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Insufficient coverage of cervical cytology screening in resource-limited areas
remains a major bottleneck for women'’s health, as traditional centralized
methods require significant investment and many qualified pathologists. Using
consumer-grade electronic hardware and aspherical lenses, we design an ultra-
low-cost and compact microscope. Given the microscope’s low resolution,
which hinders accurate identification of lesion cells in cervical samples, we
train a coarse instance classifier to screen and extract feature sequences of the
top 200 instances containing potential lesions from a slide. We further develop
Att-Transformer to focus on and integrate the sparse lesion information from
these sequences, enabling slide grading. Our model is trained and validated
using 3510 low-resolution slides from female patients at four hospitals, and
subsequently evaluated on four independent datasets. The system achieves
area under the receiver operating characteristic curve values of 0.87 and 0.89
for detecting squamous intraepithelial lesions on 364 slides from female
patients at two external primary hospitals, 0.89 on 391 newly collected slides
from female patients at the original four hospitals, and 0.85 on 570 human
papillomavirus positive slides from female patients. These findings demon-
strate the feasibility of our Al-assisted approach for effective detection of high-
risk cervical precancer among women in resource-limited regions.

Cervical cancer ranks as the fourth most common cancer among
women worldwide and the fourth leading cause of cancer-related
death in women'“ In low- and middle-income countries such as South
Africa, India, China, and Brazil, 84% to 90% of cervical cancer cases
occur, imposing a substantial budgetary burden on these regions™*.
While human papillomavirus (HPV) vaccination is critical, cytology
screening remains vital for reducing the incidence of cervical cancer.
Historically, Pap smear programs have reduced the incidence by up to

80% in developed countries’. In recent years, the World Health Orga-
nization (WHO) has recommended HPV screening for high-throughput
screening of cervical cancer®’, and extensive work has been carried
out®™. However, HPV testing usually suffers from relatively low
specificity’® ™. Cytopathology-based screening, which directly detects
cellular morphological changes, continues to serve as a routine and
effective screening approach. Despite its importance, widespread
implementation of cytopathology screening still encounters
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challenges, particularly in resource-limited regions, due to the short-
age of trained cytologists and the high cost of necessary equipment.

In recent years, cost-efficiency in portable optical instruments has
improved significantly. These advancements have propelled them to
serve as practical alternatives to commercial systems, addressing
diverse demands of bioscience, medical diagnosis®, and other
fields'*®. For instance, portable microscopes have been effectively
utilized in the diagnosis of Malaria, Sickle Cell Anemia, and
Tuberculosis'?. Such devices typically integrate Complementary
Metal Oxide Semiconductor (CMOS) sensors and compact optical
systems, sometimes even utilizing smartphone camera capabilities. In
contrast to the large-size and expensive professional microscopes
commonly seen in medical facilities, these portable versions dramati-
cally reduce costs while maintaining an acceptable image quality.
Concurrently, advanced medical image analysis algorithms have been
developed to automate the processing of acquired images. These
algorithms can perform tasks such as automated quantification of
blood cells'®, rapid detection of abnormal morphological targets®, and
other diagnostic functions. Consequently, individuals with relatively
basic training can conduct these procedures effectively. For cervical
cytology, automatic analysis algorithms hold promise in assisting
precancer lesion detection. The combination of compact microscopes
and artificial intelligence (Al) presents a promising approach for
enabling large-scale periodic cervical screening in resource-limited
regions.

Over the last few decades, extensive research has focused on
cervical cell classification and detection algorithms. Early approaches
were primarily based on handcrafted feature extraction, cell or nuclei
segmentation®?*, and traditional machine learning classifiers. Sub-
sequent advancements introduced the convolutional neural
network” (CNN) and recent Vision Transformer*, which leverage
data-driven methods to identify cervical lesion cells, improving
recognition accuracy” . Despite the progress in cell-level recogni-
tion, a discernible gap persists between cell-level and slide-level
diagnostic frameworks. When dealing with a gigapixel whole slide
images (WSIs) of cervical cytology, which contain tens of thousands
of cells or instances (local cell images), researchers have adopted
multi-stage or hybrid slide-level analysis methods requiring large-
scale lesion cell annotations**™*. For example, Zhu et al.*’ integrated
YOLOVS3 for target detection, Xception and Patch-based models for
target classification and U-net for nucleus segmentation along with a
logical decision tree for slide classifying (using about 1.7 million
annotated targets). Cheng et al.*® fused high-resolution (HR) and low-
resolution (LR) imaging using CNNs to identify/recommend lesion
cells, and then classified WSIs via a recurrent neural network by
aggregating deep features of the top 10 recommended lesion
instances (using 79,911 annotated lesion cells). Lin et al.*” designed a
dual-path network with a synergistic grouping loss function for
lesion retrieval, and classified slides by rule-based risk stratification
(using 202,557 abnormal cell images). Wang et al.*° utilized RetinaNet
to detect the top 20 instances of each class and a random forest
algorithm to aggregate the detection results and classify slides.
Essentially, these methods utilize high-resolution images to first train
an accurate abnormal cell classifier or detector. Then, they aggre-
gate the learned deep features or predicted positive probabilities of
the detected abnormal cells in each WSI to represent and classify
slides. In these methods, the effectiveness of slide classification
depends critically on the initial cell detection precision. This step
requires high-resolution images, which provide rich and sufficient
texture details, along with large-scale annotation datasets. In con-
trast, low-resolution WSIs (LRWSIs) captured by a compact micro-
scope have limited resolution and insufficient intricate textures. As a
result, they are unable to support accurate cell-level discernment.
Consequently, these approaches are not suitable for processing
LRWSIs.

