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Quantum tomography of a third-order
exceptional point in adissipative trapped ion

Y.-Y. Chen 1,5, K. Li1,2,5, L. Zhang1,5, Y.-K. Wu 1,3, J.-Y. Ma4, H.-X. Yang 4,
C. Zhang 4, B.-X. Qi 1, Z.-C. Zhou 1,3, P.-Y. Hou1,3 , Y. Xu 1,3 &
L.-M. Duan 1,3

Hermiticity in quantummechanics ensures the reality of energies, while parity-
time symmetry offers an alternative route. Interestingly, in a three-level sys-
tem, parity-time symmetry-breaking can lead to third-order exceptional points
with distinctive topological properties. Experimentally implementing this in
open quantum systems requires twowell-controlled loss channels, resulting in
dynamics that challenges a pure non-Hermitian description. Here we address
the challenge by employing two approaches to eliminate the effects of quan-
tum jump terms, ensuring pure non-Hermitian dynamics in a dissipative
trapped ion. Based on this, we experimentally observe a parity-time symmetry-
breaking-induced third-order exceptional point through non-Hermitian
absorption spectroscopy. Quantum state tomography further demonstrates
the coalescence of three eigenstates into a single eigenstate at the exceptional
point. Finally, we identify an intrinsic third-order Liouvillian exceptional point
via quench dynamics. Our experiments can be extended to observe other non-
Hermitianphenomena involvingmultiple dissipative levels andpotentiallyfind
applications in quantum information technology.

Hermiticity is a fundamental concept in quantum mechanics as it
ensures the reality of energies. Interestingly, it has been discovered
that the requirement of Hermiticity can be relaxed in favor of con-
sidering parity-time (PT) symmetry, which also guarantees the reality
of energies when the corresponding eigenstates respect the
symmetry1–3. Notably, if a state violates the symmetry, its eigenvalue
becomes complex. In a two-level system, a second-order exceptional
point (EP2) appears at the transition point, where the Hamiltonian
becomes nondiagonalizable4,5. The PT symmetry breaking in two-level
systems has garnered significant interest across various fields, further
promoting the study of diverse phenomena in non-Hermitian
physics6–12, including single-mode lasers13,14, exceptional points, rings
or knots15–24, enhanced sensing25, and unidirectional invisibility26.
Moreover, experimental observations have confirmed the existence of
two-mode PT symmetry breaking and related non-Hermitian topology
in quantum systems27–36.

In systems with more than two levels, the PT symmetry breaking
can lead to higher-order exceptional points (EPs) beyond the second
order. For instance, in a ternary PT symmetric system, a third-order EP
(EP3) can arise from the PT symmetry breaking, where a 3 × 3 non-
Hermitian Hamiltonian has only one eigenstate. Remarkably, higher-
order EPs can exhibit peculiar topological properties and sensitivity
enhancement37–40. Consequently, significant efforts have been direc-
ted towards experimentally exploring EP3 and their topological
properties in optical systems41,42, cavity optomechanical systems39,
acoustics systems40, and Bose-Einstein condensates43. In quantum
systems, two approaches are usually employed to implement a non-
Hermitian Hamiltonian. One approach, named the dilation method,
employs the dynamics of a Hermitian Hamiltonian involving a system
qubit and an ancilla qubit to realize the non-Hermitian dynamics in a
subspace27,44,45. This method has been utilized to observe a third-order
exceptional line in a nitrogen-vacancy spin system46. Theothermethod
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involves applying dissipation to achieve the non-Hermitian Hamilto-
nian, which has been applied in cold atom systems28,35,43,47, super-
conducting circuits29,30,48, and trapped ions31,32,49. However, the
observation of the PT symmetry-breaking-induced EP3 in these sys-
tems requires two loss channels, making it difficult to describe the
dynamics using an effective non-Hermitian Hamiltonian.

Here, we experimentally investigate the EP3 associated with PT
symmetry breaking in a dissipative trapped-ion system. By precisely
engineering the system Hamiltonian and two loss channels, we realize
a three-level effective non-Hermitian Hamiltonian possessing both PT
and anti-PT symmetries, which protect the existence of an EP3 within a
one-dimensional parameter space.We prove that the dynamics in non-
Hermitian absorption spectroscopy50 is governed by the effective non-
Hermitian Hamiltonian, enabling the observation of the EP3 and the
associatedwinding topology. In particular, we find that an off-diagonal
sector of a density matrix undergoes a non-Hermitian evolution,
allowing us to performquantumstate tomography across the EP3. This
enables the direct observation of the coalescence of three eigenstates
into a single eigenstate—an unambiguous feature of an EP3. Finally, we
find that the Lindbladian, which is also a non-Hermitian matrix in
Liouville space, exhibits an intrinsic EP3, and we experimentally iden-
tify this EP3 by quenching a non-physical initial state.

Results
PT symmetry-breaking-induced EP3 in a dissipative trapped ion
We realize a dissipative three-level system using a single trapped
171Yb+ ion, as illustrated in Fig. 1a. The three system levels are
encoded in the hyperfine states ∣0i � ∣F = 1,mF = 1

�
, ∣1i �

∣F =0,mF =0
�
and ∣2i � ∣F = 1,mF =0

�
within the 2S1/2 ground state

manifold (see Fig. 1b). The hyperfine splitting ωHF ≈ 2π × 12.6 GHz
allows us to couple ∣1i with ∣0i and ∣2i using microwaves, as

indicated by the black arrows in Fig. 1b. To induce dissipation in ∣1i
(∣2i), we use a 370 nm laser B (C) to couple it with an excited state
∣e1
� � j2P1=2, F = 1,mF =0i (∣e2

� � j2P1=2, F = 1,mF =0i), denoted by a
dark (light) purple arrow in Fig. 1b. According to selection rules, ∣e1

�
(∣e2
�
) spontaneously decays to ∣0i, ∣1i (∣2i), and ∣3i � ∣F =0,mF = � 1

�
with equal probabilities, as shown in Fig. 1b by the dotted
(dashed) lines.

The dynamics of the system is described by the following master
equation (ℏ = 1) (see “Methods” Adiabatic elimination for the master
equation for details on deriving the equation through adiabatic elim-
ination)

dρ
dt

=L½ρ�= � i½H,ρ�+
X6
μ = 1

LμρL
y
μ �

1
2
fLyμLμ,ρg

� �
, ð1Þ

where H = Ω1ffiffi
2

p ∣0i 1h ∣+ Ω2ffiffi
2

p ∣1i 2h ∣+H:c: with Ω1,2 being the coupling
strength controlled by the microwaves, L1 = c1∣0i 1h ∣, L2 = c1∣1i 1h ∣,
L3 = c1∣3i 1h ∣, L4 = c2∣0i 2h ∣, L5 = c2∣2i 2h ∣, and L6 = c2∣3i 2h ∣ are quantum
jump operators with cn =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γn=3

p
, and γn = 2J

2
n=Γ for n = 1, 2 (J1,2 are

controlled through 370 nm lasers B and C, and Γ ≈ 2π × 19.6MHz51

arising from the short lifetime of the 2P1/2 states). If we can neglect the
contribution of quantum jump terms

P
μLμρL

y
μ, then the dynamics is

governed by the effective non-Hermitian Hamiltonian
Heff =H � i

2

P
μL

y
μLμ, which reads

0 Ω1ffiffi
2

p 0
Ω1ffiffi
2

p �iγ1
Ω2ffiffi
2

p

0 Ω2ffiffi
2

p �iγ2

0
BBB@

1
CCCA ð2Þ

relative to the basis f∣0i, ∣1i, ∣2ig.

Fig. 1 | Schematics of experimental configurations, and experimental results
via non-Hermitian absorption spectroscopy. aWe use a 370 nm laser beamA for
cooling, optical pumping and state detection, 370 nm lasers B and C to realize the
dissipation in the ∣1i and ∣2i levels, respectively, and microwaves to generate the
Hermitian part of the Hamiltonian. A 411 nm laser is applied to drive the transition
between the levels ∣1i and ∣ai for non-Hermitian absorption spectroscopy. Laser
with wavelengths of 935 nm, 3432 nm, and 976 nm are also utilized as auxiliary
components in the experiments (see Supplementary Information S-1 for detailed
descriptions of our experimental setup). Themagneticfield has a small out-of-plane
component in addition to the in-plane component so that B =B∥+B⊥. b The main
energy levels and transitions used in our experiment. Transitions driven by the
microwaves, the 370nm lasers B andC, and the 411 nm laser are described by black,
purple, and blue arrows, respectively. Spontaneous decay of the excited states is

shown by dotted and dashed lines. Real (c) and imaginary (d) parts of complex
eigenenergies obtained by theoretical calculations (solid lines) are shown together
with experimental data points (circles). e Real part of the eigenenergies near the
EP3 (marked by the star) as a function of two additional detunings Δ0 and Δ1.
f Theoretical (solid lines) and experimental complex eigenenergies (circles) with
respect to θ defined through Δ0 =Δr cos θ and Δ1 =Δr sinθ with
Δr= 2π ×0.020MHz. The energy bands are marked with the same colors as in (e),
and the starting points at θ =0 are marked by circles in (e). In (c–f)
γ = 2π ×0.040MHz,Ωa = 2π ×0.004MHz, and the evolution time is ta = 200μs. The
experimental results are averaged over 5 rounds of experiments (each contains
200 shots) with error bars being the standard deviation of the five experimental
repetitions (error bars for some data points are smaller than the symbol size).
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WhenΩ1 =Ω2=Ω and γ1 = γ2/2 = γ, we obtainHeff = heff − iγI3 where
I3 is a 3 × 3 identity matrix and heff =ΩSx +iγSz with Sx and Sz being the
spin-1 matrices. In this case, heff respects both PT symmetry,
UPTheffU

