nature communications

Article

https://doi.org/10.1038/s41467-025-62573-5

Quantum tomography of a third-order
exceptional point in a dissipative trapped ion

Received: 20 November 2024

Accepted: 24 July 2025

Published online: 12 August 2025

M Check for updates

Y.-Y. Chen®'®, K. Li*2®, L. Zhang'®, Y.-K. Wu®'3, J.-Y. Ma?, H.-X. Yang ®%,
C. Zhang®%, B.-X. Qi®", Z.-C. Zhou®"3, P.-Y. Hou"3/ , Y. Xu®'3/ &
L.-M. Duan®"3

Hermiticity in quantum mechanics ensures the reality of energies, while parity-
time symmetry offers an alternative route. Interestingly, in a three-level sys-
tem, parity-time symmetry-breaking can lead to third-order exceptional points
with distinctive topological properties. Experimentally implementing this in
open quantum systems requires two well-controlled loss channels, resulting in
dynamics that challenges a pure non-Hermitian description. Here we address
the challenge by employing two approaches to eliminate the effects of quan-
tum jump terms, ensuring pure non-Hermitian dynamics in a dissipative
trapped ion. Based on this, we experimentally observe a parity-time symmetry-
breaking-induced third-order exceptional point through non-Hermitian
absorption spectroscopy. Quantum state tomography further demonstrates
the coalescence of three eigenstates into a single eigenstate at the exceptional
point. Finally, we identify an intrinsic third-order Liouvillian exceptional point
via quench dynamics. Our experiments can be extended to observe other non-
Hermitian phenomena involving multiple dissipative levels and potentially find

applications in quantum information technology.

Hermiticity is a fundamental concept in quantum mechanics as it
ensures the reality of energies. Interestingly, it has been discovered
that the requirement of Hermiticity can be relaxed in favor of con-
sidering parity-time (PT) symmetry, which also guarantees the reality
of energies when the corresponding eigenstates respect the
symmetry'~. Notably, if a state violates the symmetry, its eigenvalue
becomes complex. In a two-level system, a second-order exceptional
point (EP2) appears at the transition point, where the Hamiltonian
becomes nondiagonalizable*”. The PT symmetry breaking in two-level
systems has garnered significant interest across various fields, further
promoting the study of diverse phenomena in non-Hermitian
physics®™?, including single-mode lasers™'*, exceptional points, rings
or knots®?, enhanced sensing”, and unidirectional invisibility®.
Moreover, experimental observations have confirmed the existence of
two-mode PT symmetry breaking and related non-Hermitian topology
in quantum systems®’ ¢,

In systems with more than two levels, the PT symmetry breaking
can lead to higher-order exceptional points (EPs) beyond the second
order. For instance, in a ternary PT symmetric system, a third-order EP
(EP3) can arise from the PT symmetry breaking, where a 3 x 3 non-
Hermitian Hamiltonian has only one eigenstate. Remarkably, higher-
order EPs can exhibit peculiar topological properties and sensitivity
enhancement®*°, Consequently, significant efforts have been direc-
ted towards experimentally exploring EP3 and their topological
properties in optical systems**?, cavity optomechanical systems®,
acoustics systems*’, and Bose-Einstein condensates. In quantum
systems, two approaches are usually employed to implement a non-
Hermitian Hamiltonian. One approach, named the dilation method,
employs the dynamics of a Hermitian Hamiltonian involving a system
qubit and an ancilla qubit to realize the non-Hermitian dynamics in a
subspace?***, This method has been utilized to observe a third-order
exceptional line in a nitrogen-vacancy spin system*¢. The other method
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Fig. 1| Schematics of experimental configurations, and experimental results
via non-Hermitian absorption spectroscopy. a We use a 370 nm laser beam A for
cooling, optical pumping and state detection, 370 nm lasers B and C to realize the
dissipation in the |1) and |2) levels, respectively, and microwaves to generate the
Hermitian part of the Hamiltonian. A 411 nm laser is applied to drive the transition
between the levels |1) and |a) for non-Hermitian absorption spectroscopy. Laser
with wavelengths of 935 nm, 3432 nm, and 976 nm are also utilized as auxiliary
components in the experiments (see Supplementary Information S-1 for detailed
descriptions of our experimental setup). The magnetic field has a small out-of-plane
component in addition to the in-plane component so that B=B,+B,. b The main
energy levels and transitions used in our experiment. Transitions driven by the
microwaves, the 370 nm lasers B and C, and the 411 nm laser are described by black,
purple, and blue arrows, respectively. Spontaneous decay of the excited states is

-0.03
0 -0.06
-0.03 Ay Im(FE)
shown by dotted and dashed lines. Real (c) and imaginary (d) parts of complex
eigenenergies obtained by theoretical calculations (solid lines) are shown together
with experimental data points (circles). e Real part of the eigenenergies near the
EP3 (marked by the star) as a function of two additional detunings 4, and 4,.
f Theoretical (solid lines) and experimental complex eigenenergies (circles) with
respect to 6 defined through Ay =A, cos 8 and A; =A, sin 6 with
A,=2m % 0.020 MHz. The energy bands are marked with the same colors as in (e),
and the starting points at 8 =0 are marked by circles in (e). In (c-f)
y=2m x 0.040MHz, Q,=2m x 0.004 MHz, and the evolution time is ¢, =200 ps. The
experimental results are averaged over 5 rounds of experiments (each contains
200 shots) with error bars being the standard deviation of the five experimental
repetitions (error bars for some data points are smaller than the symbol size).

involves applying dissipation to achieve the non-Hermitian Hamilto-
nian, which has been applied in cold atom systems®*****’ super-
conducting circuits?®***8, and trapped ions****. However, the
observation of the PT symmetry-breaking-induced EP3 in these sys-
tems requires two loss channels, making it difficult to describe the
dynamics using an effective non-Hermitian Hamiltonian.

