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Harnessing free energy calculations for
kinome-wide selectivity in drug discovery
campaigns with a Wee1 case study
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Aleksey I. Gerasyuto 1

Optimizing both on-target and off-target potencies is essential for developing
effective and selective small-molecule therapeutics. Free energy calculations
offer rapid potency predictions, usually within hours and with experimental
accuracy and thus enables efficient identification of promising compounds for
synthesis, accelerating early-stage drug discovery campaigns. While free
energy predictions are routinely applied to individual proteins, here, we pre-
sent a free energy framework for efficiently achieving kinome-wide selectivity
that led to the discovery of selective Wee1 kinase inhibitors. Ligand-based
relative binding free energy calculations rapidly identified multiple novel
potent chemical scaffolds. Subsequent protein residue mutation free energy
calculations that modified the Wee1 gatekeeper residue, significantly reduced
their off-target liabilities across the kinome. Thus, with judicious use of this
gatekeeper residue selectivity handle, applying this computational strategy
streamlined the optimization of both on-target and off-target potencies,
offering a roadmap to expedite drug discovery timelines by decreasing
unanticipated off-target toxicities.

Potency optimization is a crucial component of drug discovery cam-
paigns. Without sufficient on-target potency, modulation of the ther-
apeutic target will be inadequate to achieve the desired efficacy.
Without sufficient on-target selectivity, off-target binding and the
potential for in vivo safety liabilities will make it very challenging to
successfully progress a givenmolecule through the discovery process.
Achieving selectivity for inhibitors that bind to conserved regions in a
gene family is particularly challenging, including kinome-wide selec-
tivity for inhibitors targeting the ATP-binding pocket of a given
kinase1–3.

Free energy simulations are the backbone of many structure-
based drug discovery programs to accurately and efficiently predict
the potency of design ideas2,3. In ligand relative binding free energy
simulations (L-RB-FEP+), as depicted in Fig. 1a, a reference compound
with measured binding affinity to the protein target is alchemically

perturbed to a design idea both in solvent and in the context of the
protein binding site. The free energy of binding of a design idea rela-
tive to the reference compound is computed from the thermodynamic
cycle based on these alchemical simulations. To ensure adequate
selectivity profiles, the binding affinity of a design idea is often pre-
dicted from the alchemical simulations performed in the context of the
corresponding off-target binding pockets. Thus, a typical computa-
tional workflow, as shown in Fig. 1b, may first predict the potency of
design ideas through simulations in the on-target protein and then
progress promising designs for potency profiling in the off-target
protein. For drug discovery programs where several off-targets are of
concern, profiling inmultiple distinct off-target protein structures can
be performed in a cascading fashion.

The accuracy and utility of the L-RB-FEP+ approach as a compu-
tational binding affinity assay have been validated extensively,
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generating predictions for small molecule binding within 1.0 kcal/mol
(6–8-fold) of experimental values on average. This error encapsulates
contributions from the force field, approximations from finite sam-
pling times, and uncertainties associated with the experimental
data4–6.

For kinase inhibitors, the high degree of conservation of the ATP-
binding site can often lead to a significant number of off-targets being
inhibited along with the target of interest, in which case, the physics-
based computational approach utilizing individual protein structures
for scores of kinases becomes intractable. QSAR7,8, Free-Wilson9, and
ML-based10–13 computational approaches have been proposed for
predicting kinome-wide polypharmacology. However, these models
are trained using sparse datasets; even with the large numbers of
compounds in the respective training sets, relatively few compounds

have binding affinity measurements for more than a dozen kinases,
and none of the models have been trained across the human kinome.
Thesemodels are also limited by the chemical diversity represented in
the respective training sets and, thus, the predictions may not extra-
polate reliably into unexplored chemical space in active drug dis-
covery programs.

Extensive coverage of chemical space is especially important in
the context of hit-to-lead and lead optimization phases, where diverse
functional groups and core changes are explored routinely. Thus, we
propose a physics-based approach to approximate the binding of
compounds to off-target kinases by simulating ligand binding in the
presence of protein point mutations of the on-target. Point mutations
are specifically chosen as selectivity handle residues that contribute to
the uniqueness of the binding pocket across the kinome. The

Fig. 1 | Strategy for profiling design ideas using free energy perturbation
simulations to identify potent molecules, selective for Wee1 over PLK1.
a Thermodynamic cycle leveraged by ligand-based relative binding free energy
calculations (L-RB-FEP+) to estimate the binding affinity of a design idea (orange)
(ΔGexpt

design) relative to experimental binding affinity of reference compound
(green) (ΔGexpt

reference) in the crystallographic structure of AZD1775 (compound 1)
within the Wee1 binding pocket (gray surface representation; PDB ID 5V5Y47).

Arrows A and B represent the alchemical perturbation between the reference and
design idea in solvent (ΔGFEP

solvent) and the binding pocket, (ΔGFEP
complex), respec-

tively, while arrows 1 and 2 represent experimental binding affinities. b Sample
schematic of an L-RB-FEP+ profiling cascade to predict potency and selectivity
against three off-targets such that only the most promising designs need to be
promoted to subsequent stages.
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differential impact on ligand binding due to crucial sequence changes
in the ATP-binding pockets between the on-target and off-target
kinases can be modeled using protein residue mutation free energy
calculations (PRM-FEP+), which follow a similar thermodynamic cycle
as small-molecule relative binding free energy simulations. In L-RB-FEP
+ simulations, the ligand is perturbed alchemically in the presence of a
specific protein sequence, while in PRM-FEP+ simulations protein
residues are perturbed alchemically in the presence of a specific
ligand, as depicted in Fig. 2a, b illustrates the corresponding in silico
profiling funnel that relies on PRM-FEP+ simulations for modeling
selectivity. Protein residue mutation free energy calculations have
been used previously for estimating protein-protein binding affinity14,15

and protein thermostability16 as well as predicting effects of resistance
mutations on ligand binding17,18. A recent analysis of protein residue
mutation FEP+ calculations for over 200 single-point mutations in

protein-protein complexes confirmed that the relative binding free
energy changes for most protein mutations were correctly predicted
within ~1 kcal/mol19, which is sufficiently accurate to positively impact
decision-making in drug discovery projects. Herein, we report what is
to our knowledge the first successful utilization of protein residue
mutation free energy calculations to enable the discovery of highly
selective kinase inhibitors, as exemplified by perturbing the Wee1 Asn
gatekeeper residue (i.e., selectivity handle) to design novel Wee1
inhibitors with optimal kinome-wide selectivity.

