
Article https://doi.org/10.1038/s41467-025-62777-9

Population structure in a fungal human
pathogen is potentially linked to
pathogenicity

E. Anne Hatmaker 1,2, Amelia E. Barber 3, Milton T. Drott4,
Thomas J. C. Sauters1,2, Adiyantara Gumilang1,2, Ana Alastruey-Izquierdo 5,6,
Dea Garcia-Hermoso7, Justin L. Eagan 8, Nancy P. Keller 8,9,
Dimitrios P. Kontoyiannis10, Oliver Kurzai11,12 & Antonis Rokas 1,2

Aspergillus flavus is a clinically and agriculturally important saprotrophic
fungus responsible for severe human infections and extensive crop losses.
Here, we analyze genomic data from 300 (117 clinical and 183 environmental)
A. flavus isolates from 13 countries, including 82 clinical isolates sequenced in
this study, to examine population and pan-genome structure and their rela-
tionship to pathogenicity. We use single nucleotide polymorphisms to build a
phylogeny, analyze admixture, and perform discriminant analysis of principal
components. We identify five A. flavus populations, including a new popula-
tion, D, corresponding to distinct clades in the genome-wide phylogeny.
Strikingly, > 75% of clinical isolates were in populationD and <5% in population
B. We also use orthogroup clustering to identify core and accessory genes
within the pan-genome. Accessory genes, including genes within biosynthetic
gene clusters, were significantly more common in some populations but rare
in others. Our functional annotations show that population D is enriched for
genes associated with carbohydratemetabolism, lipidmetabolism and certain
types of hydrolase activity, whereas a non-clinical population is depleted in
genes related to zinc ion binding. In contrast to previous results from the
major human pathogen Aspergillus fumigatus, isolation of A. flavus from
human specimens is associated with population structure, providing a pro-
mising system for future investigations into the contributions of population-
specific genetic differences to human infection.

The fungal genus Aspergillus (subphylum Pezizomycotina, phylum
Ascomycota) comprises some of the most important human oppor-
tunistic fungal pathogens. Invasive aspergillosis and chronic pulmon-
ary aspergillosis1 impact ~250,000 and 3million patients annually on a
global scale, respectively2. Invasive aspergillosis mainly afflicts indivi-
duals with compromised immunity or other underlying conditions3–7.
Mortality due to invasive aspergillosis varies among patient popula-
tions; ICU patients, as well as those with lung cancer, generally exhibit

~50% mortality8. In contrast to invasive aspergillosis, keratitis caused
by Aspergillus spp. mainly occurs in immunocompetent patients after
ocular trauma or contact lens use and can result in visual impairment
and even blindness9. Fungal keratitis is estimated to cause over one
million cases of blindness annually10.

Molecular barcoding studies from the last decade suggest that the
most common infectious agents are Aspergillus fumigatus (4−52% of
cases), followed by Aspergillus flavus (13−40%), Aspergillus niger
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(8−35%), and Aspergillus terreus (0−7%)11–13, depending on the disease.
Despite belonging to the same genus, these species exhibit high levels
of genomic sequence divergence; for example, A. fumigatus and A.
flavus are as diverged as human and fish genomes14. Pathogenicity in
Aspergillus has evolved independently multiple times, with species
following various evolutionary trajectories to enable pathogenicity15.
Alongside evolutionarydifferences, diverse geographic regions exhibit
distinct epidemiological patterns inAspergillus species prevalence. For
example, the percentage of invasive aspergillosis cases caused by A.
flavus varies by region, with ~10% of cases in the USA and Canada16 but
~40% in India13 attributed to A. flavus. The incidence of keratitis also
exhibits regional differences in etiological agents9,17.

Despite several Aspergillus species infecting humans, research to
date has focused primarily on A. fumigatus. Unlike A. fumigatus, A.
flavus is of both clinical and agricultural interest18.A. flavus is notorious
for producing highly carcinogenic mycotoxins known as aflatoxins.
Aflatoxins are associated with billion-dollar crop losses annually, and
consumption by humans and other animals is associated with cancer,
stunted growth, liver failure, and even death19. The production of
aflatoxins and an arsenal of other small, bioactive molecules termed
secondary metabolites varies among populations of A. flavus, sug-
gesting niche adaptation to specific microenvironments or
competition20. In some fungi, including A. fumigatus, other secondary
metabolites like gliotoxin can suppress host immune systems, serving
as virulence factors15,21. Some strains of A. flavus and A. terreus also
producegliotoxin or its precursors22.While there is someevidence that

kojic acid produced by A. flavus increases the toxicity of aflatoxin in
some insect species23, to our knowledge, virulence factors that impact
human infections have yet to be described for A. flavus. Due to the
nature of opportunistic pathogens, traits enabling human infection are
likely to benefit the fungus in certain environmental niches, as human
infections arise from the environment rather than person-to-person
transmission.

Individual isolates of A. flavus exhibit substantial phenotypic
variation, termed strain heterogeneity. Environmental (i.e., plant- or
soil-associated) isolates can cause disease in animal models of
aspergillosis24 and keratitis25, but strains vary in clinically relevant traits
such as growth under iron starvation conditions and virulence in ani-
mal models of fungal disease24,25. Additionally, A. flavus isolates may
produce large or small sclerotia (a hardened mass of compacted
mycelium capable of long-term survival under stressful conditions),
resulting in L and Smorphotypes, respectively; sclerotialmorphotypes
correlate with aflatoxin production and other cellular processes,
including conidiation26.