Here, we experimentally investigate the EP3 associated with PT
symmetry breaking in a dissipative trapped-ion system. By precisely
engineering the system Hamiltonian and two loss channels, we realize
a three-level effective non-Hermitian Hamiltonian possessing both PT
and anti-PT symmetries, which protect the existence of an EP3 within a
one-dimensional parameter space. We prove that the dynamics in non-
Hermitian absorption spectroscopy® is governed by the effective non-
Hermitian Hamiltonian, enabling the observation of the EP3 and the
associated winding topology. In particular, we find that an off-diagonal
sector of a density matrix undergoes a non-Hermitian evolution,
allowing us to perform quantum state tomography across the EP3. This
enables the direct observation of the coalescence of three eigenstates
into a single eigenstate—an unambiguous feature of an EP3. Finally, we
find that the Lindbladian, which is also a non-Hermitian matrix in
Liouville space, exhibits an intrinsic EP3, and we experimentally iden-
tify this EP3 by quenching a non-physical initial state.

indicated by the black arrows in Fig. 1b. To induce dissipation in |1)
(12)), we use a 370 nm laser B (C) to couple it with an excited state
le) = 1°Py1)5, F=1,m=0) (ley) = |*Py5, F=1,m=0)), denoted by a
dark (light) purple arrow in Fig. 1b. According to selection rules, |e;)
(le,)) spontaneously decays to |0), 1) (|2)), and |3) = [F=0,m; = — 1)
with equal probabilities, as shown in Fig. 1b by the dotted
(dashed) lines.

The dynamics of the system is described by the following master
equation (f1=1) (see “Methods” Adiabatic elimination for the master
equation for details on deriving the equation through adiabatic elim-
ination)

dp . 6 1o
S =cipi= — it o1+ Y- (Lupl), ~ 3 ip) ),
p=1

@

where H= % |0)(1] + % [1)2|+H.c. with Q;, being the coupling
strength controlled by the microwaves, L,=¢|0)(1], L,=¢|1){1],
Ly=c(|3)(1], L4 =¢,]0)(2|, Ls=c,|2){2|, and L =c,|3)(2| are quantum
jump operators with c,=1/2y,/3, and y,=2/>/T for n=1, 2 (J,, are
controlled through 370 nm lasers B and C, and I =2 x19.6 MHZ"
arising from the short lifetime of the 2Py, states). If we can neglect the
contribution of quantum jump terms Z”LﬂpLL, then the dynamics is

governed by the effective non-Hermitian  Hamiltonian
Results He=H — YL} L, which reads
PT symmetry-breaking-induced EP3 in a dissipative trapped ion
We realize a dissipative three-level system using a single trapped 0 % 0
IYb* jon, as illustrated in Fig. la. The three system levels are o a,
encoded in the hyperfine states |[0)=|F=1m=1), |I)= n h 5 @
IF=0,m=0) and |2) = |F=1,m;=0) within the 25, ground state 0 % —iy,
manifold (see Fig. 1b). The hyperfine splitting wyr = 2m x12.6 GHz
allows us to couple |1) with |0) and |2) using microwaves, as relative to the basis {|0), |1), |2)}.
Nature Communications | (2025)16:7478 2


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62573-5

When Q; = Q,=Q and y; =y,/2 =y, we obtain Heg = hegs — iyls Where
I3 is a 3 x 3 identity matrix and heg = QS +iyS, with S, and S, being the
spin-1 matrices. In this case, her respects both PT symmetry,
UprhegUpt = hegp, and anti-PT symmetry, UpprhegUair = — hegr, Where

00 1 1 00
Upr=| 0 1 0|k Upr=|0 -1 0|k 3)
100 0 0 1

with k being the complex-conjugation operator. PT (anti-PT) symmetry
ensures that an eigenenergy of h.g is purely real (imaginary) when the
corresponding eigenstate respects the symmetry, and the set of all
eigenenergies are symmetric with respect to the real (imaginary) axis
when the symmetry is broken. Consequently, as we vary a system
parameter Q/y, if the transition for both symmetry breaking occurs at
the same parameter value (e.g., Q/y =1), then the eigenenergies must
transition between purely real and purely imaginary values across the
transition point. At this point, all three eigenenergies are zero, and an
EP3 appears™. Indeed, by solving the eigenvalue problem, we obtain

the eigenenergies of Ay as E, = +1/Q% — )2 and Eq=0, with the
corresponding right eigenstates being

yFiy/QF — 2
|(pt>= - 20 ’

i
V2

;

yi/Q? — 2

, 0 ,
4)

¥o) =

For Q>y (Q<Yy), the eigenenergies are purely real (imaginary),
corresponding to preserved (broken) PT symmetry. Notably, at Q=y,
not only do the eigenenergies become degenerate, but all three
eigenstates coalesce into a single state [EP) = 1(-1,i+/2,1), indicating
the presence of an EP3. Thus, by tuning the ratio Q/y, one can observe a
PT transition associated with an EP3, protected by the PT and anti-PT
symmetries®>,

However, the presence of quantum jump terms ZHL,,pL; can
cause the dynamics to deviate significantly from the pure non-
Hermitian evolution described by H.s. For example, 2/3 of the
decayed population is returned to the system levels through the
quantum jumps, which is not the case in the non-Hermitian evolution.
In the following, we will employ two approaches to eliminate the
effects of the quantum jump terms and experimentally detect the EP3
in Hegrassociated with the PT symmetry breaking. Furthermore, we find
that the Lindbladian £, which is also a non-Hermitian matrix in Liouville
space, exhibits an intrinsic EP3 at Q=y. By leveraging the anti-PT
symmetry of the Lindbladian, we can experimentally detect this Liou-
villian EP3 by quenching a non-physical density matrix with zero trace.

Non-Hermitian absorption spectroscopy

To measure the complex eigenenergies of the effective non-Hermitian
Hamiltonian, we introduce an auxiliary energy level
la) = \ZDS/Z, F=2,m=0), which is coupled to the system level |1) by a
411 nm laser (see Fig. 1b). In this setup, the Hamiltonian is modified to

Q
HNAs=Heff+ja(|1)<a|+H-C-)*5a|a)<a|' 5)

where Q, is the Rabi frequency, &, is the detuning, and the involved
energy levels are |0), |1), |2), and |a). We initially prepare the ion in the
auxiliary state |a). As time evolves, the population is transferred to the
system levels and subsequently dissipates to the loss state |3). Finally,
we measure the remaining population in |a) with respect to the

detuning &, (see Methods Sec. B), which contains information of the
complex eigenenergies of the system***°,

By setting Q, sufficiently small, the effects of the quantum jump
terms become negligible, allowing the system to undergo a non-
Hermitian evolution. This is because the quantum jump terms sig-
nificantly affect the dynamics only when there is sufficient population
in |1) and |2). However, with a small Q,, any population transferred to
the system levels dissipates quickly to the loss state |3), resulting in
negligible population in |1) and |2) (see “Methods” in Non-Hermitian
absorption spectroscopy). As a consequence, the population in the
auxiliary level at time ¢, is determined by the non-Hermitian evolution

N, =Nol(ale staja) ?, (6)

where we introduce a variable Ny to account for the state preparation
and measurement error. We extract the complex eigenenergies of the
system by fitting the experimental measurement results based on the
theoretical population N'%; calculated from Eq. (6) with slight mod-
ifications to account for the finite lifetime (-7.4 ms) of |a) (see
“Methods” in Non-Hermitian absorption spectroscopy).