In the study, we developed an artificial intelligence-assisted cer-
vical cancer screening system targeting populations at high risk of
squamous intraepithelial lesions (SIL) in resource-limited regions. This
system integrates a low-cost compact microscope with an artificial
intelligence algorithm. By leveraging consumer-grade electronic
hardware, our microscope achieves a cost reduction of tens to hun-
dreds of times compared with laboratory-grade high-performance
equipment, making it easier to manufacture and maintain. The hard-
ware design employs aspherical lenses to drastically compress the
optical path of the system, resulting in an ultra-compact device. The
entire system demonstrates excellent usability and supports auto-
mated whole-slide scanning. Unlike existing methods that rely on high-
quality images and large-scale annotations for precise abnormal cells
identification (tens or a few), our approach successfully enables slide
classification using low-resolution images from cost-effective hard-
ware. We trained a coarse instance classifier to screen and extracted
the feature sequence of the top 200 lesion-candidate instances from a
slide and eliminate the majority of negative instances in the first-stage.
This step reduces the sequence length of the instance features from
several thousand down to hundreds, while still sufficiently covering
potential positive cells. We further developed Att-Transformer to
focus on and integrate the sparse lesion information from the above
sequence, enabling slide grading. The Att-Transformer integrates a
Vision Transformer backbone with a Gated-Attention module*?, which
focuses on the lesion areas and assigns higher weights to these fea-
tures, achieving excellent feature aggregation and interpretability. In
addition, we also employed pretraining and transfer learning strategies
for efficient classifier training.

We trained and validated our model using 3510 LRWSISs, contain-
ing 13 datasets collected from four distinct hospitals over various time
periods. In the internal test set, for 194 positive cases and 195 negative
cases, we achieved an area under the receiver operating characteristic
curve (AUC) of 0.845. Subsequently, the system was further evaluated
on four independent test sets for detecting SIL, achieving AUCs of
0.873 and 0.891 on 364 slides from two external primary hospitals
(External-A and External-B), 0.889 on 391 newly collected slides from
the original four hospitals (NewCohort), and 0.855 on 570 slides from
human papillomavirus-positive patients. We compared the optimal
pathology WSI analysis algorithms, CLAM and TransMIL on our LRWSI
datasets. AUCs below 0.600 on External-A, External-B, and NewCohort
indicate that these weakly supervised multiple instance learning (MIL)
methods are not suitable for cervical cytology WSIs with sparsely
distributed lesion cells. Moreover, our ablation studies demonstrated
that: (1) supervised features are more effective and robust in the slide
classifier; (2) the proposed Att-Transformer, through its attention
module, focuses on sparse lesion areas, achieving better feature
aggregation and interpretability.

In this work, we demonstrate that the combination of our algo-
rithm and the miniature microscope offers a cost-effective screening
solution for cervical precancer screening in high-risk populations in
regions with scarce medical resources. Individuals triaged as high-risk
through this screening process are referred to tertiary care centers for
further examination and treatment. We substantiate that this cost-
effective and easily accessible screening method aligns with the WHO
global strategy to eliminate cervical cancer globally.

Results

Compact microscope and cytology LRWSI dataset

In this paper, we designed a low-cost and compact microscope for
resource-limited areas, as shown in Fig. 1a. We use aspherical lenses,
which significantly compress the optical path of the system. The
optical module contains two lens sets: L1 and L2. L2 is fixed, and L1 is
controlled by a voice coil motor (VCM) to support autofocusing. A
system on a chip (SoC) is used to control the whole process and store
acquired LRWSIs. The entire system has excellent automation and
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Fig. 1| Compact microscopes and its properties. a The appearance of our
compact microscope and the form of an LRWSI. The optical module contains L1
and L2, two lens sets. L2 is fixed, and L1is controlled by a voice coil motor (VCM) to
support autofocusing. We use a CMOS sensor to capture the image and trans-
mitted a light-emitting diode (LED) light source to illuminate the sample between
the light source and the objective lens. A system on a chip (SoC) is used to control
the whole process and storage acquired LRWSIs. An LRWSI is usually composed of
about 90 views of images with 3840 x 3160 pixels and 0.87 pm/pixel. b Imaging
quality comparison between a standard microscope and our compact microscope.
The left composite image juxtaposes a high-resolution (HR) region (upper-right
quadrant, captured by a standard microscope) with a low-resolution (LR) region

Microscope Module

o i o
N i s e

LED light source

%k k

3840 x 3160
~90 views for a slide

0.87 uml/pixel

(lower-left quadrant, obtained using our compact microscope). The right panel
statistically quantifies contrast and noise differences: contrast level is calculated as
the absolute difference between average nuclear pixel intensity and average
cytoplasmic pixel intensity, divided by the average cytoplasmic pixel intensity. The
noise level is defined as the standard deviation of the background pixel. Each data
point in the contrast level is derived from a single cell in different images, and each
data point in the noise level is derived from different images. Statistical significance
(Paired samples ¢ test, n =13, ** denotes p < 0.001) confirms the contrast of LR
images is significantly lower than that of HR images, while the noise level is sig-
nificantly higher. Source data are provided as a Source Data file.

usability. By leveraging a consumer-grade electronic module, the cost
of the whole system is only about $300, which is orders of magnitude
lower than that of traditional screening systems used in medical cen-
ters. More details are shown in Methods (Compact Microscope). We
visualized the image quality of a common pathology microscope and
our compact microscope in Fig. 1b. For the same target, our imaging
results provide supportive evidence for the morphological inter-
pretation of cells, such as the size and contour of the nuclei. However,
our images have limited expressiveness regarding details like the
texture of the nuclei and cytoplasm. This limitation is evident in Fig. 1b,
indicating that our images are relatively constrained in terms of noise
levels and contrast. We further analyzed the impact of image quality on
interpretation results (Supplementary Fig. 1) and provided standard
deviation of noise, percentage of lost focus, saturation probability and
optical resolution (1951 USAF resolution calculator) of image quality to
illustrate the quality differences between the two imaging modes on 42
pairs of 3000 x 3000 pixel-sized registered images (Supplementary
Table 1 and Supplementary Fig,. 2).

We made our best efforts to collect a diverse and substantial
dataset to support our study. A total of 3135 slides from four hospitals
were used to train the model, and 375 slides and 389 slides served as
the validation and internal test sets, respectively. To better evaluate
our model, we tested it on four external test sets: 513 slides from the
same hospitals as the training set but from a different time period; 308

and 151 slides collected from another two resource-limited external
hospitals; 570 slides from HPV-positive cases. Overall, a total of
5441 slides is used in our experiment. More details can be found in
Methods.