With an arsenal of computational strategies available, including
active-learning FEP+20, machine-learning models and de novo design
workflows21–23, our Wee1 program design goals were to discover a
potential best-in-class, highly selective molecule containing a new
scaffold and balanced drug-like properties, while minimizing drug-
drug interactions andoff-target binding liabilities. As depicted in Fig. 3,

Fig. 2 | Strategy for identifying novel kinome-wide selective Wee1 inhibitors.
a Thermodynamic cycle leveraged by protein residue mutation free energy calcu-
lations (PRM-FEP+) calculations to estimate the binding affinity of a design idea
(gray, surface rendering) bound to the wild-type sequence (ribbon + green CPK)
(ΔGexpt

WT) compared to themutant sequence (ribbon+orangeCPK) (ΔGexpt
mutant) of

theWee1 binding pocket (PDB ID: 5V5Y47). Arrows A and B represent the alchemical

perturbation between the wild-type and mutant sequence in solvent (ΔGFEP
solvent)

and the binding pocket (ΔGFEP
complex), respectively, while arrows 1 and 2 represent

experimental binding affinities.b Sample schematic of profiling cascadecombining
ligand-based relative binding free energy calculations (L-RB-FEP+) and protein
residue mutation free energy calculations (PRM-FEP+) to identify potent and
selective inhibitors efficiently.
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Wee1 is a serine/threonine kinase that is the gatekeeper of the G2-M
cell cycle checkpoint. In the presence of errors or damage during DNA
replication, cell cycle checkpoint proteins, including ATR, CHK1, and
Wee1, and DNA repair machinery work in concert to delay cell cycle
progression until sufficient repair has been achieved. Healthy cells
repair damagedDNAduring G1 arrest, prior to DNA replication in the S
phase. However, cancer cells usually have a deficient G1-S checkpoint
and rely on later (S and G2-M) checkpoints for DNA repair before
mitosis.Wee1 inhibition in cancer cells abrogates theG2-Mcheckpoint,
releases cell cycle brakes, and results in premature catastrophic
mitosis and tumor cell apoptosis, all of whichmakeWee1 an attractive
target for oncology drug development.

While several Wee1 inhibitors have entered clinical development
for the treatment of solid tumors, there are currently no approved

Wee1 inhibitors. AstraZeneca’s Wee1 inhibitor, AZD1775 (Compound
1), licensed from Merck & Co was studied in multiple Phase 2 clinical
trials over a period of nine years before being discontinued due to a
narrow therapeutic window mainly driven by combined myelosup-
pression and gastrointestinal toxicity. Off-target Inhibition of PLK124,25

has been hypothesized to contribute to the observed AZD1775 toxi-
cities. This hypothesis is currently being tested in the ongoing clinical
trials of PLK family-sparing Wee1 inhibitors from Debio (Debio
012326,27), Impact (IMP706828) and Aprea (APR-105129). Zentalis is cur-
rently investigating its Wee1 inhibitor, ZN-c3, in multiple trials30–33.

In this communication, we summarize rapid advances during the
early stage of developing a novel Wee1 inhibitor. The drug discovery
campaign started from the crystallographic structure of AZD1775
(Fig. 3b, c), first, to identify novel chemical series with promising

Fig. 3 | Overview of Wee1 mechanism of action and inhibitor AZD1775.
a Schematic of Wee1 in cell cycle regulation. The cell cycle is composed of four
major phases, including G1 (gap 1), S (DNA synthesis), G2 (gap 2) and M (mitosis).
Wee1 is a gatekeeper of theG2-M cell cycle checkpoint throughphosphorylation of
CDK1/2. Inhibition ofWee1 forces cells into unscheduledmitosis and culminates in
premature cell death. b Binding pocket representation of AZD1775 bound toWee1

(PDB ID: 5V5Y47; generated in Maestro (Schrödinger Release 2024-2: Maestro,
Schrödinger, LLC, New York, NY, 2024.) c 2D schematic of AZD1775 scaffold with
highlighted R1 group occupying the hydrophobic pocket around the gatekeeper
(GK) residue, R2 group located under the p-loop and the R3 group protruding into
the solvent-exposed region.
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potency against Wee1 and reduced potency against PLK1 using the L-
RB-FEP+ and, second, to efficiently optimize the selectivity profile of
each series across the kinome by using focused PRM-FEP+.

Results and discussion
Rapid identification of new potent series by free energy
calculations
Through theuseof large-scaleAutoDesigner23 enumerations andhand-
drawn ideation, 6.7 billion design ideas covering a wide range of che-
mical space were explored at the onset of the program. The design
ideas were prioritized using physicochemical property filters, docking,
as well as machine-learning models. In total, 9000 design ideas were
profiled with L-RB-FEP+ within the Wee1 binding pocket to identify
those designs that were predicted to be potent against Wee1. Com-
pounds that looked promising in the Wee1 L-RB-FEP+ model were also
profiled by L-RB-FEP+ in a crystallographic structure of the PLK1
bindingpocket to ensure that thedesignwaspredicted to lose potency
against the off-target compared to our reference compounds.
Through this hierarchical profiling strategy, within 7 months, 80
compounds were prioritized for synthesis and multiple novel series
were identified with nanomolar affinity against Wee1 and enhanced
selectivity (up to 1000-fold) over PLK1. Among the 80 compounds 7
originated from AutoDesigner workflows and the rest were hand-
drawn de novo designs. We recently illustrated the efficiency of this
hit-identification strategy in the discovery of a Wee1 inhibitor with a
novel 5,5-core34.

Protein residue mutation-free energy calculations recapitulate
kinome selectivity patterns
Representative compounds (compounds 2–5 in Fig. 4a) fromour novel
subseries were profiled in Eurofins’ DiscoverX scanMAX panel of 403
wild-type human kinases. These experiments revealed that while the
compounds did not inhibit PLK1, they were hitting many other pro-
teins in the kinome (see Fig. 4a) compared toknownWee1 inhibitors. In
our experience, issues of selectivity at this stage of compound opti-
mization could be addressed by adding one or several problematic off-
targets to the explicit L-RB-FEP+ modeling cascade to ensure that
binding to these off-targets would be avoided in subsequent rounds of
synthesis. However, the sheer number of kinases inhibited by the
identified leads rendered this approach intractable. Thus, a
more sequence-based analysis of the scanMAX panel results was
undertaken.

Our novel chemical series included both 5,6-cores (compounds 2
and 3) and 6,6-cores (compounds 4 and 5) and the two scaffolds dif-
fered in which kinases they hit: the 6,6-cores more frequently hit
kinases with threonine (Thr) and valine (Val) gatekeeper (GK) residues
whereas the 5,6-cores hit kinases regardless of gatekeeper residue,
including phenylalanine (Phe) and leucine (Leu). SinceWee1 andWee2
are rare among the kinome with asparagine (Asn) as the gatekeeper
residue, protein residue mutation FEP+ simulations were undertaken
to estimate the change in binding affinity of a ligand in the presence of
single-point mutations from the Asn gatekeeper (i.e., selectivity han-
dle) in theWee1 binding pocket to other amino acids.With these PRM-
FEP+ simulations perturbations to each of the five most common
gatekeepers for kinases with approved small-molecule kinase inhibi-
tors, i.e., threonine, phenylalanine, methionine, leucine and valine35,
were evaluated. Figure 2a illustrates the thermodynamic cycle used to
predict the potency change for a given ligand migrating from Wee1
into other kinase gatekeeper families, where in this context, a gate-
keeper family is composed of kinases with a given gatekeeper residue.
Thus, for each ligand, pKi’s were predicted for each of the five mutant
binding pockets, where each prediction represented the binding pro-
pensity to a distinct kinase gatekeeper family.