To experimentally observe the EP3 associated with the PT sym-
metry breaking, we tune the ratio Q/y from 0.4 to 1.6 across Q/y =1. By
measuring the remaining population in |a) at the end of the dynamics
with respect to the detuning &, (referred to as a spectral line) for each
ratio and fitting these spectral lines using the method presented in
Methods Non-Hermitian absorption spectroscopy, we extract the
complex eigenenergies with respect to Q/y, with the real and imaginary
components displayed in Fig. 1c and d, respectively. The measured
eigenenergies closely match the theoretical values, indicating the PT
symmetry-broken phase for Q <y and the unbroken phase for Q>y,
with the EP3 occurring at Q=y.

To further confirm the existence of an EP3, we probe the spectral
topology associated with the EP3. We set Q =y and introduce addi-
tional detuning terms (—Ay|0)(0| — A;|1)(1]) in the system levels by
varying the frequencies of the microwaves. As shown in Fig. le, the
eigenenergies with respect to Ap and A; exhibit a multi-sheeted
structure. Starting from an arbitrary point, one needs to encircle the
EP3 three times to return to the original eigenenergy (e.g., following a
path defined by Ay = A, cos 8and A; = A, sin @ with A, =2 x 0.020 MHz
as shown by the solid lines in Fig. 1e), in contract to paths that do not
encircle the EP3. The winding topology of the three energy bands is
clearly revealed by the extracted complex eigenenergies with respect
to 6, as shown in Fig. 1f through measuring the spectral lines along this
path. This feature can also be characterized by the winding number
relative to an energy Ep inside a loop™*

2mmn doe Z
W_./o magarg(fn(e)—fg), @)

where E, is the complex eigenenergy of the nth band, and m is the
smallest integer so that £,(0) =E,(0+2mm) (here m = 3) [we define
E,(0+2mk)=E 1 pymodm(6) SO that E,(6) is continuous over 6]. Our
results demonstrate that W= 1/3, indicating the 6 periodicity of each
band (see “Methods” in Non-Hermitian absorption spectroscopy).

Eigenstate tomography

A definitive feature of an EP3 is the coalescence of three eigenstates
into a single eigenstate at this point. We now demonstrate the coa-
lescence through eigenstate tomography, where we scan the Hilbert
space to identify the eigenstates of the non-Hermitian Hamiltonian Hegr
without the requirement of an auxiliary level. Unfortunately, the
dynamics described by Eq. (1) in the absence of an auxiliary level is not
equivalent to the dynamics of a non-Hermitian Hamiltonian Heg. We

Nature Communications | (2025)16:7478
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o/m

Fig. 2 | Experimental results for eigenstate tomography. a-d Variation of the
normalized off-diagonal elements A\p}‘3|2 with respect to ¢ (or @) and Q/y. The
initial state is |u,()) in (@), |u,()) in (b) and |uy(¢)) in (c, d) (see their definitions in
the main text). In (a, ¢, d),j=2, and in (b) j=1. The circles indicate the zero points
obtained by linearly interpolating the experimental data (see “Methods” in Eigen-
state tomography), and the black dashed lines represent the theoretical values:

1 05
[(¥£[tbo)]

[yl

¢=xcos 1(y/Q) for (@) ¢ = +cos~1(Q/y) for (b) and ¢ =tan"(Q/y) for (c, d). The
crosses in (b) also denote zero points but are excluded in the calculation of inner
products since they do not correspond to the eigenstates. e, f Inner products of the
eigenstates ¢, ) and |¢,) for the PT symmetry-unbroken (Q/y>1) and broken
regime (Q/y <1). The solid lines are obtained by Eq. (4), and the diamonds are
experimental data.

address the problem by finding, based on Eq. (1), that an off-diagonal
sector v(t) = (pgs(t), pra(t), Pr3(t))” of the density matrix p(t) satisfies a
non-Hermitian evolution: dp,;; /dt = —i(n|H.¢p|3) for n=0, 1, 2 so that
v(t) = e Ferty(0) (see “Methods” Quench dynamics for the derivation).
Thus, the PT transition can be detected by initially preparing a pure
state p(0) = 1 (1) +13)) ({(¢| + (3]) and monitoring the dynamics of v(t)
by measuring the off-diagonal sector v(¢) of the evolving density matrix
(see Supplementary Information S-3 on how we measure the off-
diagonal elements).

If |¢) is an eigenstate of Heg, then v(f) will experience only an
overall decay in amplitude, and the normalized off-diagonal elements
PEO=pu®)/Iv(t)| (i=0,1, 2) should remain invariant during the evo-
lution. Therefore, the zero points of the variation of the normalized
off-diagonal elements A|p; |2 = | (A8)* — |p(0)I* with respect to [¢)
reveal the eigenstates of Hesr. The presence of PT and anti-PT symmetry
significantly simplifies the procedure by imposing constraints that
reduce the dimension of the search space. Based on these symmetries
and additional constraints imposed by the Hamiltonian, we only need

=1(-€?,iv2, e9) for
for Q<y,

to scan a parameter space specified by |uz(¢)>
lu (@) =(
luo(@)) = ﬁ(— sin ¢, iv/2 cos ¢, sin (p) for all Q (see Methods in
Eigenstate tomography). |u,(¢)) and |u,(¢)) become the eigenstates
. ) when ¢=+cos'(y/Q) for Q>y and ¢ = +cos~1(Q/y) for Q<y,
respectively, and |uy(@))=py) when @=tan"(Q/y). Specifically,
|u,(@)) = u (P)) = uo(@)) = |EP) when ¢ =0 and ¢ = /4.