Inspiration and algorithm design

Due to the microscope’s low resolution, which hinders accurate iden-
tification of lesion cells, we first trained a coarse instance classifier to
screen and extract the feature sequence of the top k instances con-
taining potential lesions from a slide in the first-stage, rather than
training an accurate model for detecting several abnormal cells on
high-quality images in previous methods. Considering that lesion cells
are sparsely distributed in cervical cytopathology slides (Supplemen-
tary Figs. 3 and 4), we further developed Att-Transformer to focus and
integrate the sparse lesion information from the above sequence,
enabling slide grading. We chose 200 as the optimal value of k through
conducting ablation experiments (Supplementary Fig. 5). We named
our two-stage method DualCytoNet.

First, we divided each LRWSI into about 5700 instances redun-
dantly, which have a size of 256 x 256 pixels and are resized to 224 x 224
pixels as the input of the first-stage Att-Transformer, which is proposed
to handle sparse positive foreground cervical cytopathology images.
After that, we obtained the features and positive probability of all the
instances as Fig. 2a. We highlighted the instances of top 200 lesion
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Fig. 2 | The proposed LRWSIs analysis system. a Stage one. The input of the first-
stage model is instances which are originally cropped from the LRWSI as 256 x 256
pixels and resize to 224 x 224 pixels. The output of the first-stage contains merged
features of each instance, attention scores for patches in each instance and positive
probability of each instance, which is obtained by mapping the merged feature
through a linear layer. The attention scores of each 16 x 16 pixels patch are used to
plot the cell-level region of interest (ROI). b Stage two. We choose features of
instances which get a top 200 positive probability as input of stage two. The stage
two model is similar as the first-stage model, which uses the features of top
instances as input. The final output is the attention score of each input feature and

the positive probability of a slide. The attention scores of each 224 x 224 pixels
instance are used to plot the instance-level ROI. ¢ We train the first-stage model by
masked auto-encoder*® (MAE) based self-supervised. The pre-training process has
two stages. A standard MAE pretraining is performed, followed by further pre-
training with our aggregation module integrated. d The stage one model is fine-
tuned on HR and LR labeled instances after the pretraining process. e The Att-
Transformer is composed by a ViT backbone and a Gated-Attention module. The
Gated-Attention module applies learnable weighting to the feature sequence out-
put by the ViT backbone and emphasizes the sparse positive cell features in the
sequence.

probabilities within a slide, and aggregated their deep features
(200 x 768 dimensions) to represent and classify slides by our second-
stage Att-Transformer as Fig. 2b. The attention scores output by the two
stages can be used separately to identify key regions (16-pixel width) in
instances and to the key instances that are decisive for slide inter-
pretation. More details are in Methods (Att-Transformer heatmap).

To ensure the robustness of our feature extraction, we introduced
Att-Transformer, which represents an improvement over the ViT
model as Fig. 2e. By integrating an attention module after the ViT
backbone, Att-Transformer achieves a weighted aggregation of the
sequential features generated by the original ViT. This augmentation
effectively highlights the sparse positive cell features in the sequence,
allowing them to dominate the classification results. Moreover, in
comparison to the original ViT, this design promotes more seamless
parameter transfer from pretraining to downstream tasks (Supple-
mentary Fig. 6). For the first-stage model, we employed masked auto-

encoder®® (MAE) based self-supervised learning for training and sub-
sequently fine-tuned it using annotated instances, as illustrated in
Figs 2¢, d. The pretraining process helps the model acquire a more
reliable and robust feature extraction capability across a broader range
of data distributions, simultaneously diminishing its reliance on the
scale of annotated data. We used data augmentation focused on color
change and a false positive mining strategy to further enhance the
performance of the first-stage model. More details about Att-Trans-
former, pretraining and finetuning can be seen in Methods.

Cervical precancerous screening for SIL cases

To evaluate the effectiveness and generalization of our DualCytoNet,
we compared it with state-of-the-art WSI classifier methods CLAM**
and TransMIL®. The two methods achieved optimal outcomes on
histopathology datasets through aggregating pretrained features
(ResNet50 pretrained on ImageNet) of all instances within a slide to
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Fig. 3 | System’s performance on screening SIL cases. Top figures illustrate the
ROC curves of CLAM, TransMIL and our methods (DualCytoNet) on internal test
(InTest), NewCohorts, External-A and External-B sets. AUC and sample size are

SEN SPC SEN SPC

added in the legend and above the figure, respectively. The bottom figures show
the sensitivity and specificity (threshold = 0.5) of three methods for each test set.
Source data are provided as a Source Data file.

represent the slide. Initially, we trained and validated the models for
classifying slides into positives and negatives. In the internal test set,
our method, CLAM, and TransMIL achieved AUC of 0.845, 0.654 and
0.670, respectively. Subsequently, we further evaluated all methods
for detecting SIL cases on three independent test sets: NewCohorts
(n=391), External A (n=253) and External B (n=111). Figure 3 shows
receiver operating characteristic (ROC) curves and the sensitivity and
specificity (threshold = 0.5). On the three independent test sets, CLAM
and TransMIL achieved poor results of AUC <= 0.567. Our method
achieved AUCs of 0.889, 0.873 and 0.891. Similarly, both the sensitivity
and specificity of our method far exceed CLAM and TransMIL on the
three independent test sets. We also evaluated the screening perfor-
mance for detecting positive cases (atypical squamous cells, ASC; low-
grade squamous intraepithelial lesion, LSIL; high-grade squamous
intraepithelial lesion, HSIL) on the three test sets. Our method
achieved overall average AUC of 0.780 whereas AUCs of the compar-
ison methods are lower than 0.525 (Supplementary Fig. 7). The analysis
of the false cases shows low false rate on SIL and high false rate on ASC
(Supplementary Fig. 10). Besides, we found that partial misclassifica-
tion attributes to several image quality problems such as under-
staining or fading, bubble artifacts, insufficient cell count and inflam-
matory reaction (Supplementary Fig. 11). Therefore, our method can
effectively identify SIL types, which aligns with our goal of screening in
resource-limited areas, but its ability to identify ASC is limited.

