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AI-driven fusion of multimodal data for
Alzheimer’s disease biomarker assessment

Varuna H. Jasodanand 1, Sahana S. Kowshik 1,2, Shreyas Puducheri 1,
Michael F. Romano3, Lingyi Xu1,2, Rhoda Au1,4,5,6,7 &
Vijaya B. Kolachalama 1,2,5,8

Alzheimer’s disease (AD) diagnosis hinges on detecting amyloid beta (Aβ)
plaques and neurofibrillary tau (τ) tangles, typically assessed using PET ima-
ging.While accurate, thesemodalities are expensive and notwidely accessible,
limiting their utility in routine clinical practice. Here, we present a multimodal
computational framework that integrates data from seven distinct cohorts
comprising 12, 185 participants to estimate individual PET profiles using more
readily available neurological assessments. Our approach achieved an AUROC
of 0.79 and 0.84 in classifying Aβ and τ status, respectively. Predicted PET
status was consistent with various biomarker profiles and postmortem
pathology, and model-identified regional brain volumes aligned with known
spatial patterns of tau deposition. This approach can support scalable pre-
screening of candidates for anti-amyloid therapies and clinical trials targeting
Aβ and τ, offering a practical alternative to direct PET imaging.

Alzheimer’s disease (AD) is biologically defined by the progressive
accumulation of amyloid beta (Aβ) plaques and neurofibrillary tau (τ)
tangles1. These proteinopathies develop years before symptom onset,
presenting a window for early therapeutic interventions2. The tem-
poral progression of these biomarkers also facilitates biological sta-
ging of AD, guiding treatment strategies and timing3. While amyloid
positron emission tomography (PET) imaging is clinically approved for
detecting Aβ, τ PET remains largely restricted to research settings4.
These imaging modalities provide critical insights into disease pro-
gression but are expensive and not widely accessible, limiting their
routine clinical use compared to conventional modalities such as
structural magnetic resonance imaging (MRI) and neurocognitive
assessments. Cerebrospinal fluid (CSF) testing offers high sensitivity
for amyloiddetectionbut lacks the ability to stagediseaseprogression,
which tau PET imaging currently provides4. PET imaging influences
clinical decision-making5 and remains integral to identifying candi-
dates for disease-modifying therapies and clinical trials6–8. However, its

restricted accessibility in routine care settings underscores the need
for cost-effective, scalable screening methods that preserve PET’s
staging precision while overcoming logistical barriers.

The escalating costs associated with AD drug development
underscore the necessity for precise disease staging. From 1995 to
2021, AD research and development incurred an estimated $42.5 bil-
lion expenditure, with a staggering 95% failure rate9. A large portion of
these costs stems from the screening process required to determine
patient eligibility based on Aβ PET positivity status9. However, emer-
ging evidence suggests that τ pathology is more strongly linked with
cognitive decline and disease progression10. The TRAILBLAZER-ALZ 2
clinical trial demonstrated that Donanemab, an amyloid-lowering
therapy, was most effective in patients with lower τ PET burden6,
highlighting the critical role of τ staging in determining therapeutic
response. As tau’s clinical importance becomes increasingly evident,
the development of predictive models that can non-invasively capture
the burden and spatial distribution of tau pathology appears as a
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critical objective, particularly for the optimization of patient selection
for novel AD therapies11,12.

Emerging technologies and frameworks, including plasma bio-
markers such as p-tau 217, offer potential for early AD detection13,14.
While these biomarkers can predict Aβ PET status with performance
comparable to cerebrospinal fluid (CSF) analyses15, their ability to
accurately predict tau PET status across diverse populations is less
established14,16. Further, these biomarkers lack the ability to capture
the spatial distribution of tau pathology in the brain, which is essential
for accurate biological assessment of AD4,17,18. Variability due to non-
neurological factors such as bodymass index, cardiovascular and renal
health can also affect their clinical efficacy19, and the generalizability
and accuracyof cut-off points in racially and ethnically diverse samples
remains to be validated20. Therefore, while promising, plasma bio-
markers are not yet a standalone solution, and an integrated multi-
modal approach may be useful to accurately pre-screen and stratify
individuals based on Aβ and τ status, as well as disease stage4,11.

Machine learning (ML) models have shown promise in addressing
someof the logistical challenges of PET scans by predicting Aβor τ PET
status using less invasive data such as demographics, MRIs and cog-
nitive assessments21–29. However, these models often face limitations,
including development on relatively small cohorts, reliance on fluid
biomarkers, lack of external validation, and dependence on complete
feature sets togenerate reliable predictions.By leveraging standard-of-
care data, there is an opportunity to develop a cost-effective pre-
screening process that estimates both amyloid and tau pathology,
enabling broader access to advanced diagnostics and targeted
treatments.

Here, wepropose a transformer-basedML frameworkdesigned to
integrate multimodal data and predict global Aβ, tau burden in a pre-
defined meta-temporal region (meta-τ) encompassing medial and
neocortical temporal regions30, and regional tau PET statuses. By
incorporating demographic information, medical history, neu-
ropsychological assessments, genetic markers, neuroimaging and
other relevant clinically obtained data, we sought to create a flexible
computational framework that explicitly accommodates missing data,
reflecting the practical challenges of real-world datasets. Recognizing
the synergistic relationship between Aβ and tau pathology in AD
pathogenesis31, our framework jointly predicts Aβ and τ accumulation
to capture their interdependent roles in disease progression. This
multi-label prediction strategy addresses key methodological and
scientific gaps in existing research, which often considers amyloid or
tau in isolation, and serves as a demonstration of scalable participant
stratification for research and clinical trials. Finally, by outputting
probabilities that align with established biological staging criteria, our
modeling framework offers a potential pathway to quantifying disease
progression from heterogeneous clinical data.

Results
Our modeling framework was developed through training on a large,
diverse dataset with multimodal features (Fig. 1 & Supplementary
Tables S1–S10), and rigorously tested on an external dataset (Table 1).
We evaluated our framework’s alignment with PET-estimated Aβ and τ
burden and biomarker profiles, and assessed its ability to capture the
synergistic relationship between Aβ and τ. In addition, we constructed
a graph network using Shapley values of brain volumes for each
regional tau label and validated the model’s regional tau predictions
against tau PET SUVr values in the same regions. Finally, we compared
the model predictions with postmortem findings, ensuring that the
predicted probabilities reflected the severity of the underlying
pathology.

Model accurately predicts Aβ and τ status
We first evaluated our model’s performance in predicting global Aβ
and meta-τ status. The receiver operating characteristic (ROC) and

precision-recall (PR) curves illustrate the model’s performance in
predicting Aβ and meta-τ positivity (Fig. 2a, b). The ROC curves show
that the model achieved slightly higher sensitivity and specificity for
meta-τ (AUROC=0.84) compared to Aβ (AUROC=0.79). However, the
PR curves indicate greater reliability in identifying true positive cases
for Aβ (AP =0.78) than for meta-τ (AP = 0.60), despite the higher
AUROC formeta-τ. This couldbeattributed to class imbalanceor lower
prevalence of τ positivity in the dataset, leading to a higher rate of false
positives in meta-τ predictions. Additional performance metrics are
provided in Supplementary Table S11a. Supplementary
Tables S12 and S13 detail the performance metrics for the internal
validation set (NACC*) and the combined ADNI-HABS external set,
respectively. Notably, the ADNI dataset had 54% fewer features than
the held-out NACC* test set, and the HABS dataset had 72% fewer
features. Despite these constraints in feature availability, our model
maintained robust performance, highlighting its flexibility and ability
to handle incomplete feature sets without significant loss of accuracy.
In Supplementary Fig. S1, we reportedAUROCandAPmetrics stratified
by age, gender, race and education. The consistent performance
across these subgroups indicates that our model is potentially
applicable to diverse populations.