�1
PT =heff , and anti-PT symmetry, UAPTheffU

�1
APT = � heff , where

UPT =

0 0 1

0 1 0

1 0 0

0
B@

1
CAκ, UAPT =

1 0 0

0 �1 0

0 0 1

0
B@

1
CAκ, ð3Þ

with κbeing the complex-conjugation operator. PT (anti-PT) symmetry
ensures that an eigenenergy of heff is purely real (imaginary) when the
corresponding eigenstate respects the symmetry, and the set of all
eigenenergies are symmetric with respect to the real (imaginary) axis
when the symmetry is broken. Consequently, as we vary a system
parameter Ω/γ, if the transition for both symmetry breaking occurs at
the same parameter value (e.g., Ω/γ = 1), then the eigenenergies must
transition between purely real and purely imaginary values across the
transition point. At this point, all three eigenenergies are zero, and an
EP3 appears52. Indeed, by solving the eigenvalue problem, we obtain

the eigenenergies of heff as E ± = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
and E0 = 0, with the

corresponding right eigenstates being

∣ψ ±

�
= �

γ∓i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
2Ω

,
iffiffiffi
2

p ,
γ ± i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
2Ω

0
@

1
A

T

,

∣ψ0

�
=

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 + γ2

q � Ωffiffiffi
2

p , iγ,
Ωffiffiffi
2

p
� �T

:

ð4Þ

For Ω > γ (Ω < γ), the eigenenergies are purely real (imaginary),
corresponding to preserved (broken) PT symmetry. Notably, at Ω = γ,
not only do the eigenenergies become degenerate, but all three
eigenstates coalesce into a single state ∣EPi= 1

2 ð�1, i
ffiffiffi
2

p
, 1Þ, indicating

thepresence of an EP3. Thus, by tuning the ratioΩ/γ, one canobserve a
PT transition associated with an EP3, protected by the PT and anti-PT
symmetries52,53.

However, the presence of quantum jump terms
P

μLμρL
y
μ can

cause the dynamics to deviate significantly from the pure non-
Hermitian evolution described by Heff. For example, 2/3 of the
decayed population is returned to the system levels through the
quantum jumps, which is not the case in the non-Hermitian evolution.
In the following, we will employ two approaches to eliminate the
effects of the quantum jump terms and experimentally detect the EP3
inHeff associatedwith the PT symmetrybreaking. Furthermore,wefind
that the LindbladianL, which is also anon-Hermitianmatrix in Liouville
space, exhibits an intrinsic EP3 at Ω = γ. By leveraging the anti-PT
symmetry of the Lindbladian, we can experimentally detect this Liou-
villian EP3 by quenching a non-physical density matrix with zero trace.

Non-Hermitian absorption spectroscopy
Tomeasure the complex eigenenergies of the effective non-Hermitian
Hamiltonian, we introduce an auxiliary energy level
∣ai � j2D5=2, F = 2,m=0i, which is coupled to the system level ∣1i by a
411 nm laser (see Fig. 1b). In this setup, the Hamiltonian is modified to

HNAS =Heff +
Ωa

2
ð∣1i ah ∣+H:c:Þ � δa∣ai ah ∣, ð5Þ

where Ωa is the Rabi frequency, δa is the detuning, and the involved
energy levels are ∣0i, ∣1i, ∣2i, and ∣ai. We initially prepare the ion in the
auxiliary state ∣ai. As time evolves, the population is transferred to the
system levels and subsequently dissipates to the loss state ∣3i. Finally,
we measure the remaining population in ∣ai with respect to the

detuning δa (see Methods Sec. B), which contains information of the
complex eigenenergies of the system49,50.

By setting Ωa sufficiently small, the effects of the quantum jump
terms become negligible, allowing the system to undergo a non-
Hermitian evolution. This is because the quantum jump terms sig-
nificantly affect the dynamics only when there is sufficient population
in ∣1i and ∣2i. However, with a small Ωa, any population transferred to
the system levels dissipates quickly to the loss state ∣3i, resulting in
negligible population in ∣1i and ∣2i (see “Methods” in Non-Hermitian
absorption spectroscopy). As a consequence, the population in the
auxiliary level at time ta is determined by the non-Hermitian evolution

Na =N0∣ ah ∣e�iHNASta ∣ai∣2, ð6Þ

where we introduce a variable N0 to account for the state preparation
and measurement error. We extract the complex eigenenergies of the
system by fitting the experimental measurement results based on the
theoretical population Ntgt

a, i calculated from Eq. (6) with slight mod-
ifications to account for the finite lifetime (~ 7.4 ms) of ∣ai (see
“Methods” in Non-Hermitian absorption spectroscopy).

To experimentally observe the EP3 associated with the PT sym-
metry breaking, we tune the ratioΩ/γ from 0.4 to 1.6 acrossΩ/γ = 1. By
measuring the remaining population in ∣ai at the end of the dynamics
with respect to the detuning δa (referred to as a spectral line) for each
ratio and fitting these spectral lines using the method presented in
Methods Non-Hermitian absorption spectroscopy, we extract the
complex eigenenergieswith respect toΩ/γ, with the real and imaginary
components displayed in Fig. 1c and d, respectively. The measured
eigenenergies closely match the theoretical values, indicating the PT
symmetry-broken phase for Ω < γ and the unbroken phase for Ω > γ,
with the EP3 occurring at Ω = γ.

To further confirm the existence of an EP3, we probe the spectral
topology associated with the EP3. We set Ω = γ and introduce addi-
tional detuning terms (�Δ0∣0i 0h ∣� Δ1∣1i 1h ∣) in the system levels by
varying the frequencies of the microwaves. As shown in Fig. 1e, the
eigenenergies with respect to Δ0 and Δ1 exhibit a multi-sheeted
structure. Starting from an arbitrary point, one needs to encircle the
EP3 three times to return to the original eigenenergy (e.g., following a
pathdefinedbyΔ0 =Δr cos θ andΔ1 =Δr sin θwithΔr = 2π ×0.020MHz
as shown by the solid lines in Fig. 1e), in contract to paths that do not
encircle the EP3. The winding topology of the three energy bands is
clearly revealed by the extracted complex eigenenergies with respect
to θ, as shown in Fig. 1f throughmeasuring the spectral lines along this
path. This feature can also be characterized by the winding number
relative to an energy EB inside a loop54

W =
Z 2mπ

0

dθ
2mπ

∂θ argðEnðθÞ � EBÞ, ð7Þ

where En is the complex eigenenergy of the nth band, and m is the
smallest integer so that En(θ) = En(θ + 2πm) (here m = 3) [we define
Enðθ+2πkÞ= Eðn+ kÞmodmðθÞ so that En(θ) is continuous over θ]. Our
results demonstrate thatW = 1/3, indicating the 6π periodicity of each
band (see “Methods” in Non-Hermitian absorption spectroscopy).

Eigenstate tomography
A definitive feature of an EP3 is the coalescence of three eigenstates
into a single eigenstate at this point. We now demonstrate the coa-
lescence through eigenstate tomography, where we scan the Hilbert
space to identify the eigenstates of the non-HermitianHamiltonianHeff

without the requirement of an auxiliary level. Unfortunately, the
dynamics described by Eq. (1) in the absence of an auxiliary level is not
equivalent to the dynamics of a non-Hermitian Hamiltonian Heff. We
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address the problem by finding, based on Eq. (1), that an off-diagonal
sector vðtÞ= ðρ03ðtÞ,ρ13ðtÞ,ρ23ðtÞÞT of the density matrix ρ(t) satisfies a
non-Hermitian evolution: dρn3=dt = �i nh ∣Heffρ∣3i for n =0, 1, 2 so that
vðtÞ= e�iHeff tvð0Þ (see “Methods” Quench dynamics for the derivation).
Thus, the PT transition can be detected by initially preparing a pure
state ρð0Þ= 1

2 ð∣ψ
�
+ ∣3iÞ ð ψ

�
∣+ 3h ∣Þ and monitoring the dynamics of v(t)

bymeasuring theoff-diagonal sector v(t) of the evolvingdensitymatrix
(see Supplementary Information S-3 on how we measure the off-
diagonal elements).

If ∣ψ
�
is an eigenstate of Heff, then v(t) will experience only an

overall decay in amplitude, and the normalized off-diagonal elements
ρn
i3ðtÞ=ρi3ðtÞ=jvðtÞj (i =0, 1, 2) should remain invariant during the evo-

lution. Therefore, the zero points of the variation of the normalized

off-diagonal elements Δjρn
i3j2 = jρn

i3ðΔtÞj2 � jρn
i3ð0Þj2 with respect to ∣ψ

�
reveal the eigenstates ofHeff. The presenceof PT and anti-PT symmetry
significantly simplifies the procedure by imposing constraints that
reduce the dimension of the search space. Based on these symmetries
and additional constraints imposed by the Hamiltonian, we only need

to scan a parameter space specified by ∣uz ðϕÞ
�
= 1

2 ð�eiϕ, i
ffiffiffi
2

p
, e�iϕÞT for

Ω > γ, ∣uxðϕÞ
�
= ð� 1 + sinϕ

2 , i cosϕffiffi
2

p , 1�sinϕ
2 ÞT for Ω < γ, and

∣u0ðφÞ
�
= 1ffiffi

2
p ð� sinφ, i

ffiffiffi
2

p
cosφ, sinφÞT for all Ω (see Methods in

Eigenstate tomography). ∣uz ðϕÞ
�
and ∣uxðϕÞ

�
become the eigenstates

∣ψ±

�
when ϕ= ± cos�1ðγ=ΩÞ for Ω > γ and ϕ= ± cos�1ðΩ=γÞ for Ω < γ,

respectively, and ∣u0ðφÞ
�
= ∣ψ0

�
when φ= tan�1ðΩ=γÞ. Specifically,

∣uzðϕÞ
�
= ∣uxðϕÞ

�
= ∣u0ðφÞ

�
= ∣EPi when ϕ =0 and φ =π/4.

