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Human pancreatic α-cell heterogeneity and
trajectory inferenceanalyses revealSMOC1as
a β-cell dedifferentiation gene

Randy B. Kang 1, Miguel Varela1, Eunjin Oh 1, Jungeun Lee1, Tuo Zhang 2,
Esra Karakose 3, Andrew F. Stewart3, Donald K. Scott 3,
Debbie C. Thurmond 1, Adolfo Garcia-Ocana 1,4 & Geming Lu 1,4

β-cell dysfunction and dedifferentiation towards an α-cell-like phenotype are
hallmarks of type 2 diabetes. However, the cell subtypes involved in β-to-α-cell
transition are unknown. Using single-cell and single-nucleus RNA-seq, RNA
velocity, PAGA/cell trajectory inference, and gene commonality, we inter-
rogatedα-β-cell fate switching in human islets.We foundfiveα-cell subclusters
with distinct transcriptomes. PAGA analysis showed bifurcating cell trajec-
tories in non-diabetic while unidirectional cell trajectories from β-to-α-cells in
type 2 diabetes islets suggesting dedifferentiation towards α-cells. Ten genes
comprised the common signature genes in trajectories towardsα-cells. Among
these, the α-cell gene SMOC1 was expressed in β-cells in type 2 diabetes.
Enhanced SMOC1 expression in β-cells decreased insulin expression and
secretion and increased β-cell dedifferentiation markers. Collectively, these
studies reveal differences in α-β-cell trajectories in non-diabetes and type 2
diabetes human islets, identify signature genes for β-to-α-cell trajectories, and
discover SMOC1 as an inducer of β-cell dysfunction and dedifferentiation.

Glucagon-producing pancreatic α-cells are recognized as important
physiological regulators of life-threatening hypoglycemia by counter-
acting the effects of insulin on glucose homeostasis1,2. In diabetes,
patients display postprandial hyperglucagonemia, which exacerbates
hyperglycemia3–6. Despite these important observations, initial studies
on human pancreatic islet cell heterogeneity have focused mainly on
insulin-producing β-cells. Recently, however, more studies have
emerged describing specific human islet α-cell subpopulations that
participate in normal and dysregulated glucose homeostasis7–10.
Indeed, recent evidence indicates that there is variation in glucagon
content amonghumanα-cells7 and thatα-cell functional heterogeneity
is linked to α-cell maturation in type 2 diabetes (T2D)8. Furthermore,
the subpopulation of glucagon-like peptide-1 (GLP-1) secreting α-cells
is increased in human T2D islets9. Finally, elevated serum amino acids

induce a subpopulation of α-cells to initiate pancreatic neuroendo-
crine tumor formation10. Collectively, these studies indicate that ana-
lyzing α-cell heterogeneity and the mechanisms controlling their
identity can be of great importance in health and disease.

Single-cell RNA sequencing (scRNA-seq) has revolutionized the
identification and analysis of different cell types within heterogeneous
cell populations. By algorithmically clustering the data, it is possible to
annotate distinct cell types, and with varying hyperparameters for
granularity such as Louvain resolution, we can investigate cell sub-
populations with distinct transcriptomes in an unbiased manner11. In
the human islet, scRNA-seq has uncovered several α- and β-cell sub-
types with different transcriptome profiles that can predict the
maturity of these islet cell subtypes in basal and diabetic
conditions12–19. However, how these human α- and β-cell subtypes can
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transcriptionally transition from one cell subtype to another remains
understudied. Furthermore, T2D is characterized by a decrease in
functional β-cells, in part due to dedifferentiation and conversion to
other endocrine cells, including glucagon-producing α-like-cells20,21, a
concept thatmay inpart support the hyperglucagonemia encountered
in diabetes3–6. However, whether specific β-cell subpopulations can
transition into α-cells, and whether there is a specific gene signature
involved in this process, is unknown.

In the current study using scRNA-seq and snRNA-seq of human
islets isolated from adult non-diabetic donors, we identified five GCG-
expressing α-cell subtypes with different transcriptome profiles. We
found that one of the α-cell subtypes, named “AB cells” is a multi-
hormonal α-cell subpopulation that could potentially transition in a
bifurcatedmanner into eithermatureα- or β-cells. However, trajectory
analysis of scRNA-seq data from human islets isolated from T2D
donors obtained from the Human Islet Research Network (HIRN)-
Human Pancreas Analysis Program (HPAP) database showed uni-
directional trajectories from β-cells to α-cells suggesting potential
pressure on β-cells to become less differentiated or converted toα-like
cells. Analysis of commongenes on the trajectories fromβ- toα-cells in
human islets isolated from adult non-diabetic donors identified
SMOC1, PLCE1, PAPPA2, ZNF331, ALDH1A1, SLC30A8, BTG2, TM4SF4,
NR4A1 and PCSK2 as signature genes. Among these, SMOC1 (SPARC-
related modular calcium-binding protein-1) which encodes for an
extracellular glycoprotein of the SPARC (secreted protein, acidic and
rich in cysteine)-related modular calcium-binding protein family, was
recently identified as one of the top islet-derived genes encoding a
secreted protein in obesemice22–29. However, the role of SMOC1 in islet
cells is unknown. Here, we show that SMOC1 is expressed mostly in α-
cells in adult human non-diabetic islets and its expression negatively
correlated with INS expression. Interestingly, SMOC1 mRNA and pro-
tein were detected in T2D β-cells. SMOC1 expression in non-diabetic
human islets and EndoC-βH1 cells reduced INS expression, diminished
glucose-stimulated insulin secretion (GSIS), decreased the expression
of β-cell identity genes and enhanced the appearanceof T2Dα-cell-like
and T2D β-cell-like gene features in these cells. Collectively, these
studies identify α-cell subpopulations and analyze transcriptional
transitions between β-cells and α-cells as a function of the pathophy-
siological context. We also identify SMOC1 as a gene of previously
unrecognized importance and relevance to β-cell dedifferentiation
in T2D.

Results
scRNA-seq and snRNA-seq distinguish five α-cell subtypes in
human islets
We have previously shown that integrated scRNA-seq and snRNA-seq
analysis of human islets can distinguish three β-cell subtypes with
different transcriptome profiles17. Combining the datasets from both
RNA-seq platforms increases analytical power by providing additional
information on cytoplasmic and nuclear transcriptomes. Using the
same dataset and integrated reference, we aimed here to define α-cell
subtypes in human islets (Fig. 1a, Supplementary Data 1). After initial
sub-setting (Fig. 1b), we subclustered the α-cell cluster with a Louvain
resolution of 0.8. We grouped resulting minor α-cell clusters con-
taining fewer than ten cells into clusters with closest proximity,
yielding five α-cell subclusters: α1, α2, α3, α4, and AB (an α-cell sub-
population with INS expression) (Fig. 1c, d). We employed this
unbiased strategy instead of marker-based subcluster assignment
since it considers both the entire transcriptome and the multiple PCA
dimensions assigned to calculate clusters. The total number of cells
analyzed per subcluster and transcriptomics platform in the three
human islet preparations appear in Supplementary Fig. 1a. The α1, α2
and α3 subclusters comprised most α-cells (77–80%) and their pro-
portions were similar between scRNA- and snRNA-seq datasets. In
contrast, α4 and AB subclusters were different in proportion between

scRNA- and snRNA-seq datasets (Fig. 1e), with a larger proportionofα4
cells (20% vs. 8%) and fewer AB cells (3% vs. 12%) in scRNA-seq than in
snRNA-seq, respectively. This suggests that snRNA-seq with pre-mRNA
analysis can revealmoreABcells (α-cellwith INS expression, seebelow)
than scRNA-seq.

Gene expression and pathway enrichment analysis of human
islet α-cell subtypes
GCG and ALDH1A1 were highly expressed across the five α-cell sub-
clusters in both scRNA- and snRNA-seq datasets. TTR and CRYBA2
showed substantially higher expression levels in scRNA-seq than in
snRNA-seq datasets, where their expression wasmarginally detectable
or absent in some α-cell subtypes (Fig. 2a). This provides further
support for our previous observation that the GCG, CRYBA2, ALDH1A1,
TTR gene set optimally defines α-cells in scRNA-seq analysis of human
islets but is suboptimal for snRNA-seq annotation17. Therefore, we next
analyzed the expression of our recent α-cell gene set derived from
snRNA-seq17 and observed that PTPRT, FAP, PDK4 and LOXL4 showed
greater relative expression in clusters in the snRNA-seq than in the
scRNA-seq dataset (Fig. 2b). Interestingly, these four latter genes
showed a progressively decreasing pattern from α1 to AB cells.

To better define gene sets that identify the different α-cell sub-
clusters and their transcriptomedifferences,weperformeddifferential
gene expression (DEG) analysis for every cluster against all the
remaining clusters (Fig. 2c, d, Supplementary Fig. 1b, Supplementary
Data 2). The α1 subcluster displayed selectively higher expression of
NEAT1, ACTG1, PEAK1 and ACTB. The α2 subcluster favored the
expression of FAP, PCSK2, SLC30A8, and GLS. The α3 subcluster most
highly expressed HSPA1A, HSPH1, DNAJB1, and PLCG2. The
α4 subcluster favored PCSK1N, GAPDH, TTR, and SNHG29. The AB cell
subcluster displayed expression of pan-endocrine hormonal genes
such as INS, SST, PPY and IAPP (Fig. 2c, Supplementary Fig. 1b, Sup-
plementary Data 2). Interestingly, most of the differentially expressed
genes in AB cellsweredefinedby the snRNA-seqwhich employs intron-
inclusive references. This suggests that a large portion of these genes
were pre-mRNA, as might be expected of RNA collected from the
nuclear compartment (Fig. 2d).