Binding affinity predictions from PRM-FEP+ calculations for our
four compounds, as well as representatives from three known

literature scaffolds (compounds 6–8 in Fig. 4a) that were evaluated in
scanMAX panels, strongly correlated with the percentage of kinases in
the panel that had the corresponding gatekeeper residue and were hit
experimentally as depicted in Fig. 4b. These PRM-FEP+ calculations
could accurately differentiate between promiscuous ligands (repre-
sentatives from the 5,6-cores (compounds 2 and 3)), ligands targeting
Asn, Thr and Val kinase families (representatives from the 6,6-cores
(compounds 4 and 5) and selective Wee1 inhibitors (known literature
compounds). The PRM-FEP+ predictions and percentage of kinases hit
in scanMAX by gatekeeper are included in the Supplementary Infor-
mation (Table SI-1). Prevalent binding of a compound to a given
gatekeeper family was defined as >10% of members in a gatekeeper
family hit in the scanMAX panel and having predicted pKi >8 for the
corresponding gatekeeper point mutation in the PRM-FEP+ calcula-
tion. With this classification, PRM-FEP+ calculations for five-point
mutations modeled across these 7 scaffolds have 91% accuracy, with
only 1 false positive and 2 false negatives. This retrospective analysis
indicated that the PRM-FEP+ strategy, though it only probes the
identity of the gatekeeper residue, is able to capture the likelihood of a
compound binding to another gatekeeper family of kinases. Further,
this computational approach could suggest which gatekeeper families
would need to be targeted for an improved selectivity profile for each
scaffold, and a given compound could be classified as “clean” when
PRM-FEP+ simulations for all five of the GK perturbations yield pre-
dicted pKi’s less than 8. To our knowledge, this is the first application
of protein residuemutation FEP+ simulations to estimate kinome-wide
selectivity.

Efficient optimization of kinome-wide selectivity by protein
residue mutation free energy calculations
With the quantitative retrospective performance of this protein resi-
due mutation FEP+ strategy, the focus turned to prospective optimi-
zation of series selectivity. During a three-month design andmodeling
campaign, more than 6000 compounds were profiled computation-
ally. L-RB-FEP+ was used to estimate on-target Wee1 potency and, for
each promising design, five PRM-FEP+ simulations were used to cal-
culate the design’s selectivity. In each of the series, chemical matter
was identified that was predicted to be potent and improve selectivity.
During these threemonths, 42designswere prioritized for synthesis to
validate this physics-based approach prospectively, and 22 of these
compounds met the project potency and selectivity goals of main-
taining single-to-double-digit nanomolar potency onWee1 as achieved
for the early hits while improving kinome selectivity profile to com-
parable or better than AZD1775. To experimentally validate pro-
spective PRM-FEP+ results, a subpanel of 20 kinases was assembled to
cover positive and negative controls for kinases hit or spared within
the initial novel series representatives. Kinases were selected for the
subpanel based on diversity of location on the traditional kinome tree
(see Supplementary Information, Fig. SI-2), distribution of gatekeeper
residues, availability of the corresponding binding assays, and avail-
ability of crystallographic structures. In the rest of this communica-
tion, we present the evolution of three series that were efficiently
optimized through this modeling campaign and prospective compu-
tational profiling.

Optimization of pyrrolopyrimidine core series
The selectivity profiles of the 5,6-cores were efficiently optimized
using protein residue mutation FEP+ calculations and results for key
compounds in the series are summarized in Table 1. The initial pyr-
rolopyrimidine representative, compound 2, that was identified in the
original Wee1/PLK1 L-RB-FEP+ profiling cascade, though it did not hit
PLK1, hit a relatively even distribution of kinases in the scanMAXpanel,
i.e., % Control <10 for 14% of the 72 kinases with Thr gatekeepers, 16%
of the 149 kinaseswithMet gatekeepers, and 19%of the 58 kinaseswith
Phe gatekeepers. The corresponding retrospective PRM-FEP+ panel
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estimates concurred that most of the gatekeeper perturbations would
be well-tolerated for compound 2; specifically, mutations from theWT
to Phe andMetmutations would lead to increased potency, mutations
to Thr and Leu would result in comparable binding affinity, whereas a
mutation to Val would lead to ~1 log unit loss of potency. With uncer-
tainties in the PRM-FEP+ simulations on the order of 1 kcal/mol19, a
predicted loss of potency greater than 2 kcal/mol for each mutation
was targeted in order to dial out off-target liabilities.

While awaiting kinome panel profiling for the representative
compounds, other variations of the core from nitrogen-walks around
the 5-membered ring were prioritized for synthesis based on Wee1
L-RB-FEP+ potency predictions. From among these compounds,
compound 9, with the transposed pyrrolopyrimidine core had mea-
sured Wee1 IC50 of 7.8 nM, and was predicted by PRM-FEP+ simula-
tions to be significantly more selective compared to compound 2.
Indeed, compound 9 inhibited less than half of the subpanel kinases

Fig. 4 | Retrospective validation of protein residue mutation-free energy cal-
culations (PRM-FEP+) for engineering kinome-wide selectivity. a scanMAXplots
for ligands in the retrospective analysis which includes representatives from our
novel 5,6-cores (blue shaded) and 6,6-cores (purple shaded), as well as repre-
sentatives from three known literature scaffolds (gray shaded) of Wee1 inhibitors
(pyrazolopyrimidinone core, compound 6; pyrimidine-based tricyclic core45,60,
compound 7; and pyrimidopyrimidinone core26, compound 8). For full-size scan-
MAXplots see Supplementary Information, Fig. SI-1.b Propensity of experimentally
observed hits in the scanMAXpanel according to gatekeeper (GK) family correlates

to PRM-FEP+ pKi predictions for each of the seven ligands bound to mutant Wee1
binding pockets; i.e., each ligand modeled while perturbing from the WT Wee1
binding pocket to mutant binding pockets containing each of the five common
gatekeeper mutations in turn (Asn376 → Thr, Phe, Met, Leu, and Val). scanMAX %
kinases hit reflects the percentage of kinases with a given GK residue among the
scanMAX kinases that have % Ctrl <10, with a minimum of 1% where
%Ctrl = test compound signal�positive control signal

negative control signal�positive control signal × 100%. Gatekeeper residue assignments
across scanMAX kinases, raw scanMAX results and PRM-FEP+ predictions are pro-
vided as a Source Data Excel file.
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Table 1 | Summary of 5,6-core series optimization guided by ligand-based relative binding (L-RB-FEP+) and protein residue
mutation (PRM-FEP+) predictions

AZD1775 Compound 2 Compound 9 Compound 10

Chemical structure
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Wee1 L-RB-FEP+ IC50 [nM] n/a 25 4 0.1

Wee1 ADP-Glo IC50 [nM] 0.4 5.3 7.8 0.7

PLK1 ADP-Glo IC50 [nM] 75.7 > 10,000 > 10,000 > 10,000

PRM-FEP+ΔpKi

Asn → Thr −1.9 −0.3 −2.1 −2.0

Asn → Phe −2.1 1.6 −3.8 −5.2

Asn → Met −1.4 0.9 −2.2 −2.3

Asn → Leu −3.1 −0.2 −3.3 −3.7

Asn → Val −1.7 −1.1 −0.5 −1.2

Wee1 Selectivity fold (GK)

ABL1 (Thr) >1000 10 3 5

ERK2 (Thr) >1000 910 >1000 >1000

KIT (Thr) >1000 290 >1000 >1000

PDGFRb (Thr) >1000 7 40 150

CDK9 (Phe) >1000 210 >1000 >1000

CLK4 (Phe) >1000 16 >1000 >1000

DYRK1A (Phe) >1000 50 >1000 >1000

FLT3 (Phe) >1000 0.7 >1000 610

HIPK2 (Phe) >1000 20 940 >1000

TRKA (Phe) >1000 0.3 450 100

AKT1 (Met) >1000 >1000 >1000 >1000

CSNK1E (Met) >1000 620 190 >1000

JAK2 (Met) >1000 12 130 77

MAP4K2 (Met) >1000 4 12 33

NEK2 (Met) >1000 6 0.8 54

AXL (Leu) >1000 14 140 690

MERTK (Leu) >1000 5 550 >1000

RET (Val) >1000 13 17 210

IRAK4 (Tyr) >1000 16 400 >1000

SLK (Ile) >1000 14 10 110

Subpanel by GK < 100-fold
(scanMAX by GK with %Ctrl < 10)