Figure 2 a shows the variation Δjρn
23j2 with respect to ϕ and Ω/γ for

Ω> γ with the initial state being ∣uzðϕÞ
�
, while Fig. 2b displays Δjρn

13j2 for
Ω< γ with the initial state being ∣uxðϕÞ

�
. Regions where Δjρn

i3j2 � 0 are
highlighted in white. The zero points of Δjρn

i3j2 are determined by linear
interpolation between adjacent experimental data points of opposite
signs (see Methods in Eigenstate tomography). These zero points, indi-
cated by circles, show good agreement with the theoretical values

(dashed lines).Weextract the eigenstates as ∣ψ±

�
= ∣uzðϕ± Þ

�
forΩ> γ and

∣ψ±

�
= ∣uxðϕ± Þ

�
for Ω< γ, where ϕ+ and ϕ− are the average values of the

zero points inϕ>0 andϕ<0 regions, respectively. In theϕ<0 region of
Fig. 2b, we exclude the smallest and largest zero points (marked by
crosses), as they do not correspond to the eigenstates. Similarly, the
eigenstate ∣ψ0

�
is extracted by using ∣u0ðφÞ

�
as the initial states (see

Fig. 2c, d). The eigenstate is given by ∣ψ0

�
= ∣u0ðφ0Þ

�
with φ0 being the

average value of the zero points, marked by circles in Fig. 2c, d. To
illustrate the collapse of the three states to a single one at the EP3, we
show the inner products 〈ψ−∣ψ+〉 and 〈ψ±∣ψ0〉 of the measured states for
the PT symmetry-unbroken and broken regime in Fig. 2e and f, respec-
tively. The results demonstrate that as Ω/γ approaches 1, the three
eigenstates become increasingly aligned and eventually coalesce into a
single vector at Ω/γ= 1, experimentally confirming the existence of
an EP3.

We further demonstrate the EP3 associated with the PT symmetry
breaking through quench dynamics from an initial state
ρð0Þ= ð1=2Þð∣0i+ ∣3iÞð 0h ∣+ 3h ∣Þ. We find that the density matrix element
ρ03 exhibits oscillatory and decaying behaviors for Ω > γ and Ω < γ,
respectively (see “Methods” in Quench dynamics), providing further
evidence that all three eigenenergies transition from purely real to
purely imaginary across the EP3.

Liouvillian EP3
EPs can also occur in the Liouvillian spectrum48,55–58. In fact, the non-
Hermitian EP3 discussed in previous sections can be regarded as a
Liouvillian EP3. Specifically, for ρR

n = ∣ψn

�
3h ∣ with n=0, + , − , we have

L½ρR
n �= � iEnρ

R
n . Thus, the three eigenmatrices coalesce into a single

density matrix ∣EPi 3h ∣ at Ω= γ. Similarly, for ρL
n = ∣3i ψn

�
∣, we find

L½ρL
n�= iE*

nρ
L
n. This Liouvillian EP3 originates purely from the effective

non-HermitianHamiltonian, as seen in the relation thatL½ρR
n �= � iHeffρ

R
n

andL½ρL
n�= iρL

nH
y
eff (seeMethods in Liouvillian EP3 formore details). This

raises the question of whether an intrinsic EP3 exists for the Liouvillian
itself. Interestingly, we identify three eigenmatrices, ρ± and ρ0, with
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Fig. 2 | Experimental results for eigenstate tomography. a–d Variation of the
normalized off-diagonal elements Δjρn

j3j2 with respect to ϕ (or φ) and Ω/γ. The
initial state is ∣uz ðϕÞ

�
in (a), ∣uxðϕÞ

�
in (b) and ∣u0ðφÞ

�
in (c,d) (see their definitions in

the main text). In (a, c, d), j = 2, and in (b) j = 1. The circles indicate the zero points
obtained by linearly interpolating the experimental data (see “Methods” in Eigen-
state tomography), and the black dashed lines represent the theoretical values:

ϕ= ± cos�1ðγ=ΩÞ for (a) ϕ= ± cos�1ðΩ=γÞ for (b) and φ= tan�1ðΩ=γÞ for (c, d). The
crosses in (b) also denote zero points but are excluded in the calculation of inner
products since they donot correspond to the eigenstates. e, f Inner products of the
eigenstates ∣ψ±

�
and ∣ψ0

�
for the PT symmetry-unbroken (Ω/γ > 1) and broken

regime (Ω/γ < 1). The solid lines are obtained by Eq. (4), and the diamonds are
experimental data.

Article https://doi.org/10.1038/s41467-025-62573-5

Nature Communications |         (2025) 16:7478 4

www.nature.com/naturecommunications


eigenvalues λ ± = � 2γ ± i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
and λ0=−2γ (see “Methods” in

Liouvillian EP3E. 1), distinct from the aforementioned eigenmatrices as
they do not involve ∣3i. These eigenmatrices coalesce into a single den-

sity matrix ρEP = ∣0i 1h ∣+ ∣1i 2h ∣+ i
ffiffiffi
2

p
∣0i 2h ∣+H:c: at Ω= γ, with the eigen-

values transitioning between purely real and purely imaginary up to a
constant shift.

To detect the Liouvillian EP3 associated with the PT transition, we
use a non-physical initial state ρð0Þ= ∣u1

�
u1

�
∣� ∣u2

�
u2

�
∣, where

∣un

�
= 1ffiffi

2
p ð∣0i+ ið�1Þn∣2iÞ for n = 1, 2. Due to the anti-PT symmetry of the

open quantum system, elements ofρ(t) can be detected by preparing a
single state σð0Þ= ∣u1

�
u1

�
∣ and measuring the elements of σ(t) (see

MethodsDetection of the intrinsic Liouvillian EP3). The experimentally
measured off-diagonal elements ρ12 − ρ01, shown in Fig. 3a, along with
the theoretical results in Fig. 3b, reveal that ρ12 − ρ01 oscillates when
Ω > γ and decays exponentially after the first peak when Ω < γ, indi-
cating the PT symmetry breaking at Ω = γ. We further fit ρ12 − ρ01 to
damped sinusoidal and hyperbolic sine functions given by
f 1ðγtÞ=A1e

�2γt sinðB1γtÞ and f 2ðγtÞ=A2e
�2γt sinhðB2γtÞ, respectively, as

shown in Fig. 3c. We find that in the PT symmetry unbroken (sym-
metry-broken) phase, the former (latter) fitting function yields a lower
error than the latter (former) with the corresponding fitted oscillation
factor B1 and decay factor B2 shown in Fig. 3d. The results clearly
indicates the PT transition of the Lindbladian L at Ω = γ.

In summary, we have experimentally detected an EP3 associated
with PT symmetry breaking in a dissipative trapped ion system, focusing
on both the non-Hermitian and Liouvillian aspects. For the non-
Hermitian case, we demonstrate the existence of an EP3 and the PT
transition via non-Hermitian absorption spectroscopy, eigenstate
tomography, and quench dynamics. For the Liouvillian case, we show
that the non-Hermitian EP3s can also be interpreted as Liouvillian EP3s.
We further experimentally identify an intrinsic Liouvillian EP3 associated

with a PT transition by quench dynamics. These results may enable
further exploration of peculiar non-Hermitian topological properties,
such as braiding of three complex energy bands59,60, and non-Hermitian
applications, such as chiral state transfer48 and sensing, in a dissipative
quantum system. EPs of orders higher than three can also be achieved
by introducing additional energy levels and engineered losses. In addi-
tion, given that the EP3 is implemented through precise control of dis-
sipation, this technology has the potential to advance quantum
computation, quantum simulation and quantum metrology61,62.

Note added in proof. After the submission of this manuscript, we
becameawareof a related study reporting the experimental realization
of a fourth-order exceptional point in a trapped 40Ca+ ion63.