Although genetic diversity within A. flavus has been studied using
microsatellite markers in environmental27–29, veterinary30, and clinical31

contexts, these studies focused on a few loci and therefore examine
only a small fraction of the total genomic divergence among the iso-
lates. For example, a recent large study of A. flavus found high levels of
genetic diversity and genetically isolated populations that vary in
extent of recombination32. However, this study focused on agricultural
isolates from the USA and did not include clinical (i.e., human-
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Fig. 1 | Population structure of Aspergillus flavus reveals genetic isolation
reflecting five populations, including a new population, D. Analyses are based
on 1,941,481 biallelic single nucleotide variants. A Estimates of individual ancestry,
with K = 5, conducted using the software package LEA67, which estimates individual
admixture coefficients froma genotypicmatrix98.We estimated admixture forK = 2
through 10, with K = 5 providing the best fit for our data according to the cross-
entropy criterion68,69. B Discriminant analysis of principal components shows
admixture among populations A, C, andD aswell as clear separation of populations
B and S-type. Dots represent individuals and ellipses indicate group clustering of
individuals. Populations are color coded as indicated in the top right. The

discriminant analysis eigenvalues are shown on the bottom left, with the darker
bars showing eigenvalues retained. C A principal coordinates analysis displaying
relative genetic distances of individual isolates, here represented by dots, using
Nei’s genetic distance matrix. Axes indicate the two principal coordinates retained
and the percentage of variance explained by each coordinate. PopulationsA, C, and
D varied primarily along PC2 rather than PC1; population B showed genetic dif-
ferentiation from other populations and varied primarily along PC1. Single
nucleotide polymorphisms can be inferred from the alignment provided as our
Source Data file.
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associated) isolates, leaving the relationship between environmental
and clinical isolates unexplored. Although public databases such as
NCBI’s GenBank and Sequence Read Archive contain many A. flavus
genome assemblies and whole genome sequencing (WGS) datasets,
only a small proportion of these are fromclinical isolates33,34.WGS data
provideopportunities to studynot onlyfine-scale population structure
(population genomics), but also gene presence and absence across all
available genomes in a species (pan-genomics). In a pan-genome, the
core genome is defined as genes present in nearly all individuals while
genes that are absent from some individuals are called accessory
genes. The strong conservation of core genes is thought to represent
the core metabolism and housekeeping functions of a species35, with
accessory genes encoding non-essential functions and possible local
niche adaptations. Pan-genomic analyses are widespread in bacteria
but have only recently been adopted in fungi36. In A. fumigatus, pan-
genomes have been used to identify genetic variants associated with
human pathogenicity, recombination rates, and relatedness of clinical
and environmental isolates37–39.

In this study, we sequenced the genomes of 82 clinical isolates of
A. flavus representing a diversity of human infection types. We com-
bined our genomic data with publicly available genomic data to create

a dataset of 300 (117 clinical and 183 environmental) genomes. We
analyzed the genomesof clinical and environmental isolates to (a) infer
the population structure of the species, (b) investigate the relationship
between population structure and isolation environment (clinical vs.
environmental), (c) define the pan-genomeofA.flavus, and (d) identify
genetic elements that are associated with clinical isolates.

Results
Five populations of A. flavus were identified, with clinical
isolates overrepresented in one population
For genomes from clinical isolates sequenced in this study, short-read
sequencing resulted in over 10million paired-end reads for each of the
isolates (Supplemental Data 2). Trimming resulted in 10,326,680 to
53,093,447 paired reads per isolate (Supplemental Data 2).

To explore the population structure of A. flavus, we analyzed
1,941,481 biallelic SNPs from 281 isolates, after clone correction. We
found evidence of five populations based on admixture and DAPC
analyses (Fig. 1). In addition to the previously described A, B, C, and S-
type populations, we discovered a new population, D (Fig. 1; Supple-
mental Data 3). We calculated admixture coefficients for each isolate
(Fig. 1A), revealing higher levels of admixture in populations A, C, and
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Fig. 2 | Maximum likelihood phylogeny supports the existence of five popu-
lations and non-random distribution of clinical isolates across populations.
Filled in circles along theouter track indicate clinical isolates; empty circles indicate
environmental isolates. Branch colors correspond with population assignment
based on the discriminant analysis of principal components (DAPC; Fig. 1): the
S-type population is indicated in orange; population A in yellow; population B in

blue, population C in pink, and population D in purple. The outgroup, Aspergillus
minisclerotigenes, is represented in black. Apart from the outgroup, each tip
represents an A. flavus isolate and branch lengths denote sequence divergence.
Ultrafast bootstrap values are indicated below nodes. The phylogeny was con-
structed using 2,018,259 SNPs from a dataset of 300 A. flavus isolates and the
outgroup A. minisclerotigenes. Source data are provided as a Source Data file.
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D than in populations B and S-type. As with the admixture analysis, the
DAPC also provided evidence of five populations in our dataset
(Fig. 1B), based on BIC scores for each cluster. A principal coordinates
analysis using Euclidian distance showed considerable overlap
between populations A, C, and D, but populations B and S-type were
distinct from others along PC1 (Fig. 1C). The S-type population was the
smallest (n = 9) and included isolates previously confirmed to produce
S-type sclerotia. Population A (n = 114) was the largest, followed by
population B (n = 68), population D (n = 54), and population C (n = 35).
The reference strain, A. flavus NRRL 3357, was placed in population A.
The designated type strain for the species, A. flavus NRRL 1957, was
placed in population D.

An overwhelming majority of isolates in both the S-type and B
populations were from the USA, whereas the other three populations
(A, C, and D) each contained isolates from at least five countries
representing three or more continents. To examine the impact of
geography on the population structure, we tested for isolation by
distance40. The Mantel test statistic, or Pearson’s product-moment

correlation r, lies between −1 and 1, ranging from a perfect negative
correlation between the metrics tested and a perfect positive corre-
lation, with 0 indicating no correlation. We saw evidence of isolation
by distance in our dataset (Mantel test; r =0.173, p =0.001). We also
saw evidence of isolation by distance within populations C and D, but
not populations A or B (Fig. S1).