Bihormonal cells (glucagon-positive and insulin-positive cells)
havebeendetected in thehumanpancreas and in isolatedhuman islets
by immunolabeling, reaching values between 0.3 and 4.5% of all
insulin-positive cells in non-diabetic organ donors. This percentage
increases up to 10.9% in human pancreas from insulin resistant organ
donors30–33. Here, AB cells (INS+ and GCG+) were 2.2% (scRNA-seq) and
6.9% (snRNA-seq) of INS+ cells, percentages close to the ones reported
for immunolabeled human islet bihormonal cells31–33.

AB cells had (1)more than 500UMI count, (2)more than 250 gene
varieties, (3)more than0.8 log10 genes perUMI (genedensity), and (4)
20% or less mitochondrial genes. The median nFeatures_RNA for AB
cells was 692, within the expected range for cells and not background/
noise or potential doublets/aggregates as indicated by the analysis
packages Seurat (nFeature_RNA > 200 for real cells) and Scanpy
(n_genes_by_counts >100 for real cells). To eliminate doublets/aggre-
gates, we used the DoubletFinder Algorithm pANN (proportion of
artificial nearestneighbors),whichprovides a score as adecision factor
to distinguish between doublets and singlets. The score of the AB
cluster was 0.23, similar to the score of the rest of the islet cell types
(Supplementary Fig. 1c). Furthermore, analysis of the available datasets
from single nucleus multi-omics of human islets from non-diabetic
islet donors performed by Millman’s group34 (Supplementary
Fig. 2a–c), showed that the AB cluster (GCG + /INS+ cells) displayed
enhanced chromatin accessibility for INS and GCG genes (Supple-
mentary Fig. 2d). Finally, AB α cells expressed several exclusive genes
compared with α and β cells (Supplementary Data 3). Collectively,
these results strongly suggest that AB α cells are GCG+ /INS+ cells and
not low-quality cells or doublets/aggregates.
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While DEG analysis is useful to understand the differences among
subclusters, their functional significance in a specific subcluster is
uncertain. Therefore, we performed single-cell-level pathway enrich-
ment analysis using the integrated scRNA- and snRNA-seq dataset17,
the Msigdb database35, and the escape package36. We performed gene
set enrichment analysis (GSEA) for all pathways in curated gene sets
(C2) and ontology gene sets (C5) in pancreatic α-cells and screened for
glucagon production and secretion, metabolism, differentiation, and
translation-related pathways, then selected the pathways with quali-
fying p-value and FDR. As expected, we observed differential enrich-
ment of pathways among the various α-cell subclusters (Fig. 2e).While
α1 and α2 cell subclusters displayed higher enrichment for α-cell dif-
ferentiation and glutamate/glutamine metabolism pathways, α3 cells
showed enrichment for glucagon secretion (also present in α1 and α2
cells albeit at a lower level). The α1 and α4 subclusters demonstrated
the highest enrichment for protein translation-related pathways, while
the AB cluster displayed the highest enrichment for early pancreatic
precursor cell gene expression, top β-cell markers, and β-cell tran-
scription factors (Fig. 2e).

Non-targeted GSEA of each α-cell subcluster revealed the top 4
pathways for each subcluster according to the p-value and FDR (Sup-
plementary Fig. 3). The α1 subcluster favored enrichment in genes
involved in vesicle transport, cell adhesion, TCA cycle, and carbohy-
drate catabolic processes. The α2 subcluster showed enrichment in
neuron and neurotransmitter-related pathways, seemingly suggesting
a neuroendocrine-responsive cluster. Interestingly, it also showedhigh
enrichment for the mitotic cell cycle process (Supplementary Fig. 3).

The α3 cell subcluster displayed enrichment in NAD metabolic pro-
cess, inclusion body assembly, and acetylcholine response related
pathways. In addition, it was the only cluster that showed enrichment
in the trans-differentiation pathway, although the enriched cell
population was small ( ~ 25% cells) (Supplementary Fig. 3). The α4 cell
subcluster displayed high enrichment in ribosome-related pathways,
suggesting enhanced protein translation capability, and in the poly-
amine transport pathway (Supplementary Fig. 3). Finally, the AB cell
subcluster withGCG, INS, SST, IAPP and PPY gene expression andwith a
topographical location near to the β-cells, exhibited high enrichment
for neurotransmitter/noradrenergic neuron differentiation, calcium
ion regulation-related pathways such as postsynaptic cytosolic cal-
cium ion concentration and intracellular calcium activated chloride
channel activity (Supplementary Fig. 3). Cellular stress can promote
non–β cells in the islet to exhibit β-cell–like properties37,38. To deter-
mine whether AB cells could represent α cells under stress leading to
expression of other hormone genes, we performed GSEA of stress
pathways in these cells.We found that stress pathwayswere reduced in
theABα-cell cluster comparedwith the otherα-cell clusters. The stress
module score was lower in AB α-cells compared with other α-cells and
similar to the score for β1 and β3 cell clusters (Supplementary
Fig. 4a-b).

RNA velocity and PAGA analysis of trajectories between α- and
β-cells in human islets
We next analyzed RNA velocity using Scanpy and scVelo packages to
interrogate potential transitions among α- and β-cell subclusters. The
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Fig. 1 | Experimental design, unsupervised clustering, and sub-clustering of
human α cells by scRNA-seq and snRNA-seq of islets from adult human non-
diabetic donors. aHuman islet processing and data generation scheme. Created in
BioRender. Garcia-Ocana, A. (2025) https://BioRender.com/nizfh1l. bUnsupervised
clustering, cell type annotated UMAP and separated α-cell cluster (below). c. Pre-

annotated α-cell subclusters by assigning Louvain resolution 0.8. d. Annotated α-
cell clusters according to the UMAP location relative to neighboring β-cells17 and
gene expression. UMAP is split by the processing type – scRNA-seq (left) and
snRNA-seq (right). e Proportion of the α-cell subtypes in scRNA-seq and snRNA-seq
datasets.
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Fig. 2 | Gene expression, DEG, and pathway enrichment analysis of human α-
cell subclusters by scRNA-seq and snRNA-seq of islets from adult human non-
diabetic donors. a Gene expression of 4 canonical α-cell markers, split by pro-
cessing types, in the different α-cell subclusters. b Gene expression of the pre-
viously identified17 single nucleus α-cell markers in the different α-cell subclusters.
c Dot-plot visualization of top 4 differentially expressed genes in each α-cell sub-
cluster. d Differentially expressed genes for α-cell sub-populations in scRNA-seq

data (top) and snRNA-seq data (bottom). e Pathway enrichment analysis for α-cell
sub-populations. We searched pathways using keywords for pancreatic endocrine
cells (α/β/δ/PP/ε), glucagon and hormone signaling/processing/secretion, meta-
bolism, and cellular development (differentiation, precursor, dedifferentiation,
development, senescence) and arrange the pathway order according to the
enrichment patterns from α1 to AB cells.
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α-cell subclusters in the current studywere combinedwith the three β-
cell subclusters that we previously reported17. Analysis of RNA velocity
has been performed traditionally with scRNA-seq and not with snRNA-
seq because snRNA-seq data contain transcripts with more intron-
retention and, hence will have increased unspliced rates compared
with scRNA-seq data where less intron-retention cytoplasmic mature
transcripts are captured. However, we reasoned that integrating these
two modalities in the same samples will allow us to capture both the
early transcriptional dynamics (from snRNA-seq) and the downstream
more mature expression profiles (from scRNA-seq), thereby offering a
more complete temporal trajectory of cell state transitions, enhancing
overall RNA velocity confidence39. Indeed, theRNA velocity confidence
score, which is a qualitymetric for howwell the predicted RNA velocity
aligns with the splicing dynamic of each gene, was significantly
improved using integrated scRNA-seq and snRNA-seq (mean 0.81;
median 0.93, Mann-Whitney-Wilcoxon test, p = 1.55 × 10−135) compared
with scRNA-seq alone (mean 0.71; median 0.80) (Supplementary
Fig. 5a).We also observed a comparable ratio of spliced/unspliced RNA
among the different cell subtypes in the integrated reference dataset,
except for the α2 subcluster, which had the highest proportion of
spliced mRNA (Fig. 3a). The β1 subcluster (most mature β-cell
subcluster)17, had the most dominant proportion of unspliced mRNA
(Fig. 3a).We then visualized the streamlined velocity plot andobserved
a general bifurcating pattern from the AB/β3 cluster both towards the
β1 and α2 subclusters (Fig. 3b). Using velocity length to characterize
strength of transition or differentiation, both the β2 and the α4 clus-
ters showed higher length than the other clusters, denoting vibrant
splicing activity and satisfying overall velocity confidence across all the
α- and β-cell subpopulations (Fig. 3c). Additionally, we measured the
velocity of several representative α- and β-cell genes and found that
the expression level and velocity did not always correlate with each
other. GCG expression was highest in the transitional clusters (α3/α4),
but RNA velocity was higher in α2 and part of the α1 subcluster. INS
expression level was selectively higher in β-cells, while RNA velocity
displayed slight induction in the α4 and AB subclusters. We also
assessed the β-cell gene, GLP1R, and found that its expression pattern
matchedwithRNAvelocity. Similarly, we also assessed theα1 cell gene,
NEAT1 (see previous section), and found high expression in some
β1 cells but very low RNA velocity (Fig. 3d). Together, these observa-
tions support the notion that cells in the β3 and AB subclusters may
spontaneously transition to more mature β- and α-cell types. Indeed,
PAGA trajectory analysis identified four main trajectories among α-
and β-cell subpopulations: (1) AB to β2 to β1 (Trajectory A) which
shows AB cells progressing towards the mature β1 subtype17; (2) β3 to
α4 to α2 (Trajectory B), showing transition from the less mature β-cell
subtype17 to mature α-cells; (3) AB to α4 to α2 (Trajectory C), from
multihormonal cell cluster to mature α-cells; and, (4) α3 to α2 (Tra-
jectory D) from less differentiated α-cell cluster to a more differ-
entiated α2-cell cluster (Fig. 3e). Cell trajectory analysis using only the
scRNA-seq dataset is shown in Supplementary Fig. 5b-f. We observed a
similar trajectory pattern as with the integrated scRNA-seq and snRNA-
seq data (Fig. 3e) with a bifurcating trajectory pattern from the AB
cluster both towards the α- and β-cell subclusters (Supplementary
Fig. 5f). Additional trajectories in the scRNA-seq only analysis were (1)
from less differentiated (β3) tomore differentiated β-cells (β1), and (2)
from α3 to AB cells that further reinforces the bifurcating trajectory
potential of AB cells. Collectively, these results indicate that both
integrated scRNA-seq and snRNA-seq or only scRNA-seq provide a
similar bifurcating trajectory from AB to α- and β-cells in non-diabetic
human islet cells in our dataset.

