrelation analysis™, in which only the resolution in a narrow sectorial
region along the z direction was calculated. The SBP was calculated by
SBP = FOV/(0.56)° with & as the system’s resolution, the factor 0.5 stem-
ming from the Nyquist-Shannon sampling theorem, and the factor 3
representing three dimensions.

In Fig. 21 and Supplementary Fig. 15, the fidelity of Alpha-LFM was
validated under varying light doses by adjusting the optical power and
exposure time. Comparison between Alpha-LFM and 3D SIM was
conducted using the same objective (Olympus UPL, APO100XOHR)
and identical light doses from 1.6 to 0.02J/cm? for obtaining the same
volume with a depth of 4 um.

Cell culture and fluorescence labeling

U20S cells were grown in culture medium containing McCoy’s 5A
medium (Thermo Fisher Scientific) supplemented with 1% antibiotic-
antimycotic (Thermo Fisher Scientific) and 10% fetal bovine serum
(Thermo Fisher Scientific) at 37°C with 5% CO, in a humidified
incubator.

For labeling lysosomes in fixed U20S cells, cells were first trans-
fected with EGFP-Rab7A using Lipofectamine 2000 according to the
standard protocol and cultured at 37 °C with 5% CO, for an additional
24 h. Before imaging, the cells were fixed with 2% glutaraldehyde
for 20 min.

For labeling tubulin in fixed U20S cells, cells were seeded onto
coverslips at 37 °C with 5% CO, for 12 h. Before fixation, the cells were
washed with phosphate buffered saline (PBS, Thermo Fisher Scientific)
at 37°C and then treated with fixing buffer (containing 3% paraf-
ormaldehyde (Electron Microscopy Sciences), 0.1% glutaraldehyde
(Electron Microscopy Sciences), 0.2% Triton X-100 (Sigma-Aldrich))
for 15min, then incubated with 0.2% Triton X-100 for 15min and
blocked with blocking buffer (3% bovine serum albumin (Sigma-
Aldrich) and 0.05% Triton X-100 (Sigma-Aldrich)) for 20 min at room
temperature. After that, cells were incubated with an anti-alpha tubulin
antibody (Abcam, 1:500 dilution) overnight at 4 °C. Subsequently, the
primary antibody was removed, and the cells were washed twice with
PBS. Next, the cells were incubated with a secondary antibody (Abcam,
labeled with Alexa Fluor 488, 1:400 dilution) for another 2 h at room
temperature. The antibody was then removed, and the cells were
washed three times with PBS.

For labeling outer membranes of mitochondria and lysosomes in
live U20S cells, cells were first transfected with Tomm20-EGFP and
Rab7A-mCherry2 using Lipofectamine 2000 according to the standard
protocol and cultured at 37 °C with 5% CO, for an additional 24 h.
Before imaging, remove old media and add fresh media.

For labeling mitochondrial matrix and chromosomes in live U20S
cells, cells were first transfected with Cox4-EGFP and H2B-mCherry2
using Lipofectamine 2000 according to the standard protocol and
cultured at 37 °C with 5% CO, for an additional 8 h. After 6-8 h of
transfection, the cells were digested with 0.25% trypsin, seeded on cell
culture dishes (20 mm diameter), and incubated for 36 h at 37°C in
5% CO,.

For labeling peroxisomes in live U20S cells, cells were first
transfected with SKL-mApple using Lipofectamine 2000 according to
the standard protocol and cultured at 37 °C with 5% CO, for an addi-
tional 24 h. Before imaging, remove old media and add fresh media.
For GT images acquisition, cells were fixed with 4% paraformaldehyde
(PFA) before imaging.

For labeling ER in live COS-7 cells, cells were first transfected with
Sec61B-EGFP using Lipofectamine 2000 according to the standard
protocol and cultured at 37 °C with 5% CO, for an additional 24 h.
Before imaging, remove old media and add fresh media. For GT images
acquisition, cells were fixed with 2% glutaraldehyde before imaging.

