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Photoinduced non-reciprocal magnetism

Ryo Hanai1 , Daiki Ootsuki 2 & Rina Tazai 3

Out of equilibrium, the action-reaction symmetry of interactions is often
broken, leading to the emergence of various collective phenomena with no
equilibrium counterparts. Although ubiquitous in classical active systems,
implementing such non-reciprocal interactions in solid-state systems has
remained challenging, as known quantum schemes require precise single-site
control. Here, we propose a dissipation-engineering protocol that induces
non-reciprocal interactions in solid-state platformswith light, whichwe expect
to be achievable with state-of-the-art experimental techniques. Focusing on
magnetic metals, we show microscopically that a light injection that intro-
duces a decay channel to a virtually excited state gives rise to non-reciprocal
interactions between localized spins, resulting in chase-and-runaway dynam-
ics. Applying our scheme to layered ferromagnets, we show that a non-
reciprocal phase transition to a many-body time-dependent chiral phase
occurs. Our work paves the way to bring solid-state systems to the realm of
non-reciprocal science, providing yet another possibility to control quantum
matter with light.

The free energy minimization principle for equilibrium systems states
that all interactions between constituents must obey action-reaction
symmetry. However, this constraint is no longer present once the
system is driven out of equilibrium1,2. Such non-reciprocal interactions
are in fact ubiquitous in Nature: the brain is composed of inhibitory
and excitatory neurons that interact in an asymmetric manner3–6; the
predator chases the prey and the prey runs away because of their
asymmetry in the interaction; colloids immersed in a chemically/
optically active media exhibit non-reciprocal forces that give rise to
chase-and-run dynamics7–10. Recent studies revealed that non-
reciprocal interactions fundamentally affect the collective properties
of many-body systems11–26. A prominent example is the emergence of
non-reciprocal phase transitions15–25,27,28, where a time-dependent
phase exhibiting a collective and persistent chase-and-run motion
of macroscopic quantities arises. Its critical point is characterized by
the coalescence of a collective mode to the Nambu-Goldstone
mode15,17,20–23,25 – rather than mere degeneracy as in the conventional
cases – which is strictly forbidden in equilibrium.

Non-reciprocal interactions are not restricted to the classical
systems mentioned above. Quantum systems may also exhibit non-
reciprocity28–30 by carefully tailoring dissipation microscopically31,32.

Indeed, such non-reciprocity has been implemented in synthetic
quantum systems such as cold atoms33, optomechanics34, and circuit
QED35. However, these schemes require fine control of dissipation and
gauge flux at a single-site/plaquette level, imposing a challenge to
realize non-reciprocal interactions in solid-state systems.

In this work, we propose a novel dissipation-engineering scheme
to realize non-reciprocal interactions in solid-state systems with light
(Fig. 1(a),(b)). Specifically, we show that the Ruderman-Kittel-Kasuya-
Yosida (RKKY)36–38 interaction between localized spins in a magnetic
metal can be made non-reciprocal by irradiating the sample at a fre-
quency thatopens adecay channel fromthedoubly occupied state of a
selected subset of spins,while leaving the restoff-resonant. Theoptical
drive continuously removes these activated spins from the system—a
loss that is compensated by the conduction band. Crucially, we point
out that this process ismost efficientwhen the activated spins reside in
the energetically favored configuration, thereby generating a torque
that pushes them away from the ground-state configuration. Since the
inactive spins experience no such torque (Fig. 1b), the resulting
exchange becomes intrinsically non-reciprocal: spin A attempts to
align with spin B, but spin B attempts to anti-align with spin A, leading
to a chase-and-run dynamics. We estimate the injection power needed
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for their emergence iswithin reachof the current techniques. Applying
this scheme to a layered ferromagnet, we find that the light-induced
interlayer non-reciprocal interaction triggers a non-reciprocal phase
transition15 to a time-dependent chiral phase in which the magnetiza-
tion of the two layers perpetually chase and flee one another (Fig. 1c).
The origin of the non-reciprocity of our proposal is the imbalance in
the amount of energy injected into each spin, conceptually akin to
those arising in soft active matter8–10,39, yet distinct from earlier
quantum schemes that use engineered gauge fluxes to control inter-
ference effects31,32.

We expect our scheme to be applicable to awide class of quantum
materials such as Mott insulating phases in strongly correlated
electrons40,41, multi-band superconductivity42,43, and optical phonon-
mediated superconductivity that arises e.g., in SrTiO3

44,45. This broad
applicability is anticipated because our proposal does not rely on any
properties specific to magnetic metals: as long as the interaction is
mediated via a virtual high-energy state, our scheme should
equally work.

Results
The dissipation engineering scheme
To illustrate our idea of creating non-reciprocal interactions in solid-
state platforms, we first briefly review how such non-reciprocal inter-
actions arise in soft active systems, which inspired this work. Consider a
metal colloidal system under light irradiation as a paradigmatic
example9,10 (Fig. 2). When light reaches metal colloid B, part of it is
absorbed while the rest is reflected. The reflected light then reaches
metal colloid A, exerting an optical force FAB on it. Conversely, a similar
optical force FBA is generated when the light incident on colloid A is
partially absorbed and partially reflected toward colloid B. Crucially, in
this situation,Newton’s third law is not necessarily satisfied (FAB≠− FBA).
This can be seen clearly by considering the extreme case where one
colloid, say A, is a perfect absorber, leading to FBA =0while FAB ≠0. This
has been verified experimentally, where the “chase-and-runaway”
dynamics of the colloids are observed9,10.

Fundamentally, the interaction is non-reciprocal because (a) the
energy conservation law is violated for the degrees of freedom of
interest, and (b) a mediating field facilitates the interaction. Condition
(a) indicates that there is an external energy source that is con-
tinuously injected into the relevant system, and condition (b) enables
the system to transform the absorbed energy into mechanical force,
such that a net force is exerted on the center of mass of the two
colloids only during the interaction process – an effect that is the very
hallmark of non-reciprocal interactions. Notably, many of the known
examples of non-reciprocal interactions in soft active systems are
induced by such a mediating field: phoretic active matter8,46 (where
two colloids interact via the hydrodynamic interaction arising from the
coupling to a chemically reactive medium), living matter39,47 (the self-
propulsion or rotation of the agents affects the surrounding environ-
ments that affect the hydrodynamic interactions between the agents),
and quorum sensing48,49 (where cells interact by detecting and reacting
to the released chemicals) all satisfy the above conditions (a) and (b).
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(b) Light-induced non-reciprocal interaction
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Fig. 1 | Light control of magnetic interactions and magnetism via dissipation.
a In the absenceof light, the interactionbetween the local spins (thick blue arrow) is
reciprocal. The spins are driven towards the equilibrium configuration [alignment
in the ferromagnetic case illustrated here] through a magnetic friction called the
Gilbert damping (green arrows). b When the light is tuned to a frequency hν that
selectively activates the red spin [in the way illustrated in Fig. 3], the light-induced
torque (pink arrows) acts on the activated spin. As a result, the two spins effectively
interact non-reciprocally, where the active (inactive) spin tries to anti-align (align)
with the opponent’s spin. c Phase diagram of a layered ferromagnet under light
injection, determined by our meanfield description (Eq. (8)). Here, the two ferro-
magnetic layers (A and B) are separated by a non-magnetic metal and the laser is
injected to introduce active dissipation to the B layer at rate γB, making the