Methods
Adiabatic elimination for the master equation
The dynamics of the full system described in Fig. 1b is governed by the
Lindblad master equation (ℏ = 1)

dρf

dt
= � i½Hf ,ρf �+

X6
μ= 1

ðLf ,μρf L
y
f ,μ �

1
2
fLyf ,μLf ,μ,ρf gÞ, ð8Þ

where Hf =H + ðJ1∣1i e1
�

∣+ J2∣2i e2
�

∣+H:c:Þ with H = Ω1ffiffi
2

p ∣0i 1h ∣+ Ω2ffiffi
2

p ∣1i
2h ∣+H:c:, Lf , 1 = c∣0i e1

�
∣, Lf , 2 = c∣1i e1

�
∣, Lf , 3 = c∣3i e1

�
∣, Lf , 4 = c∣0i e2

�
∣,

Lf , 5 = c∣2i e2
�

∣, Lf , 6 = c∣3i e2
�

∣, and c=
ffiffiffiffiffiffiffiffi
Γ=3

p
. Here, Ω1,2 (J1,2) are con-

trolled by the microwaves (370 nm lasers B and C), and Γ = 1/
τP ≈ 2π × 19.6MHz with τP ≈ 8.12 ns being the lifetime of the 2P1/2
states64. Note that theoretically we have neglected the decay of the
2P1/2 states towards 2D3/2 due to the small branching ratio (~0.5%), and
experimentally we use a 935 nm laser to pump the leakage into 2D3/2

back to the 2S1/2 manifold (see Supplementary Information S-1 for
details). The full system master equation [Eq. (8)] can be rewritten as

dρf

dt
= � i½Hf ,ρf �+

Γ

3
ρe1e1

ð∣0i 0h ∣+ ∣1i 1h ∣+ ∣3i 3h ∣Þ

+
Γ

3
ρe2e2

ð∣0i 0h ∣+ ∣2i 2h ∣+ ∣3i 3h ∣Þ

� Γ

2
f∣e1
�
e1
�

∣,ρg � Γ

2
f∣e2
�
e2
�

∣,ρg:

ð9Þ

Let P = ∣0i 0h ∣+ ∣1i 1h ∣+ ∣2i 2h ∣+ ∣3i 3h ∣ be the projection operator
onto the 2S1/2 ground statemanifold. Applying P to themaster equation
[Eq. (9)], we obtain

dρ
dt

= ð�iHρ� iJ1∣1i e1
�

∣ρf P � iJ2∣2i e2
�

∣ρf P + H.c.Þ

+
Γ

3
ρe1e1

ð∣0i 0h ∣+ ∣1i 1h ∣+ ∣3i 3h ∣Þ

+
Γ

3
ρe2e2

ð∣0i 0h ∣+ ∣2i 2h ∣+ ∣3i 3h ∣Þ,

ð10Þ

where ρ = Pρf P. Notice that Eq. (10) involves ρe1μ
and ρe2μ

(μ =0, 1, 2, 3),
as well as ρe1e1

and ρe2e2
. We can derive an equation involving only the

2S1/2 levels using adiabatic elimination. From Eq. (9), we have

dρe10

dt
= � iJ1ρ10 + i

Ω1ffiffiffi
2

p ρe11
� Γ

2
ρe10

,

dρe11

dt
= � iJ1ρ11 + i

Ω1ffiffiffi
2

p ρe10
+ i

Ω2ffiffiffi
2

p ρe12
+ iJ1ρe1e1

� Γ

2
ρe11

,

dρe12

dt
= � iJ1ρ12 + i

Ω2ffiffiffi
2

p ρe11
+ iJ2ρe1e2

� Γ

2
ρe12

,

dρe13

dt
= � iJ1ρ13 �

Γ

2
ρe13

,

dρe1e1

dt
= � iJ1ρ1e1

+ iJ1ρe11
� Γρe1e1

:

ð11Þ
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Fig. 3 | Results for observing a Liouvillian EP3 via quench dynamics.
a Experimental and (b) theoretical values of ρ12 − ρ01 with respect to the normalized
evolution time γt and the ratio Ω/γ. The dashed lines indicate the evolution results
at the EP3. c Curve fitting using the damped sinusoidal function for experimental
data (circles) atΩ/γ = 5. The inset shows the fitting results using the hyperbolic sine
function at Ω/γ =0.5. The experimental data are averaged over 1000 repetitions.
d Fitted oscillation and decay factors B1 and B2 with respect to Ω/γ. The theoretical
results are B1, 2 = j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=γÞ2 � 1

q
j (see Method in Liouvillian EP3). Error bars, some of

which are smaller than the symbols, denote the 95% confidence intervals of the fit.
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We assume J1, J2≪ Γ so that the population in ∣e1
�
is small, giving

rise to dρe1ν
=dt � 0 for any ν. We also have ρe1ν

≪ρij for i, j =0, 1, 2, 3,
allowingus toomit the ρe1ν

terms in Eq. (11) that arenotmultiplied by Γ.
This gives

ρe1μ
�� i

2J1
Γ

ρ1μ,

ρe1e1
�4J21

Γ2
ρ11,

ð12Þ

for μ = 0, 1, 2, 3. Similarly, for ∣e2
�
, we obtain

ρe2μ
�� i

2J2
Γ

ρ2μ,

ρe2e2
�4J22

Γ2
ρ22:

ð13Þ

Using Eq. (12) and Eq. (13), we have e1
�

∣ρf P = � ið2J1=ΓÞ 1h ∣ρ and
e2
�

∣ρf P = � ið2J2=ΓÞ 2h ∣ρ. Eq. (10) becomes

dρ
dt

= ð�iHρ� γ1∣1i 1h ∣ρ� γ2∣2i 2h ∣ρ+ H.c.Þ

+
2γ1
3

ρ11ð∣0i 0h ∣+ ∣1i 1h ∣+ ∣3i 3h ∣Þ

+
2γ2
3

ρ22ð∣0i 0h ∣+ ∣2i 2h ∣+ ∣3i 3h ∣Þ,

ð14Þ

which is the same as Eq. (1) with γ1 = 2J
2
1 =Γ and γ2 = 2J

2
2=Γ. We have

numerically confirmed that the results from Eq. (1) agree well with
those from the full dynamics [Eq. (8)] given that J1, J2≪ Γ.

Non-Hermitian absorption spectroscopy
Byweakly coupling a system level with an auxiliary energy level ∣ai and
using ∣ai as the initial state, we can eliminate the effects of quantum
jumps. The Hamiltonian H (similarly for Hf) becomes
H0 =H + Ωa

2 ð∣1i ah ∣+H:c:Þ � δa∣ai ah ∣. By a similar adiabatic elimination
of ∣e1

�
and ∣e2

�
levels, one also arrives at Eq. (14) with H ! H0. We

project Eq. (14) onto the subspace spanned by the system and auxiliary

levels using Pa = ∣0i 0h ∣+ ∣1i 1h ∣+ ∣2i 2h ∣+ ∣ai ah ∣. Then we have

dρa

dt
= ð�iHNASρa +H:c:Þ+

X2
n= 1

2γn
3

ρnnð∣0i 0h ∣+ ∣ni nh ∣Þ, ð15Þ

with ρa = PaρPa and HNAS given by Eq. (5). The dynamics of ρ11 and ρ22
are given by

dρ11

dt
= � 4γ1

3
ρ11 � i

Ω1ffiffiffi
2

p ρ01 + i
Ω2ffiffiffi
2

p ρ21 + i
Ωa

2
ρa1 +H:c:

� �
,

dρ22

dt
= � 4γ2

3
ρ22 � i

Ω2ffiffiffi
2

p ρ12 +H:c:
� �

:

ð16Þ

Given that Ωa is sufficiently small, we have ρ11 ≈0 and ρ22 ≈0 due
to the dissipation terms� 4γ1

3 ρ11 and� 4γ2
3 ρ22 in Eq. (16). As a result, the

second term on the right-hand side of Eq. (15) can be omitted, and the
state satisfies a non-Hermitian evolution by HNAS.

We nowderive the population in ∣ai by incorporating the fact that
this state has a finite lifetime. Ideally, the population in ∣ai satisfies a
non-Hermitian evolution given by

NnH
a ðtÞ= ∣ ah ∣e�iHNASt ∣ai∣2 = e�κt , ð17Þ

whereκ is the transfer rate from ∣ai to the system levels. In practice, the
D5/2 state ∣ai has a finite lifetime of τa ≈ 7.4ms. Considering the finite
lifetime of ∣ai and the state detection and measurement errors, the
actual population in ∣ai is approximately described by

NaðtÞ=N0e
�ðγa + κÞt =N0e

�γatNnH
a ðtÞ, ð18Þ

with γa = 1/τa.
In our experiment, the measured population in ∣ai is 1 subtracted

by the population in the 2S1/2 manifold, given by

Ntgt
a ðtÞ= 1� NsðtÞ=NaðtÞ+NF ðtÞ, ð19Þ

where NF is the population in the 2F7/2 state. The branching ratio of
D5/2 →

2F7/2 is 81.6%64, thus NF satisfies dNF/dt =0.816γaNa. Solving the
differential equation with the initial condition NF(0) = 0, we obtain

NF ðtÞ=
0:816γa
γa + κ

N0½1� e�ðγa + κÞt �

=
0:816γa

γa � 1
t ln½NnH

a ðtÞ�
N0½1� e�γatNnH

a ðtÞ�:
ð20Þ

Finally, we obtain the theoretical value of the experimentally
measured population in ∣ai given by

Ntgt
a ðtÞ=N0e

�γatNnH
a ðtÞ

+
0:816γa

γa � 1
t ln½NnH

a ðtÞ�
N0½1� e�γatNnH

a ðtÞ�, ð21Þ

which is used in non-Hermitian absorption spectroscopy.
The system parameters are extracted by minimizing the loss

function L =∑iLi, with

Li =
X
δa

Nexp
a, i ðδaÞ � Ntgt

a, iðδa;PiÞ
h i2

: ð22Þ

Here Nexp
a, i ðδaÞ is the experimentally measured population in the

auxiliary level at detuning δa (e.g., Fig. 4a), and Ntgt
a, iðδa;PiÞ denotes the

theoretically calculatedpopulation basedon the systemparametersPi.
The theoretical population Ntgt

a, i is calculated from Eq. (21). The system
parameters are given by Pi = {Ω1,i, Ω2,i, γ1,i, γ2,i, N0,i} (or with additional
detuning terms {Δ0,i, Δ1,i}), where i is the index for the ratio Ω/γ. We
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Fig. 4 | Spectral line and winding topology. a The spectral line (the remaining
population in ∣ai at the end of the dynamics at ta = 200μs with respect to the
detuning δa) for Ω/γ =0.8. Here, the half-width of the outer dips is mainly deter-
mined by ImðE0 � iγÞ, while the half-width of the inner peak is mainly determined
by ImðE + � iγÞ. Both the theoretical results (red line) andfitted ones (black line) are
calculated according to Eq. (21). The former ones are computed using the para-
meter Ω/γ =0.8, while the fitted results employ parameters obtained from a fitting
procedure based on the experimental data (circles). b Argument of En(θ) − EB as a
function of θwith EB = −0.016 −0.032i plotted using the data in Fig. 1f. The y-axis is
shifted so that argðE0ð0Þ � EBÞ=0, and the n-th band is shifted along the x-axis by
2πn to show the spectralwinding around EB. The units of energy is 2π × 1MHz.Here,
γ = 2π ×0.040MHz and Ωa = 2π ×0.004MHz. The experimental results are aver-
aged over 5 rounds of experiments (each contains 200 shots) with error bars being
the standard deviation of the 5 experimental repetitions.