To assess the impact of different types of clinical features on
model performance, we evaluated the model’s predictions for Aβ and
meta-τ status by successively adding different feature groups. Fol-
lowing the typical order of assessments in neurological work-up pro-
tocols for cognitive impairment, our analyses aimed to identify
incremental gains, if any, when each new test is added to the work-up
process (Fig. 2c, d). The plasma biomarker available at testing, the
Aβ42/40 ratio, and the APOE-ϵ4 tests are included last due to their
relatively limited availability in clinical settings. For Aβ prediction, the
AUROC improved from 0.59 with only person-level history to 0.79
when all features were included, with the AP values increasing in par-
allel from 0.55 to 0.78. Tau prediction models showed a comparable
increase in AUROC from 0.53 with only patient history to 0.84 with all
features. Notably, the addition of MRI data led to a substantial
improvement in meta-τ AUROC from 0.53 to 0.74. Subsequent addi-
tions of neuropsychological battery scores provided additional
improvements, highlighting that the integration ofmultiplemodalities
of data leads to better overall performance.

To evaluate our model’s robustness to the absence of specific
feature sets, we systematically removed groups of features from the
full model. For Aβ predictions, removing any single feature set had
minimal impact on AUROC values, which remained between 0.74 and
0.80. This highlights the strength of our random feature masking
strategy, which allowed the model to make meaningful predictions
even in the absence of certain data types. Similarly, meta-τ predictions
were robust across feature exclusions, with the removal of the neu-
ropsychological battery resulting in the most significant drop in AP to
0.53. While our modeling strategy afforded the flexibility in achieving
high accuracy despite the absence of certain feature sets, the impor-
tance of neuropsychological testing is underscored by the sensitivity
of τ AP values to the removal of these features. The results of our
Shapley analysis (Supplementary Fig. S2) provide additional support
for this interpretation, with neuropsychological testing, neuroimaging
and APOE-ϵ4 status having, on average, the greatest impact on model
output.

We quantified our model’s performance on regional τ predictions
and found that it achieved amacro-averageAUROCandAPof 0.80 and
0.42, respectively (Fig. 2e, f). Individual AUROC scores ranged from
0.71 to 0.84, indicating robust discriminative ability across different
regions of interest (ROIs). The medial temporal τ label achieved the
highest AP of 0.60, suggesting that the model is particularly effective
in identifying true positive cases in this critical region (Supplementary
Table S11b). These results suggest that our transformer-based model
effectively predicts regional τ accumulation, particularly excelling in
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the medial and lateral temporal regions, where the combined AUROC
and AP values were the highest.

We conducted a comparative analysis of our transformer-based
model against CatBoost, a robust machine learning approach, to
evaluate performance in predicting Aβ and τ pathology. For this pur-
pose, we tested our model without MRI embeddings, with the results
detailed in Table S14. On the combined test set from ADNI, HABS, and

NACC*, CatBoost achieved an AUROC of 0.81 for Aβ predictions and
0.83 for meta-τ predictions. The corresponding AP values were 0.79
for Aβ and 0.53 for meta-τ. In comparison, our model demonstrated
slightly lower AUROC for Aβ predictions (0.79 vs. 0.81) but superior AP
for meta-τ predictions (0.60 vs. 0.53), indicating more effective iden-
tification of true positive meta-τ cases. In addition, CatBoost’s
balanced accuracy for Aβ prediction stood at 0.64, while ours was
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0.68, indicating a more effective balance between sensitivity and
specificity in ourmodel. Further performancemetrics forCatBoost are
provided in Supplementary Table S15a. To deepen our analysis, we
incrementally added features from clinical assessments in the order
typically collected during neurological work-ups to the CatBoost
model. This step-by-step addition is visualized in Supplementary
Fig. S3, contrasting the performance of our model without MRI
embeddings (panel a) to thatofCatBoost (panel b). AlthoughCatBoost
initially shows higher AUROC and AP upon integratingmedical history
and neurological/physical examination data, our model surpasses
these metrics upon adding brain regional volumes, functional assess-
ments, and neuropsychological tests. When MRI embeddings are
incorporated into our model (Fig. 2c), it achieves an AUROC compar-
able to CatBoost’s upon the addition of CDR scores and plasma Aβ42/
40 ratios, with a marginally better AP. Overall, our transformer-based
architecture, with its attention mechanism and random feature
masking, provides an end-to-end framework that flexibly handles
multimodal inputs and performs effectively on imbalanced datasets.
This is especially evident in its superior performance for meta-τ and
regional τ predictions, where CatBoost exhibits a macro-average
AUROC and AP of 0.77 and 0.38, respectively (Supplementary Fig. S3,
Fig. 2c, and Supplementary Tables S14, S15).

Model predictions align with biological gradients and disease
progression
Even though ourmodel was trained on binary classifications, we aimed
to assess its alignment with PET-based gradients of Aβ and meta-τ
accumulation (Fig. 3). As an additional step towards facilitating inter-
pretability of our model outputs, we visualized how well the model’s
predictions aligned with a commonly used clinical endpoint in AD
trials, the Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog13 or ADAS13). We observed a positive correlation between
P(Aβ) and centiloid values (Pearson’s r =0.58, p <0.0001; Fig. 3a),
indicating thathigherpredictedAβ levels are associatedwith increased
Aβ plaque deposition, as confirmed by centiloid measurements. This
relationship aligned with more severe cognitive impairment, evi-
denced by higher scores on the ADAS13. Similarly, we found a positive
correlation between P(τ) and the log ofmeta-τ SUVr (Pearson’s r =0.59,
p <0.0001; Fig. 3b), suggesting that higher model-predicted tau levels
correlated with greater tau PET estimated pathology. An associated
increase in ADAS-Cog13 was again visible, indicatingmore pronounced
cognitive impairment at higher P(τ) values (Supplementary Table S16).
We ran a similar analysis comparing the regional τ probabilities to the
log of the corresponding regional τ SUVr values and found the stron-
gest alignment for themedial temporal (Pearson’s r =0.56, p < 0.0001,
Supplementary Fig. S4a) and lateral temporal predictions (Pearson’s
r =0.52, p <0.0001, Supplementary Fig. S4b). Further statistical results
are reported in Supplementary Table S17.

We also sought to evaluate our model’s sensitivity for detecting
Aβ positivity in preclinical AD by comparing P(Aβ) between Aβ PET-
negative (n = 602) and Aβ PET-positive (n = 251) cognitively unim-
paired individuals from the ADNI, HABS, and NACC* cohorts. A Mann-
Whitney U test revealed significantly lower P(Aβ) values in Aβ PET-

negative cases compared to PET-positive cases (U = 53044,
p = 3.36 × 10−12, Fig. 3c), demonstrating the model’s ability to distin-
guish between amyloid status groups even in the absence of cognitive
symptoms.

Finally, we aimed to evaluate the alignment of our model prob-
abilities with biomarker-defined disease stages (A-T-, A +T-, A +MTL +,
and A +NEO+)4. A Kruskal-Wallis H test revealed that our composite
AT score derived from our models’ amyloid and regional tau prob-
abilities significantly differed across disease stages (H = 180.73,
p = 6.15 × 10−39; Fig. 3d). Post-hoc analysis using Dunn’s test with Holm-
Bonferroni correction for multiple comparisons demonstrated sig-
nificant differences between all pairwise stage comparisons, with AT
scores progressively increasing from A-T- to A +NEO+ stages. This
relationship suggests that ourmodel-derived probabilities capture the
biological progression of AD pathology as defined by recently pro-
posed staging systems4. Detailed statistical results are provided in
Supplementary Table S18.