interlayer magnetic interactions non-reciprocal. When the light is off (γB = 0), the
magnetization of the two layers aligns for ferromagnetic interlayer interaction
jAB(=jBA) > 0 (blue region). As the light-induced dissipation is turned on γB > 0, the
system exhibits a phase transition to an antialigned configuration (red) at
γB ≃ αB∣gB∣ and a non-reciprocal phase transition to a time-dependent chiral phase
[where the two magnetizations exhibit many-body chase-and-runaway dynamics]
(cyan). [See text and Fig. 5 for further details.] We set the intralayer interaction and
Gilbert damping of the layer A (B) as jAA = 10meV(jBB = 5meV) and
αA = 0.1(αB = 2 × 10−3), respectively. The sd coupling strength for B is gB = − 10meV,
the filling n = 1, and the temperature is kBT = 9meV. The dashed lines are the phase
boundary at a lower temperature kBT = 5meV.
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Fig. 2 | Example of non-reciprocal interaction arising in soft active systems.
Here, two metal colloids are immersed under light irradiation. The light that
reaches the metal colloid A(B) is partly absorbed, and the rest is reflected. The
reflected light reaches themetal colloid B(A), giving rise to an optical force FBA(AB).
When the absorption/reflection properties of the two colloids are different, the
optical forces need not obey Newton’s third law FAB ≠ − FBA.
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In this paper, we propose to implement a solid-state analog of the
above scenario to realize non-reciprocal interactions between elec-
trons in a solid-state platform. The electrons in solid-state systems
often interact by exchanging bosonic excitations, such as phonons,
spin waves, and density waves, etc. Our idea is to inject light that
induces dissipation during this interaction process, satisfying the two
conditions (a) and (b) mentioned above and hence, gives rise to non-
reciprocal interaction.

In this paper, for concreteness, we consider magnetic metals50

(Fig. 3). These materials are composed of localized spins (responsible
for magnetic properties) and conduction electrons that are free to
move (responsible for metallic properties), which couple through the
spin-exchange coupling called the sd coupling51,52 (Fig. 3a). The sd
coupling arises through the exchange of electrons, where the con-
duction electrons tunnel to the localized orbital to virtually excite the
localized electron to a double-occupied state (see the “speech bubble”
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Fig. 3 | Dissipation engineering RKKY interactions in magnetic metals.
a Schematic description of magnetic metals. It is composed of localized spins (thick
blue arrows) and conduction electrons (yellow spheres with arrows attached). The
conduction electrons form a Fermi sea up to the Fermi energy εF. The localized
electrons are modeled as a spin degenerate localized orbital of bare energy εd with
an on-site Coulomb interaction U. The two types of electrons couple through a spin
exchange coupling called the sd coupling. Here, the sd spin exchange coupling arises
through the second-order process where the conduction electron tunnels into the
localized orbital to virtually excite to a double-occupied state and back, which
involves spin-flip (the bottom panel). Using the conduction electrons as amedium, a
magnetic interaction between the localized spins arises (the so-called RKKY inter-
action). [Note: there is another process where the localized electron first tunnels to

the conduction band and back.] As these perturbative processes lower the energy,
the ground state configuration is the state that activates these processes the most.
b Our dissipation-engineering scheme is to inject light at a frequency hν resonant
with the double-occupied state and a higher-level state (say, an unoccupied higher-
level f-orbital state) at the energy εf,B that quickly dissipates with rate Γf,B. Since the
decay occurs only when the localized-conduction electron exchange process acti-
vates (which lowers the energy), this process selectively destroys the energetically
favored states, giving rise to a light-induced torque (pink arrow in Fig. 1b) that applies
opposite to Gilbert damping (green arrows in Fig. 1(a),(b)). When this decay is turned
on only to spin B but not A, the light-induced torque is applied only to B spins and
hence a non-reciprocal interaction emerges. The lost electron is immediately
resupplied from the surrounding environment.
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in Fig. 3a). Even in the case where the localized spins do not directly
interact with each other, they may interact indirectly through this sd
coupling using the conduction electrons as the mediating field, giving
rise to magnetic interactions known as the RKKY interactions36–38.

We propose to dissipation engineer the RKKY interaction by
injecting light that has its energy hν tuned to selectively turn on the
tunneling from the double-occupied state to a higher-energy state that
quickly dissipates (Fig. 3b). This introduces a finite lifetime to the vir-
tual state, directly affecting the properties of the sd coupling and
hence the RKKY interaction. The lost electron is immediately resup-
plied from the conduction electrons so that localized electrons are
always singly occupied.

We show below from explicit microscopic calculations that this
light-induced dissipation gives rise to a torque (pink arrows in
Fig. 1b), which interestingly applies in the direction opposite to the
energetically favored configuration. This light-induced torque com-
petes with themagnetic friction called theGilbert damping53,54 (green
arrows) that relaxes the system to the ground state. When we choose
the frequency of the light hν in a way that it only resonates with a
portion of the spins (red spins in Fig. 1b), this light-induced torque
only applies to those activated spins, giving rise to non-reciprocal
interactions.

Why does our dissipation scheme give rise to torque that applies
in the opposite direction from the Gilbert damping? This can be
understood from the general picture we provide below. Our light-
injection scheme only dissipates the virtual state of the second-order
process illustrated in Fig. 3(b). Hence, the decay channel is turned on
only when this process is activated; the configuration that activates
the process more is the one that is likely to decay faster. Note cru-
cially that these second-order processes always lower the energy in
equilibrium because, according to the second-order perturbation
theory, the energy change due to this process is given by
ΔE = ∑m∣vi,m∣2/(Ei − Em) < 0, where Ei(m) is the energy of the initial
(intermediate) state of the unperturbed system and vi,m is the matrix
element between these states. (Note that Ei < Em.) For example, the sd
exchange coupling is antiferromagnetic because the above process
can only be activated when conduction and localized spins are
antialigned due to the Pauli-blocking effect. Similarly, the sign of
RKKY interactions is determined by which configuration the pertur-
bative processes activate the most frequently. Therefore, the ener-
getically favorable state is the state that experiences the strongest
decay. This results in dissipative interaction in the direction opposite
from the friction towards the ground state arising due to the cou-
pling with the surrounding environment, such as the substrate, bulk
phonons, etc. We remark that similar physics was discussed in Refs.
55,56 in the context of cold atomic systems, where they also
dissipation-engineered sign-reversal of (reciprocal) interactions, but
see also Methods for their crucial differences arising from the
absence of the surrounding environment.

Since the above scenario does not rely on features specific to
magnetic systems, we expect our scheme to be equally relevant to a
wide class of quantum materials40–45.

