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Deep learning prediction of noise-driven
nonlinear instabilities in fibre optics
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Michael Kues 4 & Benjamin Wetzel 1

Machine learning is bringing revolutionary approaches into many fields of
physics. Among those, photonics enables fast and scalable information pro-
cessing. Photonics platforms further possess rich nonlinear dynamics that
drive fundamental interest but also prove powerful for applications in com-
putation, imaging, frequency conversion, source development and advanced
signal processing. However, incoherent processes of nonlinear optics are
hardly exploited in practice as the control of noise-driven dynamics remains
challenging. Here, we exploit deep learning strategies and demonstrate that
coherent optical seeding can effectively shape incoherent spectral broad-
ening. We focus on the intricate interplay between weak coherent pulses and
broadband noise, competing during nonlinear fibre propagation within an
amplification process known as modulation instability. We demonstrate arti-
ficial neural networks’ capability to efficiently predict these complex inco-
herent dynamics, both numerically and experimentally. Our results show that
input seed properties can be inferred from the incoherent output signal.
Furthermore, our approach enables reliable prediction of output spectral
fluctuations, paving theway to tailoring complexphotonic signalswith specific
correlation features.

Machine Learning (ML) is revolutionizing science,marking a significant
paradigm shift from traditional numerical optimization to generalized
learning strategies. The emergence of Artificial Neural Networks (ANN)
and Deep Learning (DL)1–3, has had a significant impact across the
natural sciences, in particularwithinfields aiming to study and forecast
chaotic behaviours in complex systems4–6. In the realm of photonics,
ML is proving especially valuable, both for understanding complex
propagation dynamics and for processing extended datasets7. On the
one side, photonic architectures provide a hardware backbone to
enable physical deep learning8–10, and efficient computation with lim-
ited power consumption11–17. On the other side, the domain of non-
linear and ultrafast optics is characterized by large datasets and
inherent complexity, making deep learning a valuable addition for

analysis and applications18,19. Specific areas of demonstrated applica-
tion include laser physics20–23 and optical signal processing, in parti-
cular pulse shaping24,25, metrology26 and telecommunications27–29. In
nonlinear optics, recent advances have also underlined the tre-
mendous potential of ML frameworks for the identification of key
parameters or the computation of complex propagation schemes. For
example, ML can be used for the control of nonlinear spectral broad-
ening in supercontinuum generation30–34 and tailored frequency
combs35–38. Deep learning can also be leveraged to forecast dynamical
evolution in nonlinear pulse propagation: neural networks have been
used to predict pulse reshaping in nonlinear fibre propagation for a
variety of initial conditions39–41 and to directly model pulse evolution
by emulating standard computation tools with an excellent accuracy
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and drastically enhanced speed42–44, yet requiring prior training on
existing dataset.

Despite these successes, however, standard DL frameworks still
face practical limitations in nonlinear optics. For instance, rapid
acquisition of large datasets with sufficient signal-to-noise ratio and
long-term stability is challenging, and faces experimental limitations in
bandwidth, dynamic range and resolution. Although such limitations
can be partially mitigated for coherent evolution dynamics using DL
methods and advanced characterization45–47, the use of deep learning
for studies of incoherent nonlinear optical processes has been the
subject of only limited study48–51. Neural networks have indeed
demonstrated the ability to capture and analyze incoherent pulse
formation in fibres48,49, or to predict the formation of chaotic pulses in
Kerr resonators from the analysis of time-series precursors51. These
results however rely on output waveform analysis (i.e. temporal time
series or spectral shot-to-shot fluctuations), but do not provide access
to actively tunable initial conditions nor take into consideration amore
macroscopic characterization of the dynamical system. The real
potential of DL for controlling incoherent signals and their fluctuation
properties thus remains largely unexplored, despite its fundamental
interest and its strong applicative potential in many areas employing
incoherent optical waveforms.

Among numerous incoherent processes encountered in photo-
nics, Modulation Instability (MI) is perhaps the canonical example of
a physical phenomenon that bundles both complexity and noise-
sensitive dynamics52,53. In this work, we consider this key process in
which weakly modulated signals undergo amplification, leading to
the generationof new frequency components54,55. In nonlinear optics,
MI arises from the interplay between Kerr nonlinearity and (anom-
alous) dispersion53 and, when spontaneously generated from noise,
leads to complex and rich interactions yielding to the emergence of
randomly localized structures53,56. As such, for over 15 years, MI has
served as the ideal system for the fundamental study of extreme
event formation in optics, while providing an excellent testbed for
real-time characterization techniques of incoherent processes47,56–61.
MI has also been a focal point of several studies aiming to leverage
ML techniques for optical processing, and, for the control of coher-
ent MI dynamics62,63, several works have studied the phase space
topology of idealized Four Wave Mixing (FWM)41,64,65. However,
incoherent MI generated from noise offers only limited control of
propagation dynamics, whether through optical seeding66–68,
modulation69 or fibre engineering70. Moreover, these approaches are
either supported by limited theoretical frameworks71,72 or lack the
capability to explore a wider parameter space in experiment. For a
practical comparison of the advantages and limitations of ML com-
pared to standard numerical modelling or classical signal processing
techniques, one can refer to recent reviews on the topic8,9,18,19,26,27,29. In
the Supplementary Information, we also provide a succinct overview
of the impact of ML methods on selected applications relevant to
nonlinear pulse propagation in guided wave optics (see Table S1).
However, we note that paired with the practical constraints asso-
ciated with extended dataset acquisition of specifically tailored and
dynamically reconfigurable incoherent propagation dynamics, ML
was merely exploited for studying MI and engineering noise-driven
spectral broadening in an experimental context.

In this work, we investigate—both numerically and experimentally
—whether artificial neural networks can be suitably leveraged to fore-
cast the output properties of such incoherent spectral processes and
their underlying initial conditions. Specifically, we explore the poten-
tial of a coherent seed control to actively manipulate incoherent
spectral broadening during nonlinear fibre propagation. In particular,
we discuss the potential of optical seeding, paired with deep learning,
to reshape and tailor specific correlation features in the broadband
output signal, towards harnessing ML for incoherent and nonlinear
optical information processing.

Results
The principle of our study is illustrated in Fig.1, introducing a simple
yet efficient approach to leverage coherent optical seeds to mitigate
and tune incoherent dynamical evolution arising from concurrent
noisy processes53,73.

