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FedECA: federated external control arms for
causal inference with time-to-event data in
distributed settings
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External control arms can inform early clinical development of experi-
mental drugs and provide efficacy evidence for regulatory approval.
However, accessing sufficient real-world or historical clinical trials data is
challenging. Indeed, regulations protecting patients’ rights by strictly
controlling data processing make pooling data from multiple sources in a
central server often difficult. To address these limitations, we develop a
method that leverages federated learning to enable inverse probability of
treatment weighting for time-to-event outcomes on separate cohorts
without needing to pool data. To showcase its potential, we apply it in
different settings of increasing complexity, culminating with a real-world
use-case in which our method is used to compare the treatment effect of
two approved chemotherapy regimens using data from three separate
cohorts of patients with metastatic pancreatic cancer. By sharing our
code, we hope it will foster the creation of federated research networks
and thus accelerate drug development.

Development of innovative drugs is a long and challenging task with  overcome those obstacles and accelerate the access to new drugs
increasing costs’. The probability of success of a new drug is low, with  while reducing the development costs.

about 10% of drugs that enter clinical trials reaching FDA approval’. Statistical methods were developed to compare the efficacy of a
Phase Il randomized trials, that aim at establishing clinical efficacy, fail  treatment to a control group that is built with data from external sources
approximately in one case out of two®. Improving this rate is crucial to  to the current trial (External Control Arm - ECA). ECA methods take into
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account the potential bias introduced by the non-randomized nature of
the control group, and enable early assessment of treatment efficacy,
which can inform the transition from a single-arm phase Il to a phase Il
clinical trial**. ECA are increasingly used in clinical applications®, and are
receiving more and more attention from regulatory agencies (FDA,
EMA)"®. Externally controlled trials may also substitute randomized
controlled trials (RCT) in specific situations where an RCT would be
deemed unfeasible or untimely. This is the case for rare diseases where
patient recruitment is difficult and time-consuming’, as well as in some
oncology cases involving specific patient subgroups®%

Statistically, the lack of randomization between the treatment
group and the external control group makes a naive comparison
unreliable due to confounding bias. Therefore, assuming that the
treatment effect is identifiable®, statistical or machine learning
methods'?° are needed in this context to provide valid estimates and
inferences of the treatment effect. Despite advances in statistical
methods, data sharing is a major obstacle to the feasibility of ECA. Due
to their sensitivity, health data are strictly regulated, e.g., by the Gen-
eral Data Protection Regulation (GDPR) in the EU and the Health
Insurance Portability and Accountability Act (HIPAA) in the US. Even
after careful pseudonymization?, sharing health data remains a com-
plex endeavor, notably because of data ownership and liability issues.
Thereby, in practice, it is difficult to set up an ECA involving phase II
data from a pharmaceutical company and potentially real-world data
from different hospitals or medical institutions.

To address this data sharing challenge, various machine learning
techniques have been proposed in recent years. Among them, feder-
ated learning (FL)?, a privacy-enhancing technology (PET), makes it
possible to extract knowledge and train models from multiple insti-
tutions without pooling data. It has already been used with success in
similar settings to connect pharmaceutical companies” and
hospitals*** in federated research networks. Herein, we investigate the
use of FL to build ECA, focusing on time-to-event outcomes such as
progression-free survival (PFS) or overall survival (OS), which are
predominant in oncology RCTs*.

In this work, we present FedECA, a federated external control arm
method, which is a federated version of the well-known inverse
probability of treatment weighting (IPTW) statistical method” for
time-to-event outcomes. FedECA facilitates ECAs for pharmaceutical
companies by giving them access to real-world control patients from
multiple institutions, while limiting patient data exposure thanks to FL.
We first demonstrate the efficacy of our approach on synthetic data
created using realistic data generation processes, both with in-RAM
simulations and on a federated network deployed with 10 distant
synthetic centers located in the cloud. We show that FedECA achieves
identical conclusions to IPTW on pooled data as well as better statis-
tical power compared to a competing method based on federated
analytics (FA), while also controlling for moment differences between
the two arms. Furthermore, we showcase two examples of FedECA
applied to real patient data, starting with an FL simulation using real
data from trials before proceeding to demonstrate the end-to-end
deployment of a real federated research network between three
research institutions located in different countries.

Results

FedECA, a federated ECA method

Here we describe our federated extension of the IPTW method for
time-to-events outcomes: FedECA. FedECA estimates the treat-
ment effect by comparing the experimental drug arm stored in
one center with a control arm defined by external data held
within different centers, as illustrated in Fig. 1. FedECA consists of
three main steps, all performed via FL. It first trains a propensity
score model using logistic regression to obtain weights, then fits
a weighted time-to-event Cox model to correct for potential
confounding bias, and finally computes an aggregated statistic

which allows to test the treatment effect. See “Method overview”
for more details. Simultaneously, we develop, alongside FedECA,
FA methods in order to both visualize and validate the results of
FedECA (see “Federated Analytics for end-to-end federated ECA
analysis”) as one would in an equivalent pooled ECA analysis.

Figure 1illustrates the advantages of our proposed method, where
data can remain on the premises of the participating centers and only
aggregated information is shared over multiple communication
rounds. Herein, an aggregator node is responsible for orchestrating the
training process, aggregating and redistributing the results to all cen-
ters, without directly seeing the raw data itself. This is in contrast to the
classical ECA analysis, where data is pooled into a single center and data
privacy is not an issue. In this privacy-enhanced context that we tackle,
and that we describe in details in “Privacy of FedECA”, all kinds of data
analyses from simple statistics such as computing global variance or
histograms to more complex methods such as IPTW are markedly
more difficult to apply as one can only share aggregated data.

FedECA is equivalent to a standard IPTW model trained on
pooled data

In spite of such difficulties, we demonstrate both mathematically and
numerically FedECA’s equivalence to the pooled IPTW model. Mathe-
matical proof of the equivalence under proper assumptions can be
found in “Inverse probability weighted WebDISCO”. In particular, an
important assumption underlying this derivation is the use of Bre-
slow’s approximation for tied times when constructing the partial
likelihood of the Cox model. In addition to mathematical equivalence,
we also study numerical equivalence, which could be affected by the
propagation of machine precision errors during repeated computa-
tions. We demonstrate this equivalence between pooled and federated
IPTW analyses on realistic simulated data with right-censored events,
10 normally distributed and correlated covariates, and a treatment
allocation depending on the covariates.

We refer to “Synthetic data generating model of time-to-event
outcome” for details on the data generation process. In the following
numerical experiment, we compare the results obtained from a clas-
sical IPTW analysis where data are pooled into the same place with
those obtained from FedECA operating in distributed settings. Here we
monitor four key metrics: the hazard ratio of the treatment allocation
covariate estimated from a Cox model, the partial likelihood of the Cox
model, the p-value associated to the hazard ratio (HR), derived from a
two-sided Wald test that assumes under the null hypothesis an
asymptotic chi-squared distribution with one degree of freedom, and
the propensity scores estimated from the logistic regression. We repeat
this simulation 100 times and report the relative errors between pooled
IPTW and FedECA in Fig. 2. It should be noted that the relative error we
report also takes into account potential differences depending on the
optimizer used to train the propensity model. For instance, in our
implementation for the pooled reference, we rely on sk1earn’s default
optimizer, which is the Limited memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) optimizer, and thus differs slightly from the exact
Newton-Raphson steps used in FedECA.

The results in Fig. 2 show that the relative errors between FedECA
and the pooled IPTW are negligible, not exceeding 0.2%, illustrating
the effectiveness of the proposed federated optimization process.
Moreover, Supplementary Fig.2 shows that the number of centers
among which the data is split has no impact on FedECA’s performance.
Hence, we illustrate that up to a negligible error, due to finite precision
numerical errors in the optimization process, FedECA provides results
that are equivalent to the classical IPTW despite not having access to all
data in the same location.

FedECA and MAIC both control SMD
To assess the performance of FedECA, we compare it with another, more
naive, federated method in terms of the ability to correctly detect the

Nature Communications | (2025)16:7496


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62525-z

(a)

Standard of

Care & B :
S
59%1'1 ¢ | 5.4 BIFN
%ﬁ @% comjare EE \7\\%
+_9 1t -

RCT Cohort
Expenmental
Drug

T

External Control
Armon Standard  ~ &
of Care

e m<e
>

08!

compare

e“
fof

-

02

00!

P

Experimental
Drug

-l | P
&P =i

;i

et
¥
okt

=
\‘
P
o)
-

/

i
tir
IEEERN
BN

Raw Cohorts
Different Distributions

[E

Reweighted Cohorts
Matched Distributions

(b)
@ Train
Propensit
@ Train Cox )|
Model |
@ Perform
Statistical Test

Fig. 1| Illustration of randomized controlled trials (RCT) versus an external
control arm (ECA) analysis. FedECA graphical abstract. a In an RCT, patients are
randomly assigned to either the experimental (i.e., treatment) or the control arm. In
an ECA, patients are assigned to the treatment arm, while the control arm is defined
using historical data. Due to this absence of randomization and the resulting con-
founding, the two groups of patients cannot be compared directly. To overcome
this issue, a model is used to capture the association between the treatment allo-
cation and the confounding factors. From this model, weights are computed and
are used to balance the two arms to ensure comparability. Then, the weights are
incorporated into a Cox model to estimate the treatment effect. Finally, a statistical
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test is performed to assess the significance of the measured treatment effect. b In
the considered setting, patient data is stored in different geographically distinct
centers, and a similar analysis as in (a) is attempted thanks to our algorithm
FedECA. A trusted third party is responsible for the orchestration of the training
processes, which consists of exchanging model-related quantities across the cen-
ters. No individual patient data is shared between the centers, and only aggregated
information is exchanged, which limits patient data exposure while producing
equivalent results. Some of the symbols used in the figure have been bought to the
Noun Project, Inc. by M.H., granting M.H. perpetual, non-exclusive, worldwide
rights to such symbols.

presence of a treatment effect. We start by focusing on the reweighting step
of FedECA, an important step to correct for the confounding bias, as
measured by the standardized mean difference (SMD) of covariates
between the two patient groups after reweighting. The SMD is a coarse,
univariate measure which summarizes, for each covariate, the balance
between the two groups by only looking at the first and second order
moments, see “SMD estimator”. However, SMD is expected by regulators®,
which ask ECA methods to control SMD below a threshold (usually 10%). In

this context, the main competitor of FedECA is the matching-adjusted
indirect comparison (MAIC)”, a method that allows to reweight the indi-
vidual patient data (IPD) from a treatment arm to match the mean and the
standard deviation of data from an external control arm for which the IPD
are not accessible. The two reweighting approaches differ mainly in two
ways. First, since MAIC's reweighting procedure involves communicating
statistics only once between the centers, it is essentially a FA method,
whereas FedECA’s reweighting uses FL. Second, while MAIC explicitly
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Fig. 2 | Pooled equivalence between IPTW and FedECA. Box- and swarm-plots of
the relative errors between FedECA and the pooled IPTW on four different quan-
tities: the hazard ratio of the treatment allocation covariate estimated from a Cox
model, the partial likelihood of the Cox model, the P-value associated to the hazard
ratio, and the propensity scores estimated from the logistic regression. For each
quantity, relative error is defined as the absolute difference between the pooled
IPTW value and the FedECA value, divided by the pooled IPTW value. Each quantity
was computed from n =100 repetitions of the simulation, that is computed by

T T
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running FedECA and pooled IPTW on n random draws of 1000 samples with 10
covariates. Red dotted line indicates a relative error of 0.2% between FedECA and
the pooled IPTW. Boxplot and swarm-plot use the seaborn Python library’s default
settings, that is: boxes are from the first to the third quartiles, the black line being
the median, and whiskers extend to the lowest (resp. highest) data point still within
1.5 inter-quartile range of the lower (upper) quartile. No statistical test was used.
Source data are provided as a Source Data file.

enforces perfect matching of low-order moments irrespective of the cov-
ariate shift, leading to zero SMD by design (see “Estimation of the treatment
effect”), FedECA does multivariate balancing through the propensity
scores.