Article https://doi.org/10.1038/s41467-025-62573-5

Nature Communications |         (2025) 16:7478 6

www.nature.com/naturecommunications


impose constraints on the fitting parameters based on the experi-
mental setup. Specifically, we assume Ω1,i=Ω2,i since the microwave
amplitudes can be controlled with high precision. For the decay rates
γ1,i and γ2,i, due to thedrift in the laser power,wecannot simply assume
γ2,i= 2γ1,i. However, we manage to control the laser power (propor-
tional to J21, 2) within a 5% deviation from the initial value. Thus, we
assume that �γ2 = 2�γ1, where �γn denotes the average of γn,i over all i, and
each γn,i is constrained to be within a 5% deviation from �γn. Once the
system parameters are obtained through fitting, we calculate the
eigenenergies of the non-Hermitian Hamiltonian.

In Fig. 1f, we show the extracted complex eigenenergies as a
function of θ. Here, we further provide argðEnðθÞ � EBÞ in Fig. 4b,
clearly illustrating the 6π periodicity of each band.

In addition, we note that adding the auxiliary level ∣ai and its
coupling with the system levels inevitably lifts the EP3 degeneracy in
the total Hamiltonian HNAS. The effect vanishes in the ideal case where
the coupling Ωa → 0, the evolution time ta → ∞, and Ω2

ata remains a
constant. However, due to experimental imperfections, the evolution
time ta is limited by the coherence time and other errors. Conse-
quently, a finite Ωa is required to obtain a finite signal. Although the
finite coupling slightly perturbs the degeneracy, experimental errors
make this perturbation negligible.

Quench dynamics
To eliminate the effects of quantum jumps, one can also utilize an off-
diagonal sector in the density matrix, which follows a pure non-
Hermitian evolution. We show this by writing down the density matrix
in a block form,

ρ =
ρsys v

w ρ33

� �
, ð23Þ

with

ρsys =

ρ00 ρ01 ρ02

ρ10 ρ11 ρ12

ρ20 ρ21 ρ22

0
B@

1
CA, v=

ρ03

ρ13

ρ23

0
B@

1
CA, w=

ρ30

ρ31

ρ32

0
B@

1
CA

T

: ð24Þ

The master equation in Eq. (1) can be written as

d
dt

ρsys v

w ρ33

� �
= � i

Heff 0

0 0

� �
ρsys v

w ρ33

� �

+ i
ρsys v

w ρ33

� �
Hy

eff 0

0 0

 !
+D½ρ�,

ð25Þ

where Heff is the 3 × 3 non-Hermitian matrix in Eq. (2) and

D½ρ�=
X
μ

LμρL
y
μ

=

c1ρ11 + c2ρ22 0 0 0

0 c1ρ11 0 0

0 0 c2ρ22 0

0 0 0 c1ρ11 + c2ρ22

0
BBB@

1
CCCA:

ð26Þ

Based on this equation, we find that

dv
dt

= � iHeffv, ð27Þ

giving rise to

vðtÞ= e�iHeff tvð0Þ: ð28Þ

More generally, if the Hilbert space splits into two orthogonal
subspaces S and S0 such that theHamiltonian acts trivially on ∣s0i 2 S0, i.e.,

H =
HSS 0

0 0

� �
, ð29Þ

and each jump operator has one of the block forms

Lμ =
Lμ, SS 0

0 0

� �
or Lμ =

0 0

Lμ, S0S 0

 !
, ð30Þ

where the first and second row/column correspond to S and S0,
respectively, then
1. The effective Hamiltonian Heff =H � i

2

P
μL

y
μLμ also acts trivially

on ∣s0i 2 S0,
2. The off-diagonal sector ρSS0 of the density matrix follows a non-

Hermitian evolution dρSS0=dt = � iHeffρSS0 with ρSS0 being a
submatrix in the density matrix

ρ=
ρSS ρSS0

ρS0S ρS0S0

� �
: ð31Þ

In our case, S= spanf∣0i, ∣1i, ∣2ig and S0 = spanf∣3ig. We note that
this condition can always be realized by introducing an additional level
that does not couple to any other levels via the Hamiltonian and the
jump operators.

In the following, we show a specific application of the afore-
mentioned technique on studying the PT-symmetry breaking in our
system (such dynamics can also be used to study other non-
Hermitian applications, such as state transfer48). We consider an
initial state ρð0Þ= 1

2 ð∣0i+ ∣3iÞð 0h ∣+ 3h ∣Þ, so that

vð0Þ= 1
2 ð1, 0, 0ÞT = Ω

4ðΩ2�γ2Þ ½ðγ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
Þ∣ψ+

�
+ ðγ + i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
Þ∣ψ�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΩ2 + γ2Þ

q
∣ψ0

��. Since the off-diagonal element ρ03 evolves as

vðtÞ= e�iHeff tvð0Þ, we have ρ03ðtÞ= ½vðtÞ�0 = Ω2e�γt

4ðΩ2�γ2Þ ½1 +
Ω2�2γ2

Ω2

cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ+ 2γ

ffiffiffiffiffiffiffiffiffiffiffi
Ω2�γ2

p
Ω2 sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ�. Further simplification

gives

ρ03ðtÞ=
Ω2e�γt

2ðΩ2 � γ2Þ
sin2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
2

t +C1

0
@

1
A, ð32Þ

with C1 = cos
�1ðγ=ΩÞ. For Ω < γ, the equation becomes

ρ03ðtÞ=
Ω2e�γt

2ðγ2 �Ω2Þ
sinh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 �Ω2

q
2

t +C2

0
@

1
A, ð33Þ

with C2 = cosh
�1ðγ=ΩÞ.

The experimentallymeasuredoff-diagonal element ∣ρ03∣, shown in
Fig. 5a, agrees well with the theoretical results (Fig. 5b), providing a
clear signature of the PT symmetry breaking across Ω = γ. Specifically,
forΩ > γ, all eigenenergies are real (up to a constant shift), causing ∣ρ03∣
to oscillate with a frequency determined by the real eigenenergy. In
contrast, for Ω < γ, the eigenenergies become purely imaginary, lead-
ing ∣ρ03∣ to experience a pure decay. Based on Eq. (32) and Eq. (33), the
time evolution of ∣ρ03∣ follows a damped sinusoidal (for Ω > γ) or
hyperbolic sine (for Ω < γ) behavior, described by
f 1ðγtÞ=A1e

�γtsin2ðB1γt +C1Þ and f 2ðγtÞ=A2e
�γtsinh2ðB2γt +C2Þ, with
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B1 =B2 =
1
2 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=γÞ2 � 1

q
j. We fit the experimental data to both func-

tions and select the one with the smallest error. Figure 5c displays the
fitting result for Ω/γ = 5, where f1(γt) fits the experimental data best,
while the inset for Ω/γ = 0.5 is better characterized by f2(γt). We find
that in the symmetry unbroken region, the damped sinusoidal pro-
vides a better fitting than the hyperbolic sine function. Conversely, in
the symmetry broken region, the hyperbolic sine function offers a
better fit, consistent with theoretical results. In addition, we plot the
fitted values of B1 or B2 with respect toΩ/γ in Fig. 5d, showing excellent
agreement with theoretical results. The results clearly demonstrate a
PT phase transition at Ω = γ.

Eigenstate tomography
We assume that the eigenstate of the Hamiltonian is expressed as

∣un

�
=

an + ibn

cn + idn

en + if n

0
B@

1
CA ð34Þ

for n =0, + , − . Due to the presence of PT and anti-PT symmetry, one of
the eigenstate ∣u0

�
must be symmetric under both PT and anti-PT

operations, that is, UPT∣u0

�
= eiα ∣u0

�
and UAPT∣u0

�
= eiβ∣u0

�
. By choos-

ing an appropriate gauge, we can have UPT∣u0

�
= eiα ∣u0

�
and

UAPT∣u0

�
= ∣u0

�
, resulting in ∣u0

�
= ð�e0, id0, e0ÞT or 1ffiffi

2
p ð1, 0, 1ÞT . We

exclude the latter case, as it is unlikely to be the eigenstate of an
arbitrary Hamiltonian with PT and anti-PT symmetry. Let e0 =

1ffiffi
2

p sinφ

and d0 = cosφ, we arrive at a normalized state

∣u0ðφÞ
�
=

1ffiffiffi
2

p ð� sinφ, i
ffiffiffi
2

p
cosφ, sinφÞT , ð35Þ

which becomes the eigenstate of Heff when φ= tan�1ðΩ=γÞ.