During the imaging process, cells were cultivated in phenol red-
free McCoy’s 5A medium (customized, Boster Biological Technology)
within the confocal dishes. To ensure a stable environment, the cells in
confocal dishes were cultured in the live-cell microscope incubation
system (TOKAIHIT) to maintain a consistent temperature of 37 °C and
a 5% CO, atmosphere.

Live-cell imaging

Light-field imaging of the lysosome outer membrane in live U20S cells
was implemented using our add-on light-field device with a x60/1.3 NA
objective (Olympus UPlanSApo60XS2) at a volumetric imaging rate up
to 333 Hz. This high-speed light-field imaging of live cells continued for
2 min with less than 50% photobleaching, yielding 40000 SR recon-
structions using Alpha-LFM. As a result, the fine deformation of lyso-
some outer membranes occurred in milliseconds and could be
observed by our Alpha-LFM in three dimensions. To compare the
photon bleaching rate with other 3D microscopy implementations, we
also imaged the lysosome outer membrane by Airyscan and an LSFM
microscope. The laser intensity and exposure time were carefully
adjusted to ensure that the image SNRs by these microscopes were
similar (SNR=5.98, 5.87, 5.74, 5.99 for LSFM, Airyscan, 3D SIM, and
Alpha-LFM). To maintain sufficient SNR, LSFM, Airyscan, and 3D SIM
required 4 s, 4 min, and 30 s for imaging a whole cell, respectively. The
bleaching rates were then calculated using MATLAB. Multiple areas
were cropped, and a threshold was used to discriminate the signal
areas and background areas automatically. The photon bleaching rate
over time was finally calculated using the following equation:

I(t) = Isignal(t) - Ibackground (t))/ max(lsignal(t) - Ibackground ) (11)

where /ggny and lyygroung are the mean intensity value of the
multiple regions of signal and background images, respectively.

Quantitative analysis of the interaction between mitochondria
and lysosomes

The interaction of mitochondria and lysosomes was identified when
the distance between a certain lysosome and the constriction site of a
certain mitochondrion was measured as smaller than 240 nm (close
proximity) in at least three consecutive frames. We four-dimensionally
captured such interaction between mitochondria and lysosomes in 17
live cells, where 41 ROIs that met the Lyso-Mito contact criteria in 2D
MIP mode were identified, with 24 ROIs containing lysosome-mediated
mitochondrial fission and the other 17 ROIs containing mitochondrial
fusion. Then, the real distance between lysosomes and mitochondria in
these ROI was measured in true 3D mode using the commercial Imaris
software. As a result, 10 false contacts were found in the 2D results. We
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further calculated the fission and fusion velocity using self-written
MATLAB code that included the following steps:

(i) Obtaining the coordination of the mitochondrial endpoints. For
each frame of the time-series data: first, use the “imbinarize()”
function in Matlab to binarize the image. Then, employ the
“bwskel()” function to skeletonize the binary image. Finally, use
the “endpoints” method in the “bwmorph3()” function to mark
the endpoints of the skeletonized image and record the
endpoint coordinates of all mitochondria.

(ii) Tracking the endpoints and identifying the trajectories related

to mitochondrial fission and fusion events. The code uses
Matlab’s “assignDetectionsToTracks” function to track the
sequence of the recorded endpoint coordinates along the time
axis for the cropped ROIls, providing the motion trajectory of all
endpoints along the time axis. Then, the two longest motion
trajectories were filtered as the trajectories related to the fission
or fusion events, while the discrete trajectories were removed.
As long as the discontinuities occurred between frames in
tracking, the “interpl()” function is applied to complete the
trajectories.
Velocity Acquisition. For each motion trajectory, the code cal-
culates the distance between endpoints in all adjacent frames.
Since frame interpolation has been performed, the instanta-
neous velocity was calculated by dividing the distance by the
time interval. The calculated sequence of instantaneous velocity
along the time corresponding to each motion trajectory was
then averaged to obtain the overall fission or fusion velocity of
this ROL

(iii)