% Thr kinases hit 0 (10) 50 (14) 50 25 (11)

% Phe kinases hit 0 (7) 83 (19) 0 0 (2)

% Met kinases hit 0 (3) 60 (16) 40 60 (11)

% Leu kinases hit 0 (4) 100 (7) 0 0 (1)

% other kinases hit 0 (7) 100 (19) 67 0 (9)

scanMAX: Number of hits, Selec-
tivity score

S(35) 47, 0.117 120, 0.298 50, 0.124

S(10) 21, 0.052 60, 0.149 29, 0.072

S(1) 10, 0.025 26, 0.065 9, 0.022

scanMAX plots

Increasingly negative PRM-FEP+ ΔpKi values predict more selective inhibition of Wee1 over the off-target kinases. Wee1 Selectivity fold is reported for each kinase in the subpanel with its
correspondinggatekeeper (GK) residue indicated inbrackets.%kinases hit reflects thepercentageofkinaseswithagivengatekeeper residue among thesubpanelof 20 kinases that are less than 100-

fold selective over Wee1 and, when available, among the scanMAX kinases that have% Ctrl <10 where%Ctrl= test compound signal�positive control signal
negative control signal�positive control signal × 100%. Compoundswere screened in the scanMAX

panel of 403 wild-type human kinases; AZD1775 was screened at 1 µM and compounds 2, 9, and 10 were screened at 500nM; Selectivity Score,SðNÞ= number of wild�type kinases with%Ctrl<N
number of wild�type kinases tested .
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that were inhibited by compound 2. Given the promise of this pyrro-
lopyrimidine core containing the nitrile near the gatekeeper residue,
the chloro-thiophene directed towards the backpocket and the phenyl
piperazine towards solvent, different R-group variations were
explored. Within the subsequent two rounds of ideation, in silico
profiling and synthesis around this promising core, compound 10
containing an unsubstituted thiophene and pyrazolopiperidine
emerged as a clear front-runner and was comparable to AZD1775 with
sub-nanomolar potency against Wee1 and similar scanMAX selectivity
scores.

Optimization of 6,6-core series
This promising protein residue mutation FEP+ strategy was also
applied successfully to optimize the selectivity of the 6,6-cores. In the
scanMAX panel, the 6,6-core series representative, compound 4,
proved to be promiscuous across the kinome exhibiting % Control <10
for 82% of the kinases with Thr gatekeepers, 30% of the kinases with
Met gatekeepers and 9% of the kinases with Phe gatekeepers. Com-
pound 4 showed >100-fold selectivity in only half of the subpanel

kinases (see Supplementary Information, Table SI-2, for more details)
and was the starting point from which the PRM-FEP+ strategy was
employed to identify chemical variations that would be selective for
Wee1. Table 2 summarizes the key compounds in the optimization of
the selectivity profiles for this 6,6-scaffold.

In the first round of profiling variations of compound 4’s core,
compound 11 was predicted in FEP+ to lose some potency against
Wee1 yet have significantly fewer selectivity liabilities with more than
2 log units predicted loss of potency in PRM-FEP+ with gatekeeper
perturbations fromAsn to Thr,Met, Phe, and Leu. On-target L-RB-FEP+
and off-target PRM-FEP+ predictions were realized as compound 11
had measured potency of 22 nM and, remarkably, had more than 100-
fold lossof potency ineachof the 20 kinases in the subpanel compared
to Wee1.

The next round of optimization of this core included variations
of the solvent-exposed group and minor modifications of the core
substituents. From among these designs, compound 12 was selec-
ted for synthesis based on the combined L-RB-FEP+ and PRM-FEP+
strategy and was confirmed experimentally to maintain the

Table 2 | Summary of 6,6-core series optimization guided by ligand-based relative binding (L-RB-FEP+) and protein residue
mutation (PRM-FEP+) predictions

Compound 4 Compound 11 Compound 12

Chemical structure Cl

Cl
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Cl

Cl

O
N

N

N
H
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(R)
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(R)
N

N
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Wee1 L-RB-FEP+ IC50 [nM] <0.1 6 6

Wee1 ADP-Glo IC50 [nM] 0.3 22 1.0

PLK1 ADP-Glo IC50 [nM] >10,000 >10,000 >10,000

PRM-FEP+ΔpKi

Asn → Thr −0.2 −2.0 −1.6

Asn → Phe −3.0 −5.1 −4.7

Asn → Met −0.9 −2.6 −2.8

Asn → Leu −2.2 −3.4 −3.5

Asn → Val −0.6 −1.2 −0.6

Subpanel by GK < 100-fold
(scanMAX by GK with %
Ctrl < 10)

% Thr kinases hit 75 (82) 0 0 (3)

% Phe kinases hit 17 (9) 0 0 (0)

% Met kinases hit 60 (30) 0 0 (1)

% Leu kinases hit 100 (10) 0 0 (0)

% other kinases hit 100 (49) 0 0 (0)

scanMAX: Number of hits,
Selectivity score

S(35) 187, 0.464 10, 0.025

S(10) 136, 0.337 3, 0.007

S(1) 84, 0.208 0, 0.000

scanMAX plots

Increasinglynegative PRM-FEP+ΔpKi values predictmore selective inhibitionofWee1 over theoff-target kinases.Compoundswere screened in the scanMAXpanel of403wild-typehuman kinases at
500 nM; % kinases hit and selectivity score are calculated as described in Table 1.
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exquisite selectivity profile in the kinase subpanel while improving
the measured Wee1 potency to 1 nM. Furthermore, compound 12
when profiled in the scanMAX panel hit only 3 kinases with % Con-
trol <10: ABL1, MAP3K4 and Wee1. The measured potency in our in-
house ABL1 assay was 1.9 µM, suggesting a false positive in the
scanMAX panel.

Discovery of a novel potent scaffold while maintaining kinome
selectivity
Another common need in drug discovery programs is the ability to
explore unexplored chemical space to optimize scaffolds for various
properties while maintaining a favorable on-target potency and selec-
tivity profile against off-targets. Here, the applicability of the developed
L-RB-FEP+ and PRM-FEP+ workflow for predicting potency and kinome
selectivity was investigated for de novo core designs inspired by

compound 8, a representative of the pyrimidopyrimidinone-based
Wee1 inhibitors from Debiopharm26,36. Compound 8 had a measured
potency of 0.6 nM, and the scanMAX panel confirmed that only 8
kinases were hit with less than 10% control remaining.