Spontaneous MI, occurring when a coherent pulse copropagates
with an incoherent noise field in a nonlinear fibre (Fig. 1a), triggers
broadband noise amplification and eventual cascaded four-wave
mixing processes. The resulting output spectrum exhibits a clear
broadening with large shot-to-shot fluctuations emerging from dif-
ferent input noise conditions (see Methods). In the temporal domain,
the formation of highly-localized pulse structures can be observed,
which cannot be seen when averaging the signal over multiple reali-
zations (red lines). However, adding weak but coherent optical sig-
nal(s) to the noisy initial pulse (Fig. 1b) has a significant impact on the
propagation dynamics and allows for a relative control of the MI
spectral broadening processes. In this so-called seeded MI scenario,
the nonlinear evolution remains incoherent, so that the output wave-
form still exhibits significant shot-to-shot fluctuations. Yet, a notice-
able structuring can be observed when averaging the fluctuating
spectral and temporal output profiles (see also Supplementary
Figs. S1 and S2). Here, we specifically assess the capability of an ANN to
train on extensive numerical and experimental datasets for predicting
such noise-driven propagation features (i.e. predicting output average
spectra and correlation properties).

Our ANN approach, illustrated in Fig. 2, encompasses both for-
ward propagation (predicting incoherent dynamics from initial seed-
ing conditions) and backward propagation (inferring seeding input
conditions from output features). Both approaches rely on the same
5-layer neural network architecture, serving as a standardized and
reproducible framework, with input and output layers respectively fed
with either input seeding conditions or output spectral features (for
either ANN inferences or predictions).

Below, we validate our approach through both numerical simu-
lations and experiments of tailored MI field evolution in fibres char-
acterized via real-time spectral measurements (see Methods),
therefore assessing the efficiency of neural networks in enhancing
control of complex nonlinear optical systems in realistic conditions.
We first demonstrate that this ANN-based method enables retrieving
the input seed parameters—wavelength and phase—with accuracy
despite the challenges posed by weak nonlinear signal amplification
and complex noise-mediated evolutiondynamics.We then benchmark
the network’s forecasting capability for the prediction of spectral
correlation maps. Finally, we study and discuss the aptitude of the
network to optimize specific correlation features, further demon-
strating its practical utility for tailoring incoherent waveforms prop-
erties highly sought after in many areas of photonics (spanning e.g.
incoherent imaging, compressed sensing, as well as classical and
quantum signal processing, to only name a few).

Forecast of incoherent nonlinear dynamics from artificial neural
networks
For the numerical prediction of incoherent dynamics, we generated an
extensive numerical dataset to train the ANN by performing Monte-
Carlo simulations of fibre pulse propagation across ~100,000 seeding
scenarios (see Methods). These simulations, based on the generalized
nonlinear Schrödinger equation74 (GNLSE), consider the propagation
of a 29.1 ps optical pulse at 1560 nm through a 485m highly nonlinear
fibre (HNLF). Such a case is associatedwith nonlinearfibre propagation
in a weakly anomalous dispersion regime, where MI occurs sponta-
neously from broadband noise amplification (Fig. 1), and it corre-
sponds to typical parameters used in our experiments.

In our simulations, for each realization, we consider different
broadband white noise as well as amplified spontaneous emission
(ASE) noise, filtered over a 5.2 nm bandwidth to cover most of the red-
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detuned MI gain (see Methods). This random ASE noise—mimicking
the experimental noise associated with an Erbium-doped fibre ampli-
fier (EDFA)—is relativelyweak compared to the excitation field (−60 dB
level, see Fig. 1a) but is progressively amplified during propagation
until driving spectral broadening via cascaded MI processes. When
considering a seeded MI configuration (see Fig. 1b), two (or four)
coherent optical seeds Ciðλi,φiÞ are also injected with the input pump
pulse. For each seeding configuration, these very weak seeds (i.e. −50
dB compared to the pump) exhibit arbitrary phases φi and wave-
lengths λi selected within the same bandwidth as the ASE noise (i.e. in
the range 1562.5—1564.6 nm, see Methods for details).

To assess the impact of the coherent seeds Ci on the overall
evolution dynamics, we first computed, for each input seed config-
uration, the nonlinear propagation of the pulse over 500 noisy reali-
zations. As illustrated in Fig. 2, the shot-to-shot fluctuations of the
output spectra are then analyzed to retrieve the average spectrum SðλÞ
as well as the spectral intensity correlation map ρðλ, λÞ via a linear
Pearson metric47,57. This straightforward approach allows for char-
acterizing the interplay of broadening dynamics resulting from the
competition between coherent seed amplification and noise-drivenMI
processes, here acting at a comparable level (see Methods). More
importantly, such a method allows for easily converting over 50 mil-
lion numerically generated incoherent spectra (i.e. ~100,000 seed
configurations with 500 noisy realizations each) into a large dataset of
steady (i.e. stationary) statistical metrics that can be readily exploited
for ANN training. Indeed, here, we numerically investigate either
2-seed and 4-seed scenarios for 90,000 and 105,000 seed configura-
tions respectively, generating an extensive dataset of output spectral
properties SnðλÞ and ρnðλ, λÞ depending on random input seed para-
metersCn (with e.g. Cn, 1 λn, 1,φn, 1

� �
, Cn, 2 λn, 2,φn, 2

� �
for each 2-seed

configuration).

For ANN training, we consider a rather simple fully-connected
Feed-Forward Neural Network (FFNN) model trained with ~100,000
different seeding configurations. For both ANN inferences and pre-
dictions, we use a similar FFNN featuring five layers and a total number
of individual neurons (perceptrons) ranging from 1676 to 37,392
depending on the FFNN conformation (see Table S4 in the Supple-
mentary Information). Training is achieved in 40minutes for the less
demanding tasks, whilst in up to almost 10 hours for the largest neural
networks, trained in conservative fashion (see details in Table S5). In all
cases, the ANN accuracy is tested against a set of previously unseen
configurations by the network (see Methods). As a numerical bench-
mark,wefirst train ourANN topredict the average output spectra SnðλÞ
resulting from the incoherent broadening of arbitrary input seed
parameters Cnðλ1,φ1, λ2,φ2Þ. In a second step, we consider the ANN’s
ability to infer Cn seed properties such as wavelengths λ1 and λ2 and
phase difference Δφ2,1 =φ2 – φ1, from the correlation map ρn of asso-
ciated spectral fluctuations after noisy nonlinear amplification. For
both 2-seed and 4-seed dataset, the results of ANN training from
numerical simulations are summarized in Fig. 3.

Figure 3a. shows an excellent agreement between the ANN pre-
dictions and the simulation results when forecasting the average out-
put spectrum from dual-seeding propagation scenarios. These
predictions showcase a great accuracy over a 50dB dynamic range
with as little as 1.0% Root Mean Square Error (RMSE) compared to
GNLSE simulations.