The other two states ∣u+

�
and ∣u�

�
are either PT or anti-PT sym-

metric. If they are PT symmetric (when Ω > γ), we have
UPT∣u+

�
= � ∣u+

�
, UPT∣u�

�
= � ∣u�

�
, and UAPT∣u+

�
= eiα ∣u�

�
, where we

have chosen a specific gauge for ∣u+

�
and ∣u�

�
. These equations give

rise to

∣u±

�
=

1ffiffiffi
2

p �re∓iϕ, i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� r2Þ

p
, re ± iϕ

� �T
, ð36Þ

where r and ϕ are real numbers. In principle, one could scan the
parameter space with respect to r and ϕ to identify the eigenstates. In
our experiment, to reduce the amount of data required, we introduce
another constraint based on the structure of the Hamiltonian. If ∣u+

�
is

an eigenstate ofHeff, thenwe have ðHeff + iγÞ∣u+

�
= k∣u+

�
with k being a

real number, giving rise to r = 1=
ffiffiffi
2

p
. As a result, we only need to pre-

pare

∣uz ðϕÞ
�
=
1
2

�eiϕ, i
ffiffiffi
2

p
, e�iϕ

� �T ð37Þ

for different values of ϕ to perform eigenstate tomography (see Sup-
plementary Information S-2 for initial state preparation). ∣uzðϕÞ

�
becomes an eigenstate of Heff when ϕ= ± cos�1ðγ=ΩÞ.

Similarly, if ∣u+

�
and ∣u�

�
are anti-PT symmetric (whenΩ < γ), then

we have UAPT∣u+

�
= ∣u+

�
, UAPT∣u�

�
= ∣u�

�
, and UPT∣u+

�
= eiα ∣u�

�
, lead-

ing to

∣u+

�
= a, i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða2 +b2Þ

q
,b

� �T

,

∣u�
�
= �b, i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ða2 +b2Þ

q
,a

� �T

,

ð38Þ

with a and b being real numbers. We also use ðHeff + iγÞ∣u+

�
= ik∣u+

�
and obtain another constraint a − b = ± 1. Therefore, we can prepare
the state

∣uxðϕÞ
�
= � 1 + sinϕ

2
, i
cosϕffiffiffi

2
p ,

1� sinϕ
2

� �T

ð39Þ

for different ϕ, which becomes an eigenstate of Heff

when ϕ= ± cos�1ðΩ=γÞ.
We note that these states can also be obtained by rotating the

state ∣EPi around the z-axis (for Ω > γ) or the x-axis (for Ω < γ):

∣uzðϕÞ
�
= eiϕSz ∣EPi,

∣uxðϕÞ
�
= eiϕSx ∣EPi,

ð40Þ

with

Sz =

1 0 0

0 0 0

0 0 �1

0
B@

1
CA, Sx =

1ffiffiffi
2

p
0 1 0

1 0 1

0 1 0

0
B@

1
CA ð41Þ

being the spin-1 operators.
For eigenstate tomography in experiments, we determine the

zero points of Δjρn
i3j2 by linear interpolation between adjacent

experimental data points of opposite signs, as shown in Fig. 6.

Liouvillian EP3
The Liouvillian superoperator can also be viewed as a non-Hermitian
matrix in the doubled Hilbert space. By vectorizing the density matrix
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0 2 4
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1
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3
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0.5

0 1 2 3 4 5
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3
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0

0.5

0 5

0.3

0.5

a b

dc

Fig. 5 | Results for quench dynamics. a Experimental and (b) theoretical results of
anelement ∣ρ03∣of the densitymatrixwith respect to the normalized evolution time
γt and the ratio Ω/γ. c Curve fitting using the damped sinusoidal function for
experimental data (circles) at Ω/γ = 5. The inset shows the fitting results using the
hyperbolic sine function atΩ/γ =0.5. The experimental data are averaged over 400
repetitions with error bars representing the standard deviation. d Fitted oscillation
and decay factors B1 or B2 with respect to Ω/γ. The error bar, which is smaller than
the symbols, denotes the 95% confidence intervals of the fit.
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through Choi-Jamiolkowski isomorphism65,66,

ρ=
X
ij

ρij ∣ii j
�

∣ ! ∣ρ
�
=
X
ij

ρij ∣ii � ∣j
�
, ð42Þ

the master equation can be written as d∣ρ
�
=dt =L∣ρ

�
with

L = � iðHeff � I � I � H*effÞ+
X
μ

Lμ � L*μ: ð43Þ

In this case, the Lindbladian of our model becomes a 16 × 16 non-
Hermitian matrix which can also support EP3. Notably, certain Lind-
bladian eigenvectors are closely related to the Hamiltonian eigen-
states. Given that ∣ψn

�
is the eigenstate of Heff with eigenenergy En

(n =0, ± ), ∣ρR
n

�
= ∣ψn

�� ∣3i satisfies

L∣ρR
n

�
= ð�iHeff � IÞ∣ψn

�� ∣3i= � iEn∣ρ
R
n

�
, ð44Þ

since H*eff ∣3i= L*μ∣3i=0. This means that ∣ρR
n

�
= ∣ψn

�� ∣3i
(ρR

n = ∣ψn

�
3h ∣) is an eigenvector (eigenmatrix) ofL (L) with eigenvalue

− iEn. Similarly, one can prove that ∣ρL
n

�
= ∣3i � ∣ψ*n

�
(ρL

n = ∣3i ψn

�
∣) is an

eigenvector (eigenmatrix) of L (L) with eigenvalue iEn. The three
eigenmatrices ρM

0 ,ρ
M
+ ,ρ

M
� will coalesce into a single density matrix

∣EPi 3h ∣ for M = R and ∣3i EPh ∣ for M = L, giving rise to a Liouvillian EP3.
While certain Liouvillian EP3 is directly linked to the Hamiltonian

EP3 (via the correspondence between eigenstates of Heff and certain
eigenmatrices ofL), in the followingwe show that there exists intrinsic
Liouvillian EP3 that do not arise from the eigenstates of the effective
Hamiltonian, which can be probed via quench dynamics starting from
a non-physical state.

Intrinsic Liouvillian eigenmatrices. We obtain the eigenmatrices and
eigenvalues of L by diagonalizing L in the doubled Hilbert space (L),
from which we identify intrinsic Liouvillian eigenmatrices that do not
arise from the eigenstates of Heff. Specifically, we find three

eigenmatrices written as

ρ± =

0 1 ± i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

γ2 � 1
q

i
ffiffiffi
2

p
Ω
γ 0

1 ± i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

γ2 � 1
q

0 1∓i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

γ2 � 1
q

0

�i
ffiffiffi
2

p
Ω
γ 1∓i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

γ2 � 1
q

0 0

0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
,

ρ0 =

0 1 i
ffiffiffi
2

p
γ
Ω 0

1 0 1 0

�i
ffiffiffi
2

p
γ
Ω 1 0 0

0 0 0 0

0
BBB@

1
CCCA,

ð45Þ

with the basis being f∣0i, ∣1i, ∣2i, ∣3ig. The corresponding eigenvalues
are

λ± = � 2γ ± i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
,

λ0 = � 2γ:
ð46Þ

One can verify that L½ρn�= λnρn for n = ± , 0. At Ω = γ, the eigen-
values become degenerate and the eigenmatrices coalesce into a sin-
gle density matrix

ρEP =

0 1 i
ffiffiffi
2

p
0

1 0 1 0

�i
ffiffiffi
2

p
1 0 0

0 0 0 0

0
BBB@

1
CCCA, ð47Þ

giving rise to an intrinsic Liouvillian EP3.
We further show that the Liouvillian EP3 emerges from the

simultaneous breaking of the PT and anti-PT symmetry, which is the
same as the Hamiltonian case. We first prove that the modular con-
jugation symmetry and an anti-PT symmetry and jump operator
structures ensure that eigenvectors of the Lindbladian do not depend
on the jump operators. Specifically, the full Lindbladian L respects the
modular conjugation J ,

JLJ �1 =L, J ½ρ�=ρy ð48Þ

and the anti-PT symmetry UAPT,

UAPTLU�1
APT =L, UAPT½ρ�=U 0

APTρðU 0
APTÞ�1 ð49Þ

with

U 0
APT =

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCAκ: ð50Þ

Since both UAPT and J are antiunitary symmetries, their combi-
nation UAPTJ is unitary and satisfies ðUAPTJ Þ2 = 1. Thus, if ρ is an
eigenvector of L, then we have

ðUAPTJ Þ½ρ�=U 0
APTρ

yðU 0
APTÞ�1 = ±ρ: ð51Þ
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Fig. 6 | Determination of eigenstates in tomography. a Δjρn
23j2 as a function ofϕ

with the initial state ∣uz ðϕÞ
�
at Ω/γ = 2. b Δjρn

13j2 as a function of ϕ with the initial
state ∣uxðϕÞ

�
at Ω/γ =0.5. The zero points are marked by circles and crosses,

determinedby linear interpolationbetweenadjacent experimental data pointswith
opposite signs, and error bars denote the standard deviation.
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We focus on the “−” branch since in our case the eigenvectors
belong to this branch. Then, ρ takes the following form