Model predictions capture the synergistic relationship between
Aβ and τ
Todemonstrate the effectiveness of ourmodel for pre-screening in AD
clinical trials, we designed a validation approach that aligns with the
emerging interest in dual targeting of Aβ and tau pathology, and in
stratifying patients by disease burden. Specifically, we assessed the
sensitivity of the model outputs to the co-occurring core pathological
burden in amyloid PET-positive cases. First, we examined how the
model’s predicted probability of Aβ positivity, P(Aβ) varied across
different levels of tau PET defined pathology. Participants were cate-
gorized into two groups based on their meta-τ SUVr values: a ‘low/
medium’ group (below the 67th percentile) and a ‘high’ group (at or
above the 67th percentile). In Fig. 4a, the left panel serves as a refer-
ence on the relationshipwe expect when comparing centiloids and tau
PET quantiles in our testing set, showing that centiloid values sig-
nificantly increased with higher τ PET burden. The one-sided Mann-
WhitneyU test confirmed this trend, showing a significant difference in
centiloid values across the τ PET tertiles (U = 5047, p = 1.92 × 10−13). The
right panel presents P(Aβ) between these same quantiles, and similar
statistically significant increases in P(Aβ) were seen between the low/
medium and high groups (U = 3707, p = 4.01 × 10−20). These results
indicate that the model’s Aβ predictions are sensitive to varying levels
of tau burden. Similarly, we assessed how well our model’s τ prob-
abilities related to centiloid levels in Aβ PET-positive cases. First, we
tested the relationship between tau SUVr in the meta-temporal region
across tertiles of Aβ centiloids to obtain a reference for the quantita-
tive relationship between Aβ and tau pathologies, as shown in the left
panel of Fig. 4b. A one-sided Mann-Whitney test indicated that meta-τ
SUVr was significantly higher in the high CL group relative to the low/
medium CL group (U = 5876, 6.78 × 10−10). In the right panel, the
model’s predictions for tau positivity, P(τ), captured similar biological
gradients, with a one-sided Mann-Whitney test showing significant
differences in P(τ) across the same centiloid quantiles (6655.5,
p = 3.17 × 10−07). Detailed statistical results are reported in Supple-
mentary Table S19. Overall, these results demonstrate our model’s

Fig. 1 | Data, model development and validation strategy. A Our model for
assessing amyloid and tau status was developed using diverse data modalities,
including individual-level demographics, health history, genetic information, neu-
ropsychological testing, physical/neurological exams, and multi-sequence MRI
scans. These data sources were aggregated from seven independent cohorts:
NACC, A4, OASIS3, AIBL, FHS, ADNI and HABS. All features were harmonized to the
UDS3 format, and embeddings were extracted from multi-modal MRI scans. Inner
concentric circles provide the sample size of cases with Aβ PET data, and outer
circles denote the sample size with τ PET data.B Each featurewas transformed into
a set length vector through a modality-specific embedding approach before being
input into the pretrained transformer. The model was then trained in two stages,

first predicting Aβ andmeta-τ positivity, before being finetuned to predict regional
τ positivity in a second stage. C The external ADNI and HABS datasets, as well as a
held-out set of NACC* data, were selected to compare pathology-specific model
predicted probabilities with PET outcomes and neuropathology grades. Shapley
analysis was run on the regional τ model, and a graphical network analysis was
performed to detect clusters of important brain regions using the Shapley values of
the T1-weighted derived volumes. A similar community detection algorithm was
run on the raw regional tau PET SUVrs to enable a statistical comparison of the
communities derived from Shapley values with communities derived from the
regional tau SUVrs.
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ability to capture the synergistic relationship between Aβ and tau
pathologies, reinforcing its potential utility in patient stratification for
clinical trials targeting both pathologies individually or together.

We further compared the distributions of our model-predicted
probabilities, P(Aβ) and P(τ), between participants with the following
PET-confirmed biomarker profiles: Aβ-, τ- and Aβ +, τ + (Fig. 4c). The
Mann-WhitneyU test revealed significant differences inboth P(Aβ) and

P(τ) between biomarker-positive and biomarker-negative groups
(U =61430, p= 5.71 × 10−44; U=60963, p= 1.63 × 10−42, for Aβ and meta-τ,
respectively). The scatter plots indicate that Aβ +, τ+ individuals con-
sistently exhibited higher predicted probabilities for both Aβ and τ
compared to those in the Aβ-, τ- group. The associated boxplots and
contour plots collectively highlight key differences between the two
groups, revealing higher concentrations and a broader distribution of

Fig. 2 | Model performance in predicting amyloid and tau positivity.
a, b Receiver operating characteristic (ROC) and precision-recall (PR) curves for Aβ
and meta-τ predictions are shown. The area under the ROC curve (AUC) and the
average precision (AP) values for Aβ and meta-τ are displayed in the legends,
respectively. c Heatmap presenting the AUROC and AP values for Aβ and meta-τ
predictions using various combinations of clinical features, starting with person-
level history alone and incrementally adding features such as MRI, neuropsycho-
logical battery, and plasma data. d Heatmap displaying the AUROC and AP values
for Aβ and meta-τ predictions when specific feature sets are removed from the full

model. Each row represents the model performance after excluding one feature
set, showing how the absence of that data type impacts prediction accuracy.
e, f ROC and PR curves showing micro-average, macro-average, and weighted-
average calculations based on the regional τ labels. A portion of the NACC dataset
used for internal testing, along with data from the ADNI and HABS cohorts for
external validation, contributed to generating these results. In panels c and d, FAQ
stands for functional activities questionnaire, and CDR stands for clinical dementia
ratings.
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Aβ and τ in the Aβ+, τ+ group compared to the negative group. The
results also reveal a greater variability in tau levels for the Aβ+, τ+
group, with the data extending to higher probabilities. In contrast, the
Aβ-, τ- group showed a tighter distribution and lower biomarker values.

Regional volumes deemed important by the model align with
spatial patterns of tau deposition
The accumulation and spatial progression of tau pathology in AD
generally follows a stereotypical pattern, beginning in the transen-
torhinal region, progressing into the limbic system, and eventually
spreading to the neocortical associative areas and, ultimately, the
primary sensory cortices32. We created a visualization ofmean Shapley
values for regional volumes across predictions of regional τ positivity
(Supplementary Fig. S5), ordering them following this stereotypical
progression. This visualization underscores the importance of the
MTL, which consistently shows high Shapley values, highlighting its
role as the initial site of tau deposition and volumetric changes. To
further evaluate the model’s decision-making processes when pro-
vided with brain regional volumes data, we conducted a graphical
analysis to investigate the relative importance attributed to commu-
nity structures in our model. We then compared the SHAP-derived
community structures with tau PET-estimated graphs to assess the
alignment between them. The analysis revealed a statistically sig-
nificant degree of concordance, particularly in the temporal and

parietal lobes, suggesting that model-based representations capture
meaningful regional distinctions consistent with tau pathology (Fig. 5).
Specifically, for the medial temporal τ positivity prediction, model-
based and reference community structures showed moderate agree-
ment (AMI = 0.219, p = 1.40 × 10−3). The lateral temporal region pre-
diction demonstrated a similar pattern (AMI = 0.176, p = 5.60 × 10−3),
while the medial parietal (AMI = 0.134, p = 4.84 × 10−2) and frontal
(AMI = 0.138, p = 2.16 × 10−2) predictions exhibited modest similarity.
The lateral parietal region achieved the highest agreement (AMI =
0.288, p = 1.60 × 10−3), and the occipital region showed moderate
alignment (AMI = 0.233, p = 1.00 × 10−3). Overall, while the partitions in
the model-based graphs are not identical to that of the SUVr graphs,
there is a non-randomcorrespondencebetween the two. This supports
the idea that the model’s network of regional interactions is reflecting
aspects of true tau pathology networks, rather than arbitrary group-
ings. These findings underscore the interpretability of our approach
and its potential to bridge the gap between predictive modeling and
biological markers of disease progression.