More importantly, Fig. 3b highlights the ANN’s potential to suc-
cessfully retrieve the seed properties from the statistical analysis of
noise-mediated spectral broadening. From the correlation maps ρn,
the network demonstrates the ability to infer seed parameters with an
average error below 2.4% RMSE. These inference results are shown in
Fig. 3b though a density plot of the ANN prediction datapoints (white
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Fig. 1 | Illustration of incoherent modulation instability dynamics.
a Spontaneous modulation instability dynamics: Spectro-temporal evolution of
noisy input pulse (29.1 ps) propagating nonlinearly in an optical fibre, obtained via
numerical simulations. b Seeded modulation instability dynamics: Spectro-
temporal evolution of the same noisy input pulse copropagating with twoweakbut

coherent optical seeds temporally superimposed with the pump. In both cases, the
averaged input and output intensity profiles are shown with thick blue and red
lines, respectively. The results of different noisy realizations are shownwith dashed
grey lineswhile the intensityprofilesof the selected case (displayed in the evolution
plot) are shown with a black line.
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dots) in excellent agreement with the ground truth obtained from
GNLSE-based simulations (dashed blue line).

It is worth noting that for the seeded MI regime considered here,
the impact of noise (and the seed phase) is paramount, so that the
input seed locations do not readily correspond to the regions of
maximum correlation or anticorrelation within the output spectrum
(nor the maxima in the average output spectrum - see Supplementary
Figs S1 and S2). Yet, in this case, the seedwavelengths are inferredwith
less than 2.1% error (RMSE), which corresponds to a spectral precision
of 42 pm.

In fact, the relative phase between the seeds is crucial in the four-
wave mixing processes involved in the MI dynamics at play during
nonlinear fibre propagation. However, the phase is not a parameter
readily observable through a simple spectral intensity analysis. More
importantly, the weak relative power of the seeds (i.e. −50 dB) and the
presence of broadband noise yield an input signal with a very low
modulation depth (see Fig. 1b) that can make phase retrieval a chal-
lenging task in experiments. Yet, through noise-driven nonlinear
amplification, the analysis of the output spectral fluctuations from the
ANN allows inferring the relative phase difference between the seeds
with very good accuracy (i.e. 3.1% RMSE—see Fig. 3b).

In essence, this approach not only demonstrates the ANN’s
capacity in forecasting nonlinear fibre dynamics but also emphasizes
its potential in decoding complex and noisy nonlinear interactions in
fibre optics. For instance, extending to the approach to the 4-seed
case, Fig. 3c confirms the ANN’s proficiency in predicting output
spectral profiles with an average RMSE below 2.9% over the same
dynamic range. Similarly, Fig. 3d displays how the inference of input
seed parameters remains very efficient even within an extended
parameter space, achieving an error comprised between 3.0% and 8.5%
for the retrieval of the four input seed properties.

Experimental validation of incoherent nonlinear dynamics
inference via ANNs
Following the numerical proof of concept above, we proceed to an
experimental validation of our deep-learning approach for the ANN
prediction and inference of noise-driven MI dynamics. The experi-
mental setup, depicted in Fig. 4, allows us to acquire extensive
experimental datasets to assess the impact of coherent optical

seeding on incoherent MI broadening dynamics (see Methods for
details).

Starting from a broadband signal in the C-band (i.e. ~ 80 fs pulse
centred at 1560 nm), wefilter out a ~ 12 ps pump signal at 1556.8 nm, as
well as two (or four) coherent optical seeds with adjustable properties.
Specifically, the picosecond pump and weak coherent seeds (at −25
dB) are both generated from a programable Fourier optical filter57

(Waveshaper—WS) allowing to readily tune the seedparameters (i.e.Cn

with random wavelengths and phase) in the 5 nm spectral range
spanning 1551.3–1556.3 nm. Once generated, this input signal is
amplified via an erbium-doped fibre amplifier (EDFA) to reach a sui-
table peak power while it also provides additional amplified sponta-
neous emission (ASE) noise to the input pulse. To adjust the relative
impact of this broadband noise (and its competition with the coherent
seeds) on the subsequent propagation dynamics, the ASE is filtered to
match the spectral bandwidth of the blue-detuned MI gain during
pulse propagation (see Methods). This prepared input signal is then
injected into 385m of HNLF where it undergoes spectral broadening
along the dynamics depicted qualitatively in Fig. 1b.

At the fibreoutput, the average spectrumcan be directly detected
by an optical spectrum analyzer (OSA) while the shot-to-shot spectral
fluctuations are measured via a time-stretched dispersive Fourier
transform (DFT) to monitor real-time instabilities in the incoherent
output spectrum47. While further details are provided in the Methods
section, it is worth noting that the DFT technique is here implemented
to provide optimal spectral resolution (0.48 nm resolution, with an
equivalent sampling rate of 0.12 nm/point) while avoiding artefacts
associated with temporal signal overlap, dynamic range limitations
and detector impulse response. To this end, the incoherent spectrum
is filtered via another programable Fourier optical filter to perform
real-time spectral measurement on only the red-detuned MI sideband
of the output signal (i.e. > 1556.8 nm). DFT is implemented via a long
section of dispersion compensating fibre (DCF) coupled to a 5GHz
bandwidth detection architecture (i.e. photodiode and real-time
oscilloscope). These shot-to-shot temporal traces can then be lever-
aged to reconstruct the spectral correlation map ρnðλ, λÞ over the
range 1557–1583 nm (using 1000 DFT traces per seed setting Cn), but
also to retrieve the average spectrum SnðλÞ computed over the same
region of interest.

Fig. 2 | Deep-learning strategies for the forecast of noise-driven nonlinear
instabilities. Schematic of an artificial neural network (ANN) architecture for the
analysis of incoherent modulation instability dynamics. The ANN is employed to
predict the output spectrum and fluctuation properties of seeded modulation
instability dynamics depending on the input seed parameters. Similarly, the

properties of the fluctuating output spectrum (i.e. average spectrum and spectral
correlationmaps) can be used to infer the input seeds parameters. Both these ANN
approaches can be compared to numerical simulations and experimental results
considering incoherent modulation instability dynamics in nonlinear fibre propa-
gation (see Methods).
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The setup of Fig. 4 is leveraged to perform data acquisition over a
large range of seeding parameters: for each seeding scenario (i.e.
either 2 or 4 seed inputs), an experimental dataset comprising 60,000
random seed configurations Cn is used to train our ANNs (see Meth-
ods). Here, we start by training the networks to infer the input seed
parametersCn from the output correlationmap ρnðλ, λÞ, using a 5-layer
FFNN with up to ~28,000 perceptrons (see Table S4). Conversely,
similar ANNs are also trained to forecast the output spectrum SnðλÞ
either from the input seed parameters Cn, or from the output corre-
lation map ρnðλ, λÞ. In each case, we used the same FFNN architecture,
with 5 layers and adjusted layer widths depending on the type (i.e.
vector length) of datasets used as input and output (see Methods).