We subsequently analyzed the genes with high pseudo-temporal
association for each trajectory in the integrated scRNA-seq and snRNA-
seq data (Fig. 4a–d, Supplementary Data 4). First, we transformed the
data set into the Monocle3 format and then assigned the root as the
unbiased PAGA origin for pseudo-time analysis. We ranked the gene

list according to Moran’s I score for visualization and clustered the
genes according to the patterns (Fig. 4a–d). For the transition from AB
toβ1 (TrajectoryA), therewere2main transitional patterns: increaseor
biphasic (increase then decrease) (Fig. 4a). The transcriptome in the
increased gene pattern from AB to β1 included cellular ion regulation
and signaling (TRPM3, DPP6, CASR, KCNMA1) and insulin release
(ABCC8) genes. They also included neural development and synaptic
function genes (LSAMP, DLG, NRG1). Genes with a biphasic pattern of
expression related to ribosomal protein genes (RPLs, RPSs) and ferritin
proteins (FTL and FTH1) (Fig. 4a). Transition from β3 to α2 (Trajectory
B) showed increasing expression pattern of apoptosis and
proliferation-involved genes (KIAA1324, BTG2, MALAT1, NR4A2),
glucagon-related genes (PCSK2, ARFGEF3) and glucose homeostasis-
related genes (SLC30A8, PAPPA2) (Fig. 4b). In contrast to Trajectory A,
Trajectory B showed increasing patterns of expression of ribosomal
protein genes (RPLs, RPSs), metabolism-associated transcriptomes
(SLC7A2, PDE10A, GLS) and decreased expression of β-cell identity
genes (IAPP, INS) (Fig. 4b). Trajectory C, the transition from AB to
α2 showed decreasing pattern of expression β-cell identity
genes (IAPP, INS) (Fig. 4c), while apoptosis and proliferation-involved
genes (TM4SF4, MALAT1, NR4A1, NR4A2, BTG2, KIAA1324), ribosomal
protein genes, and metabolism and cellular signaling genes (GLS,
SLC30A8, PDE10A) were increased (Fig. 4c). Finally, Trajectory D, the
α3-α2 transition displayed an increased expression pattern of cellular
transport and metabolism (SLC7A2, ALDH1A1), glucose regulation
(ARFGEF3, SLC30A8, PAPPA2, PTPRN2), and development/differentia-
tion (PLCE1, NR4A1, KIAA1324, TM4SF4) genes. On the other hand, β-cell
genes (INS, IAPP, ZNF385D, TRPM3) displayed reduced expres-
sion (Fig. 4d).

Gene commonality analysis in trajectory inference
To identify common genes among the three trajectories that might
define the transition between β- andα-cell types (Trajectories B, C, and
D), we performed gene commonality analysis (Fig. 4e). Common α-cell
trajectory genes from β3 toα2, AB toα2 andα3 toα2 cells (trajectories
B/C/D) were SMOC1, PLCE1, PAPPA2, ZNF331, ALDH1A1, SLC30A8, BTG2,
TM4SF4, NR4A1 and PCSK2 (Fig. 4e). All these genes were upregulated
in mature, more functional α1 and α2 cells while their levels were
decreased in α3, α4, AB and the rest of β-cells except for SLC30A8
(Fig. 4f), suggesting that alteration in the levels of SMOC1, PLCE1,
PAPPA2, ZNF331, ALDH1A1, BTG2, TM4SF4, NR4A1 and PCSK2may drive
the transition from AB cells to α-cells. This occurred in a similar way in
both scRNA-seq and snRNA-seq datasets. Finally, the degree of
expressionof these genes positively correlatedwith theGOBPpathway
of pancreatic α-cell differentiation (Fig. 4).

We next performed gene commonality analysis among the four
trajectories (Trajectory A and inverse Trajectories B, C, D) to identify
common genes that can define the transition from α-cells to β-cells
(Supplementary Fig. 6a). Common β-cell trajectory genes were
ZNF385D, TRPM3, CASR, MEG3, HDAC9, INS, SST, RBP4, IAPP and SPP1.
All these genes, except SST, were upregulated in mature more func-
tional β1 and β2 cells, while their levels were decreased in β3, AB and
the restofα-cells (Supplementary Fig. 6b), suggesting that alteration in
the levels of these genes may drive the transition from AB cells to β-
cells. Interestingly, the highest expression of ZNF385D, TRPM3, CASR,
MEG3 and HDAC9 occurred mostly in the snRNA-seq where pre-mRNA
expression and processing helped to determine cellular trajectories
towards transition to different states. Finally, the degree of expression
of these genes positively correlated with GOBP pathway of pancreatic
β-cell differentiation (Supplementary Fig. 6c).

Trajectories between α- and β-cells in human islets from
T2D donors
All the preceding studies were performed in adult human islets from
non-diabetic donors. To evaluate whether α-β-cell plasticity might
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of islets from adult human non-diabetic donors. a Spliced and unspliced genes
percentage in each α-and β-cell subclusters. b RNA velocity streamline among α-
and β-cell subclusters with scVelo. Stochastic modeling was used. c Pseudotime,
RNA velocity length and RNA velocity confidence in the α-and β-cell subclusters.
d Single gene RNA velocity visualization with spliced/unspliced scatter plot (left),

RNA velocity (mid), gene expression (right) for INS, GCG, GLP1R and NEAT1. e PAGA
trajectoryanalysis betweenα-andβ-cells basedon stochasticmodeledRNAvelocity
showing 4 main trajectories: Trajectory A – from AB to β1 (toward β-cells); Tra-
jectory B- from β3 to α2 (toward α-cells); Trajectory C – from AB to α2 (toward α-
cells); Trajectory D – from α3 to α2 (toward α-cells).

Article https://doi.org/10.1038/s41467-025-62670-5

Nature Communications |         (2025) 16:8434 6

www.nature.com/naturecommunications


occur in T2D human islets, we analyzed the scRNA-seq data from
human islets isolated from non-diabetic (n = 13) and T2D (n = 13)
donors that are publicly available in the Human Pancreas Analysis
Program (HPAP) database, consortia under the Human Islet Research
Network (HIRN)40. We repeated identical data analysis strategies –

projection to a scRNA-/snRNA-seq reference, extracting UMAP
coordinates, cell type annotation and RNA velocity analysis. Analysis
of total RNA splicing ratios within distinct α-β-cell clusters showed
that the AB, α4 and β3 subclusters, the most immature α- and β-cells,
exhibited the highest percentage in spliced mRNA in T2D islet cells
(Fig. 5a). This suggests enhanced mRNA maturation in the most
immature α- and β-cells and potentially enhancedmRNA variation by
increased exon combination (alternative splicing) (Fig. 5a).

To compare non-diabetic and T2D datasets, we established a
scale ranging from 0 to 600 for RNA velocity length measurements.
This allowed us to discern significant differences between the two
datasets. This revealed a distinct pattern in the T2D dataset, with a
selective increase in velocity length observed within the α3, α4, AB
and β3 subclusters (Fig. 5b-c). PAGA analysis showed that non-
diabetic human α- and β-cells exhibited a relatively complex multi-
directional pattern with trajectories from α- to β-cells and vice versa,
implying mutual potential plasticity among α- and β-cell subclusters
(Fig. 5d). This complex trajectory pattern partially resembled the
pattern observed in our integrated scRNA-seq and snRNA-seq or only
scRNA-seq analysis of human islet cells from non-diabetic donors
(see sections above) with a distinct bifurcated transition pattern of
AB cells into either mature α- or β-cells. This difference could be
related to: (1) the smaller number of samples in our dataset com-
pared with HPAP; (2) the wide range in age (4-55 years) and BMI
(20.6-38.1) of the HPAP non-diabetic human islet donors compared
with our samples (age 24–42, BMI 20-26.3) that can influence the
transcriptional gene profile of islet cells; and, (3) the inclusion of 3
donors in the HPAP non-diabetic human islet samples with HbA1c in
the range of 5.7–6.0 suggesting potential undiagnosed pre-diabetes
that could affect the results.

Overall, and in contrast to non-diabetic human islets, PAGA ana-
lysis showed that humanT2Dα- and β-cells followedmostlyβ-cell toα-
cell transition,moving fromβ1 toβ3 and then toAB, fromα4 toα2 cells
or direct transition from β1 toα1 and then toα2 (Fig. 5d). This suggests
potential pressure on β-cells to become less differentiated or con-
verted to α-cells in subjects with T2D. Pseudotime plots with a pre-
defined root by PAGA further supported distinct directions between
non-diabetic and T2D human islet cell clusters in the HPAP data sets
(Supplementary Fig. 7).