Quantum master equation
Our goal from here on is to develop a formalism that allows us to
describe the effective spin dynamics of the open quantum systemwith
dissipation induced by continuous light injection. In this work, we
consider magnetic metals modeled by the Anderson impurity
model50,57 (Fig. 3a), described by the Hamiltonian ĤA = Ĥ0 + Ĥcd ,

Ĥ0 =
X
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kσ ĉkσ +

X
a

X
σ =",#

εd,ad̂
y
σ,ad̂σ,a +Uad̂

y
",ad̂",ad̂

y
#,ad̂#,a

" #
,

ð1Þ

Ĥcd =
X
a,σ

vad̂
y
σ,aĉRaσ
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Here, conduction electrons aremodeled as free electrons,where ĉk,σ is
the fermionic annihilation operator of the conduction electrons with
spin σ = ↑, ↓ and momentum k and ĉr,σ =

P
ke

ik�r ĉk,σ is its Fourier
transform. εk is the kinetic energy. The conduction electrons are
assumed tobe large enough tobealways in thermal equilibrium,where
its distribution is given by the Fermi distribution function
f ðεk Þ= ½eðεk�εFÞ=ðkBTÞ + 1��1

(εF is the Fermi energy and kB is the Boltz-
mann constant) at low temperature kBT≪ εF. The localized electron at
site a is modeled as a spin-degenerate localized orbital of bare energy
εd,a; if both spin states are occupied, the configuration is penalized by
an on-site Coulomb energy Ua. va is the conduction-localized electron
mixing (c-d mixing), and Ra is the position of the localized electron.
The energy level of localized electrons εd,a sits below the Fermi energy
εF, but the double-occupied state εd,a + Ua is above it. As a result, the
localized electrons are singly occupied in the steady state. Below, we
consider systems with strong enough Coulomb repulsion Ua ≫ va that
justifies the perturbative treatment of the c-d mixing va (See
Supplemental Information (SI) Sec. III.C for a more precise condition).

As mentioned previously, we introduce a decay channel to loca-
lized electrons in the double-occupied state by injecting a laser that
couples this state to a higher-energy state that quickly relaxes (see
Fig. 3b). This dissipative process can be safely regarded as a Markov
process as long as the higher-energy state decays fast enough com-
pared to its re-population rate, which is true in the range of interest
(see Methods for details). Such Markovian open quantum systems are
generally described by the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) master equation58,59 (also called the Lindblad master equation;
see e.g., Ref. 60 and SI Sec. I for a brief review), given by (where ρ̂ is the
reduced system density operator),

∂t ρ̂= � i½ĤA, ρ̂�+
X
a, σ

κaD d̂σ,aP̂
a
"#

h i
ρ̂, ð3Þ

for our system. The dissipator D½L̂�ρ̂= L̂ρ̂L̂y � 1
2 fL̂

y
L̂, ρ̂g makes the time

evolution non-unitary. Here, P̂
a
"# is a projection operator onto the

double-occupied state at site a, turning on a decay channel at the rate
κa only when site a is double-occupied. We note that Eq. (3) can be
derived from a microscopic model that treats the time-dependent
laser drive and a higher unoccupied level explicitly, as done in SI Sec. V.

We wish to derive the localized spin dynamics in the presence of
light-induced dissipation κa > 0. In the equilibrium limit κa → 0, a
standard procedure to analyze the Anderson impurity model (Eq. (1)
and (2)) is to map the localized electrons in the fermionic picture to
localized spins, which is performed by projecting out the virtual
excited states that have fast oscillations50,52. This incorporates the
second-order process in terms of va illustrated in Fig. 3a). Here, we
perform the same procedure in spirit but employ it to theGKSLmaster
equation (3)61–66, see Methods and SI Sec. I-III for details. It yields,

∂t ρ̂= � i½Ĥsd, ρ̂�+
X
a

γaD
X
σ

d̂
y
σ,aĉRa ,σ

P̂
a
s

" #
+
X
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ρ̂:

ð4Þ
The first term on the right-hand side describes the coherent

dynamics that have an identical form to those found inequilibriumand
the second and the third are the light-induced dissipative terms. The sd

Hamiltonian51Ĥsd = � ð1=2ÞPagaP̂
a
s ½τ̂ðRaÞ � Ŝa�P̂

a
s describes the spin

exchange coupling between the conduction and localized spins,where

P̂
a
s is the projection operator to singly-occupied localized electron
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states at site a. Here, ðŜaÞi =
P

σ, σ0 d̂
y
σ,aðσiÞσσ 0 d̂σ 0 ,a is the localized spins,

σ = (σ1, σ2, σ3) are the Pauli matrices, τ̂ðRaÞ=
P

σ,σ 0 ðĉyRa ,σ 0σσ0 , σ ĉRa ,σ
Þ is

the conduction spin at position Ra, and ga ’ �jvaj2½ðεd,a + Ua �
εFÞ�1 + ðεF � εd,aÞ�1�<0 (where κa ≪ Ua is assumed) is the sd coupling
strength that is antiferromagnetic. (Note that εd,a < εF < εd,a + Ua.) As
usual, we have assumed that only the excitations near the Fermi sur-
face are responsible. We have also ignored the impurity potential of
conduction electrons, as they play a minor role.

The second term is the emergent correlated dissipation with the
rate γa ’ κajvaj2=ðεd,a +Ua � εFÞ2 that arises from the interplay
between the strong correlation effect and the light-induced decay.
(See also Methods.) This term induces dissipative tunneling of elec-
trons from the conduction band to the localized orbital when the
electron a is singly occupied. The third term describes the decay of
electrons from the double-occupied state at a much faster rate than
the correlated tunneling (κa≫ γa), driving the system immediately back
to the singly occupied state.

The emergent correlated dissipation (the second term in Eq. (4))
already captures the underlyingmechanismof the dissipation-induced
sign-reversal of interactions described in the previous section. This can
be seen from the localized spin dynamics that are derived from the
master equation (4),

_Sa = gahŜa × τ̂ðRaÞi � γanSa + γaτðRaÞ, ð5Þ

where hÔi= tr½ρ̂Ô� represents the expectation value, Sa = hŜai,
τðRaÞ= hτ̂ðRaÞi, and n is the filling of the conduction electron. The first
and second terms describe the coherent dynamics arising from sd
interaction and the light-induced decay of the dipole moment of the
localized spin, respectively. Here, the latter arises since the localized
electrons that carry the spins are continuously lost and resupplied,
which makes the (statistically averaged) spin dipole decay. The third
term is the emergent dissipative torque,whichdrives the localized spin
toward alignment with the conduction spins. This is the opposite of
what is expected from energetics, where the sd coupling is
antiferromagnetic ga < 0. We note that it was crucial for this light-
induced dissipator in Eq. (4) to have the form D½Pσ ôσ � instead ofP

σD½ôσ � for the dissipative torque to appear, generating quantum
entanglement between localized and conduction electrons that is
important for non-reciprocal interactions to emerge; see SI Sec. III.C
for details.

Landau-Lifshitz-Gilbert equationwith light-induced interactions
The remaining task to obtain the effective interaction between the
localized spins36–38 (i.e., the dissipation-engineered RKKY interaction)
is to integrate out the conduction electron degrees of freedom thatwe
regard as a (non-Markovian) bath. We perform this by mapping the
master equation (4) to a Keldysh action67 that allows us to utilize field-
theoretic approaches, taking into account non-adiabatic effects from
the Fermi statistics of the conduction electrons. Once the Keldysh
action is obtained, we integrate out the conduction electrons’ degrees
of freedom within the second-order perturbation in terms of sd cou-
pling ga and light-induced correlated decay rate γa under the gradient
approximation (i.e., Markov approximation plus a first-order non-
Markovian correction). We extract the localized spin dynamics in the
saddle-point approximation from the obtained reduced Keldysh
action consisting only of localized electrons’ degrees of freedom. We
detail the procedure in Methods and SI Sec. IV.