The ANN results considering dual-seeding are summarized in
Fig. 5a, b. Even in such a noisy experimental regime, where the weak
seeds are dynamically competing with the ASE during incoherent
spectral broadening, the network can readily infer the input seed
parameters (i.e. λ1, λ2 and Δφ2,1) with good accuracy. Considering the
validation set only (i.e. 5% of the total dataset, 3000 different corre-
lation maps and seeding cases unused during training), the ANN yield
an error (RMSE) below 5.0% for the wavelength inference, and down to
7.3% for the phase retrieval (see Fig. 5b).

Interestingly, the prediction of the average spectrum from the
input seed parameters is not as accurate. While the RMSE remains

relatively low, around 4.1%, such a prediction scheme is unable to
reproduce the fine structure of the MI sidebands in e.g. three repre-
sentative spectra displayed in Fig. 5a (orange dashes). However, using
the sameANN scheme but with the correlationmaps as the input layer
of the ANN, the network can reach an average error below 1% RMSE
(see thick blue lines), with an excellent agreement with ground truth
obtained from averaged DFT time traces (black lines).

A qualitatively similar behaviour can be obtained when con-
sidering a 4-seed input case, whose experimental results are sum-
marized in Fig. 5c, d. The inference of the seed parameters, here
illustrated for both wavelengths and phases (λ1, λ2, λ3, λ4, Δφ2, 1 and
Δφ4, 3), is in general agreement with the experiments but shows some
limitations as the average prediction error reaches 15.4% for the
wavelengths and 24.2% for all six combinations of phase difference Δφ
between the four input seeds.

Figure 5c also includes three illustrative spectra predictions from
the ANNs: the network yields an average error of 2.8% for the predic-
tion arising from the seed parameters and 0.8% for the prediction
based on the correlation maps.

The ANN results obtained for the 4-seed experimental dataset are
consistent with both numerical results and experimental results using
fewer seeds. Although the ANN accuracy levels shown in Fig. 5d may
seem modest—especially for phase inference—they highlight the

Fig. 3 | Prediction and inference of noise-driven modulation instability
dynamics obtained from numerical simulations. a Example of average spectra
obtained after fibre propagation for different dual-seed configurations at the fibre
input. The artificial neural network (ANN) prediction (thick blue line) is super-
imposed on the ground truth given by the simulations (thin black line).b Two-seed
wavelength andphaseparameters (λ1, λ2 andΔφ2, 1) retrievedby theneural network
(white dots) and compared to the seed parameters used in simulations (dashed
blue line). The dispersionof theANNpredictions compared to the ground truth (i.e.

simulations parameters) is also illustrated via a density plot of the network pre-
dictions in each panel background and the root mean square error (RMSE) is
provided for each ANN prediction. c Example of average output spectra obtained
for different four-seed configurations at the fibre input. Other parameters are the
same as in panel (a). d Four-seed wavelength and phase parameters (λ1, λ2, λ3, λ4,
Δφ2, 1 and Δφ4, 3) retrieved by the neural network (white dots) and compared to the
seed parameters used in simulations (dashed blue line). Other parameters are the
same as in panel (b).
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increased difficulty of inferring parameters from a larger set of seeds,
where errors are 2.5 to 3 times higher compared to the dual-seed
scenario (a feature also observed in seed parameters inferred from
numerical data, see e.g. Fig. 3b, d). Moreover, the ANN inference of
seed parameters from experimental data shows approximately a
threefolddegradation in accuracy relative to numerical data, likely due
to experimental instabilities such as weak EDFA power fluctuations
during data acquisition (see Supplementary Figs. S3 and S4). As such,
these results illustrate the stability limitations associated with our
experimental system. Nevertheless, these also demonstrate that the
signature of incoherent fluctuations proves useful to retrieve weak
input parameters via inherently complex and noisy nonlinear propa-
gation dynamics. In the next section, we explore whether ANN
approaches can be instead leveraged to mitigate time-consuming
noisy simulations and complex real-time measurements in order to
study incoherent MI spectral broadening dynamics.

ANN prediction of incoherent spectral fluctuations
The assessment of the ANN capability to predict the statistical shot-to-
shot fluctuation properties within the output spectrum is here con-
ducted both numerically and experimentally, leveraging the same
5-layer FFNN with adjusted layer widths (see Methods and Table S4).
First, using numerical simulations, we train our network to predict the
shape of the spectral correlation map ρnðλ, λÞ from the seed para-
meters. These results, considering either two or four seed datasets, are
summarized in Fig. 6.

Figure 6a shows two representative examples of the network’s
correlation map prediction over the whole spectral range (i.e.
1540–1580nm), here obtained considering different dual seeding
scenario. The average prediction error over the ANN validation set is
3.7% (RMSE), thus showing a very good agreement between the net-
work’s prediction and the simulation results.

Similarly, for the four seed case, Fig. 6b illustrates examples of the
network correlationmap predictions. In this regime, we also observe a
good quantitative agreement with the GNLSE simulation results, so
that the ANN average error (RMSE) remains at 7.4% for the validation
set of the 4-seed scenario.

Importantly, the correlation maps presented in Fig. 6 exhibit
strong signatures that result from considering close-to-ideal input
noise properties prior to nonlinear fibre propagation (i.e. broadband
quantumnoise and low-amplitude filtered ASE noise—seeMethods). In

our simulations, the nonlinear amplification of the weak coherent
seeds and their competition with noise yield well-defined and repro-
ducible spectral fluctuations (see Fig. 1b). It is therefore possible for
the network to predict these correlation signatures with accuracy,
despite the chaotic nature of the dynamics involved in such propa-
gation phenomena.

In the experimental realm, the lack of control over fine-tuned
experimental conditions and the intrinsic sensitivity and variability of
the nonlinear system to the initial conditions make the acquisition of
correlation maps with similar dynamics -and correlation signatures-
quite challenging. However, this is typically in such a complex regime,
falling outside the scope of viable analytical tools and realistic
numerical approaches, that deep learning techniques can prove
extremely useful.

To assess this potential, we used the experimental datasets,
obtained via the DFT setup shown in Fig. 4, to train neural networks
towards the reconstruction of spectral correlation maps for different
seeding conditions. The results of ANN predictions are summarized in
Fig. 7, with examples illustrated for cases from both 2 and 4 seed
scenarios.

Figure 7a illustrates the network’s performance in predicting
experimental correlation maps for two examples of the 2-seed MI
propagation scenario. The experimental maps ρn (top row) are com-
pared with ANN map predictions considering either the mean output
spectrum Sn (middle row) or the input seed parameters Cn (bottom
row) as the network input parameters.

For this dual seeding scenario, one can see that the network’s
prediction derived from the input parameters provides a reasonably
good qualitative agreement with the experiments and the ANN can
forecast the predominant correlation signatures in the maps. Yet, the
fine structures are not perfectly reproduced, and the prediction errors
(RMSE) remain relatively high (8.1% average error for the 3000maps of
the validation dataset).