To compare the two methods, we consider scenarios with differ-
ent levels of covariate shift, which is a parameter that controls the
intensity of the confounding factors on the treatment allocation vari-
able, biasing the two groups (see “Synthetic data generating model of
time-to-event outcome” for more details on the data generation). In
this experiment, on one end of the spectrum, treatment allocation
does not depend on the covariates: there is no covariate shift. There-
fore, the SMDs of all covariates are small, even before reweighting. On
the other end of the spectrum, treatment allocation depends more and
more on the covariates values. Therefore, we expect weighting to be
necessary to control SMD. The results are illustrated in Fig. 3a where
we show the mean absolute SMD as a function of the covariate shift for
FedECA, MAIC and the unweighted baseline. For low covariate shift
(<0.5) all three methods control the SMDs of the covariates, while for
medium to high covariate shifts (>0.5), the unweighted method fails to
control the SMDs, while both MAIC and FedECA control SMD. More
details per-covariate are available Fig. 3b for the two extremes.

FedECA outperforms MAIC in power to detect a treatment effect
Following the comparison using SMD, we now compare the effect of
the different reweighting offered by FedECA and MAIC in terms of
treatment effect estimation, as measured by type I error and statistical
power. After reweighting, FedECA trains a Cox model using weighted
time-to-event data of both arms. The presence of a treatment effect is
determined by the hazard ratio estimated from the Cox model, as well
as the associated p-value. A p-value less than 0.05 is considered sig-
nificant. For the type I error experiment, we generate synthetic data
with no treatment effect between the two arms, while for the statistical
power experiment, we generate synthetic data with a true treatment
effect. Note that for MAIC, unlike for FedECA, the training of the Cox
model assumes the pooling of all IPD on treatment allocation, time to
event, as well as censoring. While this assumption seemingly

contradicts the ECA’s setup, it can be considered as an idealization of a
real-world use case of ECA analysis using MAIC, as detailed in “Esti-
mation of the treatment effect”. Figure 3¢ shows the estimated type |
error and statistical power for FedECA, MAIC and the unweighted
baseline, under varying covariate shift and number of samples. One of
the key factors influencing the type I error and statistical power esti-
mation is the variance estimation method applied for each treatment
effect point estimation. Here, we compared three variance estimation
methods: the bootstrap estimator, the robust sandwich estimator, and
the naive estimator based on the inversion of the observed Fisher
information’. For FedECA, only the bootstrap variance estimator
successfully controls the type I error at around 5%. In comparison, the
robust variance estimator systematically overestimates the variance,
leading to an inflated P-value and thus a conservative empirical type |
error rate. Finally, the naive variance estimator fails to control the type
I error. These results are consistent with previous work'. For MAIC
with bootstrap variance estimation, resampling with replacement is
performed only on the treatment group, since the pseudo IPD of the
control arm is fixed by design. Compared with FedECA, it only controls
the type I error for small covariate shifts and loses control when the
covariate shift increases. The robust variance estimator shows similar
variance overestimation to FedECA. For the unweighted baseline, as it
cannot account for the confounding bias introduced by covariate shift,
it quickly loses control of the type I error as soon as the covariate shift
is no longer zero. Next, for those methods that successfully control the
type | error, we compare their statistical power. FedECA with the
bootstrap variance estimator shows the best performance, followed by
FedECA with the robust variance estimator. Both FedECA variants
outperform MAIC with the robust variance estimator as the covariate
shift and number of samples change. Based on the above results, we
choose the bootstrap variance estimator for all experiments on treat-
ment effect estimation.

FedECA can be used in real-world conditions on synthetic data
We host up to 11 “servers" in the cloud (10 “centers" and 1 aggregation
server) and deploy the Substra®® software on all centers. Details of the
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Fig. 3 | Comparison of different methods on statistical power, type I error of
treatment effect estimates, as well as standardized mean difference (SMD) of
covariates between the two treatment arms. a Curves representing the mean
absolute SMD computed on 10 covariates as a function of the covariate shift for
three different methods: FedECA, MAIC and the non-adjusted treatment effect
estimation (unweighted) over n =100 repetitions. Shaded area is the two-sided 95%
interval around the mean assuming standard normal distributions. b Boxplots
representing the distribution of the absolute SMD over the n =100 repetitions for
the first five covariates. Each estimation of SMD is based on n =100 repetitions of
propensity score estimation. For all simulations, we generate 10 covariates and
1000 samples. Boxplot and swarmplot uses the seaborn Python library’s default
settings that is: boxes are from the first to the third quartiles, the black line being
the median, and whiskers extend to the lowest (resp. highest) data point still within
1.5 inter-quartile range of the lower (upper) quartile. c Comparison of different
methods on statistical power and type I error of treatment effect estimation. Dif-
ferent variance estimation methods leading to different p-values are given in par-
entheses after each method giving point estimates of the hazard ratio. In particular,

Number of samples

the naive variance estimation is based on the simple inversion of the observed
Fisher information. For statistical power, only results of methods that consistently
control the type I error around/under 0.05 (marked by gray dashed lines in top
panels) are shown. Each estimation of statistical power or type I error is based on
n=1000 repetitions of treatment effect estimation. For bootstrap-based variance
estimating methods, the number of bootstrap resampling is set to 200. For all
simulations, we assume 10 covariates. The hazard ratio of the simulated treatment
effect is set to 0.4 for the estimation of statistical power, and to 1.0 for the esti-
mation of type I error. For simulations with varying covariate shifts (the two panels
on the left), the number of samples is fixed at 700. For simulations with varying
sample size (the two panels on the right), the covariate shift is fixed at 2.0. The
asterisk on FedECA indicates that, due to the time-consuming nature of the power
analysis, their more lightweight pooled-equivalent counterparts were used instead
(pooled IPTW). For confidence intervals, we use the central limit theorem applied to
Bernoulli variables to compute parameters of the associated normal and plot the
two-sided 95% intervals as error bars. No statistical test was used. Source data are
provided as a Source Data file.
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Table 1| Treatment effect estimation on radiographic progression-free survival by comparing different regimens across

different trials

Experiment (Treatment vs. Method Treatment data source  Control data log(HR) HR (95% CI) Y4 p

Control) source

Apa-AA-P vs. AA-P FedECA Trial1 Trial 2 -0.42 0.66 (0.55,0.78) -4.72 <0.00001
Literature® Trial 1 Trial 1 -0.36 0.70(0.60,0.83) -4.31 <0.0001

AA-Pvs.P FedECA Trial1 Trial 2 -0.69 0.50(0.42,0.59) -8.04 <0.000001
Literature® Trial 2 Trial 2 -0.63 0.53(0.45,0.62) -7.77 <0.001

AA-P vs. AA-P FedECA Trial1 Trial 2 -0Mm 0.90 (0.77,1.05) -1.33 0.18

Apa-AA-P vs. P FedECA Trial 1 Trial 2 -0.99 0.37(0.31,0.45) -10.42 <0.000001

Trial 1 refers to NCT02257736, Trial 2 refers to NCTO0887198. All p-values resulting from the Wald test performed on the entry ofﬂ corresponding to the treatment allocation, assuming a x?
distribution with 1 degree of freedom, are obtained with bootstrap variance estimation. Exact p-values are from top to bottom (excluding results from literature) 2.3¢™, 8.9¢™, 0.184456 and 1.9¢"%.

Source data are provided as a Source Data file.

cloud setup are available in “Real-world experiments setup details”. For
each experiment, we use the first of the servers as the trusted third
party performing the aggregation (the “server") and the other servers
as data owners holding a different part of the data (the “centers"). Each
“center” has a different set of credentials, giving it different permis-
sions over the assets created in the federated network. Each center
registers a predefined subset of the synthetic data, as if it were its own,
through the Substra system. FedECA can be run on the deployed
network simply by changing the type of backend used and specifying
the identifiers of the datasets (hashes) registered into the Substra
platform as inputs to the fit method following scikit-learn’s fit
APP', An example of the FedECA Python API is given in Supplementary
Fig.1. We monitor the runtime of the full pipeline when running in-
RAM and on the cloud as a function of the number of centers. We give
conservative estimates by setting a large target number of rounds (20)
for the training of the propensity model and the Cox model, and by
computing the federated robust sandwich estimator, which adds
overhead and is not necessary if using the bootstrap variance
estimator.

In-RAM experiments take a few seconds with 10 centers, which is
to be compared with IPTW on pooled data, which has a below-second
runtime. This slowdown is mainly due to (1) the sequential processing
of each client (2) the static nature of the Substra framework, which
forces the execution of a higher target number of rounds than needed
for convergence (see “Early stopping within a static distributed fra-
mework” for further explanation). While (2) is a fundamental limitation
of Substra, (1) could be improved by using Python multiprocessing.
The real-world runtime is almost constant with respect to the number
of clients and is under 2h (1h18 min on average, with a standard
deviation of around 3 min). A complete breakdown of the different
runtimes across settings is shown in Supplementary Table 1. Insofar as
10 centers is already a large number in the considered cross-silo FL
setup, this result suggests good scalability in terms of speed, provided
that an appropriate infrastructure can be deployed across the different
centers. Our result is consistent with previous Substra deployments®.

FedECA can be used on real world use-cases: application on real
prostate cancer data with simulated federated learning
We access data from two phase Il trials in metastatic castration-
resistant prostate cancer*>* from the Yale University Open Data Access
(YODA) project®**. In all cases, we simulate an FL setup in which data
are held by two synthetic centers, one holding the treated arm and the
other the remaining patients. We note that, according to our experi-
ments Supplementary Fig. 2, the number of centers has no impact on
FedECA’s performance (nor does the way the data are distributed
across the different centers), and we therefore expect roughly the same
results if we had chosen different data splits. Full details of cohort
construction can be found in “Prostate cancer cohort construction”.
In the following, we present results focused on estimating the
average treatment effect on radiographic progression-free survival

(rPFS), the primary outcome of both trials, by comparing regimens
across trials. We first show the results reported for each trial found in
the associated publications. Then, we conduct simulated ECA studies
by replacing the abiraterone acetate + prednisone (AA-P) arm of each
trial with the same arm from the other trial. In addition, we compare
the two AA-P arms to test the exchangeability of the two study popu-
lations and to validate previous ECA analyses. Finally, we compare the
apalutamide + abiraterone acetate + prednisone (Apa-AA-P) arm with
the prednisone (P) arm, which is not seen in the literature and
demonstrates the potential usefulness of our method to provide
additional evidence that is otherwise unavailable or costly to produce
in terms of time and resources. In Table 1, we show the consistency
of the treatment effect estimations with the published results, as well
as the non-significance of the treatment effect when comparing
two AA-P arms. In addition, we show a significant treatment effect of
Apa-AA-P versus P, which is reasonable considering the superiority of
Apa-AA-P over AA-P, and of AA-P over P.