Population B was diverged from other populations, as Nei’s
genetic distance was high between population B and all other popu-
lations (D was above 0.111 for all comparisons between population B
and all others). Nei’s genetic distance was lowest between populations
A and D (D = 0.043), indicating genetic similarities between the
populations. Genetic differentiation across all five populations was
consistent with the results of an AMOVA (Analysis of Molecular Var-
iance) (global phi-statistic = 0.765; p =0). Populations A, C, and D
contained over 95% of the clinical isolates, whereas the S-type popu-
lation contained exclusively environmental isolates and population B
contained only three clinical isolates. Population D had the highest
proportion of clinical isolates, with >85% of isolates in the population
beingpatient-derived. Less than40%of isolates assigned topopulation
A, the largest population, were human-associated, in comparison. In
population C, 51% of isolates were clinical. Clinical isolates originated
from seven different countries: India, Japan, Netherlands, Germany,
France, Spain, and the USA (Supplemental Data 1).

To examine the phylogenetic relationships among the isolates, we
next constructed a maximum likelihood phylogeny using the full SNP
dataset (1,941,481 SNPs), with A. minisclerotigenes (section Flavi) ser-
ving as an outgroup (Fig. 2). Clinical isolateswere in all five clades, with
each clade corresponding to a genetic population. All isolates with the
“S” sclerotialmorphotypewere placed in a singlemonophyletic group,
along with other isolates we infer to also be S-type (Fig. 2). Phyloge-
netic placement of isolates mostly supported the genetic populations
(Fig. 2). Twoclinical isolateswere assigned topopulationA in theDAPC
but exhibited considerable admixture with populations A and D
(Fig. 1A). The maximum likelihood phylogeny recapitulated the DAPC
results, with both isolates branching within the population A clade.
However, in a neighbor-net network, one isolate was placed within
population D rather than population A (Fig. S2). Unlike phylogenetic
trees, neighbor-net networks capture additional nuance in relation-
ships by including recombination. Basedon the admixture analysis and
neighbor-net network, these two clinical isolates, one from Germany,
and one from India, possibly represent hybridizations between the A
and D populations.

To test whether clinical isolates were non-randomly distributed
across the A. flavus phylogeny, we calculated Fritz and Purvis’s D
statistic41; a valueof 0 indicates a clumpingof the observed trait (in this
case, human pathogenicity) as expected under the Brownian motion
model, whereas a value of 1 indicates a random distribution across the
phylogeny. The model tests D against significant departure from 0
(Brownian motion model of evolution), as well as departure from 1
(random distribution). We calculated D for the dataset (n = 300 iso-
lates) and observed a lack of random distribution (D =0.245), which
was significantly different from a value of 1 expected under random
distribution (p <0.0001), but not significantly different from a value of
0 expected under Brownian motion (p =0.067). These results suggest
that patient-derived isolates are not randomly distributed across the
phylogeny; rather, they appear to predominately be found in certain
populations (e.g., populations A, C, and D) and largely absent from
others (e.g., population B).

Although we observed enrichment of clinical isolates in some
clades, as supported by our D statistic, we recognize that our sampling
of environmental and clinical isolates was uneven due to hospital cul-
ture collection location and availability of public data. We did however,
include both clinical and environmental data frommultiple areas of the
globe. Despite the uneven sampling inherent in studies utilizing public
data, populationswith a large proportion of clinical isolates (A, C, andD)
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Fig. 3 | The pan-genome of Aspergillus flavus is closed and contains 17,676
orthogroups. A Rarefaction curve of number of orthogroups added with each
additional genome, excluding singletons. Data are presented as mean of 100 per-
mutations with random ordering of genomes added with standard deviation indi-
cated.BHistogramof orthogroup frequencydetermined bynumber of genomes in
which each orthogroups is present. The core genome contains 10,161 orthogroups.
The accessory genome of A. flavus contains 7515 orthogroups. C Heatmap of nor-
malized abundance of gene ontology (GO) annotations with significant differences
in abundance among populations. Significance determined by one-way ANOVA.
Bonferroni-corrected, p <0.05. The bar chart shows the mean number of genes
containing each GO term across all genomes. Source data in the form of predicted
proteomes are provided in the associated Figshare repository and Supple-
mental Data 6.
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include isolates from multiple countries across several continents
(Fig. 3; Supplemental Data 1). Furthermore, even though the majority of
clinical isolates are from Europe, we still observe a higher proportion of
clinical isolates in population D (54%) than in A or C (25% and 8%,
respectively) following exclusion of European isolates. Population D
includes isolates from seven countries, including clinical isolates from
Japan, India, and the USA. In contrast, population B isolates are almost
entirely environmental from the USA, although the isolates represent
diverse regions within the country, and we did not see strong evidence
for isolation by distance in this population, as discussed above. We also
did not see evidence of isolation by distance in population A, our largest
and most geographically distributed population. Notably, no Kenyan or
Ethiopian isolates, all of which were environmental, were placed in
population D. With the available data, we conclude that populations
enriched in clinical isolates are more globally widespread than popula-
tions with fewer clinical isolates (S-type and B populations), although
this findingwarrants further testing through sequencing of isolates from
additional geographic regions.