Figure 2 a shows the variation A|p%,|? with respect to ¢ and Q/y for
Q>y with the initial state being |u,(¢)), while Fig. 2b displays A|p} |2 for
Q <y with the initial state being |u,(¢)). Regions where Alp%> ~ 0 are
highlighted in white. The zero points of A|p;‘3\2 are determined by linear
interpolation between adjacent experimental data points of opposite
signs (see Methods in Eigenstate tomography). These zero points, indi-
cated by circles, show good agreement with the theoretical values

1+5|n¢ Icos¢ 1- sm(p)

Q>y, and

(dashed lines). We extract the eigenstates as |, ) =|u,(¢..)) for Q> and
[, ) =lu(p.)) for Q<y, where ¢, and ¢_ are the average values of the
zero points in ¢ >0 and ¢ < 0 regions, respectively. In the ¢ < 0 region of
Fig. 2b, we exclude the smallest and largest zero points (marked by
crosses), as they do not correspond to the eigenstates. Similarly, the
eigenstate () is extracted by using |uy(¢)) as the initial states (see
Fig. 2c, d). The eigenstate is given by |(y) =|uy(@,)) With ¢ being the
average value of the zero points, marked by circles in Fig. 2c, d. To
illustrate the collapse of the three states to a single one at the EP3, we
show the inner products (¢_|p.) and (¢.]po) of the measured states for
the PT symmetry-unbroken and broken regime in Fig. 2e and f, respec-
tively. The results demonstrate that as Q/y approaches 1, the three
eigenstates become increasingly aligned and eventually coalesce into a
single vector at Q/y=1, experimentally confirming the existence of
an EP3.

We further demonstrate the EP3 associated with the PT symmetry
breaking through quench dynamics from an initial state
p(0)=(1/2)(10) +13))((O| + (3]). We find that the density matrix element
Pos exhibits oscillatory and decaying behaviors for Q>y and Q<y,
respectively (see “Methods” in Quench dynamics), providing further
evidence that all three eigenenergies transition from purely real to
purely imaginary across the EP3.

Liouvillian EP3

EPs can also occur in the Liouvillian spectrum*®>~%, In fact, the non-
Hermitian EP3 discussed in previous sections can be regarded as a
Liouvillian EP3. Specifically, for pR =i, )(3| with n=0, +, -, we have
L[pR]= —iE,pR. Thus, the three eigenmatrices coalesce into a single
density matrix |EP)(3| at Q=y. Similarly, for ph:|3)<(p,,|, we find
L[p]1=iE,pL. This Liouvillian EP3 originates purely from the effective
non-Hermitian Hamiltonian as seen in the relation that £[pR]= — iH 4pR
and L[pL]=ipLH (see Methods in Liouvillian EP3 for more details). This
raises the questlon of whether an intrinsic EP3 exists for the Liouvillian
itself. Interestingly, we identify three eigenmatrices, p. and po, with
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Fig. 3 | Results for observing a Liouvillian EP3 via quench dynamics.

a Experimental and (b) theoretical values of p;; — po; with respect to the normalized
evolution time yt and the ratio Q/y. The dashed lines indicate the evolution results
at the EP3. ¢ Curve fitting using the damped sinusoidal function for experimental
data (circles) at Q/y = 5. The inset shows the fitting results using the hyperbolic sine
function at Q/y = 0.5. The experimental data are averaged over 1000 repetitions.
d Fitted oscillation and decay factors B; and B, with respect to Q/y. The theoretical
results are B, , = M/(Q/y)2 — 1| (see Method in Liouvillian EP3). Error bars, some of
which are smaller than the symbols, denote the 95% confidence intervals of the fit.

eigenvalues A, = — 2y+iy/Q? — 2 and do=-2y (see “Methods” in
Liouvillian EP3E. 1), distinct from the aforementioned eigenmatrices as
they do not involve |3). These eigenmatrices coalesce into a single den-
sity matrix pp = [0) (1] + |1) (2| +i+/2|0) (2| + H.c. at Q =Y, with the eigen-
values transitioning between purely real and purely imaginary up to a
constant shift.

To detect the Liouvillian EP3 associated with the PT transition, we
use a non-physical initial state p(0)=|u;){u| — |u,)(u,|, where
lu,) = —(|O +i(=1)"|2)) for n=1, 2. Due to the anti-PT symmetry of the
open quantum system, elements of p(t) can be detected by preparing a
single state 0(0)=|u;)(u;| and measuring the elements of o(t) (see
Methods Detection of the intrinsic Liouvillian EP3). The experimentally
measured off-diagonal elements p;, — po;, shown in Fig. 3a, along with
the theoretical results in Fig. 3b, reveal that p;, — po; oscillates when
Q>y and decays exponentially after the first peak when Q <y, indi-
cating the PT symmetry breaking at Q=y. We further fit p;, — po; to
damped sinusoidal and hyperbolic sine functions given by
f1(vt)=Aje= ¥ sin(B,yt) and f,(yt) = A,e ¥ sinh(B,yt), respectively, as
shown in Fig. 3c. We find that in the PT symmetry unbroken (sym-
metry-broken) phase, the former (latter) fitting function yields a lower
error than the latter (former) with the corresponding fitted oscillation
factor B; and decay factor B, shown in Fig. 3d. The results clearly
indicates the PT transition of the Lindbladian £ at Q=}.

In summary, we have experimentally detected an EP3 associated
with PT symmetry breaking in a dissipative trapped ion system, focusing
on both the non-Hermitian and Liouvillian aspects. For the non-
Hermitian case, we demonstrate the existence of an EP3 and the PT
transition via non-Hermitian absorption spectroscopy, eigenstate
tomography, and quench dynamics. For the Liouvillian case, we show
that the non-Hermitian EP3s can also be interpreted as Liouvillian EP3s.
We further experimentally identify an intrinsic Liouvillian EP3 associated

with a PT transition by quench dynamics. These results may enable
further exploration of peculiar non-Hermitian topological properties,
such as braiding of three complex energy bands**°, and non-Hermitian
applications, such as chiral state transfer*® and sensing, in a dissipative
quantum system. EPs of orders higher than three can also be achieved
by introducing additional energy levels and engineered losses. In addi-
tion, given that the EP3 is implemented through precise control of dis-
sipation, this technology has the potential to advance quantum
computation, quantum simulation and quantum metrology® <.

Note added in proof. After the submission of this manuscript, we
became aware of a related study reporting the experimental realization
of a fourth-order exceptional point in a trapped *°Ca* ion®.