β-to-α cell trajectory genes and T2D
The decrease in β-cell numbers in T2D has been attributed in part to
β-cell dedifferentiation20,21. In the HPAP-HIRN database, we found
that β-cells in T2D islets display decreased INS expression and α-cells
display increased GCG expression (Fig. 6a-b). We then explored
whether any of the 10 shared genes involved in β-to-α cell trajectories
(see preceding sections)might be upregulated in β-cells in T2D islets,
perhaps directing their phenotype towards α-cells. Among these
genes, ZNF311, PAPPA2, TM4SF4 and PLCE1 showed no noticeable
expression in β-cells in T2D islets (Supplementary Fig. 8a). Of the
remaining genes, NR4A1, PCSK2, SLC30A8, and BTG2 were expressed
in both non-diabetic α- and β-cells; their expression was enhanced in
T2D β-cells, but they showed a positive correlation with INS expres-
sion in T2D β-cells (Supplementary Fig. 8a, b). ALDH1A1 expression
occurred in both α- and β-cells although its expression was enhanced
in T2D β-cells and showed a negative correlation with INS expression
(Supplementary Fig. 8a, b). All the genes showed a positive correla-
tion between their expression and GCG expression in α-cells (Sup-
plementary Fig. 8c). Finally, expression of the α-cell gene SMOC1
appeared in β-cells (β1) of T2D islets and negatively correlated with
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Fig. 4 | Trajectories between α-cells and β-cells and their associated gene
expression pattern. a Expression of genes with selective high association with
Trajectory A (from AB to β1). Genes were clustered according to the expression
pattern. The visualization is done by Monocle3, by separating the relevant clusters
and assigning the root according to the PAGA analysis. b Expression of genes with
selective high association with Trajectory B (β3 to α2). c Expression of genes
with selective high association with Trajectory C (AB to α2). d Expression of
genes with selective high association with Trajectory D (α3 to α2). e Gene com-
monality analysis towardsα-cell transition. Genes in the intersectionof Trajectories
B, C, and D revealed 10 common genes among the different trajectories. fDot plots
representing gene expression of the commonality genes between Trajectories B, C
and D in scRNA-seq data (top) and snRNA-seq data (bottom). g Trajectories
between α-cells and β-cells and their associated gene expression pattern. Enrich-
ment ridge plot of GOBP’s pancreatic α-cell differentiation pathway for the com-
mon genes among the Trajectories B, C and D. We grouped α-cells in two groups
by expression level for each gene – negative (0% normalized expression),
positive (>0%).

Article https://doi.org/10.1038/s41467-025-62670-5

Nature Communications |         (2025) 16:8434 7

www.nature.com/naturecommunications


a

b

c

d

RNA Velocity Features HPAP- ND scRNA-seq Alpha & Beta Clusters

RNA Velocity Features HPAP- T2D scRNA-seq Alpha & Beta Clusters

HPAP scRNA-seq RNA Velocity Stream 
Alpha / Beta Cell ClustersND T2D

HPAP scRNA-seq PAGA
Alpha / Beta Cell Clusters / Model : Stochastic 

ND T2D

ND T2D

Fig. 5 | RNA velocity, splicing and trajectories in scRNA-seq data of islets from
adult human non-diabetic and T2D donors in HPAP-HIRN. a Spliced and
unspliced genespercentage inα-andβ-subclusters innon-diabetic (ND) (left) and in
T2D (right) human islet data from HPAP–HIRN. b Pseudotime, RNA velocity length
and RNA velocity confidence in the α-and β-cell subclusters of human islets from

non-diabetic (ND) donors inHPAP-HIRNdataset. cPseudotime, RNAvelocity length
and RNA velocity confidence in the α-and β-cell subclusters of human islets from
T2D donors in the HPAP-HIRN dataset. d PAGA trajectory with stochastic modeling
for non-diabetic (left) and T2D islet data (right).

Article https://doi.org/10.1038/s41467-025-62670-5

Nature Communications |         (2025) 16:8434 8

www.nature.com/naturecommunications


INS expression in non-diabetic β-cells while positively correlated with
GCG expression in α-cells (Fig. 6c, Supplementary Fig. 8b, c). Col-
lectively, these observations suggest that SMOC1 may play a func-
tional role in normal α-cell biology and may contribute to β-cell
dedifferentiation in T2D. We therefore focused on SMOC1 for the
remainder of the study.

SMOC1 is a T2D gene in β-cells
We next investigated SMOC1 protein levels in islets of three human
non-diabetic and three T2D donors (Supplementary Data 1). SMOC1
abundance was significantly enhanced in islets from human T2D vs.
non-diabetic donors as assessed by western blot (Fig. 6d). SMOC1,
C-peptide and glucagon immunolabeling of pancreas sections from
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non-diabetic and T2D tissue donors revealed SMOC1 expression in
glucagon-positive cells but not in C-peptide-positive cells in non-
diabetic pancreas tissue (Fig. 6e). In contrast, SMOC1 expression was
easily detectable in C-peptide- and glucagon-positive cells in T2D islets
(Fig. 6e). To address the role of enhanced expression of SMOC1 in
human islets, we transduced dispersed human islet cells from non-
diabetic donors with adenovirus-hSMOC1. Enhanced expression of
SMOC1 (Fig. 6f) significantly decreased INS gene expression (Fig. 6g)
and GSIS (Fig. 6h) and reduced the expression of β-cell transcription
factor genes (PDX-1, MAFA, NKX6.1), glucose-sensing genes (SLC2A2,
GCK), and the β-cell maturation gene UCN3, while increasing the
expression of GCG (Fig. 6i). Collectively, these results suggest that
enhanced expression of SMOC1 in T2D islet cells might exert detri-
mental effects on β-cell function and identity.

To address whether SMOC1 upregulationmight have an impact in
the expression of shared genes in the trajectory from β- to α-cells, we
measured the levels of these genes in non-diabetic human islets
transduced with adenovirus-hSMOC1. As shown in Supplementary
Fig. 9a, SMOC1 upregulation positively influenced the expression of
common genes in the β- to α-cell trajectory. We also analyzed the
impact of SMOC1upregulation ongene signatures associatedwithT2D
in α-cells (IRX2, ZNHIT1, ZFPL1, PAX6, and DRAP1) and β-cells (RFX6,
RFX7, FOXO1, PPARα, PPARγ, RB1, POU5F1, NANOG, and MYCL), all
previously associated with metabolic inflexibility, stress response and
endocrine progenitors/stemness33. As shown in Fig. 6j and Supple-
mentary Fig. 9b, c, SMOC1 upregulation in non-diabetic human islet
cells positively enhanced the expression of T2D α-cell and T2D β-cell
signature genes. Thesefindings support the notion that SMOC1may be
a bona fide marker as well as a driver gene in human T2D islet cells.

To analyze the direct effect of SMOC1 in human β-cells, we
expressed SMOC1 in EndoC-βH1 cells (Fig. 7a). This resulted in
decreased INS expression (Fig. 7b), diminished GSIS (Fig. 7c),
reduced expression of PDX-1, MAFA, GK, SLC2A2 and GLP1R, while
increasing expression of FOXO1 (Fig. 7d). In addition, SMOC1
enhanced the expression of some common genes in the trajectory
from β- to α-cells and α-cell gene markers such as MAFB, TTR and
CRYBA2 (Fig. 7e and Supplementary Figs. 10 and 11), suggesting that
SMOC1 might be a potential participant in β- to α-cell conversion.
However, the expression of additional characteristic genes that
define α-cells such as GCG, ARX, SCG2, FAP, PDK4 and LOXL4 was not
altered indicating that SMOC1 expression in β-cells is not enough for
the conversion of β-cells into bihormonal or α-cells (Supplemen-
tary Fig. 11).

Increased FOXO1 expressionand activity inT2Dcontributes to the
reduction of insulin secretion while enhancing the pathogenesis of the
disease41,42. To determine whether FOXO1 regulates SMOC1 expres-
sion, we analyzed the effect of FOXO1 upregulation in EndoC-βH1 cells.
Enhanced FOXO1 expression led to increased SMOC1 protein expres-
sion and secretion suggesting a feedback loop regulating both pro-
teins (Fig. 7f, g).

SMOC1 is a secreted calcium-binding protein with circulating
levels in non-diabetic individuals in the range of 50 to 500ng/ml28.
Importantly, circulating levels in T2D subjects are significantly
increased compared to the levels in non-diabetic subjects reaching up
to 800 ng/ml (Fig. 8a). We next wondered whether over-abundance of
SMOC1 in the islet environment might influence GSIS and INS expres-
sion in a paracrine or autocrinemanner. To address this possibility, we
treated adult human islets from non-diabetic donors and EndoC-βH1
cellswith doses of recombinant humanSMOC1 in the range of the ones
present in the circulation of non-diabetic and T2D individuals. SMOC1
treatment reduced GSIS in both EndoC-βH1 and human islet cell cul-
tures (Fig. 8b, c), suggesting that excessive secretion of this protein in
the islet milieu leads to β-cell dysfunction. In addition, exogenously
added SMOC1 significantly reduced INS expression in EndoC-βH1 cells
(Fig. 8c). To address whether the decrease in GSIS by SMOC1 could be
related to its calcium-binding properties, we measured the effect of
exogenously added SMOC1 on Ca2+ flux in EndoC-βH1 cells. SMOC1
induced a substantial decrease in glucose-inducedCa2+ flux (Fig. 8d). In
addition, SMOC1 significantly reduced glucose- and exendin-4-
enhanced cAMP intracellular levels in EndoC-βH1 cells (Fig. 8e).
Finally, exogenous SMOC1 significantly decreased the number of
mature insulin granules in human islet β-cells (Fig. 8f). Taken together,
these results indicate that SMOC1 induces a significant detrimental
effect in the function of the β-cell that may contribute to T2D patho-
genesis (Fig. 8g).

Discussion
Single cell and single nucleus RNA sequencing can help to identify
specific α-cell and β-cell subtypes involved in the development and
progression of T2D2,8,12–19. It can also reveal specific gene sets that
might participate in the β-cell dedifferentiation process that occurs in
T2D providing additional therapeutic targets for diabetes treatment.
Conversely, deciphering specific genes and pathways in α-cell sub-
populations that can enable their reprogramming into insulin-
producing cells for β-cell replacement therapies can facilitate the
identification of new targets for diabetes therapy1–6,8,43–47.