Interestingly, the correlation maps predicted from the ANN
trained on the mean spectral trace yield better qualitative agreement
with the DFT experiment, with spectral correlation signatures that are
well reproduced and a drastically reduced prediction error of 4.0%
(RMSE) averaged over the whole validation dataset.

It is worth noting that this observation still holds when con-
sidering a larger tunable parameter space, as provided with 4-seed
scenario depicted in Fig. 7b. ANN correlation map forecast from the

Fig. 4 | Experimental setup. Schematic of the experimental setup implemented for
reconfigurable modulation instability seeding and real-time spectral characteriza-
tion. The data obtained from dispersive Fourier transform (DFT) signal processing
and real-time optoelectronic acquisition can be leveraged for artificial neural

network training after suitable statistical analysis. (EDFA: Erbium doped fibre
amplifier; ASE: amplified spontaneous emission; HNLF: highly-nonlinear fibre; DCF:
dispersion compensating fibre; OSA: optical spectrum analyzer).
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average spectrum Sn yields better results than anANN trained from the
input seed parameters Cn. Yet, in both cases, the agreement with
experiments is better, with an average prediction error (RMSE) within
the network validation dataset that decreases slightly, respectively
reaching 3.9% for predictions arising from the output spectral trace,
and 7.6% for predictions arising from the input parameters.

Overall, the results summarized in Fig. 7 highlight the potential of
our neural network to successfully forecast incoherent signal correla-
tion properties, based on tailored initial conditions or from specific
(average) output spectral intensity signatures. These results further
underpin the capability of deep-learning techniques to be suitably
applied in a realistic experimental condition, taking advantage of
nonlinear noise amplification and competition between different and
complex nonlinear wave-mixing processes with various coherence
degrees.

From amore specific analysis of these ANN prediction results, the
conclusions are two-fold: First, the forecast of the correlation maps
appears to be more effective when considering a larger parameter
space in the initial conditions (i.e. 2-seed vs 4-seed scenario).While not
unexpected, as ANNs typically require a large variability for successful
training, the inherent system complexity does not seem to be limiting

(at least for a reasonably low dimensionality of the input parameter
space) but rather allows for generating differentiating signatures that
the network can leverage for a better prediction (for a similar ANN
architecture).

Second, utilizing output spectral signatures for experimental
predictions has proven more effective and reliable in capturing com-
plex correlation features than relying solely on the input seed para-
meters. In contrast with ANN predictions based on numerical
simulations (see Fig. 6), these findings underscore the limitations of
such a deep learning technique within an experimental system highly
sensitive to the initial conditions (e.g. type of noise). In particular,
experimental data analysis shows that the predominant cause of
unpredictability in our system seems to be associated to the long-term
instability of our fibre amplifier (EDFA) during large dataset acquisi-
tions (see Figs. S3 and S4 in the Supplementary Information).

While we expect these limitations to be potentially mitigated,
together, these points raise the open question of uniqueness, repro-
ducibility, complexity and potential generalization of the incoherent
nonlineardynamicswithin the systemat play (andwhether this chaotic
system can be effectively modeled or forecast by its initial conditions
alone in an experimental environment).
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Fig. 5 | Prediction and inference of experimentally measured noise-driven
modulation instability dynamics. a Example of three average spectra obtained
after fibre propagation for different two-seed configurations at the fibre input. The
artificial neural network (ANN) predictions obtained from experimental correlation
maps (thick blue line) and from input seed parameters (orange dashes) are
superimposed on the ground truth given by the experimental measurements
(dashedblack line).bTwo-seedwavelength andphaseparameters (λ1, λ2 andΔφ2, 1)
retrieved by the neural network (white dots) and compared to the seed parameters
used in experiments (dashed blue line). The dispersion of the ANN predictions
compared to the ground truth (i.e. experimental parameters) is also illustrated via a

density plot of the network predictions in each panel background and the root
mean square error (RMSE) is provided for each ANN prediction. c Example of four
average spectra obtained after fibre propagation for different four-seed config-
urations at the fibre input. Thedisplayparameters in panels (a) and (c) (respectively
associated to the two and four seed configurations) are the same. d Four-seed
wavelength and phase parameters (λ1, λ2, λ3, λ4, Δφ2, 1 and Δφ4, 3) retrieved by the
neural network (white dots) and compared to the seed parameters used in
experiments (dashed blue line). The display parameters in panel (b) and (d)
(respectively associated to the two and four seed configurations) are the same.
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Fig. 7 | Prediction of spectral correlation maps by artificial neural networks
trained from experimental datasets. a Two-seed experiment: Example of two
experimental correlation maps predicted from the neural network for different
seeding conditions. The correlationmaps predicted by the artificial neural network
(ANN) trained either from the input seed parameters (bottom panels) or from the

output spectrum (middle panels), are compared to the correlation maps retrieved
from experiments displayed on the bottompanel (top panels).b Same as panel (a),
illustrating two examples of correlation maps predicted by the ANN for experi-
ments using four input seeds. In all cases, the root mean square error (RMSE) value
displayed is computed as the average of each pixel RMSE over the whole map.

Fig. 6 | Prediction of spectral correlation maps by artificial neural networks
trained from numerical simulations. a Example of two correlation maps pre-
dicted by the artificial neural network (ANN) in the dual-seed case (bottom), cor-
responding to two representative yet different seeding conditions. The
corresponding correlation maps computed from numerical simulations are

displayed on the top panel. b Same as panel (a), illustrating two examples of cor-
relationmapspredictedby theANN in the four-seedcase. In all cases, the rootmean
square error (RMSE) valuedisplayed is computed as the averageof each pixel RMSE
over the whole map.
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Discussion
In this study, we have demonstrated numerically and experimentally
that ANNs can effectively address both inference and prediction pro-
blems when considering tunable incoherent nonlinear processes. In
fact, our approach proved to be suitable for predicting nonlinear
dynamical features such as correlation maps and for uncovering hid-
den information concealed in noisy dynamics. Specifically, in two-seed
scenarios, the network can infer the input parameters with an error
below8% in all cases. Yet, this error increaseswith the number of seeds
considered. Conversely, for the prediction of output features, the ANN
maintains correlation map prediction errors below 9% for both two-
seed and four-seed configurations. In this case, a degradation of the
network predictions is however observed in experiments when train-
ing the ANN from input seed conditions rather than average output
spectral measurements.