Methods

Adiabatic elimination for the master equation

The dynamics of the full system described in Fig. 1b is governed by the
Lindblad master equation (fi=1)

dp
&L~ — ity o1+ Z(Lf L~ W rp) ()
=1
where  Hy=H+();|1){e,| +/,12) (e, +H. c) with H= |0 )1+ 22 D1y
(21+Hc., Lpi=clO)Xel, Lyy=cll)(ell, Lr3=c|3)(el, Lf4 c|0) {ez|
Ly s=cl2){e,l, Lf ¢ =c|3){e,l|, and c=\/_/% Here, O, (/i») are con-
trolled by the microwaves (370nm lasers B and C), and =1/
7p =2mx19.6 MHz with 7, =8.12 ns being the lifetime of the 2P,
states®’. Note that theoretically we have neglected the decay of the
2Py, states towards *D3, due to the small branching ratio (-0.5%), and
experimentally we use a 935nm laser to pump the leakage into %Ds/»
back to the Sy, manifold (see Supplementary Information S-1 for
details). The full system master equation [Eq. (8)] can be rewritten as

dpy
- I[Hf.pf]+3pelel<|0>< |+ 11+ 13)3))
+ 2 e 10)(01+12)(21+13)3) ©)

r r
-3 lle){el p} =5 (lez) (e, p).

Let P=|0)(0|+[1)(1|+|2)(2|+]3)(3| be the projection operator
onto the %S, ground state manifold. Applying P to the master equation
[Eg. (9)], we obtain

dp

=(—iHp - V1|1)<61|pr—

(10)(O1 + 111 +13)(3])

i/212)(e,lprP + H.c.)

+ §p€1€1 (10)

r
* 3Pe,e, 10001 +12)(21 +[3)(30),
where p = PpP. Notice that Eq. (10) involves p, , and p,, , (1=0,1,2,3),

as well as p,, . and p,,.,. We can derive an equation involving only the
28,2 levels using adiabatic elimination. From Eq. (9), we have
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Fig. 4 | Spectral line and winding topology. a The spectral line (the remaining
population in |a) at the end of the dynamics at ¢, =200 ps with respect to the
detuning 6,) for Q/y = 0.8. Here, the half-width of the outer dips is mainly deter-
mined by Im(E,, — iy), while the half-width of the inner peak is mainly determined
by Im(E, — iy). Both the theoretical results (red line) and fitted ones (black line) are
calculated according to Eq. (21). The former ones are computed using the para-
meter Q/y = 0.8, while the fitted results employ parameters obtained from a fitting
procedure based on the experimental data (circles). b Argument of £,(6) - Ez as a
function of @ with £5=-0.016 — 0.032i plotted using the data in Fig. 1f. The y-axis is
shifted so that arg(£(0) — Eg) =0, and the n-th band is shifted along the x-axis by
2mn to show the spectral winding around Ep. The units of energy is 2ir x 1 MHz. Here,
y=2mx0.040 MHz and Q,=2m x 0.004 MHz. The experimental results are aver-
aged over 5 rounds of experiments (each contains 200 shots) with error bars being
the standard deviation of the 5 experimental repetitions.

We assume Jy, /, < I so that the population in |e;) is small, giving
rise to dp,,/dt ~ O for any v. We also have p,,,<p; fori,j=0,1,2,3,
allowing us to omit the p, , terms in Eq. (11) that are not multiplied by /"
This gives

2

pely ~ liplu'

4 (12)
pele1 ~ 2 — Pur

for u=0,1, 2, 3. Similarly, for |e,), we obtain
2

pezp ~ = r2 p2y'

42 13)
pezeZ ~ l_z p22

Using Eq. (12) and Eq. (13), we have <e1|pr: —i(2/;/T){1lp and
(eslprP= —i(2/,/T)(2|p. Eq. (10) becomes

dp _

o =(iHp — il lip — y,[2)2lp+ Hic)

+ =2 py(10)01+ 111 +13)3)) (14)

+222.01(10)(01 + 2221+ B 3],

which is the same as Eq. (1) with y;=2/?/T and y,=2/3/T. We have
numerically confirmed that the results from Eq. (1) agree well with
those from the full dynamics [Eq. (8)] given that J;, /, <T.

Non-Hermitian absorption spectroscopy

By weakly coupling a system level with an auxiliary energy level |a) and
using |a) as the initial state, we can eliminate the effects of quantum
jumps. The Hamiltonian H (similarly for Hp) becomes
H'=H+ % (|1)(al+H.c.) — §,la)(al. By a similar adiabatic elimination
of |e;) and |e,) levels, one also arrives at Eq. (14) with H — H'. We
project Eq. (14) onto the subspace spanned by the system and auxiliary

levels using P, =10)(0| +|1) (1| +|2){2| + |a)(al. Then we have

d, . 22
B = (—iHyspa +H.c)+ Y 2

n=1

Pra(10)(0] +|n){nl), (15)

with p, = P,pP, and Hyas given by Eq. (5). The dynamics of py; and p,;
are given by
dp 4y .Q .Q .Q
Ttu =- Tlpu - (ljlipm +'72§l’21 + ‘Tal’al + H-C->' )
dp 4y .Q
TL%Z = - szzz - (l 7%012 +H-C->-

Given that Q, is sufficiently small, we have p;; = 0 and p,, = 0 due
to the dissipation terms — */1 p;; and —*2 p,, in Eq. (16). As a result, the
second term on the right-hand side of Eq. (15) can be omitted, and the
state satisfies a non-Hermitian evolution by Hyas.

We now derive the population in |a) by incorporating the fact that
this state has a finite lifetime. Ideally, the population in |a) satisfies a
non-Hermitian evolution given by

N30 = |(ale st @) = e a7
where k is the transfer rate from |a) to the system levels. In practice, the
D5, state |a) has a finite lifetime of 7, =7.4 ms. Considering the finite
lifetime of |a) and the state detection and measurement errors, the
actual population in |a) is approximately described by

N,(t)=Nge~Va*t = N e Vel NH(g), (18)
with y, =1/7,.

In our experiment, the measured population in |a) is 1 subtracted
by the population in the 2S,,, manifold, given by

NE (@) =1— Ny(6)=Ny(t)+ Nf(0), 19)
where N is the population in the F5, state. The branching ratio of
Ds)» > 2F75 is 81.6%, thus Ny satisfies dNy/dt = 0.816y,N,. Solving the
differential equation with the initial condition N{0) = 0, we obtain

0. 816ya

Nr(t)= e e

Noll -
(20)
) 0.816ya Nol -

n e VN ().
—HnVgte)]

Finally, we obtain the theoretical value of the experimentally
measured population in |a) given by

NE(t)=Noe V' Ny (0)
0.816y,
Ya = 1IN (0]

Nofl - (1)

e VNG (1),
which is used in non-Hermitian absorption spectroscopy.