Model predictions align with severity of postmortem pathology
We validated our model’s predictions of Aβ and tau positivity by
comparing them with neuropathological markers of AD. We observed
a general increasing trend in model probabilities with increasing
severity of pathological markers. Fig. 6a–d illustrate this relationship
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Fig. 3 | Model alignment with biological outcomes. a The bubble plot illustrates
model-predicted probabilities of amyloid PET positivity, P(Aβ), against centiloid
values. Two-sided Pearson’s correlation assessed the strength of the relationship
between P(Aβ) and centiloids (n= 1392, r =0.58, p = 4.04 × 10−124). The color scale
indicates ADAS-Cog 13 scores, a clinical AD staging tool not provided asmodel input.
b Model-predicted meta-temporal tau PET positivity probabilities, P(τ), are shown
against log-transformedmeta-temporal SUVr values (meta-τ). A two-sided Pearson’s
correlation tested the relationshipbetweenmodel probabilities and the logofmeta-τ
SUVr (n= 619, r =0.59, p = 2.35 × 10−58). Similarly, points are colored by ADAS13-
scores. Detailed statistical results can be found in Tables S16. c In cognitively
unimpaired individuals (n= 853), we compared P(Aβ) between true Aβ PET negative
(n= 602) and positive (n= 251) groups. A one-sided Mann-Whitney test showed
significantly lower P(Aβ) for Aβ PET negative subjects (U = 53044, p = 3.36 × 10−12).
d The rainclouds plot illustrates the relationship between the AT score, a composite

score ofmodel-predicted Aβ and regional τ probabilities, across PET-defined disease
stages. A Kruskal-Wallis H test, followed by two-sided post hoc Dunn’s tests with
Holm-Bonferroni correction revealed significant differences in AT scores among
subjects whowere Aβ- and τ- (A-T-, n= 411), Aβ + but τ- (A + T-, n= 139), Aβ+ with tau
positivity restricted to the medial temporal lobe (A +MTL+, n = 47), and Aβ positive
with tau positivity extending to neocortical regions (A +NEO+, n = 101)
(H = 180.73, p = 6.15 10−39). Pair-wise post hoc results are provided in Supplementary
Table S18. Subjects from the ADNI cohortwere used to generate the results shown in
panels (a, b). Subjects from all three test cohorts were used for panel (c), and
subjects from ADNI and HABS were used to generate results in panel d. All boxplots
include a box presenting the median value and interquartile range (IQR), with
whiskers extending from the box to the maxima and minima no further than a
distance of 1.5 times the IQR. In panels c and d, significance levels are denoted as **
for p <0.01; *** for p <0.001; and **** for p <0.0001.
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Fig. 4 | Model ability to capture the synergistic relationship between Aβ and τ

pathologies. aThepanel on the left serves as a referenceand shows the differences
in centiloid distributions of Aβ PET + individuals between those in a low-to-medium
meta-temporal τ PET group (n = 202) and those in a high (n = 102) τ PET group, with
the one-sided Mann-Whitney U test indicating significant differences between the
two groups (U = 5047, p = 1.92 × 10−13). The panel on the right shows the differences
in our model-predicted Aβ probabilities between the same τ PET groups
(U = 3707, p = 4.01 × 10−20). (b) The left panel shows the comparison of meta-
temporal tau SUVr (meta-τ SUVr) between low/medium (n = 203) and high (n = 101)
centiloid (CL) groups in Aβ PET + cases, with the one-sided Mann-Whitney U test
pointing to significant differences between CL groups (U = 5876, p = 6.78 × 10−10).
The right panel illustrates the differences in model-predicted meta-τ probabilities
between the sameCLgroups (U = 6655.5,p = 3.17 × 10−7). Participants from theADNI
(n = 252) and HABS (n = 52) test sets were used for raincloud plots a and b. Detailed

statistical results for the data presented in panels a and b can be found in Sup-
plementary Table S19. c Kernel density plots comparing model-predicted prob-
abilities of Aβ and meta-τ in two distinct A/T profiles (Aβ +, τ + and Aβ-, τ-) are
shown. Subjects from ADNI, denoted by circles, HABS, denoted by cross symbols,
and the held-out NACC* set, denoted by diamond symbols, were used for this plot.
The PET-estimated Aβ +, τ + (n = 139) and Aβ −, τ − (n = 500) groups are dis-
tinguished by different shadings and contours, as indicated in the figure legend. A
one-sided Mann-Whitney U test indicated significant differences in P(Aβ) between
negative and positive groups (n = 639, U = 61430, p = 5.71 × 10−44) and similarly in
P(τ) between negative and positive groups (n = 639, U = 60963, p = 1.63 × 10−42). All
boxplots include a box presenting the median value and interquartile range (IQR),
with whiskers extending from the box to themaxima andminima no further than a
distance of 1.5 times the IQR. In all the panels, significance is denoted as **** for
p <0.0001.
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by comparing the model’s probability scores, P(Aβ) and P(τ), against
key pathological markers across progressive AD stages: Thal phases of
Aβ plaques, Braak stages of neurofibrillary degeneration, and CERAD
(Consortium to Establish a Registry for Alzheimer’s Disease) scores for
neuritic and diffuse plaques. These markers, denoted as A0–A3 (Thal
phases), B0–B3 (Braak stages), and C0–C3 (CERAD scores for neuritic
and diffuse plaques) all exhibited a statistically significant upward
trend in the median probability of P(Aβ) and P(τ) as the stages
advanced (p <0.0001 for Thal, Braak, and CERAD stages)

(Supplementary Tables S21 & S22). We also evaluated the model’s
predictions in relation to cerebral amyloid angiopathy (CAA) (Fig. 6e),
which is commonly observed in postmortem AD cases. The model
predicted significantly higher P(Aβ) and P(τ) in individuals with mild,
moderate, or severe CAA compared to those without CAA (p < 0.05)
(Supplementary Table S22). These findings indicate that our model
predicted probabilities for Aβ and τ positivity are closely aligned with
the severity of neuropathological markers, strengthening the validity
of the model to capture the underlying pathophysiology.

Fig. 5 | Communities detected frommodel-derived and tau SUVr-derived graph
networks. The dot heatmap visualizes the detected communities within graph
networks constructed from normalized mutual information (NMI): one based on
the Shapley values of T1-weighted regional volumetric features (SHAP), and the
other based on tau PET SUVr for each of the six regional labels, including medial
temporal (med-temp), lateral temporal (lat-temp), medial parietal (med-par), lat-
eral parietal (lat-par), frontal, andoccipital. Itemswithin the samecolumnrepresent
a single detected community in the corresponding graph, and communities are
order-invariant. Brain regions are grouped into pre-defined Braak stages (I-II, III, IV,

V, and VI) on the right for visualization purposes. Statistical annotations denote the
results of a one-sided spatial permutation test (n = 5000) on the adjusted mutual
information (AMI) between model-based and tau SUVr-derived communities for
each regional label (med-temp: AMI = 0.219, p = 1.40× 10−3; lat-temp: AMI = 0.176,
p = 5.60 × 10−3; med-par: AMI = 0.134, p = 4.84 × 10−2; lat-par: AMI = 0.288,
p = 1.60 × 10−3; frontal: AMI = 0.138, p = 2.16 × 10−2; occipital: AMI = 0.233,
p = 1.00× 10−3). Significance levels are denoted as * for p <0.05 and ** for p <0.01.
The corresponding contingency tables are provided in Supplementary Table S20.
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Discussion
In this work, we present a transformer-based machine learning model
that uses multimodal data to predict individual-level Aβ and τ PET
positivity status in ameta-temporal ROI and in regions associated with
progressing disease. Our approach represents an advance over pre-
vious work in the field, which has typically focused on predicting
amyloid or tau status independently, used smaller datasets, relied
heavily on specialized biomarkers, or required full feature availability.
Ourmodel achieved strong performance on external data not used for

model training, with predictions closely matching postmortem find-
ings. We showed that our model predictions aligned with biological
outcomes, as well as with disease severity staging. In addition, the
model’s predictions of τ pathology in specific ROIs aligned with τ
burdens derived from regional SUVr observed on PET scans.

Our modeling framework demonstrates flexibility in handling
cases with missing features through the use of random feature mask-
ing. This approach allows the model to generate predictions and
maintain accuracy even when some features are unavailable. The
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flexibility in handling various combinations of data addresses the
heterogeneity encountered in real-world settings, where the exact set
of assessments undergone may vary based on site-level practices,
available resources, and patient-specific factors. However, our findings
also highlight that certain data inputs, such as neuroimaging andAPOE
status, provide critical information on the underlying pathology, given
the improvement in performance upon adding these features (Fig. 2c).
For tau predictions, the removal of neuropsychological battery scores
reduced the AP, underscoring its importance in accurate predictions.
On the other hand, our analysis suggests that certain features, such as
clinical dementia rating (CDR) scores, could potentially be excluded
without significantly compromising themodel’s predictive power. This
is likely because our framework was developed by fine-tuning a model
that already excels at classifying cognitive status33. This finding has
practical implications, as CDR assessments require a skilled expert to
conduct in-depth interviews and additional testing, which can be time-
consuming and costly. Overall, our framework’s ability to maintain
performance across varying scenarios without relying on a single data
modality in isolation represents an important step toward practical
implementation.