The obtained semiclassical localized spin dynamics are

_Sa =
X
bð≠aÞ

JabSa × Sb � αaSa × _Sa � γanSa �
X
bð≠aÞ

ΩabSb, ð6Þ

which is one of the main results of this work. We emphasize that all
terms, including the Gilbert damping term, are obtained micro-
scopically. Here, for simplicity, we have assumed that we are at low
temperature (kBT/εF ≪ 1) and omitted the non-local non-Markovian
(Gilbert-damping-like) terms68–70 arising from the dissipative part of
the spin wave propagator.

The first two terms on the right-hand side reproduce the con-
ventional the Landau-Lifshitz-Gilbert form53,54, while the last two terms
are terms generated through our controlled dissipation. The first term
gives rise to the coherent precession motion around the effective
magnetic field Beff = ∑b(≠a)Jab(Rab)Sb, where Jab(= Jba) is the RKKY
interaction strength givenby Jab(Rab) = −9π[(gagb)/εF]n2F(2kFRab) in the
case of parabolic dispersion εk = ℏ2k2/(2m) in three spatial dimensions,
where m is the conduction electron mass, kF =

ffiffiffiffiffiffiffiffiffiffiffiffi
2mεF

p
=ℏ is the Fermi

momentum, Rab = ∣Ra − Rb∣ is the inter-spin distance,
FðxÞ= ½�x cos x + sinx�=x4, and ℏ is the Dirac constant. The second
term, obtained as the first-order correction to the Markov
approximation70, is the Gilbert damping term describing the spins’
magnetic friction53,54. This drives the system toward the ground state
configuration when combined with the first term (green arrows in
Fig. 1). Here, αa is the Gilbert damping rate, which, in the parabolic
dispersion case, reads αa = ð9π2=2Þn2ðga=εFÞ2. The relaxation rate for
such a process is γabGil � αajJabj.

The light-induced dissipative interactions Ωab(Rab) = (γa/∣ga∣)
Jab(Rab) ≃ (κa/Ua)Jab(Rab)[≠Ωba] compete with this equilibration
dynamics (pink arrows in Fig. 1b). In addition to the unavoidable
decay with rate γa of the dipole moment described by the third
term, our light induces effective interactions that cannot be writ-
ten as the derivative of the energy function. (We briefly note that
we have ignored the contribution from self-dissipative interaction
Ωaa, which merely renormalizes the decay rate γa.) This dissipative
interaction drives the system towards a configuration opposite to
the ground state configuration. When κa ≳ αaUa, this light-induced
contribution (Ωab = κa/Ua ⋅ Jab) exceeds the Gilbert damping
(γabGil � αa Jab), causing the effective interaction to change its sign.
When this sign flip occurs to one of the spins but not the other,
non-reciprocal interactions with effective opposite signs emerge,
resulting in chase-and-runaway dynamics (the situation illustrated
in Fig. 1b).

InMethods,we estimate thepumpingpower P required to achieve
this regime as

P ≳αa
2πUaνm0ϵ0c

e2
Γf ,a ð7Þ

using a Lorentz oscillatormodel, where e is the electron charge,m0 is the
electronmass, ϵ0 is the vaccuumdielectric constant, and c is the speedof
light. Setting the typical valuesUa ~1 eV,αa ~10

−2, Γf,a ~10meV,hν ~1 eV, the
required pump power is P ≳ 108W/cm2. Not only is this pump power
achievable, e.g., with Raman lasers with pulse duration ofO(10ns)71 or
even with a steady-state resource72, but the heating effect should be
minimal for magnetic metals. For instance, in Ref. 73, it was reported
that the sample (GdFeCo) did not demagnetize until the pump
power exceeded P ~1010W/cm2 for the pulsed experiment, and in
Ref. 72, the ferromagnetic of the sample (NiFe) retained at least up to
P ~ 108W/cm2 (3.5 mW power on a 580 nm diameter spot). For
convenience for the readers, we have summarized the typical energy
scales in Fig. 4.

Non-reciprocal phase transitions
So far, we have shown from microscopic calculations that one can
generate non-reciprocal interactions with light. An intriguing
question is how such non-reciprocal interaction affects the col-
lective properties of many-body systems. In this work, at the out-
set, we consider a simple setup illustrated in Fig. 5a), where light is
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exposed to two layers of ferromagnets (that we label A and B) that
sandwich a non-magnetic metal. The light is tuned to activate only
layer B spins. In the absence of light, this is a type of MRAM device.
The itinerant electrons in the non-magnetic metal layer mediate
the interlayer RKKY interaction74–77. The light injection induces
additional torque to the B layer, applying oppositely from con-
ventional RKKY interaction, giving rise to non-reciprocal interlayer
interaction (Fig. 5a).

We wish to predict the magnetization dynamics of this system.
Unfortunately, deriving the governing equation of the collective
magnetization dynamics from a microscopic model is a highly non-
trivial task that requires a beyond-saddle-point approximation we
employed above (where a longitudinal relaxation is not
incorporated)78. Although deriving such a coarse-grained description
from microscopics is an important challenge, here, we take a phe-
nomenological approach below.

We make the following observations: (a) In the absence of light,
the magnetism ma=A,B should converge to the known equilibrium
value. (b) Since the relaxation towards this state occurs through the
Gilbert damping, their relaxation time for the a-layer is expected to be
τaGil =Oð½αa

P
b jab��1Þ, where jab(= jba) is the interaction strength Jab

multiplied by the number of spins a given spin couples to. (c) When
light is injected into the B layer, the light-induced torque ΩBA and a
decay with the rate γB is introduced to B layer magnetizationmB. This
brings us to propose the following phenomenological meanfield
description:

_mA =αA �kBTmA + 1�
hA
eff

� �2
3ðkBTÞ2

2
64

3
75hA

eff

2
64

3
75, ð8aÞ

_mB =αB �kBTmB + 1�
hB
eff

� �2
3ðkBTÞ2

2
64

3
75hB

eff

2
64

3
75� γBnmB �ΩBAmA, ð8bÞ

where ha
eff =

P
b=A, B jabmb is the effective field applied to ma and

ΩBA = (γB/∣gB∣)jAB is the light-induced torque. For simplicity, we have
assumed that the system is close enough to the disordered-ordered
transition point such that the Ginzburg-Landau expansion is justified
and the anisotropy is strong enough that z-component of the
magnetization vanishes mz

a =0. In the absence of light γB = 0, the
steady state _ma =0 reproduces the known result from the Weiss
theory. This is of the general form introduced in Ref. 15.

Figure 1c shows the phase diagramobtained by simulating Eq. (8).
In the absence of the light injection γB = 0, unsurprisingly, the mag-
netization orientation of the two layers alignsΔφ=φA−φB =0 (Fig. 5b),
where the orientation of the magnetism is defined by
ma = jmajðcosφa, sinφaÞ. As one increases the laser power that
increases γB, the light-induced torque ΩBA weakens the ferromagnetic
interaction, until it swaps the sign at ΩBA ≳ αB jAB or γB ≳ αB∣gB∣ (see
Fig. 5(e)). This causes a transition from aligned Δφ = 0 to antialigned
configuration Δφ = π (blue thin line in Figs. 1c and 5c). Remarkably, the
B layer completely demagnetizes at the transition point ∣mB∣ = 0, while
the A layer is still ferromagnetic mA ≠ 0 (Fig. 5f) even though the
interlayer coupling is still present.