The system parameters are extracted by minimizing the loss
function L =Y, with

- NE(6, P,)] 22)

=Y [Nexp(a

60

Here Ne"p(ﬁa) is the experimentally measured population in the
auxiliary level at detuning &, (e.g., Fig. 4a), and N (6a,P,) denotes the
theoretically calculated population based on the system parameters P;.
The theoretical population th‘ is calculated from Eq. (21). The system
parameters are given by P;= {Ql » Qo4 Vi V2. No,i (or with additional
detuning terms {Ao;, A;}), where i is the index for the ratio Q/y. We
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impose constraints on the fitting parameters based on the experi-
mental setup. Specifically, we assume Q;;=Q,; since the microwave
amplitudes can be controlled with high precision. For the decay rates
y1:and y,;, due to the drift in the laser power, we cannot simply assume
Y2.i=2y1;- However, we manage to control the laser power (propor-
tional to J} ,) within a 5% deviation from the initial value. Thus, we
assume that y, =2y,, where y,, denotes the average of y,,; over all i, and
each y,,; is constrained to be within a 5% deviation from y,. Once the
system parameters are obtained through fitting, we calculate the
eigenenergies of the non-Hermitian Hamiltonian.

In Fig. 1f, we show the extracted complex eigenenergies as a
function of 6. Here, we further provide arg(E,(0) — Eg) in Fig. 4b,
clearly illustrating the 6m periodicity of each band.

In addition, we note that adding the auxiliary level |a@) and its
coupling with the system levels inevitably lifts the EP3 degeneracy in
the total Hamiltonian Hyas. The effect vanishes in the ideal case where
the coupling Q, - 0, the evolution time ¢, > =, and Qt, remains a
constant. However, due to experimental imperfections, the evolution
time ¢, is limited by the coherence time and other errors. Conse-
quently, a finite Q, is required to obtain a finite signal. Although the
finite coupling slightly perturbs the degeneracy, experimental errors
make this perturbation negligible.

Quench dynamics

To eliminate the effects of quantum jumps, one can also utilize an off-
diagonal sector in the density matrix, which follows a pure non-
Hermitian evolution. We show this by writing down the density matrix
in a block form,

_(Psys U )
o=( : @3)
w  p3
with
.
Poo Por Poz Po3 P30
Psys=| Po Pu Pr |, V=] P |, W=| P31 24)
P Pn Pn P23 P32
The master equation in Eq. (1) can be written as
i (psys v > - _ i(Heff 0> <psys v
dt\ w p 0 O w p
33 , o (3;3 25)
¥i <psys > eff +Dlp],
w  psx 0 0
where He is the 3 x 3 non-Hermitian matrix in Eq. (2) and
Dlp)= > _L,pL}
U
1P TGP 0 0 0
1PutCPrp 26)
0 ST 0
0 0 opy 0
0 0 0  capntcwpn
Based on this equation, we find that
d .
d—lt} = — iHegv, 27)
giving rise to
v(t)=e Henly(0). (28)

More generally, if the Hilbert space splits into two orthogonal
subspaces S and S’ such that the Hamiltonian acts trivially on |s') € §, i.e.,

Hg O
H= , 29
(s o) @9)
and each jump operator has one of the block forms
L 0 0 0
= "wss -
L, ( 0 0) or L, <LM’S 0), (30)

where the first and second row/column correspond to S and S,
respectively, then
1. The effective Hamiltonian Hyz=H — %ZﬂLLLy also acts trivially
onis)eS,
2. The off-diagonal sector psy of the density matrix follows a non-
Hermitian evolution dpsy/dt= —iHegpss with psg being a
submatrix in the density matrix

Pss  Pss
2= (s s
Pss Pss

In our case, S=span{|0), |1),]2)} and S’ =span{|3)}. We note that
this condition can always be realized by introducing an additional level
that does not couple to any other levels via the Hamiltonian and the
jump operators.

In the following, we show a specific application of the afore-
mentioned technique on studying the PT-symmetry breaking in our
system (such dynamics can also be used to study other non-
Hermitian applications, such as state transfer*®). We consider an
initial state p(0)=3(|0) +13))({O] + (3)), SO that

p(0)=3(1,0,0)" = ;o m [y —iy/ O — P2l ) + (y+iy /O )l

—\/2(02+y2)|(p0>]. Since the off-diagonal element po3 evolves as

ve)=e Metu(0),  we Pos(O=[0(0)]o = ;205 1+ T2

@D

have

cos(y/Q? — y2t)+ Zyivooj’yzsin( Q% —y2t)]. Further simplification
gives

Qzeiyt .2V Qz - y2
6= sin t+C |, (32)
Po3(t) 2 ) ( 3 1
with C; =cos~1(y/Q). For Q <y, the equation becomes
( Qe vt B2 y2 - Q? ric &3
t)= sin + ,
Po3(?) 22 — QZ) 2 2

with C, =cosh}(y/Q).

The experimentally measured off-diagonal element |po3|, shown in
Fig. 5a, agrees well with the theoretical results (Fig. 5b), providing a
clear signature of the PT symmetry breaking across Q = y. Specifically,
for Q >y, all eigenenergies are real (up to a constant shift), causing |po3|
to oscillate with a frequency determined by the real eigenenergy. In
contrast, for Q <y, the eigenenergies become purely imaginary, lead-
ing |po3| to experience a pure decay. Based on Eq. (32) and Eq. (33), the
time evolution of |pgs| follows a damped sinusoidal (for Q>y) or
hyperbolic sine (for Q<y) behavior, described by
F1vH)=AeVsink Byt +Cy) and f,(yt)=A,esinh?(B,yt +C,), with
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Fig. 5 | Results for quench dynamics. a Experimental and (b) theoretical results of
an element |pos| of the density matrix with respect to the normalized evolution time
yt and the ratio Q/y. ¢ Curve fitting using the damped sinusoidal function for
experimental data (circles) at Q/y=5. The inset shows the fitting results using the
hyperbolic sine function at Q/y = 0.5. The experimental data are averaged over 400
repetitions with error bars representing the standard deviation. d Fitted oscillation
and decay factors B; or B, with respect to Q/y. The error bar, which is smaller than
the symbols, denotes the 95% confidence intervals of the fit.