FedECA can be used on real world use-cases: application on real
metastatic pancreatic cancer data in a real deployed federated
research network

We access metastatic pancreatic cancer data in three cancer centers:
the Fédération Francophone de Cancérologie Digestive (FFCD), which
holds data from two completed RCTs***, the Institut d’Investigacio
Biomédica de Girona (IDIBGI) and the Pancreatic Cancer Action Net-
work (PanCAN), which holds data from clinical practice. For the two
FFCD trials, the primary outcome is the percentage of patients alive
and without radiological and/or clinical progression 6 months after the
randomization, and the secondary outcomes are OS and PFS. Full
details of cohort construction can be found in “Pancreatic adeno-
carcinoma cohort construction”. Regarding the FL setup, we deploy a
Substra-based federated network across the three centers. Contrary to
the experiment in “FedECA can be used on real world use-cases:
application on real prostate cancer data with simulated federated
learning” which used a simulated FL setup, in this case, in order to
perform any statistical analysis involving data from multiple centers,
now one must go through the Substra federated network infra-
structure and launch Substra’s “compute plans”, which introduces
overhead and imposes constraints on what can be computed safely
(see “Privacy of FedECA”). More details of this new, more stringent, FL
setup can also be found in “Metastatic pancreatic adenocarcinoma
data infrastructure setup”.

We aim to compare the treatment efficacy of FOLFIRINOX versus
gemcitabine and nab-paclitaxel on OS. Given that all three centers have
patients in both treatment groups, we begin by testing a key
assumption required to combine cohorts from different centers
receiving the same treatment: the exchangeability between pairs of
centers. For each treatment group, we compare patients from two
centers and test if there is a center effect after correcting for measured
confounders with IPTW (e.g., we test if patients under FOLFIRINOX
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Fig. 4 | Real-world FOLFIRINOX effect estimation using FedECA versus local

analyses. a SMD of covariates between the two arms of the combined FFCD+IDIBGI
cohort, before and after weighting by FedECA's propensity model. Therefore, each
dot represents the SMD over n =153 + 225 = 378 samples. b Weighted Kaplan-Meier
curves of the combined FFCD + IDIBGI cohort using FedECA's propensity model.

Sample size is n=378. The 95% confidence intervals displayed are obtained using
the exponential Greenwood formula. ¢ Weighted Kaplan-Meier curves of the FFCD

Survival time (month)

cohort using a local propensity model. Sample size is n=225. The 95% confidence
intervals displayed are obtained using the exponential Greenwood formula.

d Weighted Kaplan-Meier curves of the IDIBGI cohort using a local propensity
model. Sample size is n =153. The 95% confidence intervals displayed are obtained
using the exponential Greenwood formula. Associated p-values can be found in the
associated table. Source data are provided as a Source Data file.

have different outcomes between FFCD and IDIBGI). Such compar-
isons are done for all three pairs of centers. Unfortunately, we observe
a strong center effect at the PanCAN center whose population has
significantly better outcomes than the other centers in both treatment
groups (Supplementary Table 9 and Supplementary Fig. 7). We suspect
that there is a residual immortal time bias not addressed by the cor-
rection we performed in this cohort (see “Pancreatic adenocarcinoma
cohort construction”). Consequently, we exclude the entire PanCAN
cohort from the treatment effect analysis that we present in the
remainder of this section, and leave the results of a federated analysis
including data from all three centers in Supplementary Table 8 and
Supplementary Fig. 6 for illustrative purposes.

Using the combined FFCD and IDIBGi cohort in FedECA, we
compare the treatment efficacy of FOLFIRINOX versus gemcitabine
and nab-paclitaxel on OS. Figure 4a demonstrates that the propensity
model in FedECA, trained with FL, effectively balances the two patient
groups over the group of selected covariates, reducing the SMD
between the two arms to below 10% for all covariates, which was not
achieved before reweighting. Table 2 shows the estimated treatment
effect on overall survival of FOLFIRINOX over gemcitabine and nab-
paclitaxel with an HR of 0.84 (0.68, 1.04) and an associated p-value of
0.118. While this result does not reach statistical significance, it is
consistent with the literature using IPTW on pooled data (e.g., HR=

0.77 (0.70, 0.85)*), and supports the trend toward superiority of
FOLFIRINOX over gemcitabine and nab-paclitaxel. For comparison,
local analyses at each center (Table 2) result in broader confidence
intervals of the estimated HR. Figure 4c, d highlight the above results
by displaying propensity-weighted Kaplan-Meier curves. Note that in
Fig. 4 and Supplementary Fig. 6, results on the combined cohorts are
obtained through the application of FA without pooling data, see
“Federated Analytics for end-to-end federated ECA analysis”, Supple-
mentary Fig. 13 and Supplementary Fig. 14.

Discussion

In this work we have introduced FedECA, a federated extension of the
IPTW method for estimating treatment effects in the context of external
control arms. Our results demonstrate that FedECA replicates its
pooled-equivalent counterpart IPTW up to machine precision (see
Fig. 2), ensuring the same statistical properties as IPTW. Compared to
the simpler FA baseline MAIC, FedECA shows superior statistical power
and controls the type I error while effectively adjusting for confounding
factors as shown by the standardized mean difference below 10% (see
Fig. 3c). Unlike many stratified competitors®*’, FedECA is well-suited
for drug development settings, where treated and control patients are
in separate locations, with pharmaceutical companies holding only
treated patient data, and control patients spread across multiple
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Table 2 | Estimation of treatment effect on overall survival by comparing FOLFIRINOX against gemcitabine + nab placlitaxel

Method Data source log(HR) HR (95% CI) 4 P
FedECA FFCD, IDIBGI -0.17 0.84(0.68, 1.04) -1.56 0.118
IPTW FFCD 0.13 1.13 (0.80, 1.61) 0.7 0.480
IPTW IDIBGI -0.12 0.89 (0.65, 1.22) -0.72 0.47

Results with single data source are obtained without FL. All p-values resulting from the Wald test performed on the entry ofﬂ corresponding to the treatment allocation, assuming a y* distribution with
1 degree of freedom are obtained with bootstrap variance estimation. Exact p-values are from top to bottom 0.118425, 0.479963 and 0.470586. Source data are provided as a Source Data file.

institutions. It also remains applicable in scenarios where both treat-
ment arms are distributed across different institutions, as demon-
strated in the metastatic pancreatic adenocarcinoma experiment. While
MAIC can only estimate the average treatment effect on the control
(ATC), FedECA supports the estimation of the ATE, the average treat-
ment effect on the treated (ATT), as well as the ATC by changing the
weights used in the estimation. Furthermore, FedECA also enables
covariate adjustment through adjusted IPTW, providing researchers
with greater flexibility in choosing between a marginal effect or a con-
ditional one*. This distinction is important in the context of time-to-
event outcomes due to the non-collapsibility of the hazard ratio.

FedECA is not only an algorithm but also a software solution that
has been deployed and tested in real-world settings. A first experiment
demonstrates that FedECA can reproduce results of individual clinical
trials***, while also enabling analyses that would not be feasible if each
trial were analyzed separately. Although the data used in this experiment
were not physically distributed in different locations, the results of those
simulations are representative of what could be achieved on similar data
in a real federated setting. In a second experiment, we deployed a
Substra federated research network across three cancer centers in three
different countries: the Fédération Francaise de Cancérologie Digestive
(FFCD, France), the institut d'investigacié biomédica de Girona (IDIBGI,
Spain) and the Pancreatic Cancer Action Network (PanCAN, USA). This
study aimed to estimate the ATE of FOLFIRINOX (leucovorin and fluor-
ouracil plus irinotecan and oxaliplatin) over gemcitabine and nab-
paclitaxel“ 5, After excluding data from one center affected by
immortal time bias, our results, while not reaching statistical sig-
nificance, are consistent with the findings of meta-analyses and pooled
analyses from the literature. While the results of our analysis rely on a
smaller sample size (n = 378) than the largest previous efforts®**! it
brings additional evidence on this topic of rising medical interest™.

One of the key challenges of real-world data is handling missing
values or missing features, as encountered in our metastatic pancreatic
adenocarcinoma experiment. While extensive research exists on
missing data imputation in machine learning and its impact on causal
inference analyses™™®, it remains underexplored in the context of
federated learning. In this study, we used a naive solution by applying
MissForest™ independently at each site. Imputation per-site is sub-
optimal and could possibly further increase heterogeneity and biases.
Addressing these limitations requires future work on federated miss-
ing data imputation methods. Beyond missing data, another important
aspect is the choice of confounding factors when building an ECA
based on propensity scores”. FedECA remains sensitive to mis-
specification in the propensity score method, as its pooled version,
IPTW. When building an ECA, one should carefully select the con-
founders to include in the propensity score method and should con-
sider the possibility of unmeasured confounders as well as ways to
perform sensitivity analysis to assess the robustness of the results®.
Additionally, when performing an ECA analysis, it is crucial to ensure
consistent data collection across centers, particularly regarding the
definition of endpoints. For example, progression-free survival (PFS) is
not defined in a standardized way in clinical practice, which can lead to
bias and errors in the estimation of the treatment effect.

In this work, we focus on the (log) hazard ratio as the treatment
effect estimand, as it is commonly used with time-to-event
endpoints®***, Other effect measures have been proposed for

time-to-event outcomes, such as contrasts of restricted mean survival
time (RMST)®.. The latter has the advantage of being collapsible and
offers better clinical relevance and interpretability in certain
applications®>. An IPTW-based estimator for the difference of RMST
has been introduced®® and could guide an extension of FedECA to
RMST-based effect estimation in a federated setting.

Another important open research direction that we leave to future
work is to study more deeply the security profile of standalone
FedECA. Indeed, the federation of both the propensity score model
and the Cox proportional hazards (PH) model currently requires
transmitting aggregated information to the central server. In the
absence of local differential privacy (DP) mechanisms, this transmitted
information could, in theory, be exploited by adversarial attacks (we
sketch how such attacks could be performed in “Privacy of FedECA”).
For this reason, in addition to providing the pseudo-code of our
FedECA algorithms, we traced in our implementation all quantities
exchanged across centers when performing the different federated
learning and analytics algorithms involved in FedECA allowing a full
privacy audit of the implementation by experts. This information is
reported in “Privacy of FedECA”. We tested the application of DP to the
first part of the FedECA training, which is the training of the propensity
model. However, it was shown to be already detrimental to the sta-
tistical analysis (see Supplementary Figs.3 and 11 and Supplementary
Table 13). This DP experiment raises an interesting question, which is
whether the use of DP in the clinical trials of tomorrow is warranted,
given that it trades off the accuracy of treatment effect estimation for
data privacy. We do not claim to answer this question in this work.

Another privacy-enhancing layer that could be added to FedECA
would be to use secure aggregation (SA)** to hide individual contribu-
tions through cryptographic operations. This would demonstrably hide
potentially sensitive information such as per-client risk sets and would
also allow private set unions (PSU)® to compute the global event times,
or could also be used to secure the aggregator node®* .