As γB is further increased, the system exhibits a non-reciprocal
phase transition15,26 to a time-dependent chiral phase (see Fig. 1c) exhi-
biting a many-body chase-and-runaway motion (Fig. 5d). The parity
spontaneously breaks in this chiral phase, where the relative orientation
angle converges to a state Δφ = (≠ 0, π) that is not invariant under the
parity operationΔφ→ −Δφ. This cannot be understood from the Landau
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Fig. 4 | Typical energy scales in different physical pictures. The energy scales in
(left panel) localizedelectrons immersed in conduction electrons picturedescribed
by Eq. (3), (middle panel) localized spins immersed in conduction electrons picture
described by Eq. (4), and (right panel) in the interacting localized spin picture
(where the conduction electrons are integrated out) described by Eq. (6). These
pictures map from one to the other via the projection method (SI Sec. III) and

Keldysh theory (SI Sec. IV). Each panel lists the energy scales in the coherent
(Hamiltonian) and dissipative dynamics. The equilibration occurs at the timescale
set by the energy scale in the Hamiltonian multiplied by the Gilbert damping rate
αa. This competes with the light-induced dissipation and the sign reversal of
interaction occurs when the latter exceeds the former.
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theory15, where the critical point is characterized by the coalescence of
the collective modes to the Nambu-Goldstone mode17,20.

One can estimate the necessary condition for the emergence of
the chiral phase as (See SI Sec. VI for the derivation),

αB

αA

g2
B

j2ABn2
≲ 1 ð9Þ

where we have assumed a small Gilbert damping rate of the B layer
spins αB jBB ≪ αA jAA and αB ≪ γB/∣gB∣. Plugging in the values used in
Figs. 1(c) and 5(b)-(f), we find the required interlayer RKKY interaction
strength to be jAB ≳ 1meV, in agreement with our numerics. Since the
electrons in the non-magnetic metal layer mediate the RKKY
interaction, we estimate the interlayer RKKY interaction strength as
jAB ~gAgBρspacer, where ρspacer is the density of states of the electrons in
the non-magnetic spacer layer at the Fermi level. The condition for the
chiral phase is then derived as

αB

αA

1
g2
Aρ

2
spacern2

≲ 1: ð10Þ

This implies that the larger the density of states of the spacer is,
the more likely the chiral phase is achievable. For instance, taking
typical values gA = 0.1 eV, αA = 0.1, n = 1, and αB = 0.001, we expect the
chiral phase may emerge by choosing the spacer material with

ρspacer ≳ 1 eV−1. (See SI Sec. VI for more details, including phase dia-
grams with different parameters).

Interestingly, there are regions where this symmetry-broken
phase expands when increasing the temperature, which is opposite
from what is conventionally expected (see the dashed lines in Fig. 1c)
that show the phase boundary at a lower temperature). This is a sig-
nature of order-by-disorder phenomena discussed in Ref. 26, where a
direct analogy between the geometrically frustrated systems and non-
reciprocal matter was drawn.

Discussion
In summary, we have proposed a scheme to dissipation-engineer non-
reciprocal interactionswith light.We showedmicroscopically that the
light injection to magnetic metals that introduces decay of a virtually
excited state induces non-reciprocal interaction between localized
spins. Applying thismethod to layered ferromagnets, we showed that
a non-reciprocal phase transition to a time-dependent chiral phase
emerges15,26. The pump intensity required to achieve this is estimated
to be within reach of the current experimental techniques.

The effect of non-reciprocal interactions on the collective prop-
erties of many-body systems is currently under heavy investigation in
many different disciplines of science, ranging from active
matter8–10,15,46–49,79–83, levitated particles84–86, photonics7, robotics87, liv-
ing matter39,88–90, open quantum systems27–31,91, ecology92–97, and
neuroscience3–6, to sociology98. Particularly, recent works showed that
non-reciprocal phase transitions exhibit unconventional critical
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Fig. 5 | Non-reciprocal phase transitions in light-activated layered ferro-
magnets. a Layered ferromagnet composed of A and B layers separated by a non-
magnetic metal exposed of light injection that activates the B layer. The interlayer
RKKY interaction is mediated by the itinerant electrons in the non-magnetic metal
layer, which is modified by light. In particular, the magnetization in the A layer
aligns with the rate αAjAB for ferromagnetic interlayer interactions jAB > 0, while the
B layer may align or antialign with layer A depending on the sign of the modified
effective interaction αBjAB − ΩAB. φA(B) is the orientation direction of the

magnetizationmA(B) of A(B)-layer ferromagnet. b–d Different phases arising in this
system. b Aligned phase (Δφ = φA − φB = 0) realized in the equilibrium limit γB = 0.
c Antialigned phase (Δφ = π) at γB/(αB∣gB∣) = 1.1. d Chiral phase (Δφ ≠ 0, π) at γB/
(αB∣gB∣) = 1.5. (e) The orientation angle difference Δφ and (f) the magnitude of the
magnetization ∣mA,B∣ as a function of γB. We set jAB = 5meV, kBT = 9meV, and the
other parameters are the same as those used in Fig. 1c). The simulations were run
from random initial conditions and have been checked that there is essentially no
initial condition dependence on the final state.
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phenomena associated with anomalously giant fluctuations17,
fluctuation-induced first-order transition20, and diverging entropy
production21–23, due to the unique feature that the criticality is driven
by the coalescence of the modes to the Nambu-Goldstone mode.
Furthermore, non-reciprocal interactions have been shown to give rise
to emergent features such as odd elasticity11,12 (anti-symmetric part of
the static elastic modulus tensor), long-ranged order in two spatial
dimensions13,14 (in an apparent violation of the Hohenberg-Mermin-
Wagner theorem), and phenomena analogous to those occurring in
geometrically frustrated systems26. Our dissipation-engineering
scheme may allow exploring these non-reciprocal physics in solid-
state platforms.

Methods
Outline of the derivation of Eq. (4) and Eq. (6)
Weprovide here a brief outline of the derivation of Eq. (4) and Eq. (6) in
the main text. The full detail is provided in the SI Sec. III and IV,
respectively.