Fig. 6 | SMOC1 expression in human islets from non-diabetic (ND) and T2D
donors and the effect in insulin secretion and β-cell identity genes. Expression
of a INS and b GCG in α-and β-cell clusters of adult human ND (red) and T2D islets
(green) from the HPAP-HIRN dataset. In a ND= 17103 and T2D = 4873 biologically
independent cells were analyzed. ND and T2D groups were separated by split.by
parameter in Seurat’s VlnPlot function, and the statistical test done by the default
two-sided Wilcox rank-sum (Mann-Whitney U) method with ggpubr package. For
the ND group, the distribution was: min. = 0.00, 25th percentile = 7.55, median =
8.17, 75th percentile = 8.46, and max. = 8.86; and for the T2D group: min. = 0.00,
25th percentile = 7.55, median = 8.02, 75th percentile = 8.39, and max. = 8.82, from
normalized expression level stored in RNA assay slot. In b ND= 7606 and
T2D = 5661 biologically independent cells were analyzed. For the ND group,
the distribution was: min. = 0.00, 25th percentile = 5.37, median = 6.02, 75th per-
centile = 6.57, and max. = 8.10; For the T2D group: min. = 0.00, 25th percentile =
5.68, median = 6.39, 75th percentile = 6.86, and max. = 8.24 from normalized
expression level stored inRNAassay slot. Fora andb, thep-value annotation legend
assigned by default asterisk annotation in ggpubr package refers to: ns:0.05 <
p < 1.0; *:0.01 < p <0.05; **:0.001<p <0.01; ***0.0001 < p <0.001; ****p <0.0001.
c Expressionof SMOC1 inα-andβ-cell subclustersof adulthumannon-diabetic (red)
and T2D islets (green). ns:0.05 < p < 1.0; *0.01 < p <0.05; **0.001 < p <0.01;
***0.0001 < p <0.001; ****p <0.0001. d Representative western blot of human islet

protein extracts from adult human non-diabetic and T2D donors and quantitation
of n = 3 different donors per condition. e Representative images of pancreas sec-
tions from adult humanND (n = 3) and T2D (n = 3) donors immunolabeled for DAPI
(blue) and SMOC1 (red) and C-peptide (green), or SMOC1 (magenta) and glucagon
(green). Enhanced image of the inset (box). f Quantitation of SMOC1 mRNA
expression in adenovirus-CMV-GFP or adenovirus-CMV-SMOC1-GFP transduced
human islet cells from adult humanNDdonors by qPCR (n = 8 different human islet
donors). g. INS mRNA expression in these adenovirus-CMV-GFP or adenovirus-
CMV-SMOC1-GFP transduced-cells by qPCR (n = 8 different human islet donors).
h Insulin secretion index (ratio of insulin secretion at 16mM and 5.5mM corrected
per insulin content) in adenovirus-CMV-GFP or adenovirus-CMV-SMOC1-GFP
transduced-cells (n = 4 different human islet donors). i PDX-1, NKX6.1, MAFA, UCN3,
GCK, GLUT-2, and GCGmRNA expression in adenovirus-CMV-GFP or adenovirus-
CMV-SMOC1-GFP transduced-human islet cells from adult human non-diabetic
donors by qPCR (n = 8 different human islet donors). j T2D α-cell and β-cell scores
based on the expression of T2D genes in adenovirus-CMV-GFP or adenovirus-CMV-
SMOC1-GFP transduced-human islet cells from adult human non-diabetic donors
by qPCR and calculated as indicated in Methods. (n= 8 different human islet
donors). In all the panels, bars indicate mean+ SEM; *p <0.05 and **p <0.01 or as
indicated in the figure, using two-tailed Student’s t-test.
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We have recently reported that three human β-cell subpopula-
tions, with their corresponding distinct transcriptome profiles, can be
identified using integrated scRNA-seq and snRNA-seq analysis of
human islets17. Extending this earlier dataset from non-diabetic adult
human islets, we have now identified five different GCG-expressing α-
cell subclusters - α1, α2, α3, α4, and AB - displaying different tran-
scriptome profiles. α1, α2, α3 and α4 clusters are enriched in genes
specific for α-cell function and translation pathways. α2 cells are
enriched inmitotic/cell cycle pathways suggesting that thesemight be
the cycling α-cells recently described33,48,49. The GCG-expressing AB
subcluster is a multihormonal gene expression cluster enriched in
genes related to pancreatic progenitor and β-cell pathways. The
identification of GCG+ INS+ islet cells in scRNA-seq studies has been
controversial due to the potential presence of ambient RNA con-
tamination and cell doublets/aggregates in the samples50. However,

here we used a stringent hyperparameter threshold in SoupX and
employed the Doubltfinder package to algorithmically eliminate
ambient RNA contamination or cell doublets/aggregates in our data-
set, increasing the reliability of our findings. Indeed, DoubletFinder
pANN score in the AB cell cluster was similar to the score of the rest of
islet cell types. In addition, stress pathways were reduced, and the
stress module score was similar in the AB cell cluster compared with
the other α and β cell clusters suggesting that AB cells are not α-cells
under stress that could lead to expressionof other hormone genes.We
also found that the percentage of AB cells with respect to INS+ cells
resembled the ratios of bihormonal cells detected by insulin and glu-
cagon immunolabeling of human pancreas or isolated islets previously
reported31–33. Furthermore, single nucleus multi-omics analysis of
human islets from non-diabetic donors performed by Millman’s
group34 showed that the AB cluster (GCG+INS+ cells) display enhanced

Fig. 7 | Expression of SMOC1 in EndoC-βH1 cells leads to β-cell dysfunction and
de-differentiation. a Transduction of EndoC-βH1 cells with adenovirus-CMV-
SMOC1-GFP to induce the expression of SMOC1 in these cells and quantitation of
n = 8 experiments. b INS expression by qPCR in EndoC-βH1 cells expressing SMOC1
(n = 8). c Insulin secretion index (ratio of insulin secretion at 20mM and 2mM
correctedby insulin content) in EndoC-βH1cells expressing SMOC1 (n = 8).d PDX-1,
NKX.6.1, MAFA, SLC2A2 (GLUT-2), GCK, GLP-1R and FOXO1 expression by qPCR in
EndoC-βH1 cells expressing SMOC1 (n = 8). e Combined expression score

calculated as indicated in Methods for the common genes in the trajectories from
β-cells to α-cells in EndoC-βH1 cells expressing SMOC1 (n = 8). f Expression of
FOXO1 and SMOC1 in EndoC-βH1 cells transfected with plasmid-CMV-FOXO1 (n = 3
experiments). g SMOC1 levels in the medium from EndoC-βH1 cells transfected
with plasmid-CMV-FOXO1 measured by ELISA (n = 4 experiments). Bars indicate
means ± SEM;*p <0.05, **p <0.01, ***p <0.001 and ****p <0.0001 or as indicated in
the figure, using two-tailed Student’s t-test.
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chromatin accessibility for INS and GCG genes. Finally, AB cells
expressed several exclusive genes compared with α and β cells. Taken
together, these results strongly suggest that AB cells are INS+ andGCG+

cells and not low-quality cells or doublets/aggregates. Using single cell
transcriptomics and pseudotime analysis, Saikia et al. identified four
humanα-cell subclusterswith a varying degree ofGCG expression, two
of them displaying mature gene cell markers, one with β-cell like fea-
tures (INS and GCG expression) and one intermediate38. Recently, a
transcriptional cross species map of pancreatic islet cells frommouse,
pig and humans has annotated four α-cell states in which 50% were
mature α-cells and almost 20% had an immature or precursor-like
profile51. Our findings in human islets resemble these previous studies
with similar proportions of mature (α1, α2, α3 cells) and precursor-like
profile cells (α4, AB cells).

RNA velocity and PAGA analysis of integrated scRNA-seq and
snRNA-seq or only scRNA-seq datasets identify AB cells as the root of a
bifurcated trajectory towards both α- and β-cells in isolated human
islets from non-diabetic donors. Trajectory analysis of scRNA-seq data
fromhuman islets isolated fromadult non-diabetic donors in theHPAP
dataset partly resembles this trajectory and a more complex multi-
directional trajectory pattern is observed, perhaps, reflecting a wider
range in age, BMI and HbA1c in the HPAP samples compared with our
samples (40, https://hpap.pmacs.upenn.edu/). Importantly, trajectory
analysis of human islets from T2D donors from the HPAP database
shows clear unidirectional trajectories from β-cells to α-cells, sug-
gesting potential pressure on β-cells to become less differentiated or
converted to α-like cells.