Series of compounds with tricyclic cores based on compound 8
were designed and evaluated in the combined L-RB-FEP+ andPRM-FEP+
workflowandTable3 summarizes thekey compoundsdiscovered in the
process. The prototype design, compound 13, was prioritized for
synthesis and, indeed, had a measured potency of 42 nM for Wee1 and
maintained >100-fold loss of potency in each of the 20 kinases in the
subpanel compared toWee1. The second roundof optimization around
the tricyclic scaffold focused on improving on-target potency while
continuing to demonstrate selectivity. Through FEP+ profiling of hand-
drawndesigns aswell as designs fromanAutoDesigner enumeration, 19
compounds were prioritized for synthesis, and each one improved the

Table3 | Summaryof tricyclic core series optimizationguidedby ligand-based relativebinding (L-RB-FEP+) andprotein residue
mutation (PRM-FEP+) predictions

Compound 8 Compound 13 Compound 14

Chemical structure
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Wee1 L-RB-FEP+ IC50 [nM] n/a 2 0.5

Wee1 ADP-Glo IC50 [nM] 0.6 42.3 1.0

PLK1 ADP-Glo IC50 [nM] > 10,000 > 10,000 > 10,000

PRM-FEP+ΔpKi

Asn → Thr −1.1 −2.0 −2.0

Asn → Phe −4.0 −3.8 −4.2

Asn → Met −1.8 −2.5 −2.4

Asn → Leu −3.6 −4.0 −3.8

Asn → Val −1.9 −2.5 −3.0

Subpanel by GK < 100-fold
(scanMAX by GK with %Ctrl < 10)

% Thr kinases hit 0 (4) 0 25 (11)

% Phe kinases hit 0 (2) 0 0 (1)

% Met kinases hit 0 (1) 0 0 (3)

% Leu kinases hit 0 (1) 0 0 (1)

% other kinases hit 0 (5) 0 0 (5)

scanMAX: number of hits,
selectivity score

S(35) 20, 0.05 29, 0.072

S(10) 8, 0.02 14, 0.035

S(1) 4, 0.01 5, 0.012

scanMAX plots

Increasinglynegative PRM-FEP+ΔpKi valuespredictmore selective inhibitionofWee1 over the off-target kinases.Compoundswere screened in the scanMAXpanel of403wild-type human kinases at
500nM; % kinases hit and selectivity scores are calculated as described in Table 1.
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Wee1 potency to between 1 and 15 nM, with nine compounds exhibiting
Wee1 IC50s < 5 nM. Several compounds were profiled in the kinase
subpanel and, as illustrated by compound 14 in Table 3, selectivity
windows for all kinases in the subpanel were excellent. Compound 14
was also selective in the full scanMAX panel compared to the initial 6,6-
cores with only 14 kinases hit with % Control <10, thereby confirming
successful and efficient identification of a novel potent and selective
scaffold (see Supplementary Information, Table SI-3, for more details).

Cellular activity and ADME properties profiling
To demonstrate cellular on-target activity for identified selective Wee1
inhibitors we have evaluated themolecular effects of the compounds in
cancer cell lines, specifically the target engagement of Wee1 measured
by phosphorylation of Wee1’s substrate CDK1 (CDC2) at Tyr15, and
inhibition of cell viability in A427 (non-small cell lung cancer) and
OVCAR3 (ovarian cancer) cells. All these compounds demonstrate the
inhibition of Wee1 signaling in cells and anti-tumor activity in vitro. The
data including thebenchmark compoundsAZD1775 andCompound8 is
provided in Supplementary Information, Table SI-5. In addition, iden-
tifiedWee1-selective inhibitors were profiled in a subset of ADME assays
and data is summarized in Supplementary Information, Table SI-6.

Generalizing selectivity optimization strategy across kinases
While optimization of Wee1 inhibitors was achieved from modeling
perturbations of the gatekeeper Asn residue in the kinase ATP
pocket, this physics-based strategy is applicable whenever a suffi-
ciently high-quality model of the on-target is available, including a
validated binding mode of the chemical matter, and where a selec-
tivity handle can be identified for the on-target. In this context, a
selectivity handle is any residue or combination of residues in the
vicinity of the binding pocket that differ between the on-target and
off-targets that contributes to selective on-target binding. Various
approaches have been reported to propose selectivity handles based
on sequence variability and/or structural differences. For example,
Huang et al.37 presented a network analysis of kinase ATP-binding
pockets to estimate the potential for selective inhibition of each
kinase and the resulting network could be used to infer key residues
to target for designing selective inhibitors for a given target. In
another approach, Wang et al.38 developed a Human Kinase Pocket
database (HKPocket) including 1717 pockets from 255 kinases. From
the resulting 91 pocket clusters sequence conservation, critical
interactions, and pocket hydrophobicity could guide the identifica-
tion of selectivity handle residues. Zhang et al.39 identified
structurally-defined binary units, that is, pairs of residues in close
proximity to one another within kinase binding pockets. Their ana-
lysis of binary units across the kinome demonstrated that all 495
kinases contain binary units that are shared by less than seven other
kinases and 331 kinases have at least a single unique binary unit that
may distinguish it from all other kinases. Thus, these rare or unique
binary units, as visualized in their Kinase Drug Selectivity software,
could become the two selectivity handle residues proposed to per-
turb in the PRM-FEP+ simulations to efficiently optimize the on-
target selectivity of a chemical series or ensure its selectivity will be
maintained as other properties are optimized.

This physics-based approach could also be extended beyond
kinases to protein families where ligand binding pockets within the
protein family have significant sequence and structural homology,
including, protease active sites40 intracellular domains within GPCRs41

and the DNA-binding domain of nuclear hormone receptors, which
contain conserved zinc finger motifs42.

Structural insights
Crystallographic structures obtained for each of the three subseries
confirm overall binding modes that are very similar to those observed
for AZD1775 (1) bound to Wee1 (PDB ID: 5V5Y in Fig. 3b), i.e., two

H-bond interactions with main-chain atoms of Cys379 in the hinge
region, one H-bond acceptor interacting with the terminal NH2 group
of the gatekeeper Asn376 sidechain, an R1 group occupying the
hydrophobic pocket around the GK residue, an R2 group under the
p-loop and an R3 group protruding into the solvent-exposed pocket.

The central fused rings of each scaffold are coplanar with those of
AZD1775, have the same hinge binding motif and similar π-stacking
interactions with Phe433. However, each series achieves the H-bond
with Asn376 by different means: the 5,6-core represented by com-
pound 10 replaces the carbonyl with a nitrile; the 6,6-core represented
by compound 11 utilizes the exocyclic amide carbonyl, while the tri-
cyclic core represented by compound 14 employs a lactam carbonyl.

Other research groups have proposed structural rationales in the
back hydrophobic pocket for potency and selectivity profiles of Wee1
inhibitors. Palmer et al.43 explored the SAR around the phenyl ring
occupying this pocket, though they could not design compounds that
significantly improved the selectivity of the compounds for Wee1 over
c-Src. Matheson et al.44 proposed modulating the electronic character
of the R1 group to impact the strength of the hydrogen bond between
the pyrazolidinone carbonyl and Asn376. Tong et al.45 in their analysis
of AbbVie pyrimidine-based tricyclic Wee1 inhibitors suggested that
the hydrogen bond with the gatekeeper residue, Asn376, promotes
selectivity since human kinases rarely have H-bond donor residues in
the gatekeeper position (<0.5% across 500 kinases). Guler et al.46 tar-
geted features of the selectivity pocket around the gatekeeper to
enhance the selectivity of Wee1 inhibitors over PLK1.