Derivation of Eq. 4. Our starting point to derive Eq. (4) is the quantum
master equation (3), which, for convenience, we write it as

∂t ρ̂ =Lρ̂, ð11Þ

where we have expressed the right-hand side of Eq. (3) using a
superoperator (an operator that acts on a matrix) called the
Lindbladian L. We split the Lindbladian into two contributions
L=L0 +L1:

L1ρ= � i½Ĥcd , ρ̂� ð12Þ

is the contribution from the c-d mixing
Ĥcd =

P
a,σ ½vad̂

y
σ,aĉRaσ

+h:c:�=Pa

P
k,σ ½vaeik�Ra d̂

y
σ,aĉkσ +h:c:� that we

treat as a perturbation. The rest L0 =Lc0 +
P

aLd0,a is the non-
perturbative part, given by,

Lc0ρ̂ = � i
X
k,σ

εk ĉ
y
k,σ ĉk,σ , ρ̂

" #
, ð13Þ

Ld0,aρ̂ = � i
X
σ

εd,ad̂
y
σ,ad̂σ,a +Uad̂

y
",ad̂",ad̂

y
#,ad̂#,a

 !
, ρ̂

" #

+
X
σ

κaD½d̂σ,aP̂
a
"#�ρ̂:

ð14Þ

In the following, we take advantage of the property that our system
has a separation of timescales by dividing the double Hilbert space
(where the density operator ρ̂ lives in) into slow and fast degrees of
freedom. By perturbatively projecting out the latter52, we obtain an
effective low-energy description. Specifically, we first divide the right

(left) eigenstates r̂ð0Þn (̂l
ð0Þ
n ) with the eigenvalue λð0Þn of the non-

perturbative Lindbladian, defined as L0 r̂
ð0Þ
n = λð0Þn r̂ð0Þn (̂l

ð0Þy
n L0 = l̂

ð0Þy
n λð0Þn ),

to slow (n 2 s) and fast (n 2 f) degrees of freedom (jλð0Þn2sj≪jjλð0Þn2fj). The
perturbative Lindbladian L1 couples the slow and fast modes. Then, as
derived in SI Sec. I.A.2, we perturbatively project out the fast degrees of

freedom to yield the effective low-energy Lindbladian,

ðLeff Þnl ,nr
� l̂

ð0Þ
nl
,Leff r̂

ð0Þ
nr

� �
= tr l̂

ð0Þy
nl

Leff r̂
ð0Þ
nr

� �

= tr l̂
ð0Þy
nl

L0r̂
ð0Þ
nr

� �
+ tr l̂

ð0Þy
nl

L1 r̂
ð0Þ
nr

� �

�
X
m2f

tr l̂
ð0Þy
nl

L1 r̂
ð0Þ
m

� �
tr l̂

ð0Þy
m L1 r̂

ð0Þ
nr

� �
λð0Þm

+OððL1Þ3Þ:

ð15Þ

Here, ðÂ, B̂Þ= tr½Ây
B̂� is the Hilbert-Schmidt inner product and r̂ð0Þnr

(̂l
ð0Þ
nl
) is the right (left) eigenstates that form the basis of the slow

degrees of freedom (nr ,nl 2 s). The first, second, and third terms on
the rightmost side are the zeroth,first, and second-order contributions
in terms ofL1, respectively. In the third term, the sum is taken over the
fast degrees of freedom. Note how the third term has a similar form to
the familiar second-order Rayleigh-Schrödinger perturbation theory,

which is given by the matrix element tr½̂lð0Þynl
L1 r̂

ð0Þ
m �tr½̂lð0Þym L1 r̂

ð0Þ
nr
� divided

by the eigenvalue of the intermediate state λð0Þm . Equation (15) is con-
sistent with the so-called Lindblad perturbation theory63–65.

In our problem, first note that the localized and conduction
electrons are decoupled in the non-perturbative Lindbladian
L0 =Lc0 +

P
aLd0,a and therefore the right eigenstate is expressed as a

direct product r̂ð0Þnr
= ðQar̂

dð0Þ
a,nr

Þ � r̂cð0Þnr
of the right eigenstates of Ld0,a

and Lc0 described by r̂dð0Þa,nr
and r̂cð0Þnr

, respectively. For the conduction

electrons, we will always be considering low-temperature states that
have their conduction electrons in their ground state that forms a

Fermi sea r̂cð0Þnr
= jFihF j, where jFi=Qεk < εF

Q
σ =",#ĉ

y
k,σ j0i. For the loca-

lized electrons, we regard the eigenstates with singly occupied state as
slow degrees of freedom, i.e., fj"iah"ja, j"iah#ja, j#iah"ja, j#iah#ja, g
where jσia = d̂

y
σ,aj+ia is a singly occupied state and j+ia is a vacant

state. We also regard eigenstates that are diagonal in the Fock basis as
slow modes for the localized electrons (which includes states like
j"#iah"#ja, where j"#ia is a double-occupied state) as they do not
involve fast coherent dynamics. The rest, such as j"#iah"ja and
j+iah # ja, are fast degrees of freedom.

Among these slow degrees of freedom, we are mainly interested
in the states where the localized electron is singly occupied, i.e.,
r̂ð0Þnr

=
Q

ajσaiahσ0
aja � jFihFj (σa, σ

0
a =", #). In this case, note that the c-d

mixing L1 transfers the state into a state where (a) the localized elec-
tron is double-occupied and a hole is excited in the conduction band
[the process illustrated in Fig. 3] or (b) the localized electron is vacant
and a particle is excited in the conduction band. Since these processes
excite the system to a fast mode, the first-order contribution (the
second term in the rightmost side of Eq. (15)) is absent and the leading
term is second-order. The second-order contribution (the third term in
Eq. (15)) arises from the processes where the intermediate state
involves states with eigenvalues λð0ÞðaÞ± = ± iðεk � εd,a � UaÞ � κa=2 from
the process (a) and λð0ÞðbÞ± = ± iðεd,a � εk Þ from the process (b). The real
part of the process (a) ReλðaÞ± = � κa=2 reflects the light-induced
decay that turns on in the double-occupied state. Assuming further
that only excitation near the Fermi surface contributes εk ≈ εF, this
yields, as detailed in SI Sec. III,

Lsd
eff P̂

a
s ρ̂P̂

a
s

� �
= � i½Ĥsd, ρ̂�+

X
a

γaD
X
σ

d̂
y
σ,aĉRa ,σ

P̂
a
s

" #
ρ̂: ð16Þ

Here, the sd coupling

ga = � jvaj2
εd,a +Ua � εF

ðεd,a +Ua � εFÞ2 + κ2
a
4

+
1

εF � εd,a

" #
ð17Þ
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in the sd Hamiltonian Ĥsd = � ð1=2ÞPagaP̂
a
s ½τ̂ðRaÞ � Ŝa�P̂

a
s and the cor-

related dissipation

γa =
jvaj2κa

ðεd,a +Ua � εFÞ2 + κ2
a
4

, ð18Þ

are given by the imaginary and real part, respectively, of
jvaj2½λ�1

ðaÞ+ + λ�1
ðbÞ+ � that arise from the two processes (a) and (b).

The expression valid at regimes κa ≪ εF, εd,a, Ua is reported in the
main text.

The correlated dissipation (the second term in Eq. (16)) adds
an electron to the localized orbital such that the state transfers to
a double-occupied state. This is quickly returned to a singly-
occupied state via the light-induced decay with rate κa, which can
readily be seen from the effective Lindbladian applied to
r̂ð0Þnr

= j"#iah"#ja � jFihFj as,

Lsd
eff P̂

a
"#ρ̂P̂

a
"#

� �
=
X
a,σ

κaD½d̂σ,aP̂
a
"#�ρ̂, ð19Þ

where we have ignored the contribution to the coherent dynamics
since we are not interested in the details of the double-occupied
state. When applied to a vacant state r̂ð0Þnr

=
Q

aj+iah+ja � jFihF j,
we find Lsd

eff ðP̂
a
+ρ̂P̂

a
+Þ=0 (P̂

a
+ is a projection operator to a vacant

state), where again, we have ignored the contribution to the
coherent dynamics. Summing up these results gives the desired
Eq. (4) in the main text.