Experimental setup for long-term live-cell imaging

To observe the mitochondrial dynamics and use chromosomes to
identify the cell stages, we used a 488/561 nm dual-band optical filter
block (Chroma, 59904) in the microscope. Given that the cell division is
highly sensitive to phototoxicity, the power of the LED (CoolLED, PE-
800) was adjusted to 1% in 470 nm (30 pw) and 1% in 550 nm (30 pw).
Since the tracking of high-speed fission and fusion events requires at
least 10-ss imaging rates and the entire cell cycle needs at least 48 h of
observation, we designed a non-uniform imaging strategy for this long-
term experiment. During this 30-min mid-term observation window, the
imaging pipeline included the following steps: (i) Implementing an
Alpha-Net-based focusing strategy to correct sample drift along the z-
axis. Then the 3D distribution of the mitochondria was quickly recon-
structed by Alpha-Net and compared with the original distribution to
calculate the z-drift distance, which would be further corrected by
moving the objective using a piezo scanner (COREMORROW, P73.7).
This process typically takes merely 1s. (i) Imaging the mitochondria
dynamics at fixed depth of interest for 30 min, with an exposure time of
500 ms and an interval time of 10 s. Meanwhile, identifying the related
cell stage through the imaging of chromosomes in cell nuclei with an
exposure time of 500 ms and an interval time of 100 s.

Tracking of the fates and morphology changes of mitochondria
We applied Mitometer” to track the mitochondria dynamics recon-
structed by Alpha-Net. Then the confident tracks and the corresponding
morphology parameters can be exported as a mat file. To obtain the
morphology changes of mitochondria throughout the entire cycle, we
first extracted the morphology parameters, including major axis length,
minor axis length, Volume, and Solidity from the mat file in each time
point. Then we mapped these parameters along time and observed the
changes throughout the entire cycles. To further track the fates of each
mitochondrion, we used the self-written MATLAB code to extract the
fission and fusion events in the mat file of the confident tracks. Then the
mitochondria that exhibited the first fission were extracted, with the
fission sites being identified. We compared the volumes of the two
divided mitochondria in the next frame after fission, and the smaller one

was defined as the smaller daughter. If the volume of the smaller one is
less than 25% of the total length of the two divided mitochondria, the
fission will be defined as a peripheral fission; otherwise, it is a midzone
fission. Then the number of fission and fusion events that occurred in
these daughters were extracted, and the daughters that underwent no
fission or fusion were defined as no event. As a result, the event rates of
these peripheral or midzone daughters were calculated and mapped.

Statistics and reproducibility

Each experiment was repeated independently at least three times
using distinct biological replicates. Representative quantitative results
shown in Figs. 2j, k, 3c, Se-i and 6g were consistent across these
independent experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The source data that supported the findings of this study are provided
with the paper (including figures in the manuscript and Supplementary
information). Representative training dataset for network training and
raw data from figures (e.g., Figs. 4a and 5a) are publicly available on the
figshare database (https://doi.org/10.6084/m9.figshare.29492231).
Additional datasets (time-lapse live-cell data and training data of
diverse samples for deep learning) are available from the corre-
sponding author upon request due to their large file size. Source data
are provided as a Source Data file. Source data are provided with
this paper.

Code availability

Customized Alpha-Net program and codes for quantitative analyses
implemented in the current study are available (https://github.com/
feilab-hust/Alpha-LFM, https://doi.org/10.5281/zenodo.15779137).

References

1. Valm, A. M. et al. Applying systems-level spectral imaging and ana-
lysis to reveal the organelle interactome. Nature 546, 162-167 (2017).

2. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell
biology. Nat. Rev. Mol. Cell Biol. 18, 685-701 (2017).

3. Choquet, D., Sainlos, M. & Sibarita, J. B. Advanced imaging and
labelling methods to decipher brain cell organization and function.
Nat. Rev. Neurosci. 22, 237-255 (2021).

4. Schermelleh, L. et al. Super-resolution microscopy demystified.
Nat. Cell Biol. 21, 72-84 (2019).

5. Schermelleh, L. et al. Subdiffraction multicolor imaging of the
nuclear periphery with 3D structured illumination microscopy.
Science 320, 1332-1336 (2008).

6. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional
super-resolution imaging by stochastic optical reconstruction
microscopy. Science 319, 810-813 (2008).

7. Shao, L., Kner, P., Rego, E. H. & Gustafsson, M. G. Super-resolution
3D microscopy of live whole cells using structured illumination.
Nat. Methods 8, 1044-1046 (2011).

8. York, A. G. et al. Instant super-resolution imaging in live cells and
embryos via analog image processing. Nat. Methods 10, 1122-1126
(2013).

9. Chen, B.C. et al. Lattice light-sheet microscopy: imaging molecules
to embryos at high spatiotemporal resolution. Science 346,
1257998 (2014).

10. Li, D. et al. ADVANCED IMAGING. Extended-resolution structured
illumination imaging of endocytic and cytoskeletal dynamics. Sci-
ence 349, aab3500 (2015).

1. Wu, Y. et al. Multiview confocal super-resolution microscopy. Nat-
ure 600, 279-284 (2021).

Nature Communications | (2025)16:7132

15


https://doi.org/10.6084/m9.figshare.29492231
https://github.com/feilab-hust/Alpha-LFM
https://github.com/feilab-hust/Alpha-LFM
https://doi.org/10.5281/zenodo.15779137
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62471-w

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

Li, X. et al. Three-dimensional structured illumination microscopy
with enhanced axial resolution. Nat. Biotechnol. 41, 1307-1319 (2023).
Zhou, Y., Mao, S. & Fei, P. Light sheet fluorescence microscopy:
advancing biological discovery with more dimensions, higher
speed, and lower phototoxicity. Innovation 5, 100692 (2024).
Wang, Z. et al. 3D live imaging and phenotyping of CAR-T cell
mediated-cytotoxicity using high-throughput Bessel oblique plane
microscopy. Nat. Commun. 15, 6677 (2024).

Huff, J. The Airyscan detector from ZEISS: confocal imaging with
improved signal-to-noise ratio and super-resolution. Nat. Methods
12, i-ii (2015).

Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D
dynamics in thickly fluorescent specimens. Cell 151, 1370-1385
(2012).

Zhao, Y. et al. Isotropic super-resolution light-sheet microscopy of
dynamic intracellular structures at subsecond timescales. Nat.
Methods 19, 359-369 (2022).

Broxton, M. et al. Wave optics theory and 3-D deconvolution for the
light field microscope. Opt. Express 21, 25418-25439 (2013).
Cohen, N. et al. Enhancing the performance of the light field micro-
scope using wavefront coding. Opt. Express 22, 24817-24839 (2014).
Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neu-
ronal activity using light-field microscopy. Nat. Methods 11, 727-730
(2014).

Guo, C., Liu, W., Hua, X., Li, H. & Jia, S. Fourier light-field micro-
scopy. Opt. Express 27, 25573-25594 (2019).

Wu, J. et al. Iterative tomography with digital adaptive optics per-
mits hour-long intravital observation of 3D subcellular dynamics at
millisecond scale. Cell 184, 3318-3332 3317 (2021).

Zhang, Z. et al. Imaging volumetric dynamics at high speed in
mouse and zebrafish brain with confocal light field microscopy.
Nat. Biotechnol. 39, 74-83 (2021).

Yi, C., Zhu, L., Li, D. & Fei, P. Light field microscopy in biological
imaging. J. Innov. Opt. Health Sci. 16, 2230017 (2023).

Hua, X., Liu, W. & Jia, S. High-resolution Fourier light-field micro-
scopy for volumetric multi-color live-cell imaging. Optica 8,
614-620 (2021).

Lu, Z. et al. Virtual-scanning light-field microscopy for robust
snapshot high-resolution volumetric imaging. Nat. Methods 20,
735-746 (2023).

Han, K. et al. 3D super-resolution live-cell imaging with radial
symmetry and Fourier light-field microscopy. Biomed. Opt. Express
13, 5574-5584 (2022).

Weigert, M. et al. Content-aware image restoration: pushing the
limits of fluorescence microscopy. Nat. Methods 15, 1090-1097
(2018).