Gene commonality analysis of the trajectories from AB to α-cells
(trajectories B, C and D) identifies ZNF331, PLCE1, PAPPA2, TM4SF4,
NR4A1, BTG2, SLC30A8, PCSK2, SMOC1, and ALDH1A1 as exclusive
commongenes in the three trajectories.ZNF331 encodes for zincfinger
protein 331 and has been identified as a putative tumor suppressor
silenced or downregulated in gastrointestinal cancers52, but its func-
tion in islet cells remains unknown. Phospholipase C-ɛ−1 (PLCE1) links
Epac2 activation to the potentiation of GSIS in mouse islets53 and its
expression is decreased in β-cells while maintained in α-cells in T2D
islets54. Inour studies,wefind thatPLCE1 expression increases inα1 and
α2 (mature α-cells) and decreases in mature β1 cells in T2D islets
highlighting this phospholipase as a potential candidate for β-cell
dysfunction in T2D. Pappalysin-2 (PAPPA2), an enzyme that cleaves
and inactivates insulin-growth factor binding proteins (IGFBPs), is
upregulated in α-cells during gestation55. In the current study, we find
that PAPPA2 is expressed in non-diabetic α-cells and is upregulated in
T2D α-cells where PAPPA2 upregulation could limit the activity and
potential effects of IGFBP1 on α- to β-cell transdifferentiation56. Thus,
PAPPA2 could suppress the effect of IGFBPs favoring the α-cell phe-
notype. Interestingly, a prospective human study has shown that high
IGFBP1 levels reduce the risk of developing T2D by more than 85%57

perhaps reflecting PAPPA2 upregulation in T2D. Transmembrane 4 L
Six FamilyMember 4 (TM4SF4) is a tetraspanin protein localized in the
membrane of human α-cells, but not β-cells58. Loss-of-function studies
have revealed that tm4sf4 loss inhibits α- and β-cell specification in
zebrafish59. Here, we observe that TM4SF4 is upregulated in α-cells in
T2D islets suggesting further specification of endocrine cells into α-
cells. However, its function in adult α-cells is unknown. The orphan
nuclear receptor NR4A1 is important for β-cell mitochondrial function
and insulin secretion60. In the current study, we find that NR4A1 is
expressed in α-cells and β-cells in non-diabetic islets, and it is upre-
gulated in β-cells of T2D subjects, perhaps as a compensatory
mechanism for insulin resistance in T2D.This result is in contrastwith a
previous report indicating that NR4A1 expression assessed by qPCR is
not altered in whole islets from T2D subjects61. The different methods
employed for gene expression analysis and the use of whole islets
(qPCR) vs. single cells (scRNA-seq) could explain the difference in the
results. B-cell translocation gene 2 (BTG2) is upregulated by high

glucose and induces apoptosis inβ-cells62. However, its role inα-cells is
unknown. Hereweobserve that BTG2 expression is enhanced in β-cells
of T2D islets perhaps suggesting involvement in the β-cell death pro-
cess that occurs in T2D63. SLC30A8 encodes the Solute Carrier Family
30 (Zinc Transporter), Member 8, an islet zinc transporter restricted to
α- and β-cellswhich is responsible for zinc accumulation into secretory
granules64. Importantly, loss-of-functionmutations in SLC30A8protect
against T2D, suggesting SLC30A8 inhibition as a therapeutic strategy
in T2D prevention65. In our studies, we observe that SLC30A8 expres-
sion is present in both non-diabeticmatureα- andβ-cells and increases
in T2D β-cells. PCSK2 encodes the pre-pro-glucagon processing
enzyme. In the current studies, PCSK2 expression is higher in α-cells
than β-cells, as expected, and is increased in T2D islet cells. Elevated
PCSK2 protein is present in T2D β-cells but it does not contribute to
impaired proinsulin processing66. Therefore, PCSK2 appears to be
required for transition from β-cells to α-cells but its role in human β-
cells is not completely known. ALDH1A1 is mostly expressed in α-cells
as shown in a previous report58 and in the current study. Although the
ALDH1A3 isoform has been implicated in β-cell dedifferentiation in
T2D21,67,68, the involvement of the α-cell ALDH1A1 isoform in β-cell
dedifferentiation inT2D has not been previously reported.We observe
that ALDH1A1 expression increases in all the β-cell subtypes in T2D and
negatively correlates with INS expression. These results clearly posi-
tion ALDH1A1 as a mediator of - or participant in - β- to α-cell con-
version and reinforce the idea that this family of enzymesmay serve as
therapeutic targets for diabetes treatment68. Collectively, this gene set
merits further exploration in α- and β-cells in human and animal
models of T2D-associated islet dysfunction.

One additional common gene in the trajectory fromβ- toα-cells is
SMOC1. Gene expression network analysis identified SMOC1 as a gene
encoding a secreted protein that could potentially affect islet function
in obese T2Dmouse islets29. However, whether this is the case remains
unexplored. In our dataset, SMOC1 appears as aα-cell-exclusivegene in
non-diabetic adult human islets. Importantly, SMOC1 protein and
mRNA expression are present in β-cells in T2D islets suggesting a
potential role in β-cell dedifferentiation. Indeed, forced expression of
SMOC1 in humanβ-cells, or exogenously addedSMOC1protein to non-
diabetic adult human islets, results in detrimental effects on INS
expression, GSIS and β-cell identity. SMOC1 is expressed in the early
mouse embryo in the endodermal basement membrane and is essen-
tial for ocular and limb development in both humans and mice27.
SMOC1 mRNA is expressed in mesenchymal as well as epithelial cells
deriving from all three germ layers during mouse development, find-
ings that underscore SMOC1’s multi-functional roles in mouse
embryogenesis69. However, the role of SMOC1 in pancreas develop-
ment and islet endocrine cell specification is unknown and warrants
further studies.

Ca2+ participates in the assembly, stability, and storage of the
insulin hexamer in the insulin granules. Ca2+ influx is responsible for
the fusion of insulin-containing vesicles to the plasmamembrane in β-
cells to release insulin into the bloodstream70,71. SMOC1 impairs
transmembrane Ca2+ influx in keratinocytes by decreasing the ampli-
tude of Ca2+ peak response25. Hereweobserve that exogenously added
SMOC1, at doses similar to the ones in the circulation of non-diabetic
andT2D subjects, remarkably impairs Ca2+flux, reduces insulin granule
maturation and reduces GSIS. Thus, it seems likely that
SMOC1 secreted from α- or β-cells in T2D islets could impair Ca2+ entry
into β-cells decreasing insulin release. In addition, SMOC1 reduces
cAMP formation induced by the GLP1R agonist, exendin-4. This might
reflect the decrease in GLP1R expression observed in cells with forced
expression of SMOC1 and could have potential therapeutic implica-
tions for the treatment of T2D subjects already under GLP1R agonist
therapy. Alternative mechanisms involved in SMOC1-induced β-cell
dysfunction could also account for the observed effects, including a
potential undiscovered receptor for SMOC1 or the interaction of
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SMOC1 with proteins altering their receptor signaling23,24. Indeed,
SMOC1 modulates the signaling of BMP-2, an inducer of β-cell dys-
function that is upregulated in T2D23,72. Therefore, impairing SMOC1
action in β-cells may be of relevance for therapeutic approaches in
T2D. On the other hand, SMOC1 suppresses hepatic glucose produc-
tion and administration of SMOC1-FC increases insulin sensitivity in

preclinical models of T2D28, suggesting directionally opposite effects
on insulin secretion and insulin action. Unraveling these possibilities
and others will be the focus of future studies. In the interim, however,
these studies highlight the power of common gene analysis ofmultiple
trajectory inferences to identify T2D genes such as SMOC1 that could
be of therapeutic value for treating the disease.
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In summary, these studies identify five α-cell subtypes and their
potential transcriptional status. They also provide evidence of the
potential transcriptional transition among α- and β-cell subtypes
depending on the pathophysiological context. Finally, they highlight
the utility of scRNA-seq and snRNA-seq transcriptomic platforms to
find T2D-related genes such as SMOC1 which could be a therapeutic
target for treating diabetes.

Methods
Human islet samples
Adult human pancreata and pancreatic islets from brain-dead donors
were provided by Prodo Laboratories (Aliso Viejo, CA) or the City of
Hope Human Islet Isolation Center according to the standard proce-
dure and used for the studies described here (Supplementary
Data 1)17,73. Briefly, islets were harvested frompancreata fromdeceased
organ donors without any identifying information and with informed
consent properly and legally secured, and Western Institutional
Review Board (WIRB) approval. Transcriptomics analysis of some of
these samples has been published17. In addition, we mined the raw
FASTQ data from the Human Pancreas Analysis Program (HPAP)
database, consortia under the Human Islet Research Network (HIRN)
and performed analysis of 13 non-diabetic islet and 13 T2D islet scRNA-
sequencing datasets through SFTP (secure file transfer protocol)
(details below)40.

Human islet cells and nuclei processing
Human islets from threedifferent cadaveric donors (3000 IEQs/donor)
were used in these studies17. Briefly, islet cells were dissociated using
pre-warmed Accutase (cat# 25–058-CL, Corning) and half of the cells
were resuspended in binding buffer (cat# 130–090-101, Miltenyi Bio-
tec) with dead cell removal beads and applied onto the dead cell
removal column (cat # 130–042-401, Miltenyi Biotec), which was
attached to the MACS separator. Then the cell concentration was
measured with the Countess-3 Automated Cell Counter (Thermo-
Fisher). The other half of the cells was homogenized with a pestle, and
their nuclei were isolated with theMinute™ single nucleus isolation kit
for tissue/cells (Cat# SN-047, Invent Biotechnologies, INC) and the
nuclei concentration measured with the Countess-3 Automated Cell
Counter. After this, nuclei samples were processed in an identical way
as to the cell samples.

Single-cell and single-nucleus RNA sequencing, alignment, and
matrix generation
Description of themethods used to obtain cells and nuclei samples for
these studies has been already published17. Briefly, cells and nuclei
were prepared according to the 10X Genomics Single Cell 3’ V3.1
Reagent Kit protocol, processed with 10X Genomic Chromium Con-
troller for partitioning and barcoding, followed by the cDNA library
generation. Samples were sequenced by NovaSeq 6000 System (Illu-
mina) at the Weill Cornell Medicine, Genomics and Epigenomics Core.

FASTQ files were aligned with Cell Ranger V.6.1.1 with Single Cell 3’ V3
chemistry on the 10X Cloud’s pipeline. In the analysis, we included the
intronic reads only in the snRNA-seq data with GRCh38-2020-A library.
After the 10Xh5 formatfileswere generated, datawereanalyzedon the
R platform with Seurat package V.4.3.074.

Quality control, integration, and projection
Quality control parameters have been recently described for these
studies17. Briefly, ambient mRNA adjustment was performed using
SoupX (20% contamination estimation)75. Cells with less than a 500
gene count, less than 250 gene varieties, less than 0.8 log10 genes per
UMI, and a greater than 20% mitochondrial gene ratio were filtered
out. Doublets were algorithmically removed with the Doubltfinder
package76. After data quality control, scRNA-seq and snRNA-seq data
were integrated using Seurat’s SCTransform function without allocat-
ing method parameters, and cell type identity was assigned according
to the normalized gene expression level, referencing the canonical
pancreatic cell type genes17,73,77.