Within our chemical series, the thiophene of compound 10
occupies the same region in the backpocket as the allyl group in
AZD1775. The backpocket di-Cl phenyl groupof compound 14overlays
almost exactly with that in the crystallographic structure of PD-166285
(15, PDB ID: 5VC546,47, Fig. 5d), laying perpendicular to the core and
forming a halogen bond with the backbone NH of Ala326. The di-Cl
phenyl group of compound 11 has a slightly different orientation in the
pocket and halogen bonds with the backbone of Asn376 instead. As
canbe seen in the overlayof compounds 10, 11, and 14withAZD1775 in
Fig. 5e, none of the representative compounds in our scaffolds occupy
the region under the p-loop to the same extent as the decorated
phenyl group in AZD1775. While potency can be enhanced with larger
groups at this R2 position, they were not necessary in these series for
selectivity gains.

In their SAR analysis of Wee1 inhibitors, Tong et al.45 noted that a
monocyclic aromatic group attached to the core is able to fit through
the narrow channel towards the solvent and that bulkier groups are
toleratedwithin the solvent-exposed pocket itself. Consistent with this
trend, in each of our scaffolds, a planar ring (i.e., phenyl or pyrazole) at
R3 is used to exit through the solvent channel while a bulkier group
with more 3-dimensional character occupies the solvent-exposed
pocket. However, the geometry of the core influences the exit vector.
For example, the piperazines of compound 11 and AZD1775 occupy a
similar region in the solvent pocketwhile theR3 vectors of compounds
10 and 14 are at an ~30° angle relative to AZD1775, leaving the corre-
sponding piperidines of compounds 10 and 14 displaced by ~5 Å
relative to AZD1775.

Physics-based insights beyond qualitative SAR
While understanding the SAR in the various parts of thebindingpocket
is a significant help in designing potent and selective inhibitors for a
given target, rigorous physics-based strategies can identify non-
intuitive activity cliffs and non-additive SAR across regions of the
binding pocket. Rather than the presence or absence of hydrogen
bonding to Asn376 being the primary criterion for predicting selec-
tivity, PRM-FEP+ calculations account for highly complex compensa-
tory effects, including the desolvation of the ligand to enter the
binding pocket, the loss of entropy upon ligand binding, as well as the
interplay among all of the protein-ligand interactions within the
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pocket. For example, AZD1775 and the matched pair in which the allyl
moiety is replaced with a methyl group (compound 16) both maintain
the pyrazole carbonyl interactionwith Asn376.While AZD1775 is about
10-fold more potent than compound 16, it is alsomore selective in the
kinase subpanel as summarized in Table 4.

Protein residue mutation FEP+ predictions efficiently drove the
selectivity optimization campaign by providing estimates of potency
losses that went beyond qualitative rationalizations. For some point

mutations in the presence of AZD1775 and compound 16 could be
rationalized based on steric bulk; for example, replacing Asn at the
gatekeeper position with Phe results in a predicted loss of potency
(ΔpKi −2.1) due to the bulkier Phe sidechain clashing with the allyl
group in AZD1775 while this bulkier Phe is well accommodated by the
compact methyl group in compound 16 (ΔpKi 0.3). However, the
magnitude of the predicted potency losses were not consistent for
each of the five point mutations assessed and could not be accounted

Fig. 5 | Binding pocket representations from crystallographic structures.
a Compound 10 (PDB ID: 9D0R), b compound 11 (PDB ID: 9D0Q), c compound 14
(PDB ID: 9D0S), d PD-166285 (compound 15; PDB ID: 5VC547), and e overlay of
compounds 10, 11, and 14 (green) with AZD1775 (orange) in the Wee1 binding

pocket (select residues for 5V5Y displayed in cyan ribbons and gray surface). All
ligand interaction diagrams generated in Maestro (Schrödinger Release 2024-2:
Maestro, Schrödinger, LLC, New York, NY, 2024).
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for by simplistic differences in hydrogen bonding patterns or steric
bulk and even counting interactions throughout the simulation tra-
jectory itself does not correlate with predicted free energy losses
or gains.

Early on in the program, we identified diverse R1 replacements of
the allyl grouponAZD1775 thatwouldmaintainpotency andnotbind to
PLK1. PRM-FEP+ calculations were then used to rapidly identify candi-
dates thatwere likely to be selective across the kinome.Compound 17 is
one such compound which was predicted to be a weak binder for
kinases with Phe and Leu gatekeepers with ~3 pKi loss of potency and
only be a modest binder to kinases with Thr and Met gatekeepers with
pKi losses of 1–1.5 log units. Compound 17, indeed, across the subpanel
of 20 kinases demonstrated a marked improvement in selectivity
compared to compound 16 and has a comparable profile to AZD1775
(see Supplementary Information, Table SI-4, for more details).

Summary
Chemical series exploration and compound prioritization in drug
discovery campaigns are streamlined using free energy calculations to
predict on-target potency accurately and efficiently. Routine experi-
mental screening of large kinase panels to identify selective com-
pounds would be time-consuming and cost-prohibitive. While focused
in vitro mutagenesis experiments to survey gatekeeper point muta-
tions of the wild-type sequence would reduce the expense of the
binding assays, the investment of resources to synthesize enough
compounds, often through many DMTA cycles, remains in order to
identify selective candidates. Rigorous physics-based simulations can
identify selective compounds to guide synthesis decisions. However,
relative binding FEP+ (L-RB-FEP+) to evaluate selectivity can become
intractable when many off-targets must be simulated individually,
given the need for high-resolution structuralmodels of each off-target
and high computational resources. Here, we demonstrate how PRM-
FEP+ can be leveraged to rapidly tune the selectivity profile against a
family of off-targets and exemplify how strategic use of PRM-FEP+
enabled the transformation of diverse scaffolds from promiscuous to

Wee1-selective inhibitors and, for another series, ensured the main-
tenance of a favorable selectivity profile. In this work, the gatekeeper
residue in the kinase ATP pocket was used as a selectivity handle and
was systematically perturbed from the Wee1 Asn to other common
gatekeeper residues to model the binding propensity of design ideas
across the broader kinome. This approach, however, is not limited to
modeling gatekeeper differences or to kinases, but can be applied
whenever there aremore off-targets than can be modeled individually
and where interactions within on-target and the problematic off-
targets can be differentiated by a single or small number of point
mutations in the vicinity of the binding pocket. With reliable physics-
based strategies for modeling on-target potency and dialing out off-
target liabilities, drug discovery campaigns can becomemore efficient
by rapidly identifying promising development candidates.