Considering the relatively low specificity of the HPV test, we
additionally carried out a sub-study focused on HPV-positive cases to
investigate the feasibility of integrating our method with the current
HPV screening approach recommended by the WHO. On 570 HPV-
positive slides, we achieved an AUC of 0.850 (Supplementary Fig. 12).
The results reveal that our method can effectively identify SIL cases
among cases who have tested positive for HPV, improving the speci-
ficity of co-testing.

Feature representation of instances

To verify the effectiveness of the feature representations by the
instance classifier, we utilized t-SNE* to visualize the instance features
within the instance test set. Ordinarily, due to the limited sampling of
real-world data in datasets and the innate constraints of deep learning
models, the classification boundaries modeled by the classifier lack a
high degree of precision and accuracy. In the t-SNE dimensionality
reduction plot, samples located at the cluster boundaries are regarded
as hard samples.

As shown in Fig. 4, while there exist certain hard instances on the
classification boundary that extend into the opposite class, the
majority of positive and negative instances are well distinguished. In
addition, our model effectively clusters the morphological character-
istics of cells. For example, we can observe that the far-right area shows
the negative instances with few cells, whereas the left area shows the
characteristics of perinuclear halos and nuclear enlargement. Given
that the LR images possess insufficient textures, some lesion cells
cannot be recognized by the model and thus manifest as hard samples.
These results indicate that the instance classifier based on SSL and
transfer learning is effective and meets the design goal of the first-
stage, which is to eliminate the vast majority of negative instances
within a slide.

Supervised feature is more effective and robust for slide
classifier

To further demonstrate the effectiveness of our feature extraction, we
compared three different types of instance features: Supervised, Pre-
trained, and Pretrained on ImageNet. “Supervised” refers to the fea-
tures of top-200 lesion probability instances extracted by our first-
stage model. “Pretrained” denotes features of the same top-200
instances extracted by the model pretrained solely on unlabeled cer-
vical images, while “Pretrained on ImageNet” pertains to the features of
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those instances obtained from a model pretrained on ImageNet.
Notably, we did not use any instance-level augmentation in these
experiments to reduce computation cost, thus, the results are different
from that in other sections (see Train for stage two in Methods).

Figure 5 shows the ROC curves of slide classification results. For
the internal test set, Supervised, Pretrained and Pretrained on Ima-
geNet achieved high AUC of 0.921, 0.914 and 0.868 for detecting
positive, respectively. In External-A, External-B, and NewCohorts test
sets, Pretrained and Pretrained on ImageNet achieved average AUC of
0.557 and 0.457 for detecting SIL, respectively, while Supervised
achieved an average AUC of 0.862. We can see that Pretrained and
Pretrained on ImageNet features have high AUC values in the internal
test set, but they decrease significantly on the independent test sets,
while supervised features maintain a highly consistent level. This
indicates that features of Pretrained and Pretrained on ImageNet are
overfitted during slide classification, whereas supervised features are
capable of identifying true lesion information among the top 200
instances and thus support a robust slide classifier. These experi-
mental results indicate that supervised representation learning is more
effective and robust compared to self-supervised representation and
ImageNet-pretrained representation.

Interpretable slide classification based on Att-Transformer

We designed Att-Transformer. This model not only capitalizes on the
transformer’s ability to model long and flexible feature sequences, but
also leverages gated attention to weighting and aggregate instance
features to represent slides. Instance features containing dis-
criminative information are emphasized, and the attention scores
provide interpretability. To better understand the model’s decision-
making process, we made use of the attention scores output by our

model to generate the Attention Score Map. We also generated CAMs
based on the feature maps from the penultimate multi-head self-
attention (MHSA) layer. We chose GradCAMElementWise*” and
HiResCAM*® to plot the map. Figure 6 shows the two-stage attention
mechanism. All three heatmaps consistently focus on the lesion
regions within the images, and the results demonstrate similarity
between the two CAMs and the attention map generated using our
attention scores, indicating that the lesion areas emphasized by our
model contain reliable semantic information. The heatmaps generated
by our method achieve the best performance in identifying sensitive
lesion regions. Here, the lesion regions primarily consist of cells with
abnormally enlarged nuclei.

Further, we compared the classification performance of different
instance aggregation methods on the same top-200 instance features
extracted by our method. Figure 7 shows AUC, sensitivity and speci-
ficity for SIL and negative cases by these methods in External-A,
External-B, and NewCohorts test sets. We evaluated eight different
aggregation methods: MaxPool, MeanPool, ABMIL*, GatedAtt*,
CLAM*, TransMIL®, and our Att-Transformer. We can see that Att-
Transformer achieves optimal overall performance. In the feature
sequence output by the model backbone, our attention scores assign
higher weights to the tokens corresponding to the lesion areas,
allowing the final output features of the model to be primarily deter-
mined by the lesion regions. All these findings underscore the inter-
pretability and superiority of Att-Transformer as an instance feature
aggregator.

Discussion
The WHO has set the goal of eliminating cervical cancer world-
wide. However, the challenge remains in achieving widespread
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Fig. 5| System’s performance when suing different feature extracting. The ROC
curves of Supervised, Pretrained and Pretrained on ImageNet (ImageNet for short

in legend) features on InTest, NewCohorts, External-A and External-B sets. AUC

1 - Specificity 1 - Specificity

values and sample sizes are added in the legend and above the figure, respectively.
Source data are provided as a Source Data file.

views of a slide original image

Attention Score Map GradCAMElementWise = HiResCAM

Fig. 6 | Visualization of attention mechanism and interpretability. Cell-level ROI
and instance-level ROI are acquired by the attention score of first-stage model and
second-stage model. We frame out instances whose positive probability is in the
top 200 as instance-level ROl in a view of a slide using a yellow square (i.e., a and b)
and plot the heat map of our attention score in stage one. In addition, class

activation maps (CAM) generated from the output of the penultimate multi-head
self-attention layer of our model is plotted, specifically for the positive class. Two
types of CAM are shown: GradCAMElementWise*” and HiResCAM*., We have aug-
mented the dataset in Supplementary Fig. 16 with seven additional experimental
replicates to demonstrate the method’s performance.