Froma global viewpoint, we note that the proposedmethodology
can significantly enhance optimization time and data generation costs.
In this study, we demonstrated the efficacy of a feedforward neural
network (FFNN) with a fully-connected conformation, for a proof-of-
concept demonstration relying on a simple and reproducible ANN
architecture - here serving as a robust benchmark to guarantee a cer-
tain degree of universality in the trained network (i.e. varying only in
the dimensionality of ANN input, inner, and output layers to adapt to
different inference and prediction scenarios). We estimate, however,
that further enhancements in the ANN’s architecture and training
parameters could improve predictions and increase the reliability of
this optimizationmethod in both theoretical and experimental setups.
For instance, we expect that such promising results can be further
improved with advanced ANN frameworks (e.g. exploiting refined
Python-based toolboxes for in-depth studies focusing on specific
network architectures and conformations). From an experimental
perspective, leveraging better detection features (e.g. improved DFT
dynamic range, sensitivity, resolution) and overall long-term stability
in our experiments is also expected to provide a better quantitative
agreement for ANN training.

In this study, as in most works involving deep learning, we found
that the accuracy of ANN-based training and prediction is indeed lar-
gely dictated by the data quality. Yet, there are clear opportunities for
improvements in terms of network architecture and hyperparameter
tuning, depending on whether the focus is on fundamental studies
(leveraging e.g. physics informed networks) or applied aspects relying
on e.g. online optimization (metaheuristic search, reinforcement
learning strategies, etc.).

For instance, we expect that tailored ML techniques and ANN
architectures might be better suited to different types of input-output
data18,19: autoencoder approaches may be relevant for ANN training
from initial seeds (i.e. predictions), while Convolutional Neural Net-
works (CNNs) should be naturally adapted for training from correla-
tion maps (i.e. treating them via image processing tools and pattern
recognition techniques). Early studies on CNN architectures achieved
moderate success (similar to FFNN) but could be further explored in
subsequent works. Once refined, these methods may improve accu-
racy or speed, depending on the datatype considered. More advanced
architectures such as Generative Adversarial Networks (GANs) also
hold further promise for optimizing both prediction and inference
models in a unified framework75.

Preliminarywork also showed that simple evolutionary algorithm-
based metaheuristics (e.g., genetic algorithms or particle swarm opti-
mization) can iteratively optimize MI correlation features in noisy and
realistic experimental conditions76, although each target function still
needs its own specific optimization (i.e. no training nor generalization
possible). Along this line, Reinforcement Learning (RL) shows strong
potential for online optimization of noisy and dynamically changing
experimental conditions within complex, nonlinear and chaotic
systems77, as recently demonstrated numerically for suppressing MI in

spatial beams78. Following recent advances in other fields of
photonics8,9,18,19, deep RL clearly constitutes an excellent strategy for
mitigating changes in environmentally unstable conditions (e.g. to
consider and mitigate both thermal drifts and EDFA instabilities in
realistic experimental conditions), while hybrid methods combining
offline training with online optimization are also sought after to
enhance adaptability in real-time applications. Altogether, while sev-
eral improvements are still expected, our current observations already
yield several conclusions, paving the way to further investigations and
holding promises for ML-based advanced processing techniques in
incoherent optical systems.

First, we have noticed that despite long-term experimental
instability hampering the forecast of spectral correlation maps from
the seed parameters, the average DFT photodiode response (i.e.
average spectrum) enabled excellent prediction of spectral fluctua-
tions (see Fig. 7). Previous works demonstrated the capability of ANNs
for successful data analysis in incoherent systems such as predicting
temporal intensity features from spectral intensity only48,50 (i.e. with-
out phase information). In the current study, we demonstrate that the
statistical properties of incoherent signals (i.e. spectral fluctuations)
can be forecast by an ANN trained from averaged measurements only.
The underlying mechanism involved in such a macroscopic approach
leveraging averaged data is not fully determined yet. One may thus
wonder whether these results can be generalized in a broader context
of MI dynamics and nonlinear instabilities. However, ANNs trained
from both numerical and experimental data demonstrated their
potential for accessing incoherent signal properties without the need
for implementing complex and costly real-time measurement archi-
tectures. Similarly, from a numerical viewpoint, these results should
alleviate the requirement for time-consuming Monte-Carlo simula-
tions in the study of incoherent nonlinear processes.

Secondly, the numerical results reported from two-seed scenarios
demonstrateminimal errors, highlighting the prediction and inference
accuracy of our ANN method. Yet, an increased error in the four-seed
scenario (both numerically and experimentally) indicates that a rise in
the complexity and dimensionality of the system reduces the network
inference accuracy of the seed parameters, but not necessarily the
prediction accuracy of the output waveform fluctuations (at least
numerically). Experimentally, considering the resolution of the wave-
shaper and assuming perfect environmental stability, there is over 1011

possible combinations for two-seed optical control. This value rises to
over 1022 when considering four optical seeds, an important figure
compared to the mere <105 cases tested for ANN training.

In this view, the limited inference quality of the input conditions
for increased dimensionality questions the unicity of the nonlinear
transfer function observed for such incoherent MI processes. More
importantly, it interrogates the ability of the current detection scheme
(DFT resolution, dynamic range) and selected observables (average
spectral intensity and corresponding Pearson correlations) to lift any
ambiguity betweendifferent seeding conditions.Theproof-of-concept
presented here however shows potential for concealing data through
nonlinear noise amplification and chaotic dynamics—an approach
similar to incoherent cloaking. In particular, the network’s ability to
access and retrieve hidden information, such as the phase of weak
signals in a noisy environment, which is not discernible through a
standard approach or spectral measurements, presents a promising
area for further investigation.

On a third note, our results demonstrate the potential to control
and reshape spectral fluctuations properties within a broadband
coherent signal generated nonlinearly from noisy input signals. The
approach thus shows that the statistical nature of these spectral fluc-
tuations can be tuned qualitatively and quantitatively via all-optical
seeding. We thus show that a neural network can be leveraged to
predict complex and coherent transfer functions. Importantly how-
ever, complementary numerical studies illustrate that such ANN-
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fuelled approaches can be used to establish and select suitable initial
conditions for generating tailored incoherent signals, with several
orders of magnitude speed-up compared to GNLSE-based simulations
(see Supplementary Information, Fig. S5).

In line with these observations, it is worth noting that knowledge
distillation and generalization in ANNs, are particularly promising
when aligned with established MI analytical models53–55,65,79–82: propa-
gation dynamics can be normalized through key parameters of the
GNLSE such as dispersive and nonlinear lengths54,74, so that MI seeding
and associated evolution may be fully parametrized via normalized
frequency detuning (i.e. via normalized MI, gain cutoff), phase, and
modulation depth. Training ANNs on these normalized representa-
tions should allow distilled models to retain essential MI features and
transfer key physical insights to smaller andmore efficientmodels83. In
this framework, normalization should thus enable generalization
across different propagation regimes—such as varying propagation
lengths, pump powers, pulse durations, and seed strengths—by
decoupling dynamics from specific system configurations.