A. flavus isolates exhibit heterogeneity in gene content and gen-
ome size

Strain heterogeneity in gene content can impact diverse traits,
including virulence and secondary metabolite production, so we also
examined our dataset in using methods independent of the reference
genome. Genomes from 82 clinical isolates sequenced in this study
contained 17 to 4235 scaffolds (Supplemental Data 2). We also
assembled genomes for an additional 16 clinical and 12 environmental
isolates from publicly available sequencing data, resulting in genomes
containing 700 to 3615 scaffolds (Supplemental Data 2). Publicly
available genome assemblies of environmental A. flavus isolates con-
tained 8 to 1821 scaffolds32–34,42–46. Genomes with low completeness
basedonBUSCOanalysis (<95%)of the assemblieswere excluded from
the pan-genome analysis (Supplemental Data 4).

We examined variability in genome size among populations,
which could indicate genetic expansions or streamlining. The mean
genome size of populationDwas higher thanbothpopulations A andB
(Tukey’s multiple comparisons test, adjusted p =0.0175), with all
other pairwise comparisons of population means being non-
significant (Fig. S3).

We annotated all genomes using Funannotate47 to obtain con-
sistent annotations for comparison. To ensure our annotation pipeline

resulted in high-quality proteomes, we compared the Funannotate
predicted proteome of NRRL 3357 to the RefSeq reference annotation
and anadditional transcriptome-based annotation of the same strain48;
the two published proteomes contained 11 and 66 orthogroups that
were not present in the Funannotate prediction, respectively,
accounting for a tiny fraction of the gene content. Minor differences in
gene prediction are expected due to gene fragmentation contributing
to orthogroup variation. Overall, we are confident that the annotations
predicted by the Funannotate pipeline are consistently high quality,
enabling comparisons across isolates. The number of protein-coding
genes predicted by Funannotate ranged from 11,461 to 15,501 across
isolates (Supplemental Data 5).

The A. flavus pan-genome is closed and contains 17,676
orthogroups
To quantify the degree of gene presence-absence variation among
isolates, we constructed a pan-genome of A. flavus. We used Ortho-
Finder to cluster predicted proteins into orthogroups, which were
then compared across isolates and populations. Our pan-genome of
A. flavus is closed (Heap’s law, alpha = 1.000023), with each genome
after the 200th adding fewer orthogroups (Fig. 3A). We identified a
total of 17,676 orthogroups. Of these, 10,161 (57.5%) orthogroups were
in at least 95%of isolates;we consider theseorthogroups tobe the core
genome. Within the core genome, 3375 orthogroups were single-copy
and present in all isolates. The pan-genome of A. flavus exhibits a
U-shaped distribution, as expected (Fig. 3B). The accessory pan-
genome of A. flavus consists of 7515 orthogroups, of which 3387 (19.1%
of all orthogroups) were in <5% of isolates and which we consider the
“cloud” genome.

To explore which functional annotations were over or under-
represented within populations, we examined presence or absence
and abundanceof InterPro annotations and gene ontology (GO) terms.
Populations A, C, and D, which are enriched in clinical isolates, shared
much of their gene content and did not show any population-specific
patterning of orthogroup presence or absence in a PCoA, but popu-
lation B, did (Fig. S4). We infer that gene content among population B
isolates is more conserved and distinctive from other populations,
likely due to low diversity within the population. In addition, we
examined the abundance of GO terms and InterPro annotations and
compared the mean among populations, excluding the S-type
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population due to its small size. Populations had substantial differ-
ences in annotations and several GO terms were differentially abun-
dant among populations (Fig. 3C). Given the over-representation of
clinical isolates in population D, we focused on interpreting differ-
ences in functional annotations between population D and all other
populations. Isolates in this population had a higher abundance of
genes involved in many cellular processes, including certain types of
hydrolase activity, nucleoside metabolic and carbohydrate metabolic
processes, DNA-binding transcription factor activity, regulation of
transcription, lipid metabolic process, NAD binding, catalytic activity,
and acyltransferase activity (Supplemental Data 6; Fig. 4 andS5).Genes
annotated with ferric iron binding functionalities were found in lower
abundance in population D compared to other populations. Popula-
tion B, the population with the fewest clinical isolates, was depleted in
genes related to zinc ion binding (Fig. 4).

Genes in a putative non-ribosomal peptide synthesis (NRPS) BGC
with anunknownproduct were absent in >90%of isolateswithin the S-
type and B populations. The backbone gene for the NRPS cluster was
present in all isolates in all populations, but additional biosynthetic or
transporter genes within the BGCwere absent from isolates within the
S-type and B populations (G4B84_009247, G4B84_009246,
G4B84_009245, and G4B84_009244 in A. flavus NRRL 3357, where all
genes in the BGC are present). The BGC was previously identified as
“BGC_44”on chromosome6butwas not explored indepth20. GO terms
associated with multiple genes within the BGC (OG0011498
[GO:0000981; GO:0006355; GO:0008270]; OG0011868 [GO:0
003824, GO:0006807]; OG0011918 [GO:0003824]) were also differ-
entially abundant among populations (Supplemental Data 6).

Additionally, orthogroups related to aflatoxin biosynthesis
(GO:0045122) were abundant at different levels among populations
(Supplemental Data 6). Predictions from antiSMASH indicate the
aflatoxinBGCwaspresent in 68.5%of isolates (n = 166/242). In linewith
previous research20, the BGC was present in almost all isolates in
populations A, C, and S-type, but absent or degraded in many isolates
within population B (Fig. S6). Interestingly, we found that the aflatoxin
BGC was also absent or degraded in the newly defined population D,
which has the most clinical isolates of any population.