B,=B,= %h/(()/y)2 —1|. We fit the experimental data to both func-
tions and select the one with the smallest error. Figure 5c displays the
fitting result for Q/y =5, where fi(yt) fits the experimental data best,
while the inset for Q/y=0.5 is better characterized by f,>(yt). We find
that in the symmetry unbroken region, the damped sinusoidal pro-
vides a better fitting than the hyperbolic sine function. Conversely, in
the symmetry broken region, the hyperbolic sine function offers a
better fit, consistent with theoretical results. In addition, we plot the
fitted values of B; or B, with respect to Q/y in Fig. 5d, showing excellent
agreement with theoretical results. The results clearly demonstrate a
PT phase transition at Q=y.

Eigenstate tomography
We assume that the eigenstate of the Hamiltonian is expressed as

a,+ib,
c, tid,
ell + if’l
forn=0,+,-.Due to the presence of PT and anti-PT symmetry, one of
the eigenstate |u,) must be symmetric under both PT and anti-PT
operations, that is, Uprlug) =€%|uy) and Uprlug) =€#|uy). By choos-
ing an appropriate gauge, we can have Uprluy) :e‘“|u0> and
Upprltto) =1to), resulting in |ug)=(—eo,idg, €p)" or %(I,O,I)T. We
exclude the latter case, as it is unlikely to be the eigenstate of an
arbitrary Hamiltonian with PT and anti-PT symmetry. Let e, = %sin [7)
and d, = cos ¢, we arrive at a normalized state

lu,) = (34)

1

luo(@)) = ﬂ(_ sing,iv2cos @, sing) (35)

which becomes the eigenstate of Her when @ =tan~1(Q/y).

The other two states |u, ) and |u_) are either PT or anti-PT sym-
metric. If they are PT symmetric (when Q > y), we have
Uprlu, Y= —u, ), Uprlu_)= — |u_), and Upprlu, ) =€*|u_), where we
have chosen a specific gauge for |u, ) and |u_). These equations give
rise to
-

lu, )= % (—re““’,i 2(1— rl),re*i‘p) (36)

where r and ¢ are real numbers. In principle, one could scan the
parameter space with respect to r and ¢ to identify the eigenstates. In
our experiment, to reduce the amount of data required, we introduce
another constraint based on the structure of the Hamiltonian. If |u, ) is
an eigenstate of Hegr, then we have (Hg +ip)|u,, ) =k|u, ) with kbeing a
real number, giving rise to r=1/+/2. As a result, we only need to pre-
pare

lu () = % (—e‘¢, iv2, e’"”) ’ (37)

for different values of ¢ to perform eigenstate tomography (see Sup-
plementary Information S-2 for initial state preparation). |u,(¢))
becomes an eigenstate of Hee when ¢ = +cos!(y/Q).

Similarly, if |u, ) and |u_) are anti-PT symmetric (when Q <y), then
we have Upprlu, ) =u, ), Upprlu_) =u_), and Uprlu, ) =€*|u_), lead-
ing to

;

|u+>=<a,i\/1—(a2+b2),b> )
T

lu_)= <—b,i\/1— (a2+b2),a> ,

with a and b being real numbers. We also use (Hg +iy)|u. ) =ik|u, )
and obtain another constraint a - b=+1. Therefore, we can prepare
the state

(38)

_( 1+sing .cos¢ 1—sing T 39
R e (39)
for different ¢, which becomes an eigenstate of Heg

when ¢ = +cos~1(Q/p).
We note that these states can also be obtained by rotating the
state |EP) around the z-axis (for Q >y) or the x-axis (for Q<y):

|u,()) = €9 |EP),

. (40)
|t (@) = €9 |EP),
with
1 0 O 1 010
s,=[o 0o o ,sx=—2 1 01 (41)
0O 0 -1 010

being the spin-1 operators.

For eigenstate tomography in experiments, we determine the
zero points of A\p,'.‘3|2 by linear interpolation between adjacent
experimental data points of opposite signs, as shown in Fig. 6.

Liouvillian EP3
The Liouvillian superoperator can also be viewed as a non-Hermitian
matrix in the doubled Hilbert space. By vectorizing the density matrix
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Fig. 6 | Determination of eigenstates in tomography. a A|p},|? as a function of ¢
with the initial state |u,(¢)) at Q/y=2.b A|p1“3|2 as a function of ¢ with the initial
state |u,(¢)) at Q/y=0.5. The zero points are marked by circles and crosses,
determined by linear interpolation between adjacent experimental data points with
opposite signs, and error bars denote the standard deviation.

through Choi-Jamiolkowski isomorphism®>*®,

p=>_pgl(jl > 1p)=">_pyli) ® lj), 2)
the master equation can be written as d|p)/dt = #|p) with
P=—iHg @I —1@H* )+ > L, ®L*, (43)
u

In this case, the Lindbladian of our model becomes a 16 x 16 non-
Hermitian matrix which can also support EP3. Notably, certain Lind-
bladian eigenvectors are closely related to the Hamiltonian eigen-
states. Given that |¢,,) is the eigenstate of He with eigenenergy E,
(n=0, ), |pR) =y, ® |3) satisfies

Z1R) =(—iHez @ DIY,) ® 13) = — iE,|pR), (44)

since  H*.l3)=L%,13)=0. This means that |[p})=]¢,)®3)
(o% =14p,,)(3]) is an eigenvector (eigenmatrix) of £ (£) with eigenvalue
— iE,. Similarly, one can prove that |p};) =|3) ® [¢*,) (o} =13)(¥,]) is an
eigenvector (eigenmatrix) of # (£) with eigenvalue iE,. The three
eigenmatrices p¥,p", p™ will coalesce into a single density matrix
|EP)(3| for M=R and |3)(EP| for M =L, giving rise to a Liouvillian EP3.

While certain Liouvillian EP3 is directly linked to the Hamiltonian
EP3 (via the correspondence between eigenstates of He and certain
eigenmatrices of £), in the following we show that there exists intrinsic
Liouvillian EP3 that do not arise from the eigenstates of the effective
Hamiltonian, which can be probed via quench dynamics starting from
a non-physical state.

Intrinsic Liouvillian eigenmatrices. We obtain the eigenmatrices and
eigenvalues of £ by diagonalizing £ in the doubled Hilbert space (%),
from which we identify intrinsic Liouvillian eigenmatrices that do not
arise from the eigenstates of Hey Specifically, we find three

eigenmatrices written as

0 1%i %2—1 W22 0
.= | 1# &1 0 F,/2 -1 0
-iv22  1Fi f;—j—l 0 0

0 0 0 0 (45)

with the basis being {|0), |1), |2),|3)}. The corresponding eigenvalues
are

A, = =2y£i\/Q% -2,

Ao= —2y.