In this study, training data were limited to fixed pulse powers and
durations for both pump and seeds (propagating in a limited fibre
length). Expanding this initial parameter space (by e.g. varying pump
and seed characteristics) could enable ANNs to learn physics-informed
features that generalize across different MI propagation scenarios,
even under evolving noise conditions. For instance, such ML approa-
ches could potentially be adapted to more advanced analytical fra-
meworks, extracting physical quantities such as eigenvalues within the
inverse scattering transform (IST)55,79–81 - albeit within the theoretical
constraints of a pure NLSE. Ultimately, such hybrid approaches could
improve model robustness and reliability for a broader range of MI
regimes, but might also bring about powerful tools for analyzing and
classifying noise in MI, such as predicting highly localized structure
formations or tailoring specific MI evolution for a variety of real-world
applications.

Finally, we note that in the current experimental proof of princi-
ple,wehave focusedour study to the reshapingof thefirstMI sideband
fluctuations (due to the sensitivity limitations of our photodiode
within the DFT scheme). However, improved measurement schemes
previously demonstrated the impact of optical seeding inMI cascaded
processes57. We therefore expect that ANN frameworks can readily
help in the reshaping of incoherent FWM conversion for advanced
signal processing. In particular, we anticipate that such an approach
could be leveraged for spectrally mixing and interleaving complex
cascaded processes for the generation of optical signals with tailored
statistical properties.We also expect that examiningmultidimensional
propagation scenarios featuring higher complexity (e.g. leveraging
multimode fibres and intermodal nonlinear interactions17,40,84) could
also benefit from such deep learning approaches for gaining funda-
mental insight into higher-dimensionality incoherent dynamics while
unlocking new potential for on-demand and reconfigurable photonic
signal generation.

Methods
Experimental setup
Optical pulse preparation starts from an initial femtosecond pulse
train emitted at 50MHz repetition rate froma commercial laser source
(Menlo Systems, C-fiber HP Custom). The laser generates a pulse at a
central wavelength of 1550nm, with a duration of 80 fs (FWHM), an
average power of 82mW, and features a spectral coverage from 1480
to 1640nm (at−20dB cut-off). The initial broadband laser pulse is thus
filtered and reshaped into picosecond pulses via a programmable
spectral filter (Finisar—Waveshaper, 4000A, C band).

The Waveshaper is leveraged to generate a ~12 ps pump pulse
centred at 1556.8 nm (by applying a 74GHz bandpass filter). The
Waveshaper is alsoused to generate and tailor (coherent) optical seeds
originating from the same initial pulse. A number of seeds (2 or 4) are

filtered using the same process, with a continuously adjustable wave-
length within the range 1551.3–1556.3 nm. In this case, the seeds are
twice longer than the pump (of ~24ps obtained from a 37GHz band-
pass filter) to ensure convenient temporal overlap between all filtered
signals. The seeds also feature an additional attenuation of −25 dB
compared to the pump and an arbitrary relative spectral phase (ran-
ging from 0 to 2π) can be added to the seed signals. After filtering, the
pump power is ~50 µW and each respective seed is ~3.5 µW.

These signals are then amplified by an Erbium-Doper Fibre
Amplifier (Keopsys, EDFA—PEFA-SP) with a fixed current to reach an
average output power of ~10mW and ensure suitable nonlinear pulse
propagation in the fibre. The Amplified Spontaneous Emission (ASE) of
the EDFA is also filtered within the range 1544.5–1557.5 nm using a
bandpass filter (CDWM SM-1551—AFW Technologies) and used as a
source of white noise nonlinearly amplified together with the coherent
seeds during subsequent fibre propagation. Once prepared, the
amplified signal is injected into a Highly NonLinear Fibre (HNLF) of
385m with dispersion parameters β2 = −1.78 ps2 km−1 and β3 =0.07 ps3

km−1 measured at a central wavelength of 1550 nm. The nonlinear
coefficient is 8.4W-1 km−1 and the overall losses are 6.1 dB during pro-
pagation (including splices and linear attenuation).

After nonlinear propagation and spectral broadening, the output
waveform is sent to a 90:10fibre beamsplitter. 10% is sent to anOptical
Spectrum Analyzer (Anritsu, OSA—MS9710B) for monitoring the
average spectrumwith a spectral resolution of 0.07 nm.The remaining
90% is sent in a second programmable spectral filter (Finisar—Wave-
shaper, 4000A, C + L band) to filter a region of interest within the
spectral range [1557–1583 nm] and attenuate the rest of the spectrum.
Afterwards, the filtered output signal is injected into a Dispersion
Compensating Fibre (DCF) with a dispersive factor of D = 420 ps/nm
and 3.8 dB insertion loss at 1550 nm.

AfterDCFpropagation, the temporally-stretched spectrumcan be
readily measured in real-time through ultrafast detection systems
ensuring adequate temporal resolution for the time-frequency map-
ping associated with the DFT measurement technique47,57. Here, the
temporally-stretched spectrum is measured with a 5 GHz InGaAs
biased photodiode (Thorlabs, DET08CFC/M) connected to a 6GHz
Real-Time Oscilloscope (RTO—Rhode & Schwarz, RTO2064). The RTO
is synchronized with an external clock reference at 10MHz (Stanford
Research Systems—FS752) alsodriving the input laser oscillator used as
an RTO signal trigger. Together, this detection scheme allows mea-
suring the DFT spectra with 200ps resolution (at 20 GSa/s) and
minimal jitter, which yields an equivalent spectral resolution of
0.48 nm for real-time DFT measurements (and an equivalent spectral
sampling rate of 0.12 nm per point). The overall experimental process,
for both updating the Waveshaper seeding parameters and for the
acquisition of 1000 DFT traces, takes approximately 3.5 seconds, so
that our experimental framework can acquire ~1000 seeding scenarios
per hour of measurement.

We note that the filtering stage before the DCF guarantees the
suppression of the pump (and the lower wavelength region where
optical seeding is implemented) which in fact ensures (i) a reduced
power and thus a pure linear propagation in the DCF, (ii) an absence of
temporal overlap between spectral components from adjacent pulses
after DFT, i.e. 20 ns time period (iii) an absence of photodiode
saturation (average power of 50 µW at the DCF output) along with an
optimal use of the RTO dynamic range, and (iv) limited measurement
artefacts due to the photodiode impulse response.