External-A + External-B + NewCohorts

HSIL:86 LSIL:171 NEG:498

1.0
{ ¥ SEN [l SPC AUC
0.9 A S
CLAM ABMIL GatedAtt TransMIL ~Att-Transformer

Fig. 7 | AUC, sensitivity and specificity of different methods. CALM, ABMIL, GatedAtt, MeanPool, MaxPool, TransMIL and Att-Transformer are tested. Sample size is

added above the figure. Source data are provided as a Source Data file.

screening coverage in resource-limited regions. We have designed
an extremely low-cost and compact microscope by leveraging
consumer-grade electronic hardware and aspherical lenses, and
developing complementary artificial intelligence algorithms
for low-resolution cervical cytopathology slides with sparse

lesion cells. The experimental results on multiple external data-
sets have demonstrated that our system can effectively screen
SIL cases.

The lesion areas are small and dispersed in cytopathology, while
the lesion areas in histopathology are larger and more concentrated.
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In our statistical results, the proportion of positive foregrounds to all
foregrounds is on the order of 0.01 at its highest, and more com-
monly on the order of 0.001 (Supplementary Fig. 4). The sparsity of
lesion cells in cytopathology makes it challenging to apply weakly
supervised classification methods (used effectively in histopathol-
ogy) to our LRWSIs. The poor performance of TransMIL and CLAM on
our LRWSIs indicate this point (Fig. 3). These weakly supervised
methods generally aggregate the long sequence of features (extrac-
ted by a pretrained model) from all instances in a slide to represent
and classify slides. The proportion of positive instance features in the
sequence affects the distinction between positive and negative slide
feature sequences, which in turn impacts classification difficulty.
Generally, a higher proportion of positive features in the
sequence corresponds to greater the specificity differential between
positive slides and negative slides. Through ablation experiments,
we observed the performance of CLAM and TransMIL progressively
degrades as the proportion of positive foreground decreases, ulti-
mately failing below a critical threshold (Supplementary Fig. 13). On
the contrary, our method excludes the majority of negative instances
in the first-stage, focus on sparse positive information through Att-
Transformer to better represent slide, and ultimately enables effec-
tive classification of slides.

We focus on SIL cases with a high risk of cervical cancer, and our
method can effectively identify SIL, which aligns with our goal of
screening in resource-limited areas. Although ASC is also a common
type of cervical abnormality, its cancer risk is lower. Therefore, it is not
our primary research focus. The AUC of our method decreased by
0.145, 0.088, and 0.118 on three external test sets after adding ASC
(Supplementary Fig. 7). We found the majority of false negative slides
are misclassified ASC slides (Supplementary Fig. 10). Distinguishing
ASC in clinical practice is inherently challenging due to its atypical or
subtle cytomorphological features, unlike the distinct changes
observed in SIL. Low-resolution (LR) images exacerbate this challenge
by losing partial texture details, and the scarcity of abnormal cells in
ASC slides further complicates slide-level interpretation. In clinical
practice, SIL is the most important type for screening, as it shows
clear cytomorphological changes that indicate a higher risk of
cervical cancer’®. ASC cases also exhibit significant inter-observer
variability’*?, with a relatively lower risk of malignancy. Further
examination or follow-up is typically recommended for ASC. Conse-
quently, it is reasonable for us to prioritize the identification of SIL as
our main screening target. In the future, we will improve the recogni-
tion of ASC by optimizing both the imaging quality of our microscope
and the performance of our algorithms.

As the WHO has recommended HPV screening for high-
throughput screening of cervical cancer, joint screening with the
HPV testing is an important potential application of our system. We
tested our method on a dataset (n = 570) that was already identified as
HPV-positive (Supplementary Fig. 12). Our overall AUC was 0.850 and
0.755 when excluding ASC or when not, respectively. Our method is
still able to effectively distinguish SIL in HPV-positive slides. Con-
sidering the relatively low specificity of the HPV testing, our model can
effectively exclude a large number of cytopathology-negative cases,
thereby improving the specificity of co-testing. These results indicate
that our system can still play an important role in the co-testing or HPV-
first screening scenarios.

We have demonstrated a complete, fully automated workflow, but
there is still significant room for improvement in real-world clinical
practice, such as increasing scanning speed and integrating hardware
with software. In addition, the lack of standardization in slide pre-
paration and staining processes in resource-limited areas affects
the generalizability of Al algorithms. Standardizing and implementing
data quality control are critical for the application of our screening
system. In the future, we plan to promote our system in more resource-
limited regions.

Methods

Ethical statement

This study was approved by the Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technology (2020-S353).
Informed consent was waived for using anonymized, retrospectively
collected cervical slides solely for imaging and analysis.