Our results indicate that AI models can potentially enhance
biomarker-guided assessment of biological AD and facilitate partici-
pant selection in clinical trials targeting Aβ and τ, either individually or
in combination. For example, in AD drug trials, models with high
positive predictive values (PPV) can ensure that a higher proportion of
individuals flagged as likely to have positive Aβ or tau PET scans are
true positives. This could reduce the number of false positives that
would need to be excluded later, improving the efficiency and cost-
effectiveness of the trial. In addition, models with a high negative
predictive value (NPV) are clinically desirable as they accurately rule
out individuals without the condition, reducing the need for unne-
cessary PET scans and alleviating patient anxiety, thereby lowering
both healthcare costs and patient burden. In a hypothetical scenario,
our AI-based strategy could be integrated into AD screening as follows:
persons undergoing neurological evaluation would first be assessed
using our AI model, which utilizes clinical and imaging data to predict
Aβ and τ status. The primary objective of this initial step would be to
identify persons who are unlikely to have Aβ or τ pathology, thereby
ruling out low-risk cases. For individuals whom the AI model does not
confidently rule out as being Aβ or τ positive, PET imaging would then
be recommended. This approach ensures that PET scans are focused
on cases where they are most likely to provide a diagnostic benefit. In
our testing cohort of 1, 833 individuals with known Aβ PET status, our
model predictions demonstrate significant potential for cost savings.
With an NPV of 75.35%, we can rule out 587 cases from undergoing
unnecessary Aβ PET scans. Similarly, in the test cohort of 844 indivi-
dualswith known tau PET status, our tau PETmodel achieved anNPVof
91.65%, suggesting to exclude 582 cases from requiring tau PET scans.
In addition, leveraging the PPV of thesemodels can enhance efficiency
by identifying high-risk cases. Our Aβ PETmodel, with a PPV of 62.05%,

can ensure that 654 individuals receive the necessary scans, while the
tau PETmodel, with a PPV of 52.40%, can prioritize 109 high-risk cases
for τ imaging.

In addition to predicting probabilities for Aβ and tau status, our
model provides spatial characterization of the disease, which corre-
lated with disease stage. Our findings further demonstrate that the
model-derived volumetric regions of importance align with local pat-
terns of tau depositionobserved inPET imaging, therebyvalidating the
model’s predictive capability (Fig. 5). This alignment suggests the
potential to inform differential diagnosis, more precise identification
of disease stages and subtypes, and support personalized treatment
approaches based on regional tau pathology. While neurofibrillary tau
tangles are a hallmark of AD, other dementias such as frontotemporal
dementia and chronic traumatic encephalopathy can also exhibit tau
accumulation34,35. The presence of Aβ and the distribution of tau
pathology, however, vary by type of dementia, contributing to diverse
clinical presentations and progressionpatterns36,37. Through providing
concurrent predictions of Aβ and τ status, our model may aid in
increasing specificity to biological AD. In a second stage, our regional
tau model could eventually enhance differential diagnosis by allowing
comparison of predicted regional tau profiles with known tau patterns
of other dementias. In typical AD, tauburden gradually increases in the
medial and neocortical temporal lobes before spreading to the par-
ietal, frontal, and occipital lobes32. We have shown that our model’s
composite AT score effectively differentiates between disease stages,
distinguishing A + T- cases from A+MTL+ cases, thereby identifying
taupathology in regions that are affected early in thediseasecourse4,38.
Because tau PET is closely associated with biological disease stage as
well as cognitive decline, it has been proposed as a potential clinical
endpoint for disease-modifying treatments39. Our model could thus
serve as a pre-screening tool to not only identify the presence of dis-
ease but also delineate the stage of disease, refining the selection of
candidates for clinical trials or treatments. While our current dataset
lacked sufficient data to fully validate the subtyping potential of our
model, the comprehensive regional profile of taupathology it provides
could eventually enable clinicians to determine disease stage and
subtype based on established tau deposition patterns in AD40. This
capability offers promising directions for future research and clinical
practice, potentially transforming how AD and related disorders are
diagnosed and managed.

Our study has a few limitations despite its strengths in scale,
multimodal integration, and validation approach. Our model was
developed and validated on seven distinct cohorts; however, its gen-
eralizability across diverse populations and clinical settings remains to
be determined, as the dataset was predominantly composed of White
participants. Importantly, due to the lack of non-AD and mixed
dementia cases in our datasets, the generalizability of our findings to
these important clinical phenotypes remains to be evaluated. While
our model predicts amyloid and tau PET status as biomarkers of AD
pathology, it does not directly distinguish AD from other common

Fig. 6 | Model alignment with postmortem findings. The swarm and box
plots display predicted probabilities of amyloid-beta positivity, P(Aβ), and meta-
temporal tau positivity, P(τ), with respect to various AD neuropathological grades
in the ADNI (n = 41) and NACC (n = 147) neuropathological validation cohorts.
a Kruskal-Wallis tests revealed significant differences in model-predicted prob-
abilities across Thal phases for amyloid plaques for both P(Aβ) (H = 48.32,
p = 3.05 × 10−9) and P(τ) (H = 42.02, p = 5.82 × 10−8).bWith respect to Braak stage for
neurofibrillary degeneration, Kruskal-Wallis tests also showed significant differ-
ences in P(Aβ) (H = 54.81, p = 5.05 × 10−10) and P(τ) (H = 54.05, p = 7.19 × 10−10).
c Model probabilities were again significantly different across CERAD scores for
density of neocortical neuritic plaque for P(Aβ) (H = 52.18, p = 2.74 × 10−11), and P(τ)
(H = 50.37, p = 6.68 × 10−11). d For cerebral amyloid angiopathy, Kruskal-Wallis tests
yielded significant differences in model-derived probabilities across pathology
burden for both P(Aβ) (H = 26.46, p = 7.62 × 10−6) and P(τ) (H = 25.36, p = 1.30× 10−5).

e Finally, CERAD scores for diffuse plaques were also significantly associated with
model probabilities:H = 37.84, p = 3.05 × 10−8 for P(Aβ) andH = 29.61, p = 1.66 × 10−6

for P(τ). Pairwise statistical annotations denote the results of two-sided post hoc
Dunn testswithHolm-Bonferroni corrections following theKruskal-Wallis test, with
significance levels denoted as * for p <0.05; ** for p <0.01; *** for p <0.001; and ****
for p <0.0001. In addition, trend lines and text boxes in the bottom right of each
subplot indicate the Spearman correlation coefficient ρ and associated two-sided
p-value for the overall strength of the correlation betweenmodel probabilities and
neuropathological grades. Each boxplot includes a box presenting the median
value and interquartile range (IQR), with whiskers extending from the box to the
maxima and minima no further than a distance of 1.5 times the IQR. Detailed sta-
tistics regarding median values and IQRs can be found in Supplementary Fig. S21.
Additional statistics and p-values for Spearman correlation and Kruskal-Wallis tests
can be found in Supplementary Table S22.
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causes of cognitive impairment, such as vascular, Lewy body, ormixed
dementias. In routine clinical settings, non-AD and mixed etiologies
are prevalent, and PET positivity alone may not fully account for the
complexity of real-world diagnostic challenges. Therefore, the utility
of our approach should be interpreted as a tool for biomarker-based
risk stratification, rather than as a comprehensive diagnostic solution
for all-cause cognitive impairment. In addition, we used a binary
thresholding technique to define Aβ and tau PETpositivity, despite the
variability in these definitions across different studies. Various studies
have adopted their own criteria for PET positivity, influenced by mul-
tiple factors. Nevertheless, ourmodeling framework is flexible and can
be adapted to different definitions of PET positivity (Fig. 3a, b). While
our current model effectively provides binary classification, which
aligns with how these biomarkers are often clinically interpreted, there
is value in moving toward continuous quantitative predictions for
more precise disease staging and monitoring. Future work should
extend this binary classification to an ordinal regression task with
multiple categories, providing a more quantitative approach to pre-
dicting PET status. Moreover, due to the limited number of cases with
blood-based biomarker data in our training dataset (n = 255), we were
unable to fully leverage these data to enhance the model’s predictive
accuracy. As novel plasma biomarkers become more widely available
and harmonized across assays, we anticipate that integrating them
with existing medical data and neurocognitive evaluations will likely
enhance the accuracy of predicting AD pathology beyond what is
achieved by relying on any single modality of data. While our model
could help identify individuals likely to have pathology associatedwith
biological AD, extending this framework to select participants for
clinical trials is more complex than merely identifying those who are
Aβ and τ positive. Key barriers include limited awareness, fear of
diagnosis, overstretched healthcare systems, poor physician aware-
ness, lack of effective treatments, lack of fast diagnostics, and low
awareness of clinical trials, causingmany eligible participants to be lost
before enrollment. Nevertheless, our framework can provide an
important first step in identifying individuals likely to have the disease,
thereby enabling more effective targeting of community outreach
programs. In addition, given preliminary evidence that tau PET status
and severity may impact treatment response in anti-amyloid
therapies6, our model could serve as a tool to predict which patients
might benefit most from specific disease-modifying drugs. By strati-
fying patients based on pathology severity subgroups, clinical trials
can be more efficiently designed to assess treatment efficacy in tar-
geted subgroups, potentially improving outcomes and accelerating
the development of effective therapies.