To conclude, FedECA is a federated method for real-world dis-
tributed ECA analysis. FedECA is particularly suited for the scenario
where treated patient data are in a distinct center and the external
control arm is split across different centers that cannot share their data.
FedECA is a federated extension of IPTW that reproduces the result of a
pooled analysis, yielding similar treatment effect estimation and similar
statistical guarantees. Thus FedECA enables causal inference in dis-
tributed ECA settings while limiting IPD exposure. We demonstrated that
FedECA is not only a simulation tool but a valid method for real-world
applications, showcasing its ability in two clinically different contexts.

Implementing federated methods in real-world healthcare envir-
onments, as we did for the metastatic pancreatic cancer use case, still
presents major technical and operational challenges that are absent
from simulated FL. Our implementation of FedECA is based on an open-
source FL software hosted by the LFAI, which had already been suc-
cessfully used in the targeted high-security healthcare setting with both
pharmaceutical companies and cancer centers”*. Having a trusted
implementation like this one, whose security has been audited and that
is compatible with heterogeneous IT (Information Technology) envir-
onments, is a prerequisite for building real FL networks, as the imple-
mentation must be vetted by the different IT teams from all partner
institutions. While we focus in this paper on the technical and metho-
dological challenges, we want to emphasize that the non-algorithmic
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challenges associated with setting up any FL network between real
institutions are still, to this day, potentially the main bottlenecks in such
analyses, as we touch upon in “Related works”.

We hope FedECA, alongside other real-world applications of
federated learning, can shift perspectives and drive collaborations
between hospitals, medical centers, and pharmaceutical companies,
demonstrating that medical discoveries are achievable while mini-
mizing patient data exposure.

Methods

Inclusion and ethics statement

We provide below the inclusion and ethics statements related to the
patient data we access. Note that we only access data from past studies
in a retrospective fashion.

he ethics of this retrospective study on clinical data collected dur-
ing care and from past clinical trials were validated by each institution
according to corresponding local regulations. We list below the corre-
sponding statements from each of the participating cancer centers.

Regarding FFCD data, the study was conducted in accordance
with the ethical principles outlined in the Declaration of Helsinki,
International Council for Harmonization of Technical Requirements
for Pharmaceuticals for Human Use (ICH) requirements and Good
Clinical Practice guidelines; it received authorization from the French
national medicines agency (ASNM), and independent ethics commit-
tee (number 214-R18 and 14-12-79 respectively for PRODIGE 35 and
PRODIGE 37). The study was both registered in clinicaltrials.gov
(NCT02352337 for PRODIGE 37 and NCT02827201 for PRODIGE 35)
and EudraCT 2014-004449-28.

For IDIBGI data the study was approved by the Comité d’Etica
d’Investigacié amb Medicaments CEIM GIRONA the 8th of August 2023
(Acta 11/2023) under reference CEIM code 2023.165 with principal
investigators ADELAIDA GARCIA VELASCO and ROBERT CARRERAS
TORRES and SANOFI-AVENTIS SA as promoter.

Finally for PanCAN data the sponsor of the IRB was the Pancreatic
Cancer Action Network (# KYTOO1) the IRB reference is 20192301,
study 1265508 with main investigator Matrisian, Lynn.

For FFCD and IDIBGI, an informed consent form with non-
opposition principle for the reuse of their health data for research
purposes was communicated to the patient at the time of admission in
each of the study centers in accordance with European regulations. For
PanCAN’s data, authorization was obtained to use patient data through
PanCAN'’s Know Your Tumor program. All data from PanCAN used are
fully anonymized and as a result, did not require consent.

Participants were not compensated.

Problem statement

We consider a setting where one center, e.g., a pharmaceutical com-
pany, hosts data of all treated patients and approaches several other
centers to use their data as control to define a distributed ECA.
Although FedECA also works in the more general case where there is
no constraint on patient mixing within the participating centers.

We suppose that FDA guidelines for ECA*® have been applied to
direct data harmonization so that variables, assigned or received treat-
ments, data formats, variable ranges, outcome definitions and inclusion
criteria match across centers. However we touch on the practical chal-
lenges associated with such a requirement when studying the metastatic
pancreatic adenocarcinoma use-case in “Pancreatic adenocarcinoma
cohort construction”. We assume that variables are not missing and
relegate discussing data imputation questions associated with real-world
data to “Pancreatic adenocarcinoma cohort construction” as well.

We further posit that all centers arrived at a consensus on a
common list of confounding factors that influence both the exposure

Moreover, the studied treatment effect is the average treatment
effect (ATE) evaluated using the hazard ratio (HR) with time-to-event
outcomes. See the discussion regarding this design choice.

Finally we assume the deployment of a federated solution, such as
Substra®®, between the centers as well as a trusted third party or
aggregator. This setup is detailed for the real-world deployment use-
cases in “Real-world experiments setup details”.

We note that, because of the scope of this article, we do not
necessarily dwell on such technicalities; in practice however, they are a
crucial aspect of FL projects and should not be underestimated®*¢"%,

Federated external control arms (FedECA)

Method overview. The ECA methodology we use relies on three main
steps: training a propensity score model, fitting a weighted Cox model,
and testing the parameter related to the treatment. We first introduce
them here in a pooled-level fashion, before explaining in detail how we
adapted them to the federated setting in the next sections.

Setup and notations
Each patient is represented by covariates X € R”. It undergoes treat-
ment A € {0, 1}, corresponding either to the treated (4 =1) or control
(A=0) arm. We denote x; the covariates of the i-th patient, and q; its
treatment allocation. Following treatment, the patient has an event of
interest (e.g., death or disease relapse) at arandom time 7. The patient
may leave the arm before the event of interest is actually observed, a
phenomenon called censoring: we denote the observed time T, whose
realizations are denoted t;. We note ;=1 if this corresponds to a true
event, resp. 6; = 0 if censorship took place. Additionally, we define the
observed outcome Y;=(T; 6;). Let n denote the total number of
patients, indexed by i.

Let S denote the finite set of all observed times, i.e. S={¢;}[-;. Ata
given time s, let D, denote the set of patients with an event at this time,
ie.

Vs € S, D, ={ilt;=s,6;=1}, 0]
and let R denote the set of patients at risk at this time, i.e.
Vs e S, Rg={i|t; 2 s}. 2)

Further, let & denote the set of times where at least one true event
occurs, i.e.
S={s e 8D, = 0}. 3)
Data is distributed among K different centers, with n, samples per
center. We denote x;, the i-th covariate vector from the k-th center;
accordingly, a;, denotes the treatment allocation, y;x= (£, 6;x) the
observed outcome, where ¢;; is the observed time event, and &
whether a true event took place. Similarly, for each time s and center k,
we define the subset D; , and R ; as the respective restrictions of D
and R, to center k.

Propensity score model training

Due to the lack of randomization, for each sample, the probability of
being assigned the treatment A might depend on the covariates X. We
train a propensity score model pg with parameters @ such that

Po(x) ~ PAIX =Xx]. “)

We use a logistic model for py, i.e.,

and the outcome of interest, we give examples of such lists in “Prostate Do) = 1 5
cancer cohort construction” and “Pancreatic adenocarcinoma cohort 6 1+ exp(—0"x)

construction”.
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Its negative log-likelihood is given by

n
J0)="{a;logpe(x)+(1 - a)log(l — pe(x,)}. (6)
i=1
In “Federated propensity model training”, we explain how this
model is trained in a federated setting.

Inverse probability weighted treatment (IPTW)
For each sample i, we define an IPTW weight w; € (0, + ) based on the
propensity score model trained in the previous step as

1 oo
max(py(X;), €) ifa;=1,

wi = { : i) h . (7)
max(—pg(x,), &) otherwise.

In order to avoid overflow errors, £>0 was set to 107 in our
experiments.

We note that it might be that in the case of insufficient overlap,
weights would take extreme values. In our cases it is not what we
observe from looking at per-center histograms of propensity scores in
Supplementary Fig. 8. In the general case future work might be needed
to deal appropriately with extreme values.

We then train a weighted Cox proportional hazards (CoxPH)
model with parameters B < RY, related to patient-specific variables
z; € R9. We stress that the variables z; are not the same as the cov-
ariates x;. More precisely, for the vanilla IPTW method, the sole cov-
ariate used is the treatment allocation, i.e., z; = a;. In the general case of
the adjusted IPTW (adjIPTW) method, one may use additional covari-
ates, especially if they are known confounders. We note that our fed-
erated framework can support both classical IPTW and adjIPTW, unlike

n*?, although we choose to illustrate our results with IPTW for the sake
of simplicity.

The CoxPH model is fitted by maximizing a data-fidelity term
consisting in the partial likelihood L(B) with Breslow’s approximation
for tied times®’:

eF'y -
LB= —_—— , (8
,‘;!{11 (Zj:tjniwjeﬂ Zj g ,1_1)[ (ZJER je” J)

where the second equation has been rewritten using the sets D, and
Rs. For numerical stability, we use the negative log-likelihood

(B) = log L(B), which reads

While £(B) represents a data-fidelity term, we also add a regularization
Y(P) with strength y >0, leading to the full loss

«p=->y Z{w,ﬁ’zi —w;log (Z w;ef"

s i€Dg JERs

L(P)=UP)+yy(B). 10)
In “Inverse probability weighted WebDISCO”, we describe how we
minimize the loss £ in a federated setting, which is one of the main
technical innovations of this paper.

Variance estimation and statistical testing R
Once the weights are fitted, we estimate the variance matrix of f using
a robust variance estimator’’. Let us denote

PB=> wef's,

JeR

an

Lp=> wefz,

A 12
JERs

2Pp=> wefizz],

. 13)
JERg

and 20([3) fl(ﬁ), 2?([7) the analogous quantities using the estimated
weights {iw;}7_,.

FoIIowmg““ 70 the robust variance estimator of the variance of 8
takes the followmg form:

Var(B)=H'QH™"), (14)
where
1. T
H=Y Y i, ( LBLB ) 15)
se8 ieDs (ﬂ)
Q=Y oBob . (16)
P
. &® ;1
‘i’i(ﬂ):é‘iwi(zi—j) - ) wexp(ﬁ Z)ZZZ r=9
B se8j€Dy (S/(ﬂ)
17)
+i, exp(B Z)ZZ S<S)( ® ,for allie D,,s e &,
s'e8Jj€Dy

with 1, _, the indicator function that has the value 1 on all times s’
(with events) and is O otherwise.

Eventually, a Wald test is performed on the entry of B corre-
sponding to the treatment allocation, assuming a x* distribution with 1
degree of freedom”.

Related works. Before diving into the details of the federation of the
propensity score model and the weighted Cox model, we provide
some context explaining the position of FedECA in the literature.

Methodology

In the case of binary or continuous outcomes, inverse probability of
treatment weighting (IPTW) can be directly federated, and has been
explored extensively’>”". In contrast, to the best of our knowledge, few
works have explored the federation of ML model training compatible
with ECA for time-to-event outcomes.

The difficulty of this federation is that the straightforward
application of FL algorithms such as Federated Averaging? to
time-to-event ML models is impossible due to the non-separability
of the Cox proportional hazards (PH) loss’®7. Careful federation of
the training of ML models capable of handling time-to-event out-
comes is possible’®”® but often requires either to use tree-based
models®™®, approximations’®*? or can only be performed in stra-
tified settmgs“’ 3 which limits the applicability of such federated
analyses for ECA analyses.