Qiao, C. et al. Rationalized deep learning super-resolution micro-
scopy for sustained live imaging of rapid subcellular processes.
Nat. Biotechnol. 41, 367-377 (2022).

Wang, Z. et al. Real-time volumetric reconstruction of biological
dynamics with light-field microscopy and deep learning. Nat.
Methods 18, 551-556 (2021).

Zhu, L., Yi, C. & Fei, P. A practical guide to deep-learning light-field
microscopy for 3D imaging of biological dynamics. STAR Protoc. 4,
102078 (2023).

Zhu, T. et al. High-speed large-scale 4D activities mapping of
moving C. elegans by deep-learning-enabled light-field micro-
scopy on a chip. Sens. Actuators B Chem. 348, 130638 (2021).

Yi, C. et al. Video-rate 3D imaging of living cells using Fourier view-
channel-depth light field microscopy. Commun. Biol. 6, 1259
(2023).

Guo, Y. et al. Closed-loop matters: dual regression networks for
single image super-resolution. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition 5407-5416 (IEEE, 2020).

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Lempitsky, V., Vedaldi, A. & Ulyanov, D. Deep image prior. In Proc.
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition 9446-9454 (IEEE, 2018).

Chen, J. et al. Three-dimensional residual channel attention net-
works denoise and sharpen fluorescence microscopy image
volumes. Nat. Methods 18, 678-687 (2021).

Huff, J. et al. The new 2D Superresolution mode for ZEISS Airyscan.
Nat. Methods 14, 1223-1223 (2017).

Gustafsson, M. G. et al. Three-dimensional resolution doubling in
wide-field fluorescence microscopy by structured illumination.
Biophys. J. 94, 4957-4970 (2008).

Sapoznik, E. et al. A versatile oblique plane microscope for large-
scale and high-resolution imaging of subcellular dynamics. eLife 9,
e57681 (2020).

Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics
and large-scale samples with SCAPE 2.0. Nat. Methods 16,
1054-1062 (2019).

Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal
interactions at nanoscale resolution on millisecond timescales. Cell
175, 1430-1442.€1417 (2018).

Boutry, M. & Kim, P. K. ORP1L mediated PI(4)P signaling at ER-
lysosome-mitochondrion three-way contact contributes to mito-
chondrial division. Nat. Commun. 12, 5354 (2021).

Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria-lysosome
contacts regulate mitochondrial fission via RAB7 GTP hydrolysis.
Nature 554, 382-386 (2018).

Kleele, T. et al. Distinct fission signatures predict mitochondrial
degradation or biogenesis. Nature 593, 435-439 (2021).

Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance
during cell division, development and disease. Nat. Rev. Mol. Cell
Biol. 15, 634-646 (2014).

Chen, A. et al. MVSNeRF: fast generalizable radiance field recon-
struction from multi-view stereo. In Proc. IEEE/CVF International
Conference on Computer Vision 14124-14133 (2021).

Mildenhall, B. et al. NeRF: representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 99-106 (2021).

Zhao, F. et al. Deep-learning super-resolution light-sheet add-on
microscopy (Deep-SLAM) for easy isotropic volumetric imaging of
large biological specimens. Biomed. Opt. Express 11, 7273-7285
(2020).

Zhang, Y. et al. Image super-resolution using very deep residual
channel attention networks. In Proc. European Conference on
Computer Vision (ECCV) 286-301 (Springer, 2018).

Mo, Y., Wang, Y., Xiao, C., Yang, J. & An, W. Dense dual-attention
network for light field image super-resolution. IEEE Trans. Circuits
Syst. Video Technol. 32, 4431-4443 (2021).

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition 770-778 (IEEE, 2016).

Qiao, C. et al. Evaluation and development of deep neural networks
for image super-resolution in optical microscopy. Nat. Methods 18,
194-202 (2021).

Wang, Y. et al. Spatial-angular interaction for light field image
super-resolution. In Proc. Computer Vision—ECCV 2020 290-308
(Springer, 2020).