Derivation of Eq. 6. We next integrate out the conduction electron
degrees of freedom to derive the RKKY interactions between the
localized spins modified by light. As emphasized in the main text, it is
crucial to consider the non-adiabatic (non-Markovian) effect arising
from the Fermi distribution function of the conduction electrons. A
useful approach to take such effect into account is to analyze a gen-
erating function called the Keldysh partition function, defined as67,99,100

(See SI Sec. I for a brief review.),

Z � tr½ρ̂ðtf Þ�= tr eL
sd
eff ðtf�t0Þρ̂ðt0Þ

h i
, ð20Þ

for the master equation (4). We expand the time evolution operator
eLeff ðtf�t0Þ in terms of fermionic coherent states into a product of
infinitesimally short time intervals, similarly to the path integral
formalism in quantum mechanics. Unlike in quantum mechanics
(that deals with wave functions jψi) that involves one Grassmann
field ψ(t) per degree of freedom, however, as we are dealing with the
dynamics of the density matrix ρ̂ that lives in the double Hilbert
space, each degree of freedom is assigned with two fields ψ+(t) and
ψ−(t) that loosely describes the time evolution of the ket and bra
space, respectively. For our system (Eq. (4)), the Keldysh partition
function is given by,

Z =
Z

Dðd + ,
�d + ,d�,

�d�ÞDðc+ , �c+ , c�, �c�ÞeiS ð21Þ

where
S½d + ,

�d + ,d�,
�d�, c+ , �c+ , c�, �c��= S0d ½d, �d�+ S0c ½c, �c�+ Scohsd ½c, �c,d, �d�+ Sdissd ½c, �c,d, �d�

is the so-called Keldysh action, given by

S0d ½d, �d�=
Z

dt
X
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s
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ð24Þ
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γae
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Here, c±
k,σ andd ±

σ,a are theGrassmann variables of conduction and
localized electrons, respectively, and t±δ = t ± 0+.

Since the Keldysh action S is quadratic in terms of ðc, �cÞ, one can
analytically integrate out the conduction electron degrees of freedom
toobtain the effective action Seff ½d, �d� defined as Z � R Dðd, �dÞeiSeff ½d, �d�.
As detailed in SI Sec IV, the effective action within the second-order
perturbation in termsof ga and γa (with several additional assumptions
detailed in SI Sec. IV) reads Seff ½d, �d�= S0d ½d, �d�+ Sγ½d, �d�+ SM ½d, �d�,
where

Sγ½d, �d�= i
Z

dt
X
a, σ

γan d�
σ,aðtÞ�d

+
σ,aðtÞ

h

� 1
2
d +
σ,aðt + δÞ�d

+
σ,aðt�δÞ �

1
2
d�
σ,aðt�δÞ�d

�
σ,aðt + δÞ

�
,

ð26Þ

is the first-order contribution and SM ½d, �d�= ScohRKKY½d, �d�+ SGilbert½d, �d�+
SneqRKKY½d, �d� is the second-order contribution, with

ScohRKKY½d, �d�=
Z

dt
X
a, b

Ja, bðRa,bÞ
2

X3
j =0

X
s = ±

sm̂s, s
a, jm̂

s, s
b, j, ð27Þ

SGilbert½d, �d�= �
X
a

αa

4

Z
dt
X3

j =0
m̂+ , +

a, j ðtÞ∂tm̂
�,�
a, j ðtÞ, ð28Þ

SneqRKKY½d, �d�= i
Z

dt
X
a,b

Ωa, bðRa,bÞ
2

×
X3

j =0
m̂ + , +

a, j m̂+ , +
b, j + m̂�,�

a, j m̂�,�
b, j

h

� m̂+ ,�
a, j m̂+ , +

b, j � m̂�,�
a, j m̂ + ,�

b, j

i
:

ð29Þ
Here, m̂l1 , l2

a, j ½d, �d�=Pμ, ν =",#
�d
l1
μ,aσ̂

μν
j dl2

ν,a ðl1, l2 = + ,�Þ is a localized
spin written in terms of Grassmann variables, and

Ja,bðRa, bÞ= � jgajjgbj
2

X
k,q

cosðq � Ra,bÞ
f + � f�
ε+ � ε�

, ð30Þ

Ωa,bðRa,bÞ= � γajgbj
2

X
k,q

cosðq � Ra, bÞ
f + � f �
ε+ � ε�

, ð31Þ

αa = � 4πg2
a

X
k,q

f + � f �
ε+ � ε�

δðε+ � ε�Þ, ð32Þ

with ε± = εk±q/2 and f± = f(εk±q/2). Ja,b(Ra,b) is identical to the well-known
form of the RKKY interaction strength50. In calculating SM, we have
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employed a gradient approximation, i.e., a Markovian approximation
(ScohRKKY and SneqRKKY) plus the first-order correction to it (SGilbert).

The physical meaning of each term becomes clear by deriving the
equation of motion of the spins. To do this, we introduce a set of
auxiliary fields m and Lagrange multipliers λ as

Z =
Z

D½m�eiSM ½m� ×
Z

D½λ�
Z

D½d, �d�eiS0d ½d, �d� + iSγ ½d, �d�eiSλ ½λ,m, m̂½d, �d��

�
Z

D½m�
Z

D½λ�eiSM ½m�eiS
λ
B ½λ,m�

ð33Þ

with

Sλ½λ,m, m̂½d, �d��=
Z

dt
X
a

X
l1 , l2 =q, c

X3

j =0
λl1 , l2a, j ðtÞ

× ml1 , l2
a, j ðtÞ � m̂l1 , l2

a, j ½dðtÞ, �dðtÞ�
h i

:

ð34Þ

As detailed in SI Sec. IV.C, taking the saddle-point approximation

of Eq. (33) as δSeffM ½λ,m�
δλ

l1 , l2
a, j

= δSeffM ½λ,m�
δm

l1 , l2
a, j

=0 (where SeffM ½λ,m�= SM ½m�+ SλB½λ,m�)

gives

∂tSa = � γanSa �
X
bð≠aÞ

Ωa,bðRa, bÞSbðtÞ

�
X
a

Ja, bðRa,bÞSbðtÞ � αa
_SaðtÞ

" #
× SaðtÞ,

ð35Þ

where Sa, j =m
+ +
a, j ðtÞ=m��

a, j ðtÞ= h
P

σ, σ0 =",#d̂
y
σ,aðtÞσσ,σ0

j d̂a, σ0 ðtÞi and
m+�

a, j ðtÞ=m�+
a, j ðtÞ=0, which is the desired Eq. (6) in the main text. The

first, second, third, and fourth terms on the right-hand side arise from
Sγ, S

neq
RKKY, S

coh
RKKY, and SGilbert, respectively.

Estimation of the required power
Below, we estimate the required laser power P to realize the sign-
inversion of the interactions, which occurs when the decay rate of the
double-occupied state κa exceeds αaUa (see main text and Fig. 4). Our
scheme considers the situation where the double-occupied (at energy
εd,a + Ua) and higher-level states (at energy εf,a) are coupled through
the injected laser. We assume that the higher-level state is localized
and dissipates with the rate Γf,a, so one can model it with a Lorentz
oscillator model101.