Indeed, existing stratified federated IPTW methods such as*
cannot be applied to ECA as, in the realistic setting we consider, the
treatment variable is constant within each center and thus comparison
between the treated and untreated groups cannot be done locally from
within a single center. A recent work proposed a propensity score
method to estimate hazard ratios in a federated weighted Cox PH
model®’. The main difference with our work lies in the fact that they
have considered propensity scores based on the combination of local
propensity scores (computed in each center) and global ones,
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demonstrating superior performance than the global scores alone.
However, as previously stated, in this paper, we consider a setting
where local propensity score models cannot be trained locally to
predict treatment allocation since the variable to predict is constant in
each center.

In particular, we extend WebDISCO’®, which, alongside®, is to the
best of our knowledge, one of the few exact methods enabling feder-
ated learning of time-to-event models in ECA contexts. Our method
can also be seen as an extension of stratified IPTW for time-to-event
outcomes from**® to the non-stratified case that allows applica-
tion to ECA.

Our methodological contributions do not stop there as FedECA
also 1. supports adjusted IPTW using any sets of covariates for the
training of the Cox model, 2. proposes a federated algorithm for
robust distributed estimation 3. develops an efficient bootstrap
implementation in FL as well as 4. provides two federated analytics
estimators (Federated SMD and Federated Kaplan-Meier) allowing to
perform an end-to-end ECA study in a federated setting.

Other lines of work tackle the federated analytics setting where no
learning is involved and propose to use aggregated data (AD), such as
matching-adjusted indirect comparison (MAIC)* to perform direct
comparisons in combination with the available individual patients data.

Finally, another popular research direction is to propose private
representations of patient covariates®®’ that can be pooled into a
central server. These methods have the drawback of not yielding
pooled-equivalent results. Furthermore, centralizing these repre-
sentations increases the potential leakage risks associated with a suc-
cessful, even if unlikely, attack, compared to a federated storage
system.

We summarize in Supplementary Table 2 the differences between
FedECA and methods from the literature.

Real-world federated learning

Besides the technical methodology differences, FedECA stands out
from related works thanks to its actual implementation on a real fed-
erated learning network connecting three clinical centers described in
“FedECA can be used on real world use-cases: application on real
metastatic pancreatic cancer data in a real deployed federated
research network”. This practical application demonstrates how our
method can effectively address questions about treatment efficacy in
clinical practice in the case of metastatic pancreatic cancer while
enhancing the privacy of individual patients’ data. We believe this is
FedECA’s most important contribution as most of the literature on FL
only studies simulated scenarios. The main reason why most FL
research is theoretical is that real-world federated networks are still, to
this day, highly complex to set up and operate.

This is due to several factors, notably:

* The need for trust, which is a critical factor to build collaborations
between competing institutions and FL providers. In practice,
trust is often established through successful prior partnerships
between pairs of actors or facilitated when the principal investi-
gator has strong credentials to show, which help them engage
with new stakeholders. Open-source code is also a key enabler for
trust in such collaborations.

* The need for a contractual and legal framework within which one
can deploy a federated network between different legal entities
respecting local jurisdictions.

* The federated learning (FL) solution must be compatible with
potentially heterogeneous IT systems as some institutions may
refuse to store their data in normalized cloud environments
hosted in specific countries due to concerns over data ownership.

* The federated network implementation has to be vetted by each
of the IT team of the partner institution to make sure there is no
data leakage.

* FL collaborations also require harmonizing the data beforehand,
which in practice is often mostly manual and requires the help of
data engineers and doctors onsite as well as Al specialists across
all participating centers and is coordinated usually through
e-mails by the principal investigator.

The usual data-science workflow is rendered much more complex
by constraints on data access and sharing, which limit the kind of
analyses that can be run.

The software we are using, Substra, is dockerized, has been
audited for its security and is easily integrated into existing infra-
structure although it usually requires DevOps (Development Opera-
tions) teams in each hospital or institution to be successfully deployed.

With this in mind, we go on to precisely describe the federation
scheme we employ by specifying all quantities that are communicated
between the centers and the aggregator.

Federated propensity model training. Our goal is to fit a model for
the propensity score (5) based on distributed data {(x; 4, a; k)l.}’k< - Let
J denote the full negative log-likelihood of the model, and 7, the
negative log-likelihood for each center, i.e.,

Te0)=> {a;  logpg(x; )+ (1 — a; ) log(l — pg(x; 1))} -

i=1

8)

Due to the separability of each loss term in per-sample terms®®, we
have

K
J@)= Ti). 19
k=1

Using the separability (19), it is straightforward to optimize 7 using a
second-order method, since its gradient and Hessian can be computed
from the sum of local quantities, see “FedECA, a federated ECA
method” of*’. We call this naive strategy FEDNEWTONRAPHSON: its
pseudocode is provided in Algorithm 1. This algorithm has a
hyperparameter corresponding to the number of steps: in our
numerical experiments, we noted that £=10 is sufficient to obtain
proper convergence.

The strategy FEDNEWTONRAPHSON requires to compute full
batch gradients and Hessians, in time O(ny) on each center, and each
communication with the aggregator requires the exchange of O(p?)
floating numbers. In the setting of ECAs, we usually have both n, <10*
and p <10? making such a second-order approach tractable. We note
that for larger data settings, several improvements could be con-
sidered following®*®°, which would reduce the quantities of trans-
mitted parameters. We leave such improvements to future work.

Algorithm 1. FedNewtonRaphson

. Initialize 5 = 0
: fore=1to E do
Aggregator sends 6.1 to each center
for Kk =1 to K in parallel do

gek = VBJk(acfl)

Hc,k, = Vg‘]k(ecfl)

Send g. i and H. j to the aggregator
end for

> On each center

© e NT s

> Aggregator-side
10 H.=-L1>,_
11 0.=0.1— (He)ilge
12: end for

13: return O
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Inverse probability weighted WebDISCO. Here, we propose a
method to minimize the regularized weighted CoxPH model (10) in a
federated fashion. Since the non-separability of the weighted CoxPH
log-likelihood #(B) prevents the use of vanilla FL algorithms, we inspire
ourselves from WebDISCO’ to build a pooled-equivalent second-
order method. It should be noted, however, that the method can only
be applied to partial likelihood under the Breslow’s approximation for
tied times (8), as opposed to the Efron’s approximation.

Non-separability

Compared to the logistic propensity score model, the main difficulty
of federating Eq. (9) stems from the non-separability of the log-like-
lihood, i.e., the cross-center terms. Indeed, for any time s, the risk set
R, is a union of per-center terms, i.e.

Rs= U{o1Ro - (20)

Thus, the aggregated Eq. (9) can be rewritten as

K .
®=-3% % {wiﬁfz,«,k —wflog( > weln S Y we”) }

k=1 s¢§ i€Dg JERs K#kJ€Rg

@n

where the loss for each sample i of each center k involves terms from
other samples j in other centers k'#k. The non-separability of the
CoxPH loss is a well-known issue in a federated setting, and previous
works have investigated reformulations to make it amenable to vanilla
federated learning solvers”. Here, we instead adapt the WebDISCO
method’ to the weighted case in order to keep pooled-equivalent
results and benefit from second-order acceleration.

Federated computation of¥s¢(8) and V3((B)

Our method consists in performing an iterative server-level Newton-
Raphson descent on £. The gradient Vgf() and Hessian Vf,é(ﬂ) thus
need to be computed in a federated fashion. These quantities can be
computed in closed form as

V- -3 % (w,-z,- —w, Z’Rw’epz’) . @
w;e s

se8 €D JeRs

and

p=>3 wi{zjeres wet o2zl (S ) (Syen, € 2 ) } _

Ty T, 2
3 iep, Sjer Wit @ (e, W' 9)

(23)

Note that the Hessian evaluated at 8=, Vf,é(i}), corresponds, up to a

Further, let us denote

WS= Zwi,

ieDg (27)
Z;=> wgz, (28)
ieDs
and
Woi= > w; (29)
ieDg
Z= Z wz;, (30)

i€Dg

where by convention, in all cases, the sum is set to O in case of an empty
set. Egs. (22) and (23) can be respectively rewritten as

(40"
VeB)=-> Z,— W25, 31
pb==2, ) ©éb
(") zl(sz}
Vi =S w2 s DT 32
o2 {z&m 2y ¢y
Using these equations, we can rewrite
K 1
>S5, B
ViB)= — Zoy W =5 ( (33)

5o (Sethe®) (Sethe®)
Yilon®) (528

K
VB> S W,

k=1 5e8
(34

Assuming the set of all true event times & is known to all centers, we
see that it is possible to reconstruct the full gradient Vzf(8) and Hessian

V3((B) based on the Suplet {(W,,,Z,,, 0B L 1B, (ik(ﬂ))}s,k'
Algorithm 2 sums up this algorithm.

Algorithm 2. FedCoxComp

Require: Weights 3, set S
1: Aggregator sends 3 to each center
2: for k =1 to K in parallel do
3 forscSdo

> On each center

sign, to the quantity H defined in (15) for the robust variance estimator. 4 Compute Wy, , with (29) >0if Dyp =10
We now define the local counterparts {? (B) of the previously intro- 5: Compute Zj, s with (30).
duced quantities, where the sum is restricted to the risk set R, 6:  end for
' 7: for s € Sst. Wy, > 0do > 0 otherwise
0 _ Bz 8: Compute ¢?,.(8) with (24)
= wef s, ' .
i) je;k e 24) o: Compute C}k(ﬂ) with (25)
' 10: Compute ¢2,.(8) with (26)
. 11: end for
&B= Z wief 7z, (25) 12: Send back {(Wi, Zk, ({1.(8), ¢ x(8), €2 1(B)} se s
JeRgk 13: end for
14: Compute Vg/(3) with (33) > On the server
15: Compute V¢(3) with (34)
2 _ Ty T B ;
S'k(ﬁ)_j;: wyef Yzz;. (26) 16: return V((8), V3((3)
s, k
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Algorithm 3. non-robust FedECA

Require: Maximal number of steps E, LR schedule (o)., regularization ~
1: Initialization By = 0
2: for e =1to E do

3 Val(Be-1), Vé/(ﬁ, 1) = FedCoxComp(B._1) > Communication between server and centers
4 VL(Be—1) = Vgl(Be-1) + 7V a(B)

5 Véﬂ(ﬂ(,u:Vé’(ﬂHJMVlf,t 8)

o B=Bi—a (VELB.-))  ValB)

7 if Stopping criterion then ¢ = E/

8 end if

9: end for

10: return Bp

Non-robust FedECA

To optimize the full loss (10), we can now leverage the computation of
the gradient and Hessian of the weighted CoxPH loss ¢ to perform a
second-order Newton-Raphson descent. We follow the hyperpara-
meters of 1ifelines” for this optimization. In particular, we use the
same learning rate strategy, the same regularizer and the same stop-
ping criterion. Indeed, as 1ifeline’s regularizer does not depend on
data and is smooth, its gradient and Hessian can be computed on the
server’s side, deriving twice the following equation:

LP)=UB)+VY(B), (35

with y the strength of the regularization.
In more details for the regularizer (), we use a soft elastic-net
regularization®” with hyperparameters 1>0 and a > 0:

w(ﬂ)=ﬂ<z ¢>a(ﬁ,)> i (36)

where ¢, is a smooth approximation of the absolute value that is
progressively sharpened with the round e.

a=13¢, (37)

Po(x)= é(log(n exp(ax) + log(1+ exp(~ax)).  (38)

We also allow for constant learning rates as in scikit-survival®”.
We note that implementing different learning rate strategies or reg-
ularizers should be straightforward with our implementation. Algo-
rithm 3 summarizes the full algorithm used.