Methods
FEP+ calculations
All simulations were performed using the OPLS4 force field6 with the
FEP/REST sampling method within the Desmond GPU MD simulation
package4. Most compounds were profiled using Schrödinger Release
2019-3:Maestro, Schrödinger, LLC, NewYork, NY, 2019. Compound 10
was profiled using Schrödinger Release 2019-4, and Compounds 12
and 14 were profiled using Schrödinger Release 2020-1. The Force
Field builder was used to obtain customized torsional parameters for
the smallmolecules. Input structures were solvatedwith a 5 Å buffer of
simple point charge water in a rectangular box and equilibrated
through a series of minimization and restrained MD phases. Each
equilibrated structure was then subjected to a 10 ns FEP/REST simu-
lation. The FEP/REST phase was performed in the isothermal-isobaric
ensemble with a Berendsen thermostat and barostat. The equations of
motion were integrated using a reversible reference system propa-
gator algorithm scheme with an inner time step of 2.0 fs and an outer
time stepof 6.0 fs. The change inGibbs free energy,ΔG,was computed
from the difference between the bound and unbound simulations,
giving the relative binding affinity (ΔΔG). For Wee1 simulations, the

Table 4 | Summary of AZD1775 R1 exploration guided by ligand-based relative binding (L-RB-FEP+) and protein residue
mutation (PRM-FEP+) predictions

AZD1775 Compound 16 Compound 17
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Wee1 L-RB-FEP+ IC50 [nM] n/a n/a 47

Wee1 ADP-Glo IC50 [nM] 0.4 2.3 0.2

PLK1 ADP-Glo IC50 [nM] 76 1,079 >10,000

PRM-FEP+ΔpKi

Asn → Thr −1.9 −0.5 −1.0

Asn → Phe −2.1 0.3 −3.0

Asn → Met −1.4 −0.4 −1.6

Asn → Leu −3.1 −1.1 −3.0

Asn → Val −1.7 −1.2 −0.4

Subpanel by GK < 100-fold

% Thr kinases hit 0 50 0

% Phe kinases hit 0 33 0

% Met kinases hit 0 0 0

% Leu kinases hit 0 0 0

% other kinases hit 0 0 0

Increasingly negative PRM-FEP+ ΔpKi values predict more selective inhibition of Wee1 over the off-target kinases. % kinases hit are calculated as described in Table 1.
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publicly available crystallographic structure with AZD1775 (PDB ID:
5V5Y47) bound was used, while for PLK1 simulations, a proprietary
crystallographic structure with AZD1775 bound was used (PDB
ID: 9D0P).

For small-molecule perturbations, by default, 12 lambda windows
were used in a 10 ns FEP/REST schedule to perturb from a reference
compound to a design idea. For initial profiling of designs in large
libraries, short triaging simulations of 2 ns were utilized. For charged
perturbations and for larger perturbations, up to 36 lambda windows
and simulation lengths up to 25 ns were used to ensure adequate
simulation convergence. The perturbations for the bound simulations
were performed in the context of the Wee1 or PLK1 binding pocket
with wild-type sequence, and the unbound simulations were per-
formed in a simulated water box.

For all protein residue perturbations, 12 lambda windows were
used in the 10 ns FEP/REST schedule to perturb residue 376 in Wee1
from the wild-type Asn residue to either Thr, Phe, Met, Val, or Ile and
residue 376was included in the REST hot region. The perturbations for
the bound simulations were performed in the presence of a small-
molecule and the unbound simulations were modeled using apo
structures.

General information for compound availability and synthesis
AZD1775 was acquired through commercial sources. For the other
synthesized compounds detailed experimental procedures and
characterization data are available in the Supplementary
Information.

Wee1 kinase biochemical assay
The Wee1 kinase domain was obtained from Carna (catalog #05-177).
Poly-(Lys, Tyr 4:1) hydrobromide was used as a substrate (Sigma-
Aldrich) to assess the activity of Wee1. ADP production was measured
with the ADP-Glo Kinase Assay kit (Promega). The kinase reaction was
conducted in a buffer of 40mMTris-HCl, 30mMMgCl2 supplemented
with 0.1mg/mL bovine serum albumin, and 2mM DDT. The final
reaction mix contained 1 nM Wee1 enzyme, 15 µM ATP, and 2 ng/mL
Poly-(Lys, Tyr 4:1) hydrobromide substrate, with a reaction time of 4 h
at 25 °C. The Envision plate reader was used to measure the ADP-Glo

signal. Per cent inhibition was calculated by Eq. 1.

%Inhibition = 100%× 1� Ssample � SLowCtrl
SHighCtrl � SLowCtrl

 !
ð1Þ

where Ssample is the signal of compounds, SHighCtrl the signal of the high
control (DMSO) and SLowCtrl the signal of the low control (positive
inhibition at saturating concentration).

PLK1 kinase biochemical assay
The full-length PLK1 kinasewas obtained fromCarna (catalog #05-157).
Dephosphorylated Native Cow Casein protein was used as a substrate
(Abcam) to assess the activity of PLK1. ADP production was measured
with the ADP-Glo Kinase Assay kit (Promega). The kinase reaction was
conducted in a buffer of 40mMTris-HCl, 20mMMgCl2 supplemented
with 0.1mg/mL bovine serum albumin, and 2mM DDT. The final
reactionmix contained 10 nMPLK1 enzyme, 3 µMATP, and 5 µMNative
Cow Casein protein substrate, with a reaction time of 2 h at 25 °C. The
Envision plate reader was used tomeasure the ADP-Glo signal. Percent
inhibition was calculated from Eq. 1.

Cellular assays
Details of the experimental protocols for the cellular target engage-
ment assay (phosphorylated CDC2) and cell viability assay are pro-
vided in Supplementary Information.

Subpanel kinase selectivity assays
ADP-Glo assays at either two-dose titration or full-dose titration were
performed for ABL, PDGFRb, CDK9, FLT3, HIPK2, TRKA, AKT1,
MAP4K2, AXL, MERTK, RET, and SLK.

MSA (mobility shift assays) at either two-dose titration or full dose
titration were performed for ERK2, KIT, CLK4, DYRK1a, JAK2, NEK2,
IRAK4, and CSNK1E. Peptide substrates, reagents and reaction times
are indicated in Table 5. Reactions were performedwith 1.5 µMpeptide
substrate in a buffer containing 50mMHEPES at pH 7.5 supplemented
with 10mM MgCl2, 0.05% Brij-35, 2mM DTT, 0.05% BSA, 1mM EGTA.
Reactions were incubated for the time indicated in Table 5 at 25 °C

Table 5 | Summary of assay specifics for kinase subpanel

Enzyme Vendor Cat No. Enzyme conc. (nM) ATP conc. (μM) Substrate Reaction time (min)

MAP4K2 Carna 07-111 1.40 100 FL-peptide 25 (PerkinElmer, cat. 760388) 90

FLT3 Carna 08-154 0.63 100 FL-peptide 2 (PerkinElmer, cat. 760346) 90

HIPK2 Carna 04-136 3.49 10 FL-peptide 24 (PerkinElmer, cat. 760387) 90

TRKA Carna 08-186 0.90 100 FL-peptide 27 (PerkinElmer, cat. 760424) 90

CLK4 Eurofins 14-917 2.50 100 FL-peptide 34 (PerkinElmer, cat. 760643) 120

DYRK1a Carna 04-130 2.00 20 FL-peptide 24 (PerkinElmer, cat. 760387) 90

CDK9 Carna 04-110 4.30 10 FL-peptide 34 (PerkinElmer, cat. 760643) 90

SLK Carna 07-129 0.07 50 FL-peptide 33 (PerkinElmer, cat. 760642) 90

AXL Carna 08-107 1.67 50 FL-peptide 30 (PerkinElmer, cat. 760430) 90

JAK2 Carna 08-045 0.70 20 FL-peptide 22 (PerkinElmer, cat. 760366) 90

NEK2 Carna 05-226 4.70 100 FL-peptide 11 (PerkinElmer, cat. 760355) 90

AKT1 Carna 01-101 0.25 30 FL-peptide 6 (PerkinElmer, cat. 760350) 90

ABL Carna 08-001 1.00 20 FL-peptide 2 (PerkinElmer, cat. 760346) 90

KIT Carna 08-156 3.66 400 FL-peptide 30 (PerkinElmer, cat. 760430) 90

PDGFRβ Carna 08-158 1.50 30 FL-peptide 30 (PerkinElmer, cat. 760430) 90

Ret Carna 08-159 0.60 10 FL-peptide 22 (PerkinElmer, cat. 760366) 90

IRAK1 Carna 09-101 5.00 30 FL-peptide 10 (PerkinElmer, cat. 760354) 180

MERTK Carna 08-108 0.20 50 FL-peptide 27 (PerkinElmer, cat. 760424) 90

CSNK1E Carna 03-104 10.00 20 FL-peptide 16 (PerkinElmer, cat. 760360) 90

ERK2 Carna 04-143 3.33 50 FL-peptide 8 (PerkinElmer, cat. 760352) 90
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before terminating the reaction and reading the signal on EZ Reader
(PerkinElmer). All assays were performed at ATP Km.