Numerical simulations
Our numerical study relies on the generation of a substantial dataset
obtained by solving the Generalized Nonlinear Schrodinger Equation
(GNLSE) for the propagation of an optical pulse through a Highly
Nonlinear Fibre (HNLF). We use realistic simulation parameters con-
sidering the HNLF used in experiments, with dispersion parameters

Article https://doi.org/10.1038/s41467-025-62713-x

Nature Communications |         (2025) 16:7800 10

www.nature.com/naturecommunications


β2 = −1.78 ps2/km, and β3 =0.077 ps3/km, and a nonlinear parameter
γ0 = 8.4W-1 km-1. In our simulation we initially generate a Gaussian
pump pulse derived from filtering a 80 fs laser pulse with a central
wavelength λ0 = 1560 nm and a spectral bandwidth of 15 GHz (FWHM).
Using the same approach, we also generate a set of 2 (or 4) seeds, each
assigned a random central wavelength in the range [1562.5–1564.6]
nm, and a random spectral phase in the range [0 − 2π]. The spectral
bandwidth of the seeds is also 15 GHz, but the seeds are attenuated by
−50 dB compared to the pump.

This constitutes our initial seeded pulse, to which we add a
broadband input noise competing with the coherent seeds during
nonlinear MI amplification. White noise is included through the addi-
tion of 10 photons per spectral bin74 (with random spectral phase) and
ASE noise is included with a higher level of 100 photons per spectral
bin over the range 1559.4–1564.6 nm, covering the spectral region
where the seeds are implemented. This signal is amplified to reach a
peak power of 1.77W and propagated over 485m of the above-
mentioned HNLF by solving the GNLSE using the split-step method74.

Monte-Carlo simulations are performed by repeating the propa-
gation for 500 different realizations considering the same seeding
parameters but different input noise. These different realizations are
used to reconstruct the spectral correlation map using a Pearson
metric. Such 500 Monte-Carlo realizations for each seeding scenario
are typically performed in ~12 s (i.e. ~260–320ms/simulation/core) for
CPU-based parallel computing of the GNLSE with up to 16 cores.
Repeating this process for an ensemble of different seeding conditions
(i.e. wavelength and phase), we can generate two extended numerical
datasets: one dataset for 2 seeds, comprising 90,000 random seeding
conditions, and another dataset for 4 seeds, comprising 105,000
random seeding cases.

Numerical data standardization
The neural networks operatewith predictions ranging from0 to 1, data
must therefore be preprocessed and standardized specifically to
this end:

Correlation map preprocessing. The 2D correlation map matrices
(obtained from 500 Monte-Carlo simulations) are reshaped into 1D
vectors suited for 1D layers FFNN. The values ofPearson correlationare
linearly rescaled to [0, +1] values instead of [−1, +1]. Correlation maps
obtained fromGNLSE simulations are down-sampled from 1024 × 1024
pixels to 128 × 128 pixels over the selected region of interest, i.e.
1540–1580nm, corresponding to a spectral resolution of 0.31 nm.

Average spectrum preprocessing. The average spectrum from 500
realizations is also normalized between 0 and 1 via a directmapping of
the logarithmic scale spectrum (1024 points within a 40 nm spectral
span). In this case, we employ a 50dB dynamic range spectrum to
preserve the network’s ability to forecast the general dynamics in the
second and third sidebands of the MI spectrum (knowing there is a
typical 10 dB signal drop between two adjacent sidebands) while
ensuring that the central part of the spectrum (i.e. the pump experi-
encing SPM) does not get overly rewarded by the network during the
training phase.

Seed parameters preprocessing. Each input seed possesses two
parameters: its wavelength (in nm) and its spectral phase (between 0
and 2π). For a given seeding configuration, the two (or four) seeds are
therefore ranked according to their wavelength value (λ1, λ2,…) and
this wavelength λi is normalized (between 0 and 1) with respect to the
spectral interval where they are randomly distributed within the
dataset (i.e. the range 1562.5–1564.6 nm). The spectral phase para-
meters are encoded in terms of phase difference between the pre-
viously ranked seeds (e.g. Δφ2,1 =φ2−φ1) to limit phase wrapping issues
during ANN training. For each phase difference in the network, we also

use a sine and cosine projection and normalize their values (between 0
and 1) so that, after training, the phase can be readily retrieved with a
tan function.

Experimental data standardization
The dataset extracted from experiments is preprocessed in a similar
manner as numerical data. Average spectra and corresponding spec-
tral correlation maps are directly extracted from 1000 experimental
measurements using sequential DFT acquisition. Both the spectrum
and the maps are obtained over a specific 10 nm region of interest
corresponding to the filtered DFT spectral range: The spectra and
correlation maps are extracted between 1556 and 1566 nm, with a
corresponding spectral sampling rate of 0.12 nm/point. The spectra
possess a length of 82 points and are normalized via linear scale to
account for the limited dynamic range of DFT measurements. Experi-
mental correlation maps feature 82×82 pixels and are normalized in
the same way as the numerical dataset. The seed parameters, experi-
mentally encoded on the Waveshaper, are also processed in the same
manner as in numerical simulations. However, in our experiments, the
seeds are set within the range 1551.3–1556.3 nm (i.e. on the short
wavelength side of the pump).

Neural network architecture and training
The implemented Artificial Neural Network (ANN) is a Feed-Forward
Neural Network (FFNN) encoded in Matlab via its Deep Learning
toolbox. The solver used for training is a Stochastic Gradient Descent
with Momentum (SGDM) with an initial learning rate between
0.015–0.018, and up to 700 epochs depending on the dataset feed-
ing the network (see Table S5 in the Supplementary Information for
further details). For all ANN inferences and predictions reported in
themanuscript, the network is a FFNN composed of a total of 5 layers
(1 input, 1 output and 3 inner layers). Depending on the nature of the
data forecast and used for training (i.e. length of the input/output
vectors), each FFNN layer width is adjusted and the overall number
of neurons (perceptrons) thus ranges from 1676 to 37,392 (see
Table S4 in the Supplementary Information for details on each FFNN
architecture).

In order to assess the network’s successful training (e.g. without
overfitting), we evaluate the prediction error of the trained network
within a validation dataset for which the network was not trained. This
validation subset is randomly extracted using 5% of the experimental
dataset and 10% of numerical dataset, respectively, and the RootMean
Square Error (RMSE) provided in the manuscript corresponds to the
values computed on this validation subset (i.e. between the ANN pre-
dictions and the ground truth extracted from numerical or experi-
mental data). For instance, the RMSE of the correlation maps is
obtained by averaging each pixel RMSE over the whole map, while the
spectrum RMSE also corresponds to the mean RMSE over the spectral
trace (after normalization). The global error of the network training is
computed as the RMSE average ensemble of all the cases predicted
within the validation subset (i.e. untested 5–10% of the global dataset).

Data availability
The numerical and experimental data used for artificial neural network
training that support the findings of this study are available in
Zenodo85 with the identifier https://doi.org/10.5281/zenodo.15179897.
The figure data generated in this study are provided in the SourceData
file. Source data are provided with this paper.
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