In conclusion, by integrating multimodal data from standard
neurological work-up, our model shows promise in identifying indivi-
duals with biological AD, reducing the reliance on expensive imaging
techniques like PET scans. Our approach demonstrates the feasibility
of multimodal integration for biomarker prediction, and such frame-
works can ultimately contribute to reducing the burden associated
with participant selection for AD clinical trials. Future studies are
needed to assess the accuracyof our approach in identifying biological
AD and to quantify the economic benefits of using this method in
selecting participants for clinical trials.

Methods
All data were obtained in de-identified format from external study
centers, eachwith appropriate ethical oversight. The study centers and
their respective ethical approvals are as follows. The A4 study (https://
www.a4studydata.org/) and the Harvard Aging Brain Study (HABS,
https://habs.mgh.harvard.edu) were approved by Partners Human
Research Committee; the National Alzheimer’s Coordinating Center
(NACC, https://naccdata.org/) data are collected under protocols
approved by institutional review boards at each participating Alzhei-
mer’s Disease Research Center; the Open Access Series of Imaging

Studies (OASIS, https://sites.wustl.edu/oasisbrains/) was approved by
the Washington University Human Research Protection Office; the
Australian Imaging, Biomarkers and Lifestyle study of aging (AIBL,
https://aibl.org.au/) was approved by the institutional human research
ethics committees of Austin Health, St. Vincent’s Health, Hollywood
Private Hospital and Edith Cowan University; the Framingham Heart
Study (FHS, https://www.framinghamheartstudy.org/) operates under
approval from the Boston University Medical Center Institutional
Review Board; the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
https://adni.loni.usc.edu/)was approvedby institutional reviewboards
at each participating site. All cohorts obtained appropriate informed
consent from participants prior to data collection and sharing.

Study population
This study involved a total of 12, 185 participants drawn from seven
different cohorts. Written informed consents were obtained from all
participants or their proxies, and approval was secured from each
cohort’s respective institutional ethical reviewboards. The training set,
consisting of 10, 352 participants, included individuals from the
A4 study41, NACC42, OASIS343, AIBL44, and FHS45. All subjects in this
study had an amyloid PET scan, but only 3, 488 of these participants
also underwent tau PET imaging. The training set was further split into
training (8281 participants) and validation (2071 participants) subsets
using stratified splitting across all labels, ensuring the label distribu-
tion remained consistent with the original dataset. The test set com-
prised 1, 833 participants from ADNI46, HABS47, and a subset of NACC
subjects with neuropathological data. Data collected included demo-
graphics, medical history, neuropsychological scores, physical and
neurological examinations, APOE e4 genotype, neuroimaging data, as
well as CSF and blood biomarkers for model training. All model eva-
luations at testing were performed without using CSF. In the study
sample, 7, 561 participants were Aβ PET negative, and 4, 624 were Aβ
PET positive. Among those who underwent tau PET assessments
(n = 3, 488), 2655 were tau PET negative and 833 were tau PET positive
on ameta-temporal regionof interest (ROI). Table 1 provides a detailed
overview of the study population across all cohorts. Single visits were
included for each participant.

Selection criterion
Participants were eligible for inclusion in the study if they had under-
gone at least one Aβ PET scan and had clinical or neuroimaging visits
within one year of the PET scan. For cohorts with multiple eligible
visits, such asADNI, HABS, NACC, OASIS, and AIBL, visits were selected
to minimize the time difference between PET scan and clinical or MRI
visits. Because OASIS, ADNI, and NACC may share participants, we
conducted pairwise comparisons between participants in OASIS and
ADNI as well as OASIS and NACC. Specifically, we searched for similar
characteristics across demographics, physical characteristics, medical
history and comorbidities, functional assessment scores, neu-
ropsychiatric symptoms, and cognitive statuses, with an error toler-
anceof 2 units in numerical features and excluded any such potentially
duplicated participants. All subjects in the A4 cohort with an Aβ PET
scanwere included. In the FHScohort, participantswith anAβPET scan
performed within one year of a clinical visit were retained. To ensure
consistency across the diverse cohorts, all variables were renamed and
recoded to align with the Uniform Data Set Researchers Data Dic-
tionary (UDS) 3. Despite the unique sets of variables between cohorts,
which did not always overlap, no cases were excluded due to missing
data. This was facilitated by our model training approach, which
incorporated random feature masking and label masking, as
described below.

PET image processing
Cortical amyloid positivity was quantified using various PET imaging
agents in the cohorts: dynamic 11C-PiB for FHS, late-frame 18F-
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florbetapen and 18F-florbetapir for ADNI, 18F-florbetapir for A4 and
OASIS3, 18F-flutemetamol for AIBL, and 11C-PiB for AIBL, OASIS3,
and HABS. Centiloid (CL) values were provided directly by ADNI, A4,
OASIS, and a subset of NACC (n = 334), while for AIBL and HABS, an
internal pipeline was used to process standard uptake value (SUV)
images, following the methodology established by Klunk and
colleagues48. Briefly, Aβ PET and T1-weighted (T1w) images were
automatically realigned to match the orientation of the MNI152
template. We then coregistered the Aβ PET and T1w MR images to
the MNI152 template, normalized to standard space, and calculated
global cortical SUV ratios (SUVr) using the Global Alzheimer’s
Association Interactive Network (GAAIN) masks. Our pipeline, which
uses SPM12 for image realignment and normalization, differs slightly
from the standard Klunk method48, which required us to process
GAAIN data and regress our calculated SUVrs against Klunk’s pub-
lished values to derive a scaling equation to convert SUVrs to CL for
each tracer. For the FHS cohort, mean cortical 11C-PiB distribution
volume ratios (DVR) images were estimated using the Logan
method49 and these were subsequently processed as described
above to calculate global cortical DVR values. DVR images and T1w
scans were realigned to the MNI152 orientation before being co-
registered and normalized to standard space. GAAIN masks were
finally used to estimate the global cortical DVR. For tau PET, stan-
dardized uptake value ratios (SUVr) in Freesurfer-defined regions
weremade available by the A4, OASIS, FHS, ADNI, HABS and a subset
of the NACC cohorts (n = 344).

PET data harmonization
Tau PET data from the various cohorts were processed using different
image processing pipelines18,50–52. Therefore, we employed the Com-
Bat tool to harmonize tau PET SUVr values to account for variation
across cohorts53. A batch variable for cohort and several covariates
were used, including age, sex, amyloid PET positivity status and
diagnosis.We used an analysis of covariance (ANCOVA) framework to
assess the main effects of cohorts on tau SUVr measurements across
brain regions before and after ComBat harmonization, adjusting for
covariates age, sex, diagnosis, and amyloid status. Raw p-values from
the ANOVA results were adjusted using the Benjamini-Hochberg
procedure to control for the false discovery rate across multiple
comparisons. ROIs with an adjusted p-value below 0.05 were con-
sidered significant. For SUVr regions where the ANOVA indicated a
significant cohort effect post-harmonization, post hoc pairwise
comparisons were conducted using estimated marginal means. Pair-
wise contrasts between cohorts were computed with Tukey’s adjust-
ment for multiple comparisons. Please refer to Supplementary Fig. S6
and Supplementary Tables S23–S25 for more detail on the effect of
harmonization.