We note that in practice, due to the linearity of both models and as
covariates are often low-dimensional in clinical trials, tuning hyper-
parameters such as learning rates and regularizations parameters is
superfluous. In fact, we use the default settings without regularization
in all of our experiments unless explicitly stated. We also note that
regularization in linear models for treatment effect estimation must be
imposed carefully to avoid the over-shrinking effect described in®*. We
still give practitioners ways to tune such hyper-parameters, as it is
already the case in non-distributed softwares, in order not to loose
flexibility. This allows to accomodate potential future workflows such
as using deep-learning based covariates, which might be high-
dimensional® and thus optimizing the Cox loss might, in this case,
require the use of ridge regularization to keep the hessian from being
ill-conditioned. Regarding federated hyper-parameter tuning in gen-
eral, see “Federated hyper-parameters selection”.

Statistical test. Federated robust variance estimation

The robust variance estimator can be obtained by aggregating local
quantities, as we demonstrate in the following. We assume that each
client has access to Z?(ﬁ) and (ﬁ(ﬁ) for all s € . This can be achieved
by simply allowing the server to transmit the quantities { 2 k(ii) and
4 i «(B) to the centers in addition to H.

The global goal is to compute the robust estimator of the variance
given by

VarB)-H'QH™), (39)

where H (15) corresponds to the Hessian Vf;é([}) and Qis defined in (16).

We note that through FedECA 3 each client already has access to H.
Let us define My as

ny . . . AT T
M= H'@B)@:B) H (40)
i=1
where the sum is on all indices belonging to client k.
Then we have,
K
var(p)=> M,. (41)
k=1

Indeed, if we let d>$) e R™” be the matrix whose rows are the (p,»(i}) for
all i € [[1, n]]. then we can write the variance as

VarB)=H"'®B) dBH™, 42)
B OB),= > (0uB), (048),
o A #3)
=22 (@n®), (2 B),
K
VarB)=H"'®@B) dBH" =S M. (44)
k=1

Each client can compute @,(f) with Eq. (17) for all its samples i
(vs,i € D) as long as it has access to (gk(lf) and (ﬁy,‘(ﬁ) foralls e &.
Therefore, each client can compute the corresponding M.

This leads us to the full robust algorithm of FedECA in 5. Once the
variance is estimated using the above expression, we can perform
inference using, e.g., a Z-test. Note that as in 1ifelines” we use the
Hessian of the regularized function. Therefore, to accommodate the
computation of the variance, we modify non-robust FedECA as
depicted in Alg. 5. Privacy-wise, this modification (a) gives each client
the same knowledge as the server on the last round and (b) commu-
nicates an additional M; matrix by center, which is reasonable. In
addition, in the IPTW case, the matrix only the treatment allocation is
used as a covariate and hence M is a scalar M.

Algorithm 4. RobustFedCoxComp

Require: Weights 3, set S
1: Aggregator sends 3 to each center

2: for k =1 to K in parallel do > On each center
3 for s € S do

4 Compute W . with (29) 50if Doy =0
5 Compute Zj . with (30)

6: end for

7 for s € Sst. Wy, >0do > 0 otherwise
8 Compute (! (8) with (24)

o Compute ¢!, (8) with (25)

10 Compute ¢, (B) with (26)

11: end for

12: Send back {(Wy, Zk, (% ,.(8). C"_L({i)ACfA(ﬂ))}*éS

13: end for

14: Compute Vg/(3) with (33) > On the server
15: Compute V3((3) with (34)

16: return V((8), V3((8) > And if it's the last round return Vs € S,¢0,.(8),¢L.(8), W,
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Algorithm 5. FedECA

Require: Maximal number of steps ¥, LR schedule (a.).,
1: Initialization By = 0

regularization

if Stopping criterion then ¢ = F
end if

2: for e = 1to I do

3 Vl(Be—1), V4{(Be—1) = RobustFedCoxComp(3.—1) > Communication between server and centers
4 VpL(Be-1) = Vpl(Be-1) +7V1(B)

5 VEL(Be-1) = VEU(Be—1) +7VEU(B)

6 Be=Per— o (v;,aﬁ_.)) ' VaLB. )

7

8:

end for

10: return Bp

11: Define 8 = Bg

12: for k =1 to K in parallel do

13: Send back MM} where My =, s Y cp., H '@i(B).
14: end for

15: Compute Var(8) = S5, MM/

return V/a\i‘(ﬁ)

©

> On each center

> On the server

>

Federated bootstrap estimation

When implementing bootstrap in federated setups, the most
straightforward implementation is to bootstrap samples per-center.
However this creates some edge cases if centers have small sample
sizes (e.g., 3 kln,=1) and risks underestimating the variance compared
to the pooled case. In order to circumvent this issue we label all sam-
ples from 1 to n and label clients’ samples irrespective of their order.
This requires only sharing the number of samples by clients and
nothing else. In practice we label the centers from 1 to K randomly and
then assign the number from 1 to n; to the first client’s samples and so
forth. As each client knows its indices we can then ask the server to
sample indices from 1 to n as we would in the pooled case and then
send the current set of indices chosen for each bootstrap to all clients
that would then use it to bootstrap its own cohort. This way, there is no
bias in sampling, even for arbitrarily small clients. We refer to this
alternative as global bootstrap.

We therefore implement both, but use in our experiments this
global bootstrap where we sample with replacement the global dis-
tributed cohort as if it were pooled.

Distributed computation with Substra introduces an overhead per
atomic task executed locally on each partner’s machine mainly due to
docker image building. This overhead is not negligible and can become
a bottleneck when performing bootstrapping, which naively necessi-
tate to execute O(Nrounds Npootseraps) tasks per-client. To alleviate this
issue we implement a more efficient bootstrapping strategy where we
only have to run O(n,,unqs) tasks. This is achieved by employing hooks
so that each task, instead of executing its normal code, bootstraps
itself and then executes all its bootstraped versions producing a list of
bootstraped results per task. This requires to also modify the aggre-
gation steps to be able to aggregate each bootstrap run independently
and then redispatch all bootstraped aggregations to each client.
Details of this non-trivial implementation trick can be found in the
bootstraper.py script.

Note that we could also add another layer of parallelization inside
each task by using Python multi-processing as each bootstrap run is
independent of each other. However, the impact of this optimization
would be negligible with respect to the overhead introduced by the
distributed constraints. With this optimization, a Substra experiment
with 200 bootstraps lasts less than an hour instead of = 200 hours
naively without this parallelization layer, which would have made the
bootstrap variance estimation impractical, irrespective of the size of
the federated network. Note that other kinds of parallelization
schemes could also be undertaken, such as running multiple training
jobs (so-called “Compute Plans" in Substra) in parallel as was done in
MELLODDY?. However, this option necessitates scaling servers’
computational resources (CPUs, RAM) linearly with the number of
training jobs in parallel, which is impractical.

Privacy of FedECA. We consider that time-to-event and censorship are
safe to share, this is a strong assumption but is often used in clinical
trials as KM curves are released’®. More generally, every federated

computational graph involved in FedECA and created by our imple-
mentation of the above algorithms as well the ones underpinning the
FA methods of “Federated analytics for end-to-end federated ECA
analysis” can be audited easily thanks to Supplementary
Fig. 10 and 12-14. Each individual variable name in those graphs can be
understood thanks to the associated tables, Supplementary Tables 11,
12, 10, 14 and 15. Details on how this tracing step is performed are
available in 4.8.3.

Regarding the security of the covariates, we place ourselves in the
“honest-but-curious" threat model, described in more detail in Sub-
stra’s documentation®’.

The only covariate used when doing IPTW is the treatment allo-
cation, which is known throughout centers. Therefore, the only
quantities tied to the covariates that are communicated are (1) the
gradients of the propensity model, and (2) the scalar product of cov-
ariates and propensity model weights that are exposed through the
propensity scores, averaged on risk sets and on distinct event times.
Regarding the first point, we propose an implementation of a differ-
entially private version of the propensity model training that we
describe in the next paragraph. Regarding the second point, we
assume that the dimension p of the covariate vector is such that p > >1
and therefore that leaking scalar products is an acceptable risk in this
context; This is a strong assumption. In the general case it could the-
oretically allow for attacks such as membership attacks’®. Making the
pipeline end-to-end differential private (DP) is an open problem. One
could in principle rely again on DP to either add noise to the scalar
products themselves or to the propensity scores when training the Cox
PH model. However, this would affect the result even more than when
applying DP only to the propensity model training, which already has a
strong effect see Supplementary Fig.3. Another research avenue
would be to increase the average/minimum size of the per-client risk
sets by discretizing the times and applying random quantization
mechanisms (RQM)*°. We note that in this second case another
downside would be that, in addition to destabilizing the training of the
Cox model, it would artificially create more ties in the data, which
would in return affect the quality of the Breslow estimator.

Because it exposes sums of additional covariates, studying the
privacy of the federation of adjusted IPTW requires a specific treat-
ment that we leave to future work.

Differential privacy of the propensity model

We list here some properties of DP that are relevant to our imple-
mentation and refer the reader to the work of'® or'® for a more
complete exposition of the topic:

DP provides slack parameters (¢, 6), which allow to strike a trade-
off between model accuracy and privacy of individual contributions.

A process M is (g, 6)-DP if and only if VD, Dr adjacent (differing by
one element), we have:

PM(D) € S)<p(M(D) € S) - exp(e) +6 (45)
Perfect privacy guarantees are only obtained by taking (e, 6) = (0, 0)
which makes the process M provably indistinguishable from the
addition or removal of one individual. In practice in real-world
deployments it seems € between 0.1 and 50 are used depending on
the application'” with different values of 6. DP benefits from nice
composability properties'® and can thus be applied easily to ML
training methods that are iterative by nature and can therefore be
applied to FL as well'%,

We use the Opacus library'®, which implements the privacy
accountant method of'* to train the propensity model within FedECA
with differential privacy (DP) with various (g, 6) couples.

Our implementation is available in the script torch_dp_fed_avg_
algo.py and uses Rényi differential privacy (RDP)'%*, which gives tighter
bounds alongside with Poisson sampling.
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Federated analytics for end-to-end federated ECA analysis
Regulators ask for SMD and Kaplan-Meier survival curves'® in addition
to the hazard ratio (HR), the associated confidence intervals (CI) and
P-value in order to validate the reweighting of the propensity model
and to be able to describe the patient population’s time-to-events
distribution within the two groups.

Therefore, we also implement two federated analytics methods
that we call Fed-Kaplan and Fed-SMD in order to compute such
quantities globally on distributed data without compromising data.

It is to be noted that Fed-Kaplan can be directly derived from
FedECA as it requires the same quantities, namely the risk sets and
number of occurrence of events. However, Fed-SMD requires the
communication of additional second order terms which increases the
attack surface of FedECA.