Although virulence factors for human pathogenicity have not
been identified in A. flavus, we examined 20 genes known to increase
virulence in plant pathogenicity assays. All 20 genes were present in
the isolates, but nucleotide percent similarity to the reference varied.
For example, the stress-responsive transcription factor skn7 showed
substantial variation among isolates; skn7 is part of the phosphorelay
signal transduction system49 associated with GO:0000160, which we
saw in lower abundance in population A compared to our other
populations (Supplemental Data 6).

Three orthogroups with high variability in number of gene
family members were correlated with human-association
We used phylogenetic generalized least squares (PGLS) models to
examine the relationships betweenmultiple variables including isolate
source (clinical or environmental), genome size, number of tRNAs,
number of predicted genes, and number of predicted biosynthetic
clusters. Using these phylogenetically informed linear regression
models, we observed a correlation between genome size and number
of predicted genes (p = 0; adjusted R2 = 0.4891). We also examined the
10 orthogroups with the largest variability of gene family members
from each isolate. We found that only three were significantly asso-
ciated with isolate source (OG0000011, OG0000060, and
OG0000270), all with low adjusted R-squared values (Supplemental
Data 6); BLASTp results linked OG0000060 and OG0000270 with
hypothetical proteins and implicated OG0000011 in natural product
biosynthesis. OG0000011 was annotated with gene ontology terms
“GO:0003824 catalytic activity” and “GO:0016746 transferase activity,
transferring acyl groups,” which were both significantly differentially

abundant among populations (Supplemental Data 7). None of the
PGLSmodels showed significant correlation between orthogroups and
DAPC population assignment (Supplemental Data 3).

Discussion
In this study, we examined the population structure, phylogeny, and
pan-genome of A. flavus using genomic data from 300 isolates,
including 82 clinical isolates sequenced by us. By combining genomic
data for both clinical and environmental isolates of this pathogen, our
study provides a rich dataset for future study and revealing fine-scale
differences in pathogenicity within A. flavus.

Previous research using genomic data of environmental isolates
from the USA described three populations of L-type (isolates produ-
cing large sclerotia) A. flavus isolates: A, B, and C32. With the inclusion
of additional isolates, notably clinical isolates, our study identifies
another distinctpopulation, here termedpopulationD,whichcontains
the majority of clinical isolates. Clinical isolates were present in all L-
typepopulations, but at different abundances—populationsA,C, andD
were enriched in clinical isolates, with population D containing the
highest proportion. Isolates with the small sclerotial morphotype (S-
type) grouped together in all analyses, as seen previously32, and only a
single clinical isolate was placed in this group.We did not expectmany
clinical isolates to be part of the S-type population, as S-type isolates
produce conidia at a far lower rate than L-type isolates26—interaction
with these airborne asexual spores is how most patients are infected
with Aspergillus species, so isolates producing fewer conidia are less
likely to have spores interact with a human host.

Populations contained a combination of isolates from several
different infections or microenvironments including soil, infections of
different plant hosts (e.g., peanuts, corn, almonds), and different types
of human infections (keratitis, aspergillosis, otomycosis, etc.), indi-
cating a lack of specialization in populations. Previous work on envir-
onmental isolates showed no evidence of host specialization in A.
flavus, with a single isolate able to infect both plant and animal hosts50,
which is consistent with our observation of the lack of clustering of
isolates from the same microenvironment.

Interestingly, clinical isolates were concentrated in populations A,
C, and D, with population D containing the majority of clinical isolates
and few environmental ones. Cryptococcus neoformans, another
opportunistic fungal pathogen of humans, shows similar enrichments
of clinical isolates in some clades compared to others51, whereas the
most common human pathogen in the genus Aspergillus, A. fumigatus,
does not37. In A. flavus populations A, C, and D, isolates did not cluster
by country of origin, butwedidobserve a positive correlation between
genetic and geographic distances in populations C and D, indicating
that genetically divergent isolates were likely to be geographically
distant. Geographic samplingwithin our datasetwas not balanced, due
to our use of public data and heavy sampling of clinical isolates within
Europe. No environmental isolates from Europe had public data
available, and none were available from large fungal culture collec-
tions, such as the NRRL or the Westerdijk Institute. The addition of
environmental isolates from Europe in future studies will further test
the validity of the inferred link between pathogenicity and population
structure observed in our analyses.

We observed several important differences between A. flavus and
the major human pathogen A. fumigatus. Our finding that some
populations are highly enriched for clinical isolates in A. flavus con-
trasts from observations in A. fumigatus, wherein clinical isolates are
more evenly distributed across all clades37, highlighting the impor-
tance of studying A. flavus as a pathogen rather than assuming that
pathogenicity in the two species evolved similarly. Ecological differ-
ences among species contribute to the various clinical presentations
and prevalence of Aspergillus species causing aspergillosis, such as the
ability to form biofilms, or the size of conidia52. Likewise, genetic dif-
ferences among species may explain some of the variance and
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prevalence of A. flavus related to A. fumigatus. A. flavus has a larger
pan-genome than A. fumigatus, likely due to the difference in overall
genome size between the species, with accessory genes composing a
similar percentage of the pan-genome. Several pan-genomic studies
have focused on A. fumigatus, with the core genome ranging from 55%
to 69% of the pan-genome37–39, compared to our finding of 57% in A.
flavus. A recent review stated that A. flavus clinical isolates were more
similar to one another and exhibited lower diversity than clinical iso-
lates of A. fumigatus, which were more genetically diverse53. A. fumi-
gatus has many more genomes available from clinical isolates than A.
flavus and the isolates are not associated with population structure as
in A. flavus. However, our observation that clinical isolates are con-
strained to populations A, C, and D, which share genetic similarities
and overlap in a principal coordinates analysis, supports a level of
similarity among A. flavus clinical isolates despite deep phylogenetic
divergences. We advocate for additional sequencing of clinical iso-
lates, particularly from South America and Africa, as no genomes of
clinical isolates are currently publicly available from these regions.
Nevertheless, our analyses suggest that the core genome of A. flavus
will remain similar even with the addition of new data; among the pan-
genomic studies of A. fumigatus the core genome was consistent
whereas the accessory genome varied based on input data37–39.