Compact microscope

We first completed the design of the prototype of the small micro-
scope and acquired the data collection for experiments. For the pro-
totype version, the schematic diagram is shown as Fig. 1a. We used a
compact microscope module (dimensions: 48 mm x 38 mm x 20 mm)
from Tinyphoton Technology Co., Ltd. (Wuhan, China). Sony IMX 258
(1/3.06 “, pixel size 1.12 pm) image sensor and two aspherical lens sets
are integrated inside the module. The two lens sets are with focal
lengths of 3.6 mm and 4.7 mm, serving as objective and tube lenses,
respectively. This configuration achieves an approximate magnifica-
tion of 1.3 for the entire microscopy system, providing a pixel size of
0.87 um/pixel. The module also integrates a voice coil motor (VCM)
module with a travel range of 200pm and a step precision of less than
8 um, which is supported by an integrated autofocus algorithm. A
diffuse LED light panel serves as a transmitted illumination source.
Effective microscope illumination can be acquired by adjusting the
distance between the panel and the sample. The structural compo-
nents are constructed using 3D-printed materials to form the frame-
work of the entire system. In order to meet the demand for edge
computing, we have selected the Hi3519 SoC for image acquisition and
storage. This SoC incorporates a highly efficient neural network
inference engine, capable of delivering up to 2.5 trillion operations
per second (TOPS) in neural network computations. The SoC is also
equipped with abundant peripheral interfaces, including high-
definition multimedia interface (HDMI) and USB, which streamline
the connectivity process with devices such as microscope modules
and display units. The entire system is designed with energy efficiency,
ensuring that the power consumption remains below 5 watts. When
powered by a 6000 mAh battery, the device is projected to offer over
4 h of continuous operation. Parameters are shown in Supplementary
Table 2, and a picture of our prototype microscope and more details
can be seen in Supplementary Fig. 14. After validating our method on
the prototype, we further improved our compact microscope to
enhance its usability. These optimizations include improved image
quality, enhanced human-computer interaction, and fully automated
whole-slide scanning as shown in Supplementary Fig. 15. And we have a
demo movie to show the system as Supplementary movie 1.

LRWSI imaging and preprocessing
A low-resolution WSI is composed by about 90 fields of view, and each
field of view has the size of 3840 x 2160 pixels. Due to uneven exposure
at the field of view boundaries, we set the camera movement step size
slightly smaller than the field of view width, ensuring each cell is
imaged at least once within the central 1600 pixels region of the field.
After acquiring the original images, we crop the central 1600 pixels
region. We then apply a sliding window operation with a step size of
196 pixels and a window size of 256 pixels to convert the entire field of
view into a set of instances. Each instance is resized to 224 pixels
before being inputted into the model using linear interpolation. Given
a dataset contains multiple slides {X{,X,, ..., Xy}, N is the number of
slides, and each slide X; contains multiple instances {x; ;,X; 5, ..., X; »},
and a corresponding label Y;. n is the number of instances in a slide. In
our setting, an instance is x; ; € R>****?** and its label is y; ;.
Xi={X; 1, X120 - Xy ) @
Typically, the annotation of whole slides is assumed to be a multi-
instance problem. Given a slide X; and its corresponding label Y, if the
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Table 1| Details of LRWSI dataset

IN SOURCES TRAIN VALID TEST TOTAL
(NEG/POS) (NEG/POS) (NEG/POS)
Al 267/18 33/2 34/2 356
A2 22/56 2/6 2/6 94
A3 239/54 29/6 29/6 363
A4 18/57 1/6 2/6 90
A5 14/0 1/0 2/0 17
B1 373/392 49/45 45/49 953
B2 0/380 0/46 0/48 474
Cc1 95/52 12/6 12/6 183
c2 78/80 10/10 10/10 198
D1 0/17 0/3 0/4 24
D2 147142 18/16 20/19 362
D3 161/158 18/17 19/19 392
D4 159/156 19/20 20/19 393
total 1573/1562 192/183 195/194 3899
OUT SOURCES ASC LSIL HSIL NEG
E1 55 96 58 99
F1 40 5 7 99
c3 30 15 15 100
D5 45 17 100
D6 47 38 100
B3 (HPV 157 132 89 192
positive)
Total 374 303 175 690

label is negative, all instances are considered negative; if the label is
positive, at least one instance among them is positive.

0 if>y;,;=0
Y= J 2)
1 otherwise

LRWSI datasets
Table 1 shows the LRWSI datasets used in our paper for training, vali-
dating and testing. In our study, we focus on the screening of intrae-
pithelial lesion, which mainly consists of ASC, LSIL and HSIL samples
(POS), while negative samples (NEG) are the same as negative for
intraepithelial lesion or malignancy (NILM) samples. For the external
dataset, we further annotated its subcategories: ASC, LSIL, and HSIL, to
evaluate the model’s performance on each subclass. In contrast to the
scenario in histopathology where a patient may correspond to multi-
ple slides, in our dataset, each patient corresponds to a single slide.
All experimental data were collected from female participants
through self-reporting. For the internal dataset, we first collect 3,899
LRWSIs from four different hospitals at different periods: A1-AS5, B1-B2,
C1-C2, and D1-D4. The A and D datasets are slides from the same
hospital, which is Tongji Hospital of Huazhong University of Science
and Technology, but they differ in slide preparation and staining
scheme. Slides made by Wuhan Union Hospital of Huazhong Uni-
versity of Science and Technology is referred as B. C is slides made by
Maternal and Child Hospital of Hubei Province. We randomly sepa-
rated the whole internal dataset to train, validate and test set by 8:1:1.
For the external dataset, we collect 972 LRWSIs. E1 and F1 are named
External-A and External-B in the paper, respectively. E is from Wuhan
Landing Institute for Artificial Intelligence Cancer Diagnosis Industry
Development. F is slides from Duodao People’s Hospital, Jingmen.
NewCohorts is composed by C3, D5 and D6, which is new cohorts from
the same hospital of internal datasets. Itis worth noting that Eand F are

sourced from enterprises and primary hospitals in a resource-limited
region. Compared to central hospitals with specialized equipment and
experienced pathology experts, these data are more aligned with our
application scenario.

To demonstrate the performance of our method on HPV-positive
samples, we additionally collected a dataset of 570 slides from HPV-
positive cases. These slides were obtained using our improved com-
pact microscope. All slides in the dataset were derived from cases with
HPV-positive test results. Details of the dataset are presented in
Table 1. The HPV-positive dataset is from Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology,
Wuhan, China.

Two groups of pathology experts were involved in annotating our
dataset, each consisting of two junior pathologists and one senior
pathologist. The two junior pathologists independently completed the
slide annotations, and in cases where their annotations differed, the
senior pathologist reviewed and resolved the discrepancies. The same
slides were scanned once using a standard microscope and once using
our compact microscope, with the annotation process conducted on
the images from the standard microscope. We abandoned question-
able annotations.