Data processing with α-cell cluster
We previously integrated three donor-matched datasets (single-cell
RNA and single-nucleus RNA sequencing)17 and the identified α cell
cluster (GCGhigh,CRYBA2high, PCSK2high, TTRhigh) was subsequently subset
into separate data. We next reassigned cell type identities back to the
original numbering generated by the Louvain algorithm with a 0.8
resolution in Seurat’s FindNeighbors() function. This yielded ten dis-
tinct clusters; however, five of them were composed of fewer than 10
cells. As such, we grouped these small clusters together with their
nearest neighbors. Regarding differentially expressed genes (DEG), if
some of the genes appear in two clusters, we substituted the next best
DEG to avoid duplicated charts for different subclusters.

Reference-based projection
We annotated cell types in scRNA- and snRNA-seq of human islets
in vitro according to the normalized gene expression level, referencing
the canonical pancreatic cell type genes17. In the current study, we
refined the cell types with five α- and three β-cell subpopulations. We
subsequently established these updated annotations as a reference
and projected all datasets analyzed in this study, including HPAP-HIRN
(see below) adult non-diabetic and T2D human islet scRNA-seq data,
onto this reference40. We also performed sample origin analysis of the
scRNA-seq only data of human islets in vitro17 using identical quality
control and clustering algorithm with the same hyperparameters.

Pathway analysis
Single-cell level gene set enrichment analysis was performed to define
the molecular and cellular processes using the escape package, which
accesses the entire C2 and C5 library from Molecular Signature Data-
base (v.7.0)35,36. The enrichment score for the entire C2 (6495 path-
ways) and C5 (15,937 pathways) were calculated for each cell. Then we

Fig. 8 | SMOC1 protein reduces GSIS, INS expression, Ca2+
flux, intracellular

cAMP formation and insulin granule maturation. a Circulating levels of SMOC1
in non-diabetic (n = 5) and T2D subjects (n = 4). b Effect of rhSMOC1 on insulin
secretion in human islets from adult non-diabetic donors (ratio of insulin secretion
at 16mMand 5.5mMper insulin content) (n = 3different human islet preparations).
c Insulin secretion (ratio of insulin secretion at 20mM and 2mM corrected by
insulin content) (left) and INS expression by qPCR (right) in EndoC-βH1 cells (n = 8
experiments) treated with different doses of rhSMOC1 protein. d Measurement of
calcium flux in EndoC-βH1 cells transduced with adenovirus-GCaMP5, treated with
1000ng/ml rhSMOC1 for 48h and exposed to 2 and 20mM glucose in a perfusion
system (n = 3, representative tracking from a single experiment is shown). Quan-
titation of area under the curve (AUC) of 30-40 cells in these experiments (right).
e Intracellular cAMP levels in EndoC-βH1 cells treated with 1000ng/ml rhSMOC1

and exposed to 2 and 20mMglucose or 10 nM exendin-4 for 1 h (n = 4 independent
replicates). f Electron microscopy of human islet cells treated with 1000ng/ml
rhSMOC1 for 48h. Representative images focus on human β-cells showing mature
insulin granules (MIG) and immature insulingranules (IIG);maturegranules contain
cores of condensed insulin with angular sides and large surrounding halos.
Immature granules are situated mainly near the trans-Golgi network and have no
halos. Quantitation of the number of MIG and IIG in n = 3 independent biological
replicates per condition (right).g Schematic representation of the effects of SMOC1
in human β-cells. Created in BioRender. Garcia-Ocana, A. (2025) https://BioRender.
com/nizfh1l. In all the panels, bars indicate mean+ SEM, *p <0.05, **p <0.01,
***p <0.001 and ****p <0.0001 or as indicated in the figure, using two-tailed Stu-
dent’s t-test.
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used getSignificance() function from escape package to rank the dif-
ferentially enriched pathways among subpopulations using the
ANOVA test for fit parameter due to the multiple groups. Additionally,
we selected relevant pathways such as α-cell, glucagon, metabolites,
andmetabolismwith qualifying statistics for analysis and visualization.

To obtain more updated pathway enrichment score for β-cell
transcription factors and top expressed genes, we use the set of genes
identified by Gurp et al.78 and measured the module score from
Seurat’s AddModuleScore function on default hyperparameters
(nbin=24, ctrl=100, k=FALSE, assay=NULL, seed=1, search=FALSE,
data = ”data.) For GURP_BETA_TOPMARKERS_MODULE, we added INS,
IAPP, G6PC2, ADCYAP1, ERO1B, DLK1, NPTX2, GSN, INS-IGF2, HADHwhile
for GURP_BETA_TRANSCRIPTION_FACTORS_MODULE, we added PDX-
1, GLIS3, NKX6.1, MAFA, MAFB, NR3C1, MLXIPL, ZNF395, SMAD9, and
ZNF385D78.

For the stress module score, we used keyword search method on
pathway enrichment score (UCell) using cellular stress, ER stress or
stress-induced. Subsequently, we obtained single module score by
rowMeans function from each pathway enrichment score matrix.

RNA velocity and PAGA analysis
RNA velocity analysis was conducted with integrated sample count
tables generated by Matrix package. Velocyto was used to generate a
Loom file referencing GRCh38 human genome79. UMAP coordinates,
and α- and β-cell subtype labels were then extracted from the Seurat
data tomaintain identical UMAP location and cell type annotations. An
AnnData file was created from the data using scanpy Package80 and
spliced/un-spliced counts were measured by scVelo package with
proportions() function39. A stochasticmodel hyperparameterwas used
to estimate velocity, whichwasvisualizedwith velocity streamline ofα-
and β-cell sub-clusters transitions. The scVelo algorithm was used to
generate PAGA trajectories based on connectivity data39,80 with the
original UMAP coordinates extracted from the Seurat data object. RNA
velocity and PAGA analysis were also performed in the scRNA-seq data
only of human islets from non-diabetic donors17 following the same
approach as with the integrated sample.

RNA velocity confidence scores were derived from the inte-
grated scRNA-seq and snRNA-seq or only the single-cell RNA
sequencing data using scVelo’s framework, which computes a con-
fidence metric based on the similarity between a cell’s RNA velocity
vector and those of its local neighborhood. In brief, for each cell, the
velocity confidence score represents the degree of consistency
of its inferred future transcriptional state with that of its nearest
neighbors, with higher scores indicating more robust and reliable
predictions. Boxplot was generated using the Seaborn and Mat-
plotlib library in Python to visually compare the distribution of
velocity confidence scores between the “scRNA” and “integrated”
groups.

Gene commonality and splicing analysis
We extracted UMAP coordinates and cell type annotation from the
Seurat data frame, then transformed it to the Monocle 3 data object.
To calculate the pseudo-temporal gene expression association, we
assigned the base according to the PAGA result, then subset the
relevant clusters, and calculated the genes with high pseudo-
temporal association with graph_test() function. Next, we defined
the genes which share the common transitional direction. Subse-
quently, we obtained spliced/unspliced counts of genes from
Anndata data object that contains RNA velocity results and calcu-
lated the regression by assigning unspliced count on x-axis, spliced
count on y-axis.

To determine the impact of the common genes SMOC1, PLCE1,
PAPPA2, ZNF331, ALDH1A1, SLC30A8, BTG2, TM4SF4, NR4A1 and PCSK2
onα-cell differentiation scores, we separatedα-cells into gene positive
and gene negative cells, calculated enrichment scores for GOBP

pathway of pancreatic α-cell differentiation and used ridge plots for
visualization. Gene positive cells refer to the non-zero normalized
expression level.

Analysis of non-diabetic and T2D donor islet scRNA-seq data
from the Human Pancreas Analysis Program (HPAP) database
To evaluate α-β cell plasticity changes in T2D, we processed the pub-
licly available scRNA-seq data from the Human Pancreas Analysis
Program (HPAP) database (RRID:SCR_016202, https://hpap.pmacs.
upenn.edu/) consortia under the Human Islet Research Network
(HIRN) (RRID:SCR_014393)40 obtained from islets of 13 adult non-
diabetic and 13 adult T2D cadaveric donors using CellRanger (V7.1.0)
on the 10X cloud platform, referencing GRCh38-2020-A tran-
scriptome. Monocle 3 pseudotime plot for HIRN-HPAP data was also
generated by assigning the root cells according to the PAGA results:
the AB cluster for the human islets from non-diabetic donors and the
β1 cluster for the human islets from T2D donors.

Single nucleus multi-omics of non-diabetic human islets
Four snRNA and snATAC raw sequencing datasets from adult human
islets were downloaded from the Gene Expression Omnibus (GEO;
accession code GSE1996363, samples GSM597968, GSM597969,
GSM5979680, GSM5979681, GSM7096627, GSM7096628, GSM7096629,
and GSM7096630) as part of Augsornworawat et al.‘s study34. Data were
processed using the cellranger-arc-2.0.2 pipeline with the GRCh38-2020-
A-2.0.0 reference genome. After generating the count matrices and peak
files, datasets were integrated and analyzed using Seurat (version 5.2.0)
and Signac (version 1.14.0), applying quality control and integration
(weighted nearest neighbor) parameters consistentwith those used in the
original publication.

Western blot of human islets and SMOC1 immunolabeling of
human pancreas
Human islet protein extracts were analyzed by Western blotting with
antibodies against SMOC1 (Abcam, Cat# ab313569, dilution:1:1000) and
actin (Origene, Rockville, MD, Cat#AB0145-200, dilution:1:1000)80.
Human pancreas specimens were fixed for 24h at 4 °C in 4% paraf-
ormaldehyde and then washed with PBS and placed in 70% ethanol until
paraffin embedding and sectioned, and the presence of SMOC1 in islet
cells was detected by immunolabeling with antibodies against SMOC1
(Abcam, Cat# ab313569, dilution:1:1000), C-peptide (DSHB, CAT#GN-
ID4, dilution:1:1000) and glucagon (Abcam, Cat# ab10988, dilu-
tion:1:1000) using a Zeiss confocal microscope (Zeiss LSM900) and
image data were analyzed by ZEN3.1 (blue edition)81.