Within the pan-genome of A. flavus, we observed several differ-
ences among populations. Several GO terms were enriched in popu-
lation D, often in biological processes like carbohydrate, nucleoside,
and lipid metabolism. Molecular functions enriched in population D
included hydrolyzing O-glycosyl compounds, a function of exo-poly-
galacturonases, which are involved in the degradation of plant cell wall
polysaccharides54. None of the GO terms were directly implicated in
functions typically related to pathogenicity, but several GO terms
associated with metal acquisition were differentially abundant among
populations. For example, zinc ion binding was depleted in population
B. Zinc is an essential micronutrient for many fungal processes, and in
A. fumigatus, deletion of a zinc acquisition factor attenuated virulence
in a mouse model of aspergillosis55; however, we do not yet know
whether the lower abundance of genes annotated to involve zinc ion
binding would correlate with lower virulence in population B of
A. flavus.

In other fungal infections of humans, secondary metabolites have
been implicated in virulence56, most notably the role of gliotoxin in A.
fumigatus infections. However, no secondary metabolites have been
associated with A. flavus human infections. The most famous second-
ary metabolite produced by A. flavus is aflatoxin, which is not thought
to be important for human infections as the optimum temperature for
production of aflatoxins is below 37 °C, with transcription of the BGC
dropping at higher temperatures57. The predicted BGC for aflatoxin
follows previously reported population-specific patterns20, with pre-
sence or absence of the aflatoxin genes explained by clade and
population.

Although both clinical and environmental isolates within popu-
lations A and C contained the aflatoxin BGC, isolates in population D
often lacked genes related to aflatoxin biosynthesis. Population B,
which included almost entirely environmental isolates, also lacked
aflatoxin biosynthesis genes. Hospitals do not measure aflatoxin pro-
duction for clinical isolates, leading to a paucity of production data for
clinical isolates. However, it appears that although some clinical iso-
lates in populations A and C may have the potential to produce afla-
toxin, many clinical isolates in population D lack the necessary genes,
and we expect them to be non-aflatoxigenic. The absence of the afla-
toxin BGCwithinmany clinical isolates of A. flavus, including almost all
within population D, reinforces the apparent lack of association
between aflatoxin and virulence in the context of human infections.
Other predicted biosynthetic genes and gene clusters, such as
BGC_4420, which had accessory biosynthetic genes more prevalent in

population D than in other populations, have not been connected to
metabolites and therefore their potential role in infection remains
unknown.

In summary, we present evidence that clinical isolates of A. flavus
share genetic similarities and are concentrated in certain populations
rather than distributed across the phylogeny, particularly in an
apparently non-aflatoxigenic, newly defined clade, which we have
named population D. Clinical isolates from many countries and
infection types are present in population D. We acknowledge that
sampling was uneven and did not cover the full distribution of A. fla-
vus, and advocate for additional sampling from regions under-
represented in this dataset (e.g., environmental isolates from Europe
and clinical isolates from South America and Africa). Additionally,
accessory genes and the aflatoxin BGC differ between populations,
possibly providing future opportunities for distinct agricultural and
clinical treatments. Although we did not discover a single genetic
element that could explain the difference between clinical and envir-
onmental isolates of A. flavus, we did discover a new clade of A. flavus
that appears to be enriched in clinical isolates, with distinct genetic
features. This A. flavus genomic dataset and pan-genome provide a
valuable tool for understandingwhy isolates fromsomepopulations of
A. flavus appear to be more commonly responsible for human infec-
tions than other populations.

Methods
Retrieval of publicly available data
We retrieved data for 180A. flavus isolates with paired-end Illumina
whole genome sequencing data available on National Center for Bio-
technology Information’s (NCBI) Sequence Read Archive (SRA) in July
2021, including data from 25 clinical isolates. In October 2024, we also
retrieved paired-end whole genome sequencing data for 37 additional
isolates deposited in SRA since the last search, composed of 10 clinical
and 27 environmental isolates (Supplemental Data 1). A. flavus NRRL
3357, which has a chromosome-level genome assembly, was used as a
reference. The publicly available data were from 10 countries: China
(1), Ethiopia (7), India (7), Israel (1), Japan (21), Kenya (16), Netherlands
(9), Pakistan (12), the USA (141), and Vietnam (1). Country of origin was
unavailable for four isolates. Isolates represent diverse sources
including patient-derived, soil, seed, and plant-associated micro-
environments (Supplemental Data 1).

Collection of A. flavus clinical isolates and genome sequencing
We also sequenced 82 patient-derived isolates for this study, from 4
different countries: France (15 from the culture collection of the
National Reference Center for Invasive Mycoses and Antifungals
[CNRMA] at the Institut Pasteur), Germany (48 from the National
ReferenceCenter for Invasive FungalDisease [NRZMyk]), Spain (7 from
the National Centre for Microbiology [CNM] culture collection), and
the USA (12 from the University of Texas M. D. Anderson Cancer
Center). Isolates were from patients diagnosed with keratitis, asper-
gillosis, and otomycosis and were obtained through a variety of
methods (Supplemental Data 1). Culture and DNA extraction methods
varied and are available in the Supporting Information.