Instance datasets

In the SSL training step of the stage one model, we utilized 239,000
unlabeled instances, which were acquired by randomly cropping
instances from slides in train set. During the fine-tuning step, we used
labeled instances. As shown in Supplementary Table 3, these labeled
datainclude HR instances imaged using a standard microscope and LR
instances imaged using our compact microscope. We annotated a total
of 133,447 positive HR instances, which were randomly divided into
training and testing sets. In addition, we collected ~ 6 million negative
HR instances, which were also randomly split into training and testing
sets. The large number of negative HR instances was made possible by
randomly cropping them from negative slides. All annotations were
achieved through consensus among three pathology experts. To
obtain annotations for the LR instances, we used both a standard
microscope and a portable microscope to scan the same slide.
Pathology experts annotated the HR instances, and we acquired the
annotation information for the LR instances through registration. We
got 7599 positive LR instances (contain at least one positive cell) and
65,700 negative LR instances for training, since negative samples were
easy to be acquired by cropping from negative slides. We have also
obtained another LR instance dataset specifically designed for testing
purposes, which contains 767 positive instances and 767 negative
instances. The LR test set also served as an essential foundation for
creating t-SNE maps in Fig. 3. Before inputting into the model, the HR
instances are down-sampled to match the pixel size of LR instances.

Att-Transformer

We propose the Att-Transformer as shown in Fig. 2e, which is com-
posed of three consecutive modules. Initially, an embedding layer
converts an instance into a sequence of tokens. Subsequently, a ViT-
based backbone processes the token sequence and extracts a deep
feature representation. Ultimately, a GatedAttention-based aggrega-
tion head consolidates all output tokens after the backbone. Given a
inputx € R3*24*22* The embedding layer (Conv2d) is a convolutional
network with a stride and kernel size equal to the patch size. In our
model, the patch size is set to 16 and the kernel number is 768. The
output is T={t;, t,, ..., tioe}, t; € R7%, T € RIP6*768,

T =Reshape(Conv2d(x)) 3)

Reshape refers to flattening the width and height dimensions of
the output feature.
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The backbone is composed of multiple stacked standard multi-
head self-attention layers (MSA) and feed-forward networks (FFN).
MSA is an extension of self-attention (SA). For a T as an input sequence,
we first compute g, k, v by a linear layer.

[q,k,v]=TW W ¢ R768> (n?xn"xn") “4)
qkT 196 x 196

A =softmax Jd AeR )

SA(T)=Av (6)

The scalersn9, n¥, n” represent the dimensions of g, k, v respec-
tively, and scaler d is equal to n? and n*. MSA refers to the process of
applying multiple SA modules to the input during forward propaga-
tion. The outputs of all SA modules are concatenated (Concatenate),
and a linear layer is used to map the concatenated result back to the
input feature space.

MSA(T) = Concatenate (SA,(T), SAy(T), ..., SA,(T))W® W° € RM™*V/*768 (7)

m represents the number of SA module. In addition, residual connec-
tions are employed during the feature forward process. Then the
output features Z will be further encoded through the FFN network.
The FFN is defined as follows which is a nonlinear network using
GELU® as activation function and b as bias.

FFN(Z)= GELU@Z)W* + b

Our model’s parameters are fully inherited from the ViT-based
architecture, and thus will not be further elaborated here. The differ-
ence between our backbone and the ViT* architecture lies in the
absence of the CLS token as the representative of the model’s merged
feature. Instead, each token output by the model is mapped to an
attention score a; using a GatedAttention*” network. We normalize the
attention scores of all tokens through a softmax function and compute
a weighted sum of all tokens using these scores to obtain the back-
bone’s output. Given an output of a token from the backbone h; € R
and merged feature h, € R’%S.

a; = GatedAttention(h;) = (sigmoid (h;)W® @ tanh(h;) W )W™  (8)

Wy, W,, ..., W =softmax([a;, a,, ..., a96)) 9)

196
— E 768
hD_ h,-Xwi hO eR
i=1

10)

Here, W°, W\, W™ is learnable parameters, W* e R7%%*" W' ¢
R768*T W™ ¢ R™*! scaler r represents the dimension of intermediate
features.

In stage one, we draw on the position embedding operation from
ViT to modify the feature sequence fed into the model. In stage two, we
do not apply this modification, as the sequences in this stage do not
carry relative order semantics.

SSL for stage one

We employ self-supervised learning (SSL) to leverage the vast number
of unlabeled instances in slides, enabling a more reasonable initial
feature space for the model during fine-tuning. We utilize the Masked
Autoencoder®” (MAE) pretraining framework as c) in Fig. 2. We pri-
marily utilize the MAE pretraining framework with some modifications.

The entire pretraining process consists of two steps, starting with the
standard MAE pretraining procedure.

For step one, given a sequence of token T ={t},t,, ..., t4} withd
elements, t; € R’%, T e R*7®. MASK, ,., represents randomly
deleting a subset of elements in the sequence, while MASK; ;. , refers
to filling in the randomly deleted elements using learnable parameters
h,. n represents the number of left elements. i represents the i-th
iteration of the random process.

hi,l’hi,Z’ “"hi,nzMASKi,d%ﬂ(T) (12)
Hi={h 1 By hysees By Ro st oo B v @y} B
=MASK; 4o ({1 by 50 - 1y )
The loss for MEA training is defined as follows:
Loss1 = MSE (Decoder (MASK—1 (Encoder(MASK(T)))) , T) (14)

Encoder and Decoder represent two ViT backbones act as enco-
der and decoder. MSE represents mean squared error. We used 50%
mask rate and ImageNet pretrain weight to initialize the model. We
pretrained the model on 239k unlabeled instances for 100 epochs.

For step two, we modified the original MAE. We observed that
during the MAE pretraining process, each token has an equal prob-
ability of contributing to the final loss calculation in the random pro-
cess. Therefore, we aim to merge all features together as the final
output, rather than relying solely on the CLS token while inevitably
discarding other features. We achieved this by inserting a Gate-
dAttention module between the encoder and decoder to aggregate all
tokens from the encoder into a merged feature, and the loss is defined
as follows:

Loss2=MSE (Decoder (MASKH—IGA(Encoder(T))) ) T) (15)
The number of epochs for step two is also 100. Finally, we used the
trained encoder as the backbone for the next stage.