(46)

One can verify that L[p,]=1,p, for n=%, 0. At Q=Yy, the eigen-
values become degenerate and the eigenmatrices coalesce into a sin-
gle density matrix

0 1 i/2 0
1 0 1 0
= ) 47
Prp i1 0 0 (47)
0 0O O O

giving rise to an intrinsic Liouvillian EP3.

We further show that the Liouvillian EP3 emerges from the
simultaneous breaking of the PT and anti-PT symmetry, which is the
same as the Hamiltonian case. We first prove that the modular con-
jugation symmetry and an anti-PT symmetry and jump operator
structures ensure that eigenvectors of the Lindbladian do not depend
on the jump operators. Specifically, the full Lindbladian £ respects the
modular conjugation 7,

JLgt=c,  Jipl=p’ (48)
and the anti-PT symmetry U,pr,
Uppr LUGT=L,  Upprlp]=UpprpUper) ™ 49)
with
1 0 0O
v |0 1ool 50)
AT"10 0 1 0
0 0 01

Since both U,pr and J are antiunitary symmetries, their combi-
nation UaprJ is unitary and satisfies (Uupr7)*=1. Thus, if p is an
eigenvector of £, then we have

Uppr TIP]= U;APTPT(U;\PTY1 =+p. (51
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“_n

We focus on the branch since in our case the eigenvectors
belong to this branch. Then, p takes the following form

0 pou Poz Pos
Po1 0 prn P
p= , p;ii€C. (52)
—Po2 P 0 pn Y
—Po3 P13 —Pn O

Furthermore, in our system the jump operators take the form of
L, =|my){n,| with my, n, € {0, 1, 2, 3}, leading to LﬂpL; =0 since sym-
metries enforce the diagonal elements of p to be zero. In this case, p is
an eigenvector of £ if and only if it is an eigenvector of
P= —i(Het ® | — 1 ® H), or equivalently
L[1= — iHeg[ 1+ 1ML, (53)
where H,g is the effective Hamiltonian written in the full Hilbert space,
i.e.,

o)
0 = 0O o0
o) ; Q :
Hoyp=| V2 *;V v 0 =(heff(_)lyl3 g) 54)
0 7 =2iy O
0O O 0 0
Based on the structure of Heg,
Poo Poi Pz O
~ Po Pu P O
p= (55)
P Pn Pn O
0O 0 0 O
is an eigenvector of £ with eigenvalue A if and only if
Poo Por Po2
Psys=| Po Pu Pn (56)
P Pn Pn
is an eigenvector of
Lys=—iheg ®13—13® h;ff) (57)

with eigenvalue A+2)y. This allows us to set pz=p;;=0 for
i=0,1,2,3so that

0 po Poy O

_| P O pp O (58)
P02 P O O
(0] 0O 0 O

Since hegr respects both the PT symmetry and the anti-PT sym-
metry, we have

* =1
(UPT ® UPT)csys(UPT ® UPT) == ﬁsys'

. . 4 (59)
(Unpr ® Uppr)Loys(Uppr ® Uppr) = Lgys-

We thus see that the PT symmetry represented by Up; ® U;T and
the anti-PT symmetry represented by U,pr ® U,py ensure the existence
of EP3 in Ly, (thus £) as the two symmetries break at the same para-
meter value as in the Hamiltonian case. For the winding topology of a
Liouvillian EP3, see the discussion in Supplementary Information S-4.

Detection of the intrinsic Liouvillian EP3. To detect the EP3
associated with PT symmetry breaking, we adopt an initial state that
can be written as a linear combination of the three eigenmatrices. We
define

T

1 . 1 .
|u1>:ﬁ(|0>_1|2>)=ﬁ(1 0 —i 0), o
1 N | 10i 0V (60)
|Uz>—7§(|0)+1|2>)—ﬁ( i 0).
The initial state is chosen as
p(0)=uy){uy| — |uy)(uy|
I P (6D
207 - Qz)[l?o 2(P+ +p)l
The time evolution of p(0) is then given by
p(t)=e“[p(0)]
W e, L, e
NI QZ)[ Po 2( p+te-"p )]
0 A® C O (62)
_ Qy oyt A:(t) f) Bit) O
V202 - 0 ce By o o)
0 0 0 O
where
QZ
A(t)=1— cos(y/Q? — y2t) + i 1sin(y/ Q% — y21),
2
B(t)=1— cos(\/ Q2 — y2t) — ,/% — 1sin(\/Q? — y20), (63)
— l‘/z 2 2 2 2
Ct)= —Q—V[Q cos(y/ Q7 — y?t) — y].
From Eq. (62) and Eq. (63), we find
V20 e 2 sin( Q- y2t), (64)

Pu() = po1(H) = ————
\ Q2 — 2

which can be used to detect the PT phase transition.
Since Tr[p(0)] =0, the state p(0) cannot be directly prepared as it
is not a physical state. To address this, we define

0(0)=uy ) {uyl, 0o(t)=e“luy){ul],

(65
7(0) = |uy ) (uy|, T(t)= e [|uy)(uyl]. )

Experimentally, we can prepare the states |u;) and |u,), measure the
matrix elements of a(t) and (¢), respectively, and then obtain p(¢) using
the relation p(t) = o(¢t) — 7(¢) (see Supplementary Information S-5 for the
generic case). Furthermore, due to the anti-PT symmetry of the system,
we have

Tou(t)= — 0y (),

. (66)
Tp(H)= — oy (0).
This allows us to express
P12(t) — Po1(8) = 2Re(0(t) — 01(2)), (67)

which means that we only need to prepare |u;) and measure the off-
diagonal elements of o(t).

Nature Communications | (2025)16:7478

10


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-62573-5

The proof of Eq. (66) is as follows. The anti-PT symmetry of the
Lindbladian gives rise to the relation

Uner LOO1WUppr) ™ = LWUppr0OWUjpr) 1, (68)
which implies that
Uppr€“[0(0))(Uppr) ' = eﬂ[Ul/APTO(O)(Ul/APT)il]' (69)

Since 7(0) = U;PTo(O)(U;PT)’l, Eq. (69) gives rise to the relation

T(6) = Uppro(©)(Uppy) (70)

which leads to Eq. (66).

Data availability
The data that support the findings of this study are available at Fig-
share https://doi.org/10.6084/m9.figshare.29301071 (ref. 67).
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