DNA libraries were prepared using the Nextera DNA Library Pre-
pKit (Illumina, San Diego, CA, USA), according to manufacturer’s
guidelines. Sequencing for the isolates from Germany, France, and the
USA (75 total) was performed at Vanderbilt University’s sequencing
facility, VANTAGE, using the Illumina NovaSeq 6000 instrument, fol-
lowing manufacturer’s protocols. Sequencing for the seven Spanish
CNM isolates was performed using the Illumina MiSeq system, fol-
lowing themanufacturer’s protocols. All sequencing resulted in 150 bp
paired-end reads. All isolates included in the study were confirmed to
be A. flavus using whole genome sequencing data, in addition to pre-
liminary classification based on morphology or marker genes.
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Read mapping
By combining the publicly available data from 217 isolates with clinical
isolates sequenced in this study, we complied a dataset of 300A. flavus
isolates Raw reads for all isolates were trimmed using Trimmomatic
v0.3958 for paired-end data. Trimmed reads weremapped to the NRRL
3357 reference (GCA_009017415.1)59 using Bowtie2 v2.3.4.1 with
default parameters60. We used SAMtools v1.661 to convert the resulting
data files to BAM format and sort the BAM files. The AddOrReplaceR-
eadGroups option in Picard tools v2.17.10 (https://broadinstitute.
github.io/picard/) was used to append read group labels to BAM files.
The Genome Analysis Tool Kit v3.8 (GATK) RealignerTargetCreator
and IndelRealigner optionswere used to produce realignedBAM files62

and duplicates were removed using the MarkDuplicates option in
Picard. We called variants for each genome using the GATK Haploty-
peCaller option with -ploidy 1 for haploid organisms. GVCF files were
combined using the CombineGVCFs option and the combined file
genotyped using the GenotypeGVCFs option. Variants include single
nucleotide polymorphisms, insertions, and deletions, so only SNPs
were selected and retained. SNPs were filtered using the VariantFil-
tration option, with --filter-expression parameters “QD< 2.0”, “QUAL <
30”, “MQ<40.0”, “MQRankSum< −12.5”, “SOR> 3.0”, “FS > 60.0”, and
“ReadPosRankSum< −8.0”; other parameterswere set as --cluster8 and
--window 10, according to the GATK best practices workflow (https://
gatk.broadinstitute.org/hc/en-us/articles/360036194592-Getting-
started-with-GATK4).

Population genomics
Biallelic SNPs that passed hard filters were retained for further analysis
for 300 isolates. Biallelic loci refer to loci which at the population level
only have two alleles: the reference and an alternative. Clonal isolates
were identified through genetic distance calculations in poppr v2.8.363

and were excluded from the dataset, leaving 281 isolates. We con-
ducted a principal components analysis in R v4.3.1using adegenet
v2.1.1064. Adegenet was also used for the discriminant analysis of
principal components (DAPC), amultivariatemethod to determine the
optimal number of genetic clusters for a given dataset65. The Bayesian
Information Criterion (BIC) score was used to evaluate a range of
possiblenumbersof genetic clusters from 1−15. Theoptimal number of
clusters was determined by graphing the BIC score for each possible
number of clusters. Calculations of missing data per population and
sample, minor allele frequency, and Nei’s genetic distance were con-
ducted using the R package SambaR v1.0966. The R package LEA
v3.10.267 was used to estimate ancestry coefficients68, from K = 2 to
K = 15. Optimal K (number of populations) was determined using the
entropy coefficient method69.

Todetermine ifmolecular variation amongpopulationswas larger
than variation within specific populations of A. flavus, we used Nei’s
genetic distance70 to implement an AMOVA (Analysis of Molecular
Variance) in R v4.3.1 using the R package pegas v1.371 with 1000 per-
mutations. A two-way ANOVA implemented in PRISM 10 (Graphpad)
was used to establish the relationship between isolate sources (soil,
plant-associated, and human-associated) and genetic populations
identified by DAPC.

In population genomics, correlations between physical and
genetic distance of isolates can impact population structure. As such,
we tested for isolation by distance40 using aMantel test72 implemented
in the RpackagedartR v2.9.773. Geographic location for clinical isolates
was conservatively estimatedbyusing the coordinates of each isolate’s
culture collection. Nei’s genetic distance70 was used for the genetic
distance matrix. For the geographic distance matrix, latitude and
longitude was either (1) obtained from previously published data or
public metadata from NCBI or (2) estimated from listed hospital
location for patient-derived isolates or city of sampling for environ-
mental isolates. Isolates without latitude or longitude locations were
considered missing data and coded as “NA” in the table.

Phylogenomics
Using the SNPs called and filtered as described above, we recon-
structed a phylogeny of all 300A.flavus isolates, with the close relative
Aspergillus minisclerotigenes (SRA: SRR12001146) as an outgroup. Only
loci present in at least eight isolates were included. We used Lewis
ascertainment bias correction to include only variable (non-constant)
characters from our SNP data74. The phylogeny was constructed using
IQ-Tree v2.2.2.675 using the ModelFinder Plus76 (-m MFP) option and
1000 ultra-fast replicates for bootstrapping. The F81 + F model was
chosen by IQ-Tree as the best-fit model according to BIC. The con-
sensus treewas used for visualization.Weused iTOLv6 to visualize and
annotate the phylogeny77.We also constructed a phylogeneticnetwork
using SplitsTreeCE v6.3.078 with default parameters to examine the
relationships among isolates in a neighbor-net network.

To test whether clinical isolates were randomly distributed across
the phylogeny or were more likely to be clustered (that is, whether
clinical isolates had a phylogenetic signal), we calculated Fritz and
Purvis’sD statistic for binary traits41 using the phylo.D commandwithin
the R package caper v1.0.379 with 1000 permutations.