When a laser with the pump power P is injected into the material,
the dissipation causes the energy loss of the laser intensity if the sys-
tem is in a double-occupied state. The lost energy density per unit time
and volume W is given by

W =
1
2
ϵ0ωχ

00ðωÞjEj2 = ωχ 00ðωÞ
c

P, ð36Þ

where ω = 2πν is the laser frequency. Here, we have expressed the
pump power P = 1

2 cϵ0jEj2 in terms of speed of light c, vacuum dielec-
tric constant ϵ0, and electric field E. The absorption susceptibility χ″(ω)
is computed according to the Lorentz oscillator model as

χ 00ðωÞ= ne2

ϵ0m0

ωΓf ,a

ðω2
0 � ω2Þ2 +ω2Γ2f ,a

’ ne2

ϵ0m0

1
ω0Γf ,a

: ð37Þ

Here, ω0 is the resonant frequency (which, in our case, corre-
sponds to ℏω0 = εf,a − (εd,a + Ua)), n is the number of electrons per unit
volume, and m0 is the electron mass. In the second equality, we have
set the laser frequency to be on resonance hν = ℏω = ℏω0.

The decay rate of the double-occupied state κa per electron is
estimated as

κa =
W

n � ω0
: ð38Þ

This needs to be larger than αaUa to achieve the regime for
showing laser-induced switching of interactions. This condition is
given by,

κa =
χ 00ðω0ÞP
n � c ≳αaUa: ð39Þ

This yields the condition,

P ≳
αaUan � c
χ 00ðω0Þ

=αa
Uaω0m0cϵ0

e2
Γf ,a, ð40Þ

shown in Eq. (7).

Justification of Markov approximation
For the Markov approximation to be valid, the relaxation rate of the
bath must be much faster than the timescale of the system dynamics.

hν = εf  - (εd,a+U )

Γf, a

aεd,a+U

ε
F

εd,a

εf,a

κa

va

εd,a

ε
F

va

Γf, a
εf,aε

(a) 

≈

(b) 

γa≈ κa
|va|

2

U2

active layer 

a 

a

Fig. 6 | Light-injection induced dissipation and their energy scales. a The
double-occupied (at the energy εd,a + Ua) and the higher energy states (at the
energy εf,a) are coupled by the injection of a resonant laser hν = εf,a − (εd,a +Ua). The
higher-energy state dissipateswith the rate Γf,a. The localized electrons are typically
in a single-occupied state but may virtually excite once in a while to a double-
occupied state via the c-dmixing va. Note that no electrons decay in the absence of

c-d mixing va = 0 because they are always in the single-occupied state. b Localized
spin picture obtained after projecting out the double-occupied states (see Eq. (5)).
In this picture, one finds that the effective transfer rate from the localized electron
to the higher-energy state is given by γa � κajvaj2=U2

a. We require γa≪ Γf,a to justify
the Markov approximation.
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Weargue here that this is likely to be justified in the range of interest at
realistic parameters for magnetic metals.

In our setup, the double-occupied state couples to the higher-
level state with the decay rate Γf,a via a laser injection tuned to be
resonant with the two states. The higher-level state can be regarded as
our “external bath” in the context of open quantum systems. As
explained above, this process gives rise to the decay rate κa once the
site a is double occupied (see Fig. 6a). Note crucially that, as illustrated
in Fig. 6b, this is different from the rate at which the relevant system
pumps an electron to this high-energy state because the relevant system
transfers into a double-occupied state only once in a while when the
conduction electron tunnels to the localized orbital. For example,
when the c-d mixing is absent va = 0, there would be no electron
transfer from the relevant system to the higher-energy state. The
relevant transfer rate of a localized electron from the relevant system
to thehigher-energy state is estimated to be γa ’ κajvaj2=U2

a, whichwe
have derived in Eq. (4).

For the Markov approximation to be valid, the dissipation rate of
this higher energy state (i.e., the “external bath”) Γf,a must be much
faster than the supply rate to this state γa ≪ Γf,a. This is because when
the higher-level state is occupied, the Pauli blocking effect would
suppress the decay. A slow relaxation of the occupancy of the state
would lead to a non-Markovian effect.

It should be relatively easy to satisfy this Markov condition at the
regime of interest. We are interested in the regime where we see the
sign-reversal of the RKKY interactions, which happens when the dis-
sipation rate exceeds κa ≳ αaUa or γa ≳ αa∣ga∣ (see the discussion above
Eq. (7)). In the case αa = 10−2 and ∣ga∣ = 10meV, this sets the condition,
γa ≳0.1meV. This required dissipation rate is less than the typical value
of linewidth Γf,a, satisfying the justification condition for the Markov
approximation, γa ≪ Γf,a.

Putting the conditions together,

αaUa
jvaj2
U2

a

≲
Pe2

ϵ0m0c
1

ω0Γf ,a

jvaj2
U2

a

= γa ≪ Γf ,a: ð41Þ

This shows that the required pump power P to achieve sign
inversion becomes less by choosing the higher-energy state that has a
longer lifetime (i.e., smaller Γf,a) as shown in Eq. (7) but small Γf,amakes
itmore difficult to satisfy theMarkovian condition γa≪ Γf,a. We remark
that a smaller c-d mixing ∣va∣/Ua helps satisfy the Markovian condition
γa ≪ Γf,a without modifying the condition for the sign inversion, which
physically makes sense because small va makes the double-occupied
state rarer and hence rarer for the electrons to escape from the rele-
vant system.

Comparison to cold atom experiments
It is interesting to compare our proposal relevant to solid-state sys-
tems to the recent cold atom experiment of dissipative Fermi Hubbard
model55,56, where they demonstrated a dynamic sign reversal of inter-
actions. In their experiment, similar to our situation, they introduced a
controlled decay channel that is activated only when the sites are
double occupied, causing both atoms to decay whenever they are on
the same site. They demonstrated that this engineered dissipation
decreases the anti-ferromagnetic correlation (present in the ground
state) and increases the ferromagnetic correlation, again analogous to
our sign reversal of effective interactions. We briefly note, however,
that the possibility of implementing non-reciprocal interactions was
not explored in their work.

In contrast to our solid-state case, where the coupling to the
environment is unavoidable, their cold atomic systems are almost per-
fectly isolated fromtheenvironmentother than thedecay to thevacuum
they purposely introduced. This fundamental difference critically
impacts the resulting dynamics. First, in our proposal, the surrounding
environment (i.e., the conduction band) immediately compensates for

the lost electrons such that localized orbitals are always singly occupied,
while their atomic system only has a loss channel. As a result, their
dissipation stops activating when the atoms stop colliding, resulting in a
strong initial state dependence on the final configuration. This is in stark
contrast to ours, where no initial-state dependence is present and even
exhibits persistent time-dependent to a collective chase and runaway
phase due to non-reciprocal interaction. Second, the Gilbert damping
(present in our system) is absent in the cold atomic systems, as there is
no environment where the atoms can dissipate their spin angular
momentum. The competition between the friction (that drives the sys-
tem toward equilibrium) and the light-induced dissipative interaction is
hence a unique feature of our proposal for solid-state systems.

Data availability
The data generated in this study have been deposited in the Figshare
database under the accession code https://doi.org/10.6084/m9.
figshare.26334430.

Code availability
The code that generated the results in the main text and Supplemen-
tary Information is available.
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