Ibtehaz, N. & Rahman, M. S. MultiResUNet: rethinking the U-Net
architecture for multimodal biomedical image segmentation.
Neural Netw. 121, 74-87 (2020).

Descloux, A., GruBmayer, K. S. & Radenovic, A. Parameter-free
image resolution estimation based on decorrelation analysis. Nat.
Methods 16, 918-924 (2019).

Culley, S. et al. Quantitative mapping and minimization of super-
resolution optical imaging artifacts. Nat. Methods 15, 263-266
(2018).

Nature Communications | (2025)16:7132

16


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62471-w

57. Lefebvre, A. E. Y. T., Ma, D., Kessenbrock, K., Lawson, D. A. & Dig-
man, M. A. Automated segmentation and tracking of mitochondria
in live-cell time-lapse images. Nat. Methods 18, 1091-1102 (2021).

Acknowledgements

We are grateful to X. Duan for providing us with the fluorescent cell
samples and to S. Mao for discussing the biological applications with us.
This work was supported by the funding from National Natural Science
Foundation of China (T2225014, 62375095, 82470239, 32201132),
National Key Research and Development Program of China
(2023ZD0519900, 2022YFC3401100), Key Research and Development
Project of Hubei Province (2024BCBO11), The Interdisciplinary Research
Program of HUST (5003540153, 2024JCYJ064), National Research
Center for Translational Medicine at Shanghai (NRCTM (SH)-2023-04).

Author contributions

P.F.,L.Z.,and C.Y. conceived the idea. P.F. and D.L. oversaw the project.
L.Z. and J.S. developed the optical setups and acquired the experi-
mental images. L.Z., J.S., and C.Y. developed the programs. L.Z. and J.S.
processed the images. M.Z. prepared all the biological samples. L.C.,
Yz,CZ,J)T,Y.Z,LZ,CY., J)S, MH., Y.H, SW., H.C., and D.L. ana-
lyzed the data. L.Z., D.L., and P.F. discussed and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-62471-w.

Correspondence and requests for materials should be addressed to
Dongyu Li or Peng Fei.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

School of Optical and Electronic Information—Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology,

Wuhan, China. 2MOE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility—Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China. 3Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China. #International Cancer Institute, Peking University Cancer Hospital and Institute, Peking University, Beijing, China.
SDepartment of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China. ®Advanced Biomedical Imaging
Facility, Huazhong University of Science and Technology, Wuhan, Hubei, China. “College of Advanced Interdisciplinary Studies, National University of
Defense Technology, Changsha, China. 8These authors contributed equally: Lanxin Zhu, Jiahao Sun, Chenggiang Yi, Meng Zhang.

e-mail: li_dongyu@hust.edu.cn; feipeng@hust.edu.cn

Nature Communications | (2025)16:7132

17


https://doi.org/10.1038/s41467-025-62471-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:li_dongyu@hust.edu.cn
mailto:feipeng@hust.edu.cn
www.nature.com/naturecommunications

	Adaptive-learning physics-assisted light-field microscopy enables day-long and millisecond-scale super-resolution imaging of 3D subcellular dynamics
	Results
	Principle and implementation of Alpha-LFM
	Characterization of Alpha-LFM
	Comparative performances of Alpha-LFM and other approaches
	High-speed 3D imaging of peroxisomes and ER enabled by Alpha-LFM
	Dual-color Alpha-LFM for 5D in-toto imaging and quantification of lysosome-mitochondria interactions
	Long-term imaging and quantitative analysis of mitochondrial fates across cell cycles

	Discussion
	Methods
	LFM optical setup
	Training data processing pipeline
	The network design of Alpha-LFM
	Adaptive-tuning strategy for reconstruction of unseen samples
	Network comprehensive performance pyramid (NCPP)
	Assessment of the resolution, fidelity, and SBP of Alpha-LFM
	Cell culture and fluorescence labeling
	Live-cell imaging
	Quantitative analysis of the interaction between mitochondria and lysosomes
	Experimental setup for long-term live-cell imaging
	Tracking of the fates and morphology changes of mitochondria
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