PET positivity thresholding and tau profiling
For Aβ PET, a pre-established threshold of 24CL14 was applied to define
positivity in A4, OASIS3, AIBL, HABS, ADNI and the subset of NACC
with availableCLdata. For FHS, a pre-established thresholdof 1.20DVR
was used to define Aβ PET positivity14. Most of the NACC subjects
included in this study (n = 4, 006) were assessed using a binary UDS
variable indicating Aβ positivity, and no information was available
regarding site-specific thresholding. For tau PET, a meta-temporal
region of interest (ROI) was constructed following established
standards30. A Gaussian mixture model (GMM) with two components
was run on the ComBat-harmonized tau PET SUVr data from the
training set, and tau PET positivity was defined as SUVr values greater
than 1.37. In addition to the meta-temporal ROI, we also defined tau
ROIs associatedwith variousAD stages and subtypes:medial temporal,
lateral temporal, medial parietal, lateral parietal, frontal and
occipital17,18. GMM analyses on the harmonized tau PET data set the
positivity thresholds at 1.32, 1.33, 1.38, 1.29, 1.30 and 1.23, respectively.

Supplementary Tables S9, S10 provides an overview of the study
population broken down by regional tau positivity status.

MRI processing
T1-weighted (T1w), FLAIR, and T2*-weighted (T2*w) MRI sequences
were collected from various cohorts. Table 1 details theMRI counts for
each sequence across these cohorts. T1w images were segmented with
Fastsurfer54, and regional volumes were estimated. A Swin UNETR
architecture55,56 was further leveraged to extract features from bias
field corrected volumetric T1 scans, as well as FLAIR and T2* images
that were resampled to 1mm resolution. FLAIR and T2* images were
additionally padded to 256× 256× 256 before being input to the Swin
UNETR architecture. All resulting embeddings were of length
768 × 8 × 8 × 8.

Modeling framework
Weutilized the frameworkdetailed inXueet al.,33 to analyze 443distinct
clinical features encompassing personal demographics, medical his-
tory, functional assessments, neuropsychological test scores, neuroi-
maging data, and fluid biomarkers (Fig. 1). Each feature was first
encoded into a fixed-length vector via a modality-specific embedding
technique that served as input to the transformer. The transformer then
integrated these inputs to generate predictions. A key feature of this
model is the implementation of a random feature masking mechanism
within the transformer, which is designed to handle missing data
effectively. For each sample with feature set S, we randomly permuted
the features as σ and selected an index i from [1, ∣S∣]. Features σi+1 to σ∣S∣
were thenmasked out from the transformer input. The framework also
incorporated a labelmasking strategy to leverage datasets withmissing
labels. The task was formulated as a multi-label classification problem,
with separate binary heads assigned for predicting each label. To
account for missing labels, the loss associated with samples lacking
specific labels was masked before backpropagation. This approach
significantly enhanced the model’s robustness and accuracy in real-
world scenarios with incomplete datasets. We fine-tuned this model,
originally trained on a 13-label classification task33, using a two-stage
process. In thefirst stage,we trained themodel topredict Aβ andmeta-τ
labels by transferring the weights of the transformer encoder module
and the embedding modules corresponding to overlapping features.
During the initial 15 epochs, only the newly initialized weights were
trained, while the transferred weights remained frozen. Subsequently,
we unfroze the transferred weights and included them in the training
process. In the second stage, we further fine-tuned themodel to predict
regional τ labels. To prevent label leakage, we maintained the same
training and testing splits for the NACC dataset as in the original
transformer protocol33, ensuring no subject overlap between the
two sets.

Loss function
Our model was trained by minimizing the “Focal Loss (FL)”57 (L), a
variant of standard cross-entropy loss that addresses the issue of class
imbalance. It assigns low weight to easy (well-classified) instances and
high weight to hard-to-classify examples. This loss function was used
for each of the biomarker categories. Our loss function L was:

L=
1
N

XN

k = 1

XM

i = 1

�yk, iαið1� pk, iÞγ logðpk, iÞ

� ð1� yk, iÞð1� αiÞðpk, iÞγ logð1� pk, iÞ,
ð1Þ

whereN is the batch size andM is the number of biomarker categories
(2 for the first stage and 6 for the second). The batch sizesNwere set to
128 and 64 for the first and second stages, respectively. The focusing
parameter γ was set to 2, which has been reported to perform well in
previous studies33,57. The balancing parameter αi ∈ [0, 1] was set as the
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square of the complement of the fraction of samples labeled as 1,
varying for each i due to the differing level of class imbalance across
biomarker categories.

For both stages of training, the maximum number of epochs was
set to 128,with early stopping applied if no improvementwas observed
on the validation split for 15 epochs in the first stage and 30 in the
second. Mini-batch optimization was performed using the AdamW
optimizer58, with learning rates of 0.001 and 0.0001, andweight decay
values of 0.01 and 0.005 for the first and second stages, respectively. A
cosine learning rate scheduler was employed to adjust the learning
rate dynamically during training.

Interpretability analysis
To interpret the model predictions, we conducted Shapley analysis59

on the outputs for Aβ, meta-τ, and regional τ models. Shapley values
quantify the contribution of each feature to the model’s predictions,
effectively providing ameasure of feature importance.We employed a
permutation sampling strategy33,60 to efficiently estimate Shapley
values across the high-dimensional feature space. This approach
involves permuting feature values and measuring changes in the
model’s output to approximate each feature’s impact. For each label
prediction, Shapley values were calculated for all input features,
including imaging-derived measures, whole brain image embeddings
and clinical variables. Missing features were assigned a Shapley value
of zero, indicating no contribution to the prediction. The featureswere
then rankedby theirmeanShapley values across true positive samples,
identifying the most influential features driving the model’s decisions.

Traditional machine learning model
We sought to compare the performance of our model with that of a
traditional machine learning framework, CatBoost61, to provide a
benchmark for our approach. As a tree-based classification framework,
CatBoost effectively handles missing features by assigning designated
missing values when an input is absent at inference. However, Cat-
Boost lacks support for incorporating learned embeddings from ima-
ging data, limiting its ability to leverage spatial patterns captured in
MRI scans. To address this, we used regional volumes derived from
FastSurfer as the imaging-related inputs for CatBoost. In addition,
unlike our transformer-based model, which performs multi-label
classification in a unified manner, CatBoost requires training sepa-
rate models for each output variable. As a result, we trained eight
independent CatBoost models, one for each label, while our deep
learning approach benefited from joint optimization across
multiple tasks.

Model validation on biological outcomes
We sought to validate predicted probabilities of themodel against PET
estimates of amyloid and tau burden, as well as evaluate its alignment
with a common clinical endpoint in AD clinical trials, the Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13). Impor-
tantly, ADAS-Cog13 scores were not incorporated as input during the
model’s training, ensuring independent validation of the model’s
predictive capabilities. Participants from the ADNI cohort were selec-
ted for this analysis, as they both underwent amyloid and tau PET
imaging and completed the ADAS-Cog13 assessment. To further eval-
uate ourmodel performance in preclinical AD, we included a subset of
cases who were cognitively unimpaired. We then compared model-
predicted probabilities for amyloid, P(Aβ), between caseswhowere Aβ
PET negative vs Aβ PET positive. Finally, we aimed to validate our
model predictions of regional tau positivity and investigate its
potential for disease staging. To derive a unified quantification of AD
pathology, we employed principal component analysis (PCA). This
dimensionality reduction technique allowed us to capture the shared
variance across different regional tau and amyloid probabilities into a
single composite score. We applied PCA and used the first principal

component (PC1), which explained 97.5% of the variance, as our
composite measure of AD pathology, termed the amyloid-tau (AT)
score. Based on the PET binary labels, we classified participants and
compared the AT scores across four distinct disease stages. These
included cases who are Aβ PET negative and tau PET negative in all
regions (A-T-), Aβ positive but tau negative in all regions (A + T-), Aβ
positive with tau PET positivity restricted to the medial temporal lobe
(A +MTL +), and Aβ positive cases with tau PET positivity in the medial
temporal and neocortical regions (A +NEO+).