Federated Kaplan-Meier estimator. We follow FedECA implementa-
tion to compute per-center and communicate the unique times of
events Sy, the (weighted) risk set R ; and the (weighted) number of
deaths occurring at these times Dy , for each arm.

This enables to compute in the server R, and D, which then allows
to compute the Kaplan-Meier estimator at each time ¢ of a predefined
grid for each arm as well as the Greenwood and exponential Green-
wood confidence intervals'®.

For completeness, we remind the reader of these well-known
formulas that we rewrite using our notations:

< ZjeDs wj
S0 H <1 ke, Wi)’
seS|s<t S

&2 Zjeﬂs Wi
Var(S)=5(¢) Sggst <Zke7€5 wk) x (Zkem Wy = Yjep, wj)

Z(t)= log(log $(1)),

,

ZjeDs wj

5 1
Var[Z(t)] = — .
(IOg S(t))z sagst <Zke7€s wk) x (ZkERS Wy — ZjeDS u}j)

With () the Kaplan-Meier estimator of the survival function and
Var(S) and Var[Z(t)] respectively the Greenwood and exponential
Greenwood estimators of the variance of the Kaplan-Meier estimator
at time ¢. In practice exponential Greenwood shall be used'*® and this is
what we display in the results.

SMD estimator. Computing SMD in a federated setting
We compute the standardized mean difference (SMD) for each
covariate before and after weighting as defined by:

— xl —
SMD= e 46)
2

Where X, and X, are the means of the covariate in the two arms, and s?
and s3 are the variances of the covariate in the two arms. As explained
in'%1% we use the variance of the groups before weighting as a nor-
malizer. We compute this quantity in a federated fashion efficiently in
two aggregation rounds by developing the variance following'*’:

1 & o 1 (&,
mg(xifx) =H<§;Xim( . (47)
i= i=
Effectively each center transmits uncentered moments of order 1and 2
and the server uses them to derive the centered moments of
order 1 and 2.

Datasets and cohorts construction
Synthetic data generating model of time-to-event outcome. To
illustrate the performance of our proposed FL implementation, we rely

on simulations with synthetic data. We simulate covariates and related
time-to-event outcomes respecting the proportional hazards (PH)
assumption, with the baseline hazard function derived from a Weibull
distribution. For simplicity, we assume a constant treatment effect
across the population. The data generation process consists of several
consecutive steps that we describe below, assuming our target is a
dataset with p covariates and n samples.

First, a design matrix X=X, .. XP]ec R™? ~ N(0,) is
drawn from a multivariate normal distribution to obtain (baseline)
observations for n individuals described by p covariates. The covar-
iance matrix X'is taken to be a Toeplitz matrix such that the covariances
between pairs (X?, X?) of covariates decay geometrically. In other
words, for a fixed p> 0, we have cov(X?®, X?) = pi., Such a covariance
matrix implies a locally and hierarchically grouped structure under-
lying the covariates, which we choose to mimic the potentially com-
plex structure of real-world data. To reflect the varying correlations of
the covariates with the outcome of interest, the coefficients ; of the
linear combination used to build the hazard ratio are drawn from a
standard normal distribution.

X = Toeplitz(,p,p?, ---,p"7Y),
X e R™P ~ N(0,X),
B e R ~ N(0,1).

(48)

In the context of clinical trials with external control arms, which
implies non-randomized treatment allocation, we simulate the treat-
ment allocation in such a way that it depends on the covariates. More
precisely, we introduce the treatment allocation variable A that follows
a Bernoulli distribution, where the probability of being treated (the
propensity score) g depends on a linear combination of the covariates,
connected by a logit link function g. The coefficients a; of the linear
combination are drawn from a uniform distribution, where the range
k>0 is symmetric around O and is normalized by the number of cov-
ariates. The degree of influence of the covariates on A can be regulated
by adjusting the value of k. The greater the value of k, the stronger the
influence, and therefore the lower the degree of overlap between the
distributions of propensity scores of the treated and (external) control
groups. Conversely, k=0 removes the dependence, leading to a ran-
domized treatment allocation.

a e RP ~ pV2U(=k, k),
gi=g @ X)=1+e ey, (49)

a;|X; ~ Bern(q;).

Once drawn, the treatment allocation variable A; is composed with
the constant treatment effect, defined here as the hazard ratio g, to
obtain the final hazard ratio h; for each individual. The time-to-event T
of each sample is then drawn from a Weibull distribution with shape v
and the scale depending on h; and v. Meanwhile, for all samples we
assume a constant dropout (or censoring) rate d across time, resulting
in a censoring time that follows an exponential distribution.

hy(a)=p% exp(B' X)),
T; ~ Wihyia) ™, v),
C; ~ &d)

(50)

Finally, the event indication variable 6; can be derived from T; and C;
6,= 17 .- And the observed outcome V; for the ith individual is defined

as the couple Y;=(T;=min(T;,C;),6,), ie., it corresponds to the
observed time and the information on whether an event is observed.

Prostate cancer cohort construction. We access data of two phase IlI
randomized clinical trials from the Yale University Open Data Access

Nature Communications | (2025)16:7496

15


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62525-z

(YODA) project® of patients with metastatic castration-resistant
prostate cancer. The first trial, NCT02257736, has apalutamide, abir-
aterone acetate and prednisone (Apa-AA-P) for the treatment arm, and
placebo, abiraterone acetate and prednisone (AA-P) for the control
arm. The primary outcome is radiographic progression-free survival
(rPFS). The second trial, NCTO0887198, has AA-P for the treatment
arm, and placebo and prednisone (P) for the control arm. The primary
outcomes are overall survival (OS) and rPFS. We thus artificially dis-
tribute the data of the first trial to one “client” (simulated server) and
the data of the second arm to the second client replicating natural
splits such as in® to simulate a federated learning setup.

While all patients are randomized in each trial, it is still necessary to
correct for potential confounding when comparing arms from different
trials. First, the inclusion/exclusion criteria of both trials were aligned,
patients in NCT02257736 with present visceral metastases at randomi-
zation were excluded to match the exclusion criterion of NCTO0887198.
Then a group of variables of patient’s baseline characteristics were
chosen for propensity-weighting based on literature review as well as on
their availability in both trials. The chosen covariates are age, body-mass
index (BMI), eastern cooperative oncology group (ECOG), brief pain
inventory (BPI) score and bone-metastasis-only. We present baseline
characteristics for each trial in Supplementary Tables 3, 4.

We then filter these patients to remove non-informative patients
and patients with missing survival information. The final full cohort
consists of n=1927 patients (n =839 for NCT02257736 and n =1088 for
NCT00887198) in three treatment arms (Apa-AA-P, AA-P and P). We infer
the missing covariates on a per-center basis using MissForest*. The flow
diagram of the cohort construction is present in Supplementary Fig. 5,
including different ECA experiments conducted in this study.

We note that, since we submitted our research plan proposal to
YODA (provided in Supplementary Fig. 9) in order to access the data,
we departed from the original plan in the following ways:

* IPTW is studied instead of G-computation

* we do not study conformal prediction

* time-to-event endpoints are studied instead of change in SLD or
change in PSA

Pancreatic adenocarcinoma cohort construction

Cohort construction. We access data from three different sources: the
Fédération Francophone de Cancérologie Digestive (FFCD), the Insti-
tut d’Investigacié Biomédica de Girona (IDIBGI), and the Pancreatic
Cancer Action Network (PanCAN). The FFCD data consists of a subset
of two clinical trials: PRODIGE 35 and PRODIGE 37*’ that respectively
compare the first line efficacy of, for PRODIGE 35, 6 months of FOL-
FIRINOX (arm A), 4 months of FOLFIRINOX followed by leucovorin
plus fluorouracil maintenance treatment for controlled patients (arm
B), and a sequential treatment alternating gemcitabine and fluorour-
acil, leucovorin, and irinotecan every 2 months (arm C) and for PRO-
DIGE 37: alternately receive gemcitabine + nab-paclitaxel for 2 months
then FOLFIRL3 for 2 months (arm A), or gemcitabine + nab-paclitaxel
alone until progression (arm B). We use both the FOLFIRINOX arm A
from PRODIGE 35 (n=92) and the gemcitabine + nab paclitaxel arm B
from PRODIGE 37 with (n = 61). The inclusion criteria of this new subset
is thus metastatic pancreatic adenocarcinoma patients with a perfor-
mance status eastern cooperative oncology group (ECOG) of either 0, 1
or 2. We select patients with the same inclusion criteria treated with
FOLFIRINOX or gemcitabine + nab-paclitaxel from clinical practice
data from IDIBGI and PanCAN. In IDIBGI we find n = 33 patients treated
with FOLFIRINOX and n=192 with gemcitabine + nab-paclitaxel. In
PanCAN we find n=91 patients treated with FOLFIRINOX and n=386
with gemcitabine + nab-paclitaxel patients that meet the criteria,
totaling n =177 patients out of 181 originally available, excluding ECOG
3 and 4. Among the 177 patients, 2 are censored at the time the study
starts. Therefore, their data is not informative for the Cox model fitting
but might still be useful for the estimation of the propensity model. In

addition, we identify in the PanCAN cohort the presence of an
immortal time bias due to biopsy collection, i.e., a patient will enter the
PanCAN database only if they have had at least one biopsy before their
last known follow-up. Consequently, patients who died before having
any biopsy will not be included in the database, and patients in the
database will be alive at least until their first biopsy. The time interval
between the start of treatment and the first biopsy is therefore an
immortal time for all patients in the PanCAN cohort. Such immortal
time bias will lead to inflated survival rates™ and is crucial to the
present study. To correct for this bias, we thus retrieve for all PanCAN
patients the date of their first biopsy and adjust their entry date into
the study by taking the latest date between the first biopsy and the
start of first-line treatment for metastatic pancreatic cancer.

For each patient we access the following covariates: age at
diagnosis, ECOG performance status, biological gender determined
by self-report and whether or not patients have liver metastasis fol-
lowing the literature*® and restrictions due to data availability for
covariates in each center. We present baseline characteristics for each
of the centers in Supplementary Tables 5-7 respectively for FFCD,
IDIBGI and PanCAN. We then filter these patients to remove non-
informative patients, i.e., patients with missing treatment or survival
information. The final full distributed cohort consists of n=555
patients (n =153 for FFCD, n = 225 for IDIBGI, and n =177 for PanCAN).
We infer the missing covariates on a per-center basis using
MissForest™ considering ECOG as a numerical variable because it is
ordered, and apply minimum-maximum normalization to numerical
variables using [0, 100] for age values and [0.0, 2.0] for ECOG loosely
following*®.

Practical considerations associated with setting-up real-world
federated learning collaborations. While clinical trials data is well-
standardized, real-world data from centers from multiple continents
are not and need to be harmonized for the federation to be considered.
Clinical practice data has to be extracted by partners from different
local sources stored in different databases and accessed by different
internal toolings leading to a variety of extracted formats. We ask the
centers to align on a common data dictionary created from FFCD data,
which acts as the reference center as RCT data is already well-curated.
We share this dictionary as a Google Sheet to all partners specifying
expected variables, units formats and possible values. Resulting data
extracts have missing values, and some data entries contain errors.
Thus, while some parts can be automated, the whole process from data
extraction to data harmonization involves a non-trivial amount
of back-and-forth between data engineers from partner centers,
medical doctors, data stewarts and data scientists in order to perform
thorough quality checks of the input data. It is interesting to note that,
while we did not use large language models (LLMs)™ in this work, they
could certainly be useful to streamline parts of this process'?, How-
ever, end-to-end automation seems out of reach with current
technology™.