Enhanced SMOC1 expression in human islet cells and EndoC-
βH1 cells
Human islets (Supplementary Data 1) were dispersed into individual
cells by Accutase (Corning, Cat# 25-058-CI) for 10minutes at 37 °C.
During this digestion, the islets were dispersed by gentle pipetting up
and downevery 5minutes for 10 seconds. Single cells were transduced
in aminimum volume of 0.1ml RPMI 1640 supplemented with 2% FBS,
with adenoviruses expressing CMV-GFP (Adv.GFP, Cat# AD-GFP) or
SMOC1-GFP (Adv.SMOC1, Cat# ADV-223763) (100 MOI) (Vector Bio-
labs). After 1 h incubation at 37 °C, islet cells were washed with RPMI
1640 containing 5.5mmol/L glucose and 1% penicillin/streptomycin
(Thermo Fisher Scientific, Cat# 15140122) with 10% FBS (Millipore-
Sigma, Cat# F4135-500ML) and placed in 24-well AggreWell 400 plates
(STEMCELL Technologies, Cat#34415) with centrifugal-forced-
aggregation. EndoC-βH1 cells (Human Cell Design, France) were cul-
tured in DMEM low glucose supplemented with 2% bovine serum
albumin fraction V (Sigma), 50 µM 2-mercaptoethanol, 10mM nicoti-
namide (Sigma), 5.5 µg/mL transferrin (Roche Diagnostics), 6.7 ng/mL
selenite (Sigma)82 and transduced with Adv.SMOC1, Adv.GFP (200
MOI) or transfected with a plasmid containing hFOXO1 cDNA
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(Addgene, cat# 17551). Cells were cultured for 48 h and harvested for
further studies.

SMOC1 levels in the conditionedmedium and in serum from non-
diabetic and T2D subjects (City of Hope, Duarte, CA, and Medix Bio-
chemica, Espoo, Finland) (Supplementary Data 5) were measured with
SMOC1 ELISA from BIOMATIC (Cat# EKC35640-96T).

GSIS in human islets and EndoC-βH1 cells
Insulin release was measured in triplicate from human islets or EndoC-
βH1 cells transduced with Adv.SMOC1, Adv.GFP or treated either with
vehicle or recombinant human SMOC1 protein (R&D systems, Cat#
6074-SM-050) for 48 h80. Briefly, islets or EndoC-βH1 cells were pre-
incubated in Krebs-Ringer bicarbonate buffer supplemented with
10mMHEPES, 1% BSA, and 2.8mM glucose for 1 h at 37 °C in a 5% CO2

incubator. Afterwashing oncewith the same solution, groupsof 15 islet
equivalents (IEQs) per condition were incubated in fresh Krebs-Ringer
bicarbonate buffer plus 1% BSA and either normal glucose (human
islets at 5.5mM and EndoC-βH1 cells at 2.8mM) or high glucose
(human islets at 16.7mM and EndoC-βH1 cells at 20mM) for 30min.
Buffer was removed and frozen at −20 °C for insulin measurement by
insulin ELISA (Mercodia, Cat# 10-1113-01). Islets and cells were then
incubated with acid ethanol for insulin extraction. Insulin values are
normalized to insulin content.

qPCR in human islets and EndoC-βH1 cells and calculation
of scores
RNAwas isolated fromhuman islets andEndoC-βH1 cells andqPCRwas
performed76. Briefly, total RNA was extracted using the RNeasy Micro
or Mini Kits (Qiagen cat# 74004 and 74104). cDNA synthesis was
performed using 5X All-in-One RT Plus Mastermix (Lamda Biotech,
Cat# G209). Gene expression was analyzed by real-time PCR per-
formed using SYBR Green qPCR Master Mix (MedChemExpress, Cat#
HY-K0523) on an ABI 7500 System. CYPA was used as the reference
gene to normalize the gene expression. The experimental Ct was cal-
culated using the algorithm enhancements provided by the equip-
ment. Oligonucleotide primers used are shown in
(Supplementary Data 6).

Combined score of T2D α-like cells and β-like cells
The gene sets that define T2D β-like-cells include RFX6, RFX7, FOXO1,
PPARg, PPARa, RB1, POU5F1, NANOG, andMYCL41. The T2D α-like genes
include IRX2, ZNHIT1, ZFPL1, PAX6, and DRAP141. As specific weights for
each gene were not provided in the reference, we assigned a weight of
1 to all genes. The combined score for the T2D likelihood was calcu-

lated using the following formula: Combined Score =
Pn

i = 1
ðEi �WiÞ
n where

Ei represents the normalized expression of each gene, Wi is the weight
assigned to each gene (set to 1 for all genes), and n is the total number
of genes. This approach assumes that each gene contributes equally to
the induction of T2D in α- and β-cells. This equation calculates the
average expression level of these genes across all conditions. Toobtain
the combined expression level, sum up the expression levels of each
gene across all conditions and divide by the total number of
conditions.

Ca2+
flux and intracellular cAMP measurements

EndoC-βH1 cells were plated at a uniform density on glass-bottom
dishes (MatTek, Cat# P35G-1.0-14-C) and transduced with Ad-
GCaMP5G, generated with the pCMV-GCaMP5G plasmid
(Addgene, Cat# 31788), at an MOI of 100. After 24 h, cells were
treated with or without soluble human SMOC1 (R&D Systems,
Cat# 6074-SM-050) for 48 h. For calcium flux imaging, cells were
transferred to an in-house recording chamber with Krebs-Ringer
bicarbonate (KRB) buffer at 37 °C and imaged using a Zeiss
AxioZoom.V16 microscope (Zeiss, Germany) at 20x magnification.

Glucose stimulation was performed with 2mM glucose for
3 minutes followed by 20mM glucose for 7minutes to elicit cal-
cium responses. Image sequences were analyzed using FIJI soft-
ware for cell detection, background subtraction, and region of
interest (ROI) intensity analysis. Fluorescence intensity (F) was
normalized to the baseline intensity (F0) at the start of recording,
and results were expressed as F/F0. The area under the curve
(AUC) of the F/F0 vs. time curve was calculated to quantify the
cumulative calcium response under different experimental con-
ditions, allowing for a comparison of SMOC1 treatment effects on
β-cell calcium dynamics.

For the intracellular cAMPmeasurements, 4 × 10⁵ EndoC-βH1 cells
were washed with ice-cold PBS and extracted with 0.2ml of 0.1M HCl.
Then, cell extracts were centrifuged, and supernatants collected.
Intracellular cAMP levels were measured using a direct cAMP ELISA kit
(Enzo Life Sciences, Cat# ADI-901-066A) following the manufacturer’s
instructions. Protein concentrations in the same samples were deter-
mined using the Bradford protein assay. Data were normalized to the
respective protein content.

Electron microscopy and quantitation of mature and immature
insulin granules
Freshhuman isletswere treatedwith orwithout soluble human SMOC1
peptide at a concentration of 1000ng/mL for 48 h. The islets were
fixed with 2.5% glutaraldehyde, 4% paraformaldehyde in 0.15M Caco-
dylate buffer (Na(CH3)2AsO2 ·3H2O), pH7.4, at 4 °C. Standard sample
preparation for TEMwas followed including post-fixationwith osmium
tetroxide, serial dehydration with ethanol, and embedment in
Eponate83. Ultra-thin sections (70 nm thick) were acquired by ultra-
microtomy, post-stained, and examined on an FEI Tecnai 12 trans-
mission electron microscope equipped with a Gatan OneView CMOS
camera. Mature and immature insulin granules were quantified per
total cytoplasmic area from more than 20 electron micrographs per
group (n= 3 biological replicates, >1.0mm² total cytoplasmic area).

Statistical analysis
Data are presented as means ± SE in bar graphs, violin plots, scatter-
plots, and text. Statistical significance analysis was performed using
Wilcoxon rank-sum test or Student’s t test for comparison between
groups as indicated in the figure legends. P < 0.05 was considered
statistically significant. The simplified asterisk statistical significance
annotation followed conventional criteria of 0.05, 0.01, 0.001, and
0.0001 for increment number of asterisks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw sequencing reads for the scRNA-seq and snRNA-seq data gen-
erated from isolated human islets for this study are compiled and
available from NCBI under the GEO accession code: GSE217837. The
publicly available multiome data of snRNA-seq/snATAC-seq datasets
on human islets that were used in this manuscript are from Gene
Expression Omnibus (GEO; accession code GSE1996363 [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199636], samples
GSM5979678 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSM5979678], GSM5979679 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSM5979679], GSM5979680 [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSM5979680], GSM5979681
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5979681],
GSM7096627 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSM7096627], GSM7096628 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSM7096628], GSM7096629 [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSM7096629], and
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GSM7096630 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSM7096630]) as part of Augsornworawat et al.‘s study34. Raw FASTQ
data from the Human Pancreas Analysis Program (HPAP) database,
consortia under the Human Islet Research Network (HIRN) were
obtained from https://hpap.pmacs.upenn.edu/ with provided bash
script from HIRN-HPAP website. All single cell RNA sequencing data
were aligned with CellRanger 8.0 or higher with GRCh-38-2020A
reference genome. Source data are provided with this paper.

Code availability
R/Shell/Python code for data handling and analysis for themain data is
publicly available from Github repository (https://github.com/
randystyle21/scRNA-snRNA-Marker/blob/main/README.md). Any
novel analysis of data in this study is published separately in https://
github.com/randystyle21/Alpha_cell_SMOC1.
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