Finetune for stage one

We use a linear layer to map the merged features output by the Att-
Transformer to one-hot encoded class labels, allowing us to fine-tune
the stage one model using our HR and LR instance dataset with cross-
entropy loss. The optimizer is Adam®* with 5% warm up and cosine like
learning rate decay. Before fine-tuning, the model needs to load the
parameters from our SSL pretrained model. When training, all learn-
able parameters are involved in the training process. To enhance the
robustness of the first-stage model, we employed data augmentation
and false positive mining training techniques.

We use similar augmentation in our former work® for two pretrain
steps and fine-tuning, which can refer to https://github.com/
ShenghuaCheng/Aided-Diagnosis-System-for-Cervical-Cancer-
Screening/blob/main/core/data/preprocess.py. These augmentations
primarily include color jittering in the RGB and HSV color spaces,
Gaussian blur, contrast enhancement, as well as rotation and sym-
metry operations. We do not use any crop and resize style augmen-
tation as the relative size of the nucleus to the cytoplasm is a critical
morphological feature for detecting abnormal cervical cells.

Typically, the annotation of whole slides is assumed to be a multi-
instance problem. If aslide X; ={x; 1, X; 5, ..., X; ,} has a corresponding
label ¥; =0, then all labels of instances y; ;= 0. Based on this, we used
the preliminarily trained model to infer all instances from the negative
slides in the training set, identifying instances with high positive pre-
diction values (> 0.5) within each negative slide. These hard instances
were then incorporated into the model’s fine-tuning process to better
delineate the classification boundary. Specifically, we used the initially
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trained model to infer instances from all negative slides in the training
set. These instances were divided into 10 intervals based on the posi-
tive probability output by the model, with a step size of 0.1. Instances
with a positive probability greater than 0.5 are considered hard
instances for the current model, as a negative slide should not contain
positive instances. We selected instances from each interval to add to
the original training set, updating the training dataset. Next, the model
was trained on the new training set until the loss converged. This
process was repeated continuously.

We dynamically adjusted the proportion of the training data to
obtain a stable model. We kept the balance between number of posi-
tive and negative instances in a training batch, and controlled the
proportion of hard instances less than 5% to prevent the model from
collapsing. We refer to the above approach as false positive mining
training (FPMT).

Train for stage two

Given a slide X;={x;1,X;,, ..., X; .}, we use the trained first-stage
model to infer all instances, resulting in a set of merged features
H;={h;,h;,, ..., h; ,} and a positive probability prediction value for
each instance P;={p; 1, p; 5, - - -, P; n}- We select the features of the top
k instances with the highest positive probabilities as the representation
for the entire slide. Then, we train our whole slide classifier in an end-
to-end manner.

The model architecture in stage two is consistent with that of the
first-stage, with the distinction that the model directly takes the feature
sequence as input. Similarly, we attach a linear layer after the Att-
Transformer to enable the model to output one-hot encoded classes,
and we use cross-entropy loss to train the model. The Att-Transformer
here has no position embedding as there is no specific order in feature
sequence.

During the training process of the model in the second-stage, data
augmentation can also be applied. We first inferred all instances
without augmentation using the model from the first-stage and
recorded the top k instances within the slide. Subsequently, we per-
formed data augmentation on the selected instances before extracting
the features, thus indirectly enhancing the input to the model in the
second-stage. In the results shown in Figs. 3 and 7, the second-stage
model utilized data augmentation.

Att-Transformer heatmap and ROI

In our Att-Transformer architecture, we use a GA module to aggregate
the output token sequence. Given an input token sequence
T={t,, t,, ..., t,}, we can get the attention scores W = {w,, w,, ..., w,}
by using formulas (7), (8) and (9). We map each token’s attention score
w; back to the corresponding input, obtaining a heatmap, where
regions with higher attention scores represent our region of
interest (ROI). In the first-stage model, each token corresponds to a
patch in Transformer (16 x 16 pixels), while in the second-stage model,
each token corresponds to one of the top k instances (224 x 224
pixels).

Computational hardware and software

The operation system of the server is Linux version 5.4.0-150-generic.
The server is equipped with four NVIDIA TITAN V graphics processing
unit (GPU) and Intel(R) Core (TM) i9-9940X CPU @ 3.30 GHz. CUDA
Version is 11.4. The Python version is 3.8.16. Other libraries mainly are
torch 2.0.1, torchvision 0.15.2, opencv-Python 1.2.0, pillow 9.5.0 and
openslide-Python 1.2.0.

Comparison methods

We compared our method with CALM (GitHub - mahmoodlab/CLAM:
Data-efficient and weakly supervised computational pathology on
whole slide images - Nature Biomedical Engineering) and TransMIL
(GitHub - szc19990412/TransMIL: TransMIL: Transformer based

Correlated Multiple Instance Learning for Whole Slide Image
Classification). For CALM, we choose the single-attention-branch ver-
sion for experiments. We also make use of the encoder on the CLAM
project to extract the ImageNet feature of instances.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Due to personal information protection, patient privacy regulations,
and medical institutional data policies, slide images have not been
publicly deposited. However, we have made all supporting resources
publicly available to ensure reproducibility of the technical pipeline
and analyses, including the source code, software methods, and sup-
plementary information. In addition, a de-identified demonstration
dataset is accessible at: ShenghuaCheng/high-risk-Cervical-Pre-
cancerous-Screening (github.com). All data supporting the findings of
this study are provided within the paper’s Source Data files. Source
data are provided in this paper.

Code availability

We release code, demonstration data and well-trained weights for
the first and second-stage models in Python using PyTorch as the
primary deep-learning library, which is available at https://github.
com/ShenghuaCheng/high-risk-Cervical-Precancerous-Screening. All
source codes have been released under the GNU GPLv3 free software
license. Source Data are provided in this paper.
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