Real-world experiments setup details
All experiments in this article are simulated in-RAM with the exception
of two experiments: the first one which uses synthetic data and splits it
into 10 cloud nodes and the pancreatic adenocarcinoma use-case.
We refer to those two experiments as real-world in order to distin-
guish the complexity of their deployment from in-RAM simulation cases.
In both cases, we use the Substra platform® to deploy the fed-
erated learning network over secure cloud-based infrastructures.
Substra is distributed with Helm charts for each component.
The charts package all the files required for a deployment in a
Kubernetes cluster. Provisioning of the clusters and Substra
deployment are performed using a private Terraform module
(known as infrastructure as-code). We detail below the two dif-
ferent deployments.
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Synthetic data infrastructure setup. For this experiment, the clusters
are hosted on Google Kubernetes engine (GKE) but Substra’s deploy-
ment is cloud-agnostic. Provisioning of the GKE cluster and Substra
deployment are performed using a private Terraform module (known
as infrastructure as-code). For this experiment, we used 11 Kubernetes
clusters:

* 1clusteris hosting the Substra orchestrator - single source of truth
within the federation - as well as a Substra Backend and Frontend,
which makes it capable of receiving and performing aggregation
tasks. Substra’s documentation refers to this cluster as
“AggregationNode".

* 10 clusters are hosting a Substra Backend (and Frontend) only and
perform compute tasks on local data. Substra’s documentation
refers to each of these clusters as “TrainDataNode".

Clusters are physically in Belgium according to Google ("zone
europe-westl" https://cloud.google.com/compute/docs/regions-zones?
hl=en). GKE version used is 1.27.2-gke.1200 and the machines used
are the “nl-standard-16" https://cloud.google.com/compute/docs/
general-purpose-machines?hl=en#nl_machine_types. Regarding the
communication protocol between centers, the organizations commu-
nicate with the orchestrator via gRPC and over http(s) one to another.
Since the experiment is simulated in an internal environment using
synthetic data we chose not to enforce mutual transport layer security
(mTLS). More information can be found in Substra’s documentation:
https://docs.substra.org/en/latest/documentation/components.html.

Metastatic pancreatic adenocarcinoma data infrastructure setup.
Similarly, we deploy within Owkin Inc.s own Federated Research
Network cloud infrastructure four nodes: a node for each of the three
participating centers and an additional server node, the “Aggrega-
tionNode", with responsibilities described above. Each node here is
independent: the nodes are deployed in different regions with differ-
ent cloud providers. PanCan data are located in the US, while Idibgi and
FFCD data are hosted in Europe. The precise version information of the
Substra versions used for this deployment is 0.51.0+dev for
substra-frontend, 0.47.0+d5dfbdb6 for substra-backend and
0.42.0+e6blbddb for the orchestrator repository.

Partner centers uploaded their data to the corresponding nodes.

Estimation of the treatment effect

We compare FedECA to several competitors, which, with the exception
of pooled IPTW, are all adapted to the ECA setup, where the IPD of a
local cohort are accessible and only aggregated statistics are accessible
for an external cohort. Given the time-to-event nature of the outcome,
we choose to estimate the hazard ratio under the proportional hazards
assumption as a measure of the treatment effect. For all competitors,
data is used to fit a Cox model as implemented in the 1ifelines
library” to obtain the estimation.

Unweighted Cox regression

We implement a naive Cox model regressing the observed outcome Y
on the treatment allocation variable A, without using the weights of the
samples. This corresponds to an unadjusted comparison between the
treated and untreated groups, which would be valid in a randomized
setting but not in an external control arm case. In the ECA setup, this
estimator corresponds to the WebDISCO method, and we use the
implementation provided by the authors of this method.

MAIC

Although not a method originally proposed for ECA, the MAIC method
can be adapted to perform ECA analysis under proper assumptions: First,
for the reweighting step, we make use of the implementation available in
the indcomp package (https://github.com/AidanCooper/indcomp).
Specifically, the IPD of the local cohort are reweighted so that a specified

group of covariates matches the external cohort in terms of means and
variances, creating, by design, reweighted data with zero SMD relative to
the external cohort for each covariate. Then, in the absence of IPD of the
external cohort, in order to train the Cox model to estimate treatment
effect, we further assume that the (aggregated) risk set of the external
cohort is also accessible. In this case, methods based on the digitization
of the Kaplan-Meier curve™ can be used to construct pseudo IPD as an
approximation to the IPD of the external cohort. The pseudo IPD are then
assigned a uniform weight of one and combined with the reweighted
local cohort to estimate the treatment effect. In our simulation experi-
ments, for reasons of simplicity and without loss of validity, we use the
real IPD of the external cohort as an idealization of the pseudo IPD, which
sets the upper bound of MAIC’s performance in the ECA setup.

Pooled IPTW

The general concept and strategy of IPTW has been described before
(see “Method overview”). In the implementation, the core estimation
process is divided into two key steps. First, the propensity scores are
estimated using unpenalized logistic regression or, alternatively, they
can be provided externally to the estimator. These scores are then
used to compute inverse probability weights tailored to the effect
estimand. For the average treatment effect (ATE), weights are based on
the inverse of propensity scores for both treated and control groups.
For the average treatment effect on the treated (ATT), the weights
involve a combination of treatment indicators (for the treated indivi-
duals) and inverse propensity scores (for the control individuals).
Second, the treatment effect estimation is performed by fitting a
weighted Cox proportional hazards model, where the inverse prob-
ability weights are incorporated in the regression model of the
observed outcome Y on the treatment allocation A.

Competing paradigms

We already motivated the choice of IPTW as the best weighting
method for small sample sizes. However other methods than weight-
ing and matching could be considered for federation as well such as
G-computation”*® or doubly debiased machine learning®*° as their
performance should be comparable®. We leave their federation to
future work.

Experiments details

Early stopping within a static distributed framework. As Substra is
static and requires to fix the number of federated rounds a priori, we
implement early-stopping for the stopping criterion on the Hessian
norm by running up to MAX;., rounds (20 in practice) and backtrack to
find the first round where convergence was achieved.

Federated hyper-parameters selection. We note that, due to dis-
tribution and privacy constraints, standard practices such as cross-
validation might become difficult to setup. In practice, in the case there
is one sample per patient, which is what we study here, what we
recommend is to treat the distributed datasets as a single distributed
dataset, as in the federated global bootstrap, and proceed to splitting
accordingly. We further recommend per-center stratification for fair-
ness considerations and to avoid pathological cases. We note that,
naively, any stratification on a private variable would require exposing
and sharing this variable at least to the server, which limits the kinds of
cross-validation that can be applied. We refer to the works of" > for
going beyond those recommandations.

Software and reproducibility. Following the recent trend of switching
from R to Python for implementing statistical software”"*"’, we chose
Python as the base language for our implementation. This choice is
also motivated by the fact that most FL research implementation code
is written in Python. We follow reference survival analysis packages
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implementation design choices, such as 1ifelines” and scikit-
survival®. We use the Substra software®, which is an open-source
software that has been audited and validated by security teams of both
hospitals and pharmaceutical companies across different FL projects.
Substra has demonstrated its ability to be deployed in real-world
conditions for biomedical research purposes in the MELLODDY
project”?, as well as in the HealthChain project on breast cancer
treatment response prediction®.

FedECA is available as a Python package on Github: https://github.
com/owkin/fedeca for non-commercial use.

The code in this repository follows best practices such as con-
tinuous integration (Cl), thorough code testing (coverage of code at
82% on commit a6ec22c), deployed documentation using Github
pages as well as the use of pre-commit hooks to help manage the
repository’s evolution.

The availability of the code not only ensures the reproducibility of
the results presented in this article as well as the possibility to audit its
implementation, but also opens the possibility for other research
teams to perform real-world federated ECA.

Indeed, a user can launch FedECA running the exact same code
either in-RAM for simulations, or on a real deployed substra network in
real conditions by modifying the backend type, as shown in Supple-
mentary Fig. 1.

The FedECA repository contains a quickstart as well as detailed
documentation and comments, which should allow easy replication.

All quantitative figures in this article with synthetic data can be
reproduced by following instructions in experiments/README.md.
The associated yaml configurations provide all hyper-parameters that
were used.

For experiments on 10 centers replication involves deploying a
substra network, which require some development operations
(DevOps) capabilities. However, details in “Synthetic data infra-
structure setup” should be sufficient to reproduce the results. The
associated experiment script is defined in real world_runtimes.yaml.

For experiments on YODA data, we install the fedeca package
within the YODA platform, split the data in such a way that the control
arm and the treatment arm are in two separate groups, and run fedeca
with bootstrap variance estimation. Scripts used to preprocess the
data and run the experiments are available in the yoda folder in the
fedeca repository.

For experiments on metastatic pancreatic adenocarcinoma data,
we use the fedeca package unaltered on commit a6ec22c after having
registered the data in the Substra platform. Obfuscated versions of the
scripts that ran on the deployed platform and that were used to gen-
erate the related figures in the article are available in the pdac folder in
the fedeca repository. By obfuscated, we mean that dataset hashes or
URLs in this script were converted to random strings so they cannot be
mapped to any of the original data or servers.

The nature of this last experiment is such that replications require
data access which might be restricted, see “Datasets and cohorts
construction”. However once access to data is obtained and federated
network is deployed all experiments should be easily reproduced
thanks to the above scripts.

Regarding the automatic tracing of all quantities communicated
by FedECA’s federated algorithms such as the one reported in Sup-
plementary Fig.10 the logging code originally developed by'*° and
relying on remote methods decorators can be found in the jean/
logging branch. Executing plot graphs and tables.py auto-
matically generates all corresponding graphs and tables in the article.

Further questions can be addressed to the corresponding author
J.0.d.T. through the creation of github issues or via direct e-mail.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data generated in this study can be re-generated using the scripts
provided in https://github.com/owkin/fedeca. Data are available from
the Yale University Open Data Access (YODA) Project under restricted
access to qualified researchers. Access can be obtained by following
instructions on the YODA Project website https://yoda.yale.edu/
request/. The entire data access process takes approximately 3
months. Access is provided for 1 year but can be renewed for addi-
tional years. The FFCD, IDIBGI data are available under restricted
access to qualified researchers, access can be obtained by contacting
directly the main investigators in each center:J.-B. B. for FFCD and R. C.
for IDIBGI. Expected timeframe for access is a few months. Data can be
available for any negotiated durations. Data from PanCAN are available
under restricted access to qualified researchers, access can be
obtained by submitting a proposal for review at www.pancan.org/
spark. Data will be provided to qualified and approved researchers
within one month of request. The duration of data access varies based
on contractual agreement, but generally is two or three years. The
clinical data used in this study are subject to access restrictions due to
both regulatory requirements related to healthcare data sharing as
well as contractual requirements related to intellectual property (IP)
considerations. Source data are provided with this paper.

Code availability

The integrality of the code is publicly released and openly available for
research purposes under a research only license at the following URL:
https://github.com/owkin/fedeca.
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