Subgroup analysis on biomarker profiles
We selected a subset of cases from the testing set with PET-confirmed
Aβ positivity, mirroring the inclusion criteria for amyloid presence
used in recent clinical trials6. Participants were then stratified into
tertiles (low, medium, and high) based on their meta-τ SUVr values to
evaluate the model’s predictive accuracy across a spectrum of tau
burdens. We further assessed the relationship between tertile groups
and centiloids to evaluate whether the model’s output is consistent
with empirically measured amyloid levels. Similarly, we conducted an
analysis of the model-predicted tau probabilities, P(τ), in Aβ + cases,
this time stratifying participants into tertiles based on their centiloid
values. Because theNACC* testing cohort did not have continuous PET
data available, only ADNI and HABS were included in these analyses.
Finally, to further validate our model’s ability to differentiate those
who are positive on both biomarkers from those who are negative on
both, we compared the distributions of P(Aβ) and P(τ) in the combined
ADNI, HABS and NACC* test set between Aβ +, τ + and Aβ-, τ- cases.

Spatial analysis
Cases with positive regional τ labels and predictions were selected for
this data-driven analysis. A fully-connected graph network was con-
structed with nodes representing individual brain regions and edges
connecting the nodes. Edge weights were determined by computing
pairwise normalized mutual information (NMI)62–64 on the Shapley
values of T1-derived regional volumetric features. This quantifies the
mutual dependence between two brain regions in their contribution to
the model. We identified non-overlapping communities of brain
regions that the model deemed important for positive predictions on
each regional label using the Louvain method for community
detection65. We preset the number of communities in each graph to
five, corresponding to the established Braak staging of tau pathology
progression, combining regions from stages 1 and 232. To address the
randomness inherent in the Louvain algorithm, we employed con-
sensus clustering with 100 draws63. Using the same set of cases, we
established another graphnetwork on the samebrain regions, butwith
edges defined by the NMI of the tau PET SUVr values. We identified
communities of brain regions in this network using the same metho-
dology as before. To compare the T1-derived communities identified
as important by the model against the communities identified in the
tau PET scan, we evaluated the similarity between these two cluster-
ings using the adjustedmutual information (AMI)66. The AMImeasures
the level of agreement between two clusterings with correction for
random clustering agreement, and is preferred over adjusted Rand
index (ARI) when the reference clustering is unbalanced and there are
small clusters67 (Supplementary Table S20).

Postmortem validation
To assess the alignment of our model with neuropathological evi-
dence, weutilized a subset of cases from theADNI database (n = 41) for
which postmortem evaluations were available. We supplemented this
sample with an additional subset of cases from the NACC database
(n = 147) for which neuropathological data was available, excluding
these cases from the training set. Of note, this subset of NACC cases
was also in the testing set of the original transformer model33 that we
finetuned for this study, thus preventing potential label leakage. The
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mean time difference between age at death and age of neuropatho-
logical assessments was 3.05 years. On these cases, we examined the
Thal phase for amyloid plaques (A score), Braak stage for neurofi-
brillary degeneration (B score), density of neocortical neuritic plaques
(CERAD score) (C score), density of diffuse plaques (CERAD semi-
quantitative score), and cerebral amyloid angiopathy, and investigated
the correlation between the model-generated probability scores of Aβ
and τ positivity and the grades of these neuropathological features.

Statistics and reproducibility
We conducted a series of statistical analyses to rigorously evaluate our
model’s alignment with PET burden, biomarker profiles, and post-
mortem neuropathological grades. No statistical method was used to
predetermine sample size, and no data were excluded, as long as all
features required for statistical analyses were present. When building
the deep learning model, the training cases were shuffled using a
consistent random seed and split into training and validation subsets
using stratified splitting across all labels. The investigators were not
blinded to allocation during experiments and outcome assessment. A
Shapiro-Wilk test was performed prior to each analysis to assess nor-
mality. To evaluate the alignment between our model-predicted
probabilities and continuous PET values, we computed both the
Spearman’s ρ and Pearson’s r coefficients, log-transforming regional τ
SUVr values to improve linearity. In addition, we evaluated themodel’s
ability to detect preclinical AD by comparing amyloid probability
outputs between Aβ PET-negative and positive cognitively unimpaired
cases using a one-sided Mann-Whitney U test. We then aimed to vali-
date our model’s ability to distinguish disease stages. A Kruskal-Wallis
H test, followed by post hoc Dunn’s test with Holm-Bonferroni
adjustments for multiple comparisons, was performed to assess the
alignment of ourmodel’s AT scorewith PET-defineddisease stages.We
then sought to validate our model’s predictive accuracy across quan-
tiles of disease severity. We used a one-sided Mann-Whitney U test to
compare predicted probabilities, P(Aβ) and P(τ), and PET mea-
sures, centiloids andmeta-T SUVr, between cases with low/medium vs.
high disease burden. Similarly, we applied a one-sided Mann-Whitney
U test to compare P(Aβ) and P(τ) between cases who are PET-
confirmed biomarker positive and negative. In the spatial analysis, we
assessed the statistical significance of the agreement between model-
and tau PET SUVr graphs by performing a t test on 5000 spatial per-
mutation draws of the AMI68,69. Spatial permutations were applied to
maintain the brain’s contralateral symmetry through rotating spheri-
cally projected brain region coordinates extracted from the Desikan-
Killiany atlas by a random angle along each of the x, y, and z axes. New
labels were assigned by mapping the original region centroids to the
closest permuted region centroid based on Euclideandistance. Finally,
to evaluate differences in model probability outputs across various
stages of post-mortem neuropathological scores, we employed the
Kruskal-Wallis test, followed by post hoc Dunn’s tests to conduct
pairwise comparisons between groups, with adjustments for multiple
comparisons using the Holm-Bonferroni correction method. To fur-
ther evaluate the overall correlation between model-generated prob-
abilities and each neuropathological feature, we computed the
Spearman correlation coefficient, thus assessing the strength and
direction of association between the ranked neuropathological grades
and model probabilities.

Performance metrics
Receiver operating characteristic (ROC) and precision-recall (PR)
curves were created based on the predictions on the combined ADNI
andHABSexternaldatasets, aswell as on theNACC* test set. Additional
performance metrics including balanced accuracy, sensitivity, speci-
ficity, precision, also known as positive predictive value (PPV), F1 score,
Matthews correlation coefficient, and negative predictive value (NPV)

were computed by determining the optimal threshold for each label
using Youden’s J statistic, based on the performance of the
validation split.

Computational hardware and software
Our model development utilized Python (version 3.11.9) and specifi-
cally PyTorch (version 2.4.0).We used several other Python libraries to
support data analysis, including pandas (version 2.2.2), numpy (ver-
sion 1.26.3), matplotlib (version 3.9.1), monai (version 1.3.2), scipy
(version 1.14.0), and scikit-learn (version 1.5.1). R packages were also
used for data analysis and visualization, including dplyr, emmeans, and
ggseg3D. Training the model on a single Tesla V100 GPU on a shared
computing cluster had an average runtime of 2 minutes per epoch,
while the inference task took less thanaminute per instance. Allfigures
were prepared using Canva and Adobe Illustrator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from A4, AIBL and ADNI are available to download from the LONI
website at https://ida.loni.usc.edu. NACC and OASIS-3 data can be
requested and downloaded at https://naccdata.organd https://sites.
wustl.edu/oasisbrains/, respectively. FHS data (https://www.
framinghamheartstudy.org/fhs-for-researchers/data-available-
overview/) can be requested by emailing fhs@bu.edu, and access
conditions include completing the steps outlined at https://www.
framinghamheartstudy.org/fhs-for-researchers/, as well as approval
from the FHS Research Committee. HABS data can be requested at
https://habs.mgh.harvard.edu/researchers/request-data/. All data
used in this study should be available upon request from the specific
cohorts. Source Data to recreate all the figures in the manuscript are
provided with this paper. Source data are provided in this paper.

Code availability
Python scripts, model checkpoints, help files, and information on the
study population are available on GitHub (https://github.com/vkola-
lab/ncomms2025).
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