ρ =

0 ρ01 ρ02 ρ03

ρ01 0 ρ12 ρ13

�ρ02 ρ12 0 ρ23

�ρ03 ρ13 �ρ23 0

0
BBB@

1
CCCA, ρij 2 C: ð52Þ

Furthermore, in our system the jump operators take the form of
Lμ = ∣mμihnμ∣ with mμ, nμ ∈ {0, 1, 2, 3}, leading to LμρL

y
μ =0 since sym-

metries enforce the diagonal elements of ρ to be zero. In this case, ρ is
an eigenvector of L if and only if it is an eigenvector of
~L= � iðHeff � I � I � H*

effÞ, or equivalently

~L½��= � iHeff ½�� + i½��Hy
eff , ð53Þ

whereHeff is the effective Hamiltonianwritten in the full Hilbert space,
i.e.,

Heff =

0 Ωffiffi
2

p 0 0
Ωffiffi
2

p �iγ Ωffiffi
2

p 0

0 Ωffiffi
2

p �2iγ 0

0 0 0 0

0
BBBBB@

1
CCCCCA=

heff � iγI3 0

0 0

� �
: ð54Þ

Based on the structure of Heff,

~ρ=

ρ00 ρ01 ρ02 0

ρ10 ρ11 ρ12 0

ρ20 ρ21 ρ22 0

0 0 0 0

0
BBB@

1
CCCA ð55Þ

is an eigenvector of ~L with eigenvalue λ if and only if

ρsys =

ρ00 ρ01 ρ02

ρ10 ρ11 ρ12

ρ20 ρ21 ρ22

0
B@

1
CA ð56Þ

is an eigenvector of

Lsys = � iðheff � I3 � I3 � h*
effÞ ð57Þ

with eigenvalue λ + 2γ. This allows us to set ρi3 = ρ3i =0 for
i = 0, 1, 2, 3 so that

ρ=

0 ρ01 ρ02 0

ρ01 0 ρ12 0

�ρ02 ρ12 0 0

0 0 0 0

0
BBB@

1
CCCA: ð58Þ

Since heff respects both the PT symmetry and the anti-PT sym-
metry, we have

ðUPT � U*
PTÞLsysðUPT � U*

PTÞ
�1

= � Lsys,

ðUAPT � U*
APTÞLsysðUAPT � U*

APTÞ
�1

=Lsys:
ð59Þ

We thus see that the PT symmetry represented by UPT � U*
PT and

the anti-PT symmetry represented byUAPT � U*
APT ensure the existence

of EP3 in Lsys (thus L) as the two symmetries break at the same para-
meter value as in the Hamiltonian case. For the winding topology of a
Liouvillian EP3, see the discussion in Supplementary Information S-4.

Detection of the intrinsic Liouvillian EP3. To detect the EP3
associated with PT symmetry breaking, we adopt an initial state that
can be written as a linear combination of the three eigenmatrices. We
define

∣u1

�
=

1ffiffiffi
2

p ð∣0i � i∣2iÞ= 1ffiffiffi
2

p 1 0 �i 0
	 
T ,

∣u2

�
=

1ffiffiffi
2

p ð∣0i+ i∣2iÞ = 1ffiffiffi
2

p 1 0 i 0
	 
T

:

ð60Þ

The initial state is chosen as

ρð0Þ= ∣u1

�
u1

�
∣� ∣u2

�
u2

�
∣

=
Ωγffiffiffi

2
p

ðγ2 �Ω2Þ
½ρ0 � 1

2
ðρ+ +ρ�Þ�:

ð61Þ

The time evolution of ρ(0) is then given by

ρðtÞ= eLt ½ρð0Þ�

=
Ωγffiffiffi

2
p

ðγ2 �Ω2Þ
½eλ0tρ0 � 1

2
ðeλ+ tρ+ + eλ�tρ�Þ�

=
Ωγffiffiffi

2
p

ðγ2 �Ω2Þ
e�2γt

0 AðtÞ CðtÞ 0

A*ðtÞ 0 BðtÞ 0

C*ðtÞ B*ðtÞ 0 0

0 0 0 0

0
BBB@

1
CCCA,

ð62Þ

where

AðtÞ= 1� cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

γ2
� 1

s
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ,

BðtÞ= 1� cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

γ2
� 1

s
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ,

CðtÞ= � i
ffiffiffi
2

p

Ωγ
½Ω2 cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ � γ2�:

ð63Þ

From Eq. (62) and Eq. (63), we find

ρ12ðtÞ � ρ01ðtÞ=
ffiffiffi
2

p
Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 � γ2
q e�2γt sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 � γ2

q
tÞ, ð64Þ

which can be used to detect the PT phase transition.
Since Tr½ρð0Þ�=0, the state ρ(0) cannot be directly prepared as it

is not a physical state. To address this, we define

σð0Þ= ∣u1

�
u1

�
∣, σðtÞ= eLt ½∣u1

�
u1

�
∣�,

τð0Þ= ∣u2

�
u2

�
∣, τðtÞ= eLt ½∣u2

�
u2

�
∣�:

ð65Þ

Experimentally, we can prepare the states ∣u1

�
and ∣u2

�
, measure the

matrix elements ofσ(t) and τ(t), respectively, and thenobtainρ(t) using
the relation ρ(t) = σ(t) − τ(t) (see Supplementary Information S-5 for the
generic case). Furthermore, due to the anti-PT symmetryof the system,
we have

τ01ðtÞ= � σ*
01ðtÞ,

τ12ðtÞ= � σ*
12ðtÞ:

ð66Þ

This allows us to express

ρ12ðtÞ � ρ01ðtÞ= 2Reðσ12ðtÞ � σ01ðtÞÞ, ð67Þ

which means that we only need to prepare ∣u1

�
and measure the off-

diagonal elements of σ(t).
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The proof of Eq. (66) is as follows. The anti-PT symmetry of the
Lindbladian gives rise to the relation

U 0
APTL½σðtÞ�ðU 0

APTÞ�1 =L½U 0
APTσðtÞðU 0

APTÞ�1�, ð68Þ

which implies that

U 0
APTe

Lt ½σð0Þ�ðU 0
APTÞ�1 = eLt ½U 0

APTσð0ÞðU 0
APTÞ�1�: ð69Þ

Since τð0Þ=U 0
APTσð0ÞðU 0

APTÞ�1, Eq. (69) gives rise to the relation

τðtÞ=U 0
APTσðtÞðU 0

APTÞ�1, ð70Þ

which leads to Eq. (66).

Data availability
The data that support the findings of this study are available at Fig-
share https://doi.org/10.6084/m9.figshare.29301071 (ref. 67).

References
1. Bender, C. M. & Boettcher, S. Real spectra in non-hermitian hamil-

tonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).
2. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep.

Prog. Phys. 70, 947 (2007).
3. Christodoulides, D. et al. Parity-time symmetry and its applications.

(Springer, 2018).
4. Heiss, W. D. Exceptional points of non-Hermitian operators. J. Phys.

A Math. Gen. 37, 2455 (2004).
5. Berry, M. Physics of Nonhermitian Degeneracies.Czech. J. Phys. 54,

1039 (2004).
6. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat.

Phys. 14, 11 (2018).
7. Xu, Y. Topological gapless matters in three-dimensional ultracold

atomic gases. Front. Phys. 14, 43402 (2019).
8. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys.

69, 249 (2020).
9. Domínguez-Rocha, V., Thevamaran, R., Ellis, F. & Kottos, T. Envir-

onmentally induced exceptional points in elastodynamics. Phys.
Rev. Appl. 13, 014060 (2020).

10. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of
non-hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

11. Ding, K., Fang,C. &Ma,G.Non-Hermitian topology andexceptional-
point geometries. Nat. Rev. Phys. 4, 745 (2022).

12. Quiroz-Juárez, M. A. et al. On-demand parity-time symmetry in a
lone oscillator through complex synthetic gauge fields. Phys. Rev.
Appl. 18, 054034 (2022).

13. Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode
laser by parity-time symmetry breaking. Science 346, 972 (2014).

14. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. &
Khajavikhan, M. Parity-time–symmetric microring lasers. Science
346, 975 (2014).

15. Moiseyev, N. Non-Hermitian Quantum Mechanics. (Cambridge
University Press, Cambridge, England, 2011).

16. Lee, S.-B. et al. Observation of an exceptional point in a chaotic
optical microcavity. Phys. Rev. Lett. 103, 134101 (2009).

17. Rüter, C. E. et al. Observation of parity–time symmetry in optics.
Nat. Phys. 6, 192 (2010).

18. Zhen, B. et al. Spawning rings of exceptional points out of Dirac
cones. Nature 525, 354 (2015).

19. Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-
dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118,
045701 (2017).

20. Cerjan, A. et al. Experimental realization of a Weyl exceptional ring.
Nat. Photonics 13, 623 (2019).

21. Carlström, J., Stålhammar, M., Budich, J. C. & Bergholtz, E. J.
Knotted non-hermitian metals. Phys. Rev. B 99, 161115 (2019).

22. Stålhammar, M., Rødland, L., Arone, G., Budich, J. C. & Bergholtz, E.
Hyperbolic nodal band structures and knot invariants. SciPost Phys.
7, 019 (2019).

23. Hou, J., Li, Z., Luo, X.-W., Gu, Q. & Zhang, C. Topological bands and
triply degenerate points in non-hermitian hyperbolic metamater-
ials. Phys. Rev. Lett. 124, 073603 (2020).

24. Yang, Z., Chiu, C.-K., Fang, C. & Hu, J. Jones polynomial and knot
transitions in hermitian and non-hermitian topological semimetals.
Phys. Rev. Lett. 124, 186402 (2020).

25. Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J. & Yang, L.
Exceptional points enhance sensing in an optical microcavity.
Nature 548, 192 (2017).

26. Lin, Z. et al. Unidirectional invisibility induced by PT -symmetric
periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

27. Wu, Y. et al. Observation of parity-time symmetry breaking in a
single-spin system. Science 364, 878 (2019).

28. Li, J. et al. Observation of parity-time symmetry breaking transitions
in a dissipative Floquet system of ultracold atoms. Nat. Commun.
10, 855 (2019).

29. Naghiloo, M., Abbasi, M., Joglekar, Y. N. & Murch, K. W. Quantum
state tomography across the exceptional point in a single dis-
sipative qubit. Nat. Phys. 15, 1232 (2019).

30. Partanen, M. et al. Exceptional points in tunable superconducting
resonators. Phys. Rev. B 100, 134505 (2019).

31. Ding, L. et al. Experimental determination of PT -symmetric
exceptional points in a single trapped ion. Phys. Rev. Lett. 126,
083604 (2021).

32. Wang, W.-C. et al. Observation of PT -symmetric quantum coher-
ence in a single-ion system. Phys. Rev. A 103, L020201 (2021).

33. Liu, W., Wu, Y., Duan, C.-K., Rong, X. & Du, J. Dynamically encircling
an exceptional point in a real quantum system. Phys. Rev. Lett. 126,
170506 (2021).

34. Zhang, W. et al. Observation of non-hermitian topology with non-
unitary dynamics of solid-state spins. Phys. Rev. Lett. 127,
090501 (2021).

35. Ren, Z. et al. Chiral control of quantum states in non-Hermitian
spin–orbit-coupled fermions. Nat. Phys. 18, 385 (2022).

36. Yu, Y. et al. Experimental unsupervised learning of non-Hermitian
knotted phases with solid-state spins. Npj Quantum Inf. 8,
116 (2022).

37. Heiss,W.D. Chirality ofwavefunctions for three coalescing levels. J.
Phys. A Math. Theor. 41, 244010 (2008).

38. Demange, G. & Graefe, E.-M. Signatures of three coalescing
eigenfunctions. J. Phys. A Math. Theor. 45, 025303 (2012).

39. Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional
points. Nature 548, 187 (2017).

40. Tang,W. et al. Exceptional nexuswith ahybrid topological invariant.
Science 370, 1077 (2020).

41. Wang, K. et al. Experimental simulation of symmetry-protected
higher-order exceptional points with single photons. Sci. Adv. 9,
eadi0732 (2023).

42. Wang, K. et al. Photonic Non-Abelian Braid Monopole. Preprint at
https://arxiv.org/abs/2410.08191 (2024).

43. Wang, C. et al. Exceptional nexus in bose-einstein condensateswith
collective dissipation. Phys. Rev. Lett. 132, 253401 (2024).

44. Günther, U. & Samsonov, B. F. Naimark-dilated pt-symmetric bra-
chistochrone. Phys. Rev. lett. 101, 230404 (2008).

45. Kawabata, K., Ashida, Y. & Ueda, M. Information retrieval and criti-
cality in parity-time-symmetric systems. Phys. Rev. Lett. 119,
190401 (2017).

46. Wu, Y. et al. Third-order exceptional line in a nitrogen-vacancy spin
system. Nat. Nanotechnol. 19, 160 (2024).

Article https://doi.org/10.1038/s41467-025-62573-5

Nature Communications |         (2025) 16:7478 11

https://doi.org/10.6084/m9.figshare.29301071
https://arxiv.org/abs/2410.08191
www.nature.com/naturecommunications


47. Liang, C., Tang, Y., Xu, A.-N. & Liu, Y.-C. Observation of exceptional
points in thermal atomic ensembles. Phys. Rev. Lett. 130,
263601 (2023).

48. Chen, W. et al. Decoherence-induced exceptional points in a dis-
sipative superconducting qubit. Phys. Rev. Lett. 128, 110402 (2022).

49. Cao, M.-M. et al. Probing complex-energy topology via non-
hermitian absorption spectroscopy in a trapped ion simulator.Phys.
Rev. Lett. 130, 163001 (2023).

50. Li, K. & Xu, Y. Non-hermitian absorption spectroscopy. Phys. Rev.
Lett. 129, 093001 (2022).

51. Olmschenk, S. et al. Measurement of the lifetime of the 6p2Po
1=2

level of yb+. Phys. Rev. A 80, 022502 (2009).
52. Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-protected multi-

fold exceptional points and their topological characterization. Phys.
Rev. Lett. 127, 186602 (2021).

53. Mandal, I. & Bergholtz, E. J. Symmetry and higher-order exceptional
points. Phys. Rev. Lett. 127, 186601 (2021).

54. Zeng, Q.-B., Yang, Y.-B. & Xu, Y. Topological phases in non-
hermitian aubry-andré-harper models. Phys. Rev. B 101,
020201 (2020).

55. Minganti, F., Miranowicz, A., Chhajlany, R. W. & Nori, F. Quantum
exceptional points of non-Hermitian Hamiltonians and Liouvillians:
The effects of quantum jumps. Phys. Rev. A 100, 062131 (2019).

56. Chen,W., Abbasi, M., Joglekar, Y. N. &Murch, K.W.Quantum jumps
in the non-hermitian dynamics of a superconducting qubit. Phys.
Rev. Lett. 127, 140504 (2021).

57. Zhang, J.-W. et al. Dynamical control of quantumheat enginesusing
exceptional points. Nat. Commun. 13, 6225 (2022).

58. Bu, J.-T. et al. Enhancement of quantum heat engine by encircling a
Liouvillian exceptional point. Phys. Rev. Lett. 130, 110402 (2023).

59. Hu, H. & Zhao, E. Knots and non-hermitian bloch bands. Phys. Rev.
Lett. 126, 010401 (2021).

60. Wojcik, C. C., Wang, K., Dutt, A., Zhong, J. & Fan, S. Eigenvalue
topology of non-hermitian band structures in two and three
dimensions. Phys. Rev. B 106, L161401 (2022).

61. Verstraete, F., Wolf, M. M. & Ignacio Cirac, J. Quantum computation
and quantum-state engineering driven by dissipation. Nat. Phys. 5,
633 (2009).

62. Altman, E. et al. Quantum simulators: Architectures and opportu-
nities. PRX quantum 2, 017003 (2021).

63. Li, Y. et al. Programmable simulation of high-order exceptional
point with a trapped ion. https://arxiv.org/abs/2412.09776 (2024).

64. Tan, T., Edmunds, C., Milne, A., Biercuk, M. & Hempel, C. Precision
characterization of the d 5/2 2 state and the quadratic zeeman
coefficient in yb+ 171. Phys. Rev. A 104, L010802 (2021).

65. Jamiołkowski, A. Linear transformations which preserve trace and
positive semidefiniteness of operators. Rep. Math. Phys. 3, 275
(1972).

66. Choi, M.-D. Completely positive linear maps on complex matrices.
Linear Algebra Appl. 10, 285 (1975).

67. Chen, Y.-Y. et al. Data supporting our work “Quantum tomography
of a third-order exceptional point in a dissipative trapped ion”.
Figshare https://doi.org/10.6084/m9.figshare.29301071 (2025).

Acknowledgements
We thank Mingming Cao, Wending Zhao, Shi-An Guo, Ye Jin, Li You,
Wei Yi, Xun Gao, Masahito Ueda, and Yan-Bin Yang for helpful

discussions. This work was supported by the Innovation Program for
Quantum Science and Technology (grant nos. 2021ZD0301601 and
2021ZD0301604), the Shanghai Qi Zhi Institute, Tsinghua University
Initiative Scientific Research Program, and the Ministry of Education of
China. L.M.D. acknowledges, in addition, support from the New Cor-
nerstone Science Foundation through the New Cornerstone Investi-
gator Program. Y.X. acknowledges in addition support from the
National Natural Science Foundation of China (Grants No. 12474265
and No. 11974201). Y.K.W. acknowledges in addition support from the
Tsinghua University Dushi program. P.Y.H. acknowledges support from
the Tsinghua University Dushi Program and the Tsinghua University
Start-up Fund.

Author contributions
Y.X. proposed the idea. Y.Y.C., L.Z., J.Y.M., H.X.Y., C.Z., B.X.Q., Z.C.Z.,
and P.Y.H. carried out the experiment. K.L., Y.X., and Y.K.W. developed
the associated theory. L.M.D. supervised the project.

Competing interests
The authors declare that there are no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-62573-5.

Correspondence and requests for materials should be addressed to
P.-Y. Hou, Y. Xu or L.-M. Duan.

Peer review information Nature Communications thanks Weijian Chen,
and the other anonymous reviewers for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-62573-5

Nature Communications |         (2025) 16:7478 12

https://arxiv.org/abs/2412.09776
https://doi.org/10.6084/m9.figshare.29301071
https://doi.org/10.1038/s41467-025-62573-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Quantum tomography of a third-order exceptional point in a dissipative trapped ion
	Results
	PT symmetry-breaking-induced EP3 in a dissipative trapped ion
	Non-Hermitian absorption spectroscopy
	Eigenstate tomography
	Liouvillian EP3

	Methods
	Adiabatic elimination for the master equation
	Non-Hermitian absorption spectroscopy
	Quench dynamics
	Eigenstate tomography
	Liouvillian EP3
	Intrinsic Liouvillian eigenmatrices
	Detection of the intrinsic Liouvillian EP3


	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