Binding affinity and kinase selectivity
Binding affinity (KdELECT) and kinase selectivity (scanMAX) assays
were performed at EurofinsDiscoverXCorporation using KINOMEscan
platform, which utilizes an active site-directed competition binding
assay to measure interactions between test compounds and selected
human kinases, without the need for ATP. Compounds were screened
at 500 nM or 1μM in the scanMAX assay covering 468 human kinases.
For selected kinase hits, compounds were followed up with
dose–response to determine the binding affinity using KdELECT assay.
Protocols are briefly described below; please see vendor’s website for
additional assay description: https://www.eurofinsdiscovery.com/
catalog/scanmax-kinase-panel-kinomescan-discoverx/87-0001-1000.

KINOMEscan protocol description
Most kinases were produced from kinase-tagged T7 phage strains
grown in an Escherichia coli host derived from the BL21 strain. E. coli
were grown to log-phase before infection with T7 phage (multiplicity
of infection =0.4), and incubation with shaking at 32 °C for
90–150min. Cells were lysed and lysates centrifuged and filtered to
remove cell debris. The remaining kinases were produced in HEK-293
cells and subsequently tagged with DNA for qPCR detection.

Streptavidin-coated magnetic beads were treated with biotiny-
lated small-molecule ligands for 30min at room temperature to gen-
erate affinity resins for kinase assays. Ligand-bound beads were then
blockedwith excess biotin to remove unbound ligand and reduce non-
specific binding and washed with a blocking buffer (SeaBlock (Pierce),
1% BSA, 0.05% Tween 20, 1mM DTT). Binding reactions included
kinases, ligand-bound beads, and test compounds in 1× binding buffer
(20% SeaBlock, 0.17× PBS, 0.05% Tween 20, 6mM DTT).

Test compounds for percentage inhibition assays were prepared
as 100× stocks in 100% DMSO, whereas for Kd assays, they were pre-
pared as 111× stocks in 100% DMSO. Kds were determined using an 11-
point threefold serial dilution of each compound. Prepared com-
pounds were directly diluted into the assays. All reactions were carried
out in polypropylene 384-well plates in a final volume of 0.02mL
incubated at room temperature with shaking for 1 hour followed by a
wash in a buffer containing 1× PBS and 0.05% Tween 20. The beads
were resuspended in an elution buffer containing 1× PBS, 0.05% Tween
20, and 0.5μMnon-biotinylated affinity ligand, and incubated at room
temperature with shaking for 30min. Kinase concentration in the
eluate was measured using qPCR.

Determination of percentage inhibition and Kd
In case of percentage inhibition assays, test compoundswere screened
at a single concentration of 500 or 1000 nM, and the percentage
inhibition of a kinase was calculated as follows:

%Inhibition =
test compound signal� positive control signal
negative control signal� positive control signal

× 100%

ð2Þ

where the negative control is DMSO (0% inhibition) and the positive
control is the control compound (100% inhibition).

Kd’s were calculated with a standard dose–response curve using
the Hill equation:

Response=Background+ Signal� Backgroundð Þ= 1 +
KdHillSlope

DoseHillSlope

 !" #
ð3Þ

The Hill Slope was set to −1, and curves were fitted using a non-
linear least square fit with the Levenberg–Marquardt algorithm.

Crystallographic structure determination
The PLK1 crystallographic construct was produced and crystallized,
and the structurewas determined as described48. Data was collected at
a temperature of 100° Kwith radiation at a wavelength of 0.99990Å at
Swiss Light Source beamline X10SA. The model was initially refined
with the program REFMAC49. Manual model building and refinement
were completed using Maestro and PrimeX50.

The Wee1 crystallization construct was produced as described51.
Crystals of theWee1 complex with compounds 10 or 14were obtained
using the sitting-dropvapordiffusionmethod.Wee1 at a concentration
of 6.9mg/ml (50mM Tris/HCl, 150mM NaCl, 1mM TCEP, pH 8.0) was
pre-incubated with 1.0mM (4.7-fold molar excess) compound
(150.0mM in DMSO) for 1 h. 1 µL of the protein solution was then
mixed with 1 µL of reservoir solution (0.10M Hepes/NaOH pH 6.9,
3.4M NaCl) and equilibrated at 12 °C over 0.6ml of reservoir solution.
Diffraction data were collected a temperature of 100° K at the BESSY
synchrotron radiation source beamline 14.1 using the Pilatus3 S 6M
detector and radiation with a wavelength of 0.91840 Å. Data was
integrated using MOSFLM52, with merging and scaling using SCALA53.

Crystals of the Wee1 complex with compound 11 were obtained
using the sitting-dropvapordiffusionmethod.Wee1 at a concentration
of 6.9mg/ml (50mM Tris/HCl, 150mM NaCl, 1mM TCEP, pH 8.0) was
pre-incubated with 1mM (4.7-fold molar excess) of compound 11
(150mM in DMSO) for 1 h. 0.2 µL of the protein solution was then
mixed with 0.02 µL of a seed stock and 0.18 µL of reservoir solution
(0.1M bis-tris-propane pH 7.0, 2.8M sodium acetate pH 7.0) and
equilibrated at 20 °C over 0.2mLof reservoir solution. Diffractiondata
was collected at a temperature of 100° K at the Diamond Light Source
beamline i04-1 using the Pilatus 6M-F detector and radiation with a
wavelength of 0.91210 Å. Data were integrated using Dials54, and
merged and scaled using Aimless55.

All three Wee1 structures were determined by molecular repla-
cement with PHASER56 in the CCP4 program suite57 utilizing PDB code
2IN658 as the search model. The model was initially refined with the
program REFMAC49. Manual model building and refinement were
completed using Maestro and PrimeX50.

The coordinates and structure factors for all four structures have
been deposited in the Protein Data Bank. Additional information
is presented in the Supplementary Information, Table SI-7 and
Figs. SI-3 and SI-4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The crystallographic structure data generated in this study have been
deposited in the PDB under accession codes 9D0P, 9D0Q, 9D0R, and
9D0S. Initial and final configurations for the ligand FEP+ and protein
residue mutation FEP+ simulations are available at Zenodo59. Supple-
mentary Information contains the kinase gatekeeper assignments
(Supplementary Dataset 1), raw ScanMAX results (Supplementary
Dataset 2, Fig. SI-1), locationof subpanel kinases on a phylogenetic tree
of the human kinome (Fig. SI-2), more detailed simulation results and
ScanMAX results (Tables SI-1 through SI-4), cellular (Table SI-5),
ADME data (Table SI-6) and experimental procedures including char-
acterization data for proprietary compounds (Table SI-7 and
Figs. SI-3 and SI-4). Source data are provided with this paper.
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