Genome assembly and annotation
Draft genome assemblies were available from NCBI for 152 isolates (9
clinical and 143 environmental)25,32,42–44,80, as of June 2021. For clinical
isolates sequenced in this study, 16 clinical isolates with public data,
and a further 12 environmental isolates from NCBI, genomes were
assembled using trimmed reads (described above). Each de novo
assembly was performed using SPAdes v3.15.081 with default para-
meters except for k-mer count (set to 21, 33, 55, 77, 99, and 127). For all
assemblies, scaffolds were filtered using Funannotate v1.8.1069 to
remove duplicate sequences and those under 500bp in length. Scaf-
folds were masked for repeats using RepeatMasker82 within Funan-
notate v1.8.10. Mitochondrial sequences and any bacterial, primate, or
viral contaminants identified through routine screening upon sub-
mission to NCBI were removed from the genome assemblies. All gen-
omes were evaluated for completeness using the BUSCO v4.04
Eurotiales database of 4,191 single-copy genes83. Several NCBI datasets
did not have adequate sequencing depth for genome assembly, had
contaminating reads, or had BUSCO scores below 95% and were
therefore not included in the pan-genome analyses; we also removed
clones as calculated using genetic distance based on SNPs. As such, we
included 243 genomes in the pan-genome.

Gene predictions were generated by Funannotate v1.8.10 using
the built-in gene models of Aspergillus oryzae (section Flavi) as pre-
dicted by EVidence Modeler84, with additional evidence provided in
the form of predicted amino acid sequences for proteins from the A.
flavus NRRL 3357 annotation59. To validate the gene-prediction pro-
cedure, we compared the new annotation of NRRL 3357 to two recent
in-depth annotations48,59 using OrthoVenn285. Additional functional
annotations were obtained through the “annotate” option within
Funannotate that uses InterProScan v5.61.9386 with default para-
meters. Twenty-one genes associated with plant pathogenicity in A.
flavus were previously identified from the literature25 and located in
each genome via BLASTp87. Global alignments were conducted using
the Needleman-Wunsch algorithm implemented in EMBOSS v6.6.088.
Predicted biosynthetic gene clusters (BGCs) were identified using the
fungal version of antiSMASH v6.089, with default parameters, and
collated into a table format. For specific clusters of interest, we used
BLASTn to confirm the presence or absence of backbone genes as
defined by antiSMASH (core biosynthetic genes), e.g., querying the
pksA nucleotide sequence from the A. flavus reference strain NRRL
3357 against all genomes to confirm presence.

Pan-genome analysis
We identified orthologous proteins using OrthoFinder v2.5.490 in all A.
flavus genomes that had ≥ 95% completeness of the 4,191 genes in the
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BUSCO Eurotiales gene set83, resulting in a dataset of 247 isolates. The
core genome was defined as in Lofgren et al. 38 as the set of genes that
were present in at least 95% of isolates (in our dataset 236 ormore); all
other geneswereconsideredpartof the accessorygenome. A subset of
the accessory genome, the “cloud” genome includes orthogroups
present in <5% of isolates. The presence/absence matrix of the acces-
sory genome was visualized using the R package Complex Heatmap
v2.16.091. We created a gene accumulation curve and gene frequency
histogram using the R packages vegan v2.6-1092,93, philentropy
v0.9.094, and ggplot2 v3.5.195. Using vegan v2.6-1092, we also calculated
a distance matrix for the presence or absence of orthogroups within
the accessory genome using Jaccard distance. The distancematrix was
then used as input for a principal coordinates analysis (weighted
classical multidimensional scaling) to visualize population-level dif-
ferences in accessory genome content. The accessory genome prin-
cipal coordinates analysis was visualized using ggplot2 v3.5.195. Also
using vegan v2.6-1092, the gene accumulation curve was calculated
using the “random” method and 100 permutations. The alpha for
Heap’s law was calculated using the R package micropan v2.196.
Orthogroups were considered population-specific when absent in all
isolates of a particular population but present in >90% of isolates in
other populations, consistent with definitions from Lofgren et al. 38.

Orthogroups were associated with locus tags and functional
annotations using a custom Python v3.9 script. Analysis of functional
annotation differences among the populations was performed by
ANOVA in R v4.3.1 using the number of genes in each isolate’s genome
that contained eachannotation as input. Tukey’sHSDwasused forpost
hoc testing of gene ontology termabundancewith a significance cutoff
of p <0.05. Statistics and Bonferroni false discovery rate correction
were performed using base R v4.3.1. Heatmaps were constructed using
the R package Complex Heatmap v2.16.0, and box plots were made
using ggplot v3.4.4.

We used a phylogenetic generalized least squares (PGLS) analysis
as conducted in the R package caper v1.0.379 to evaluate whether traits
were more likely to be shared by closer relatives in accordance with a
Brownian motion model of evolution. PGLS analyses incorporate the
phylogenetic relationships between individual data points when
examining linear regression of variables97. We fit a model of genome
size against the number of predicted genes, number of predicted
tRNAs, and the number of predictedBGCs using amaximum likelihood
estimate of lambda. We also fit a model to explain source (clinical or
environmental) using the 10 orthogroups with the most variation in
number of genes included in the orthogroup.

Data availability
Data associated with genomes from clinical isolates sequenced in this
study, including paired-end reads and draft genome assemblies, are
available under BioProject PRJNA836245. Accession numbers for pre-
viously published data used as part of this study are available in Sup-
plementary Table 1. Predicted genes and annotations are available on
FigShare at https://doi.org/10.6084/m9.figshare.28830200. Source
data for Figs. 1 and 2 are provided in the source data file, source data
for Fig. 3 in the form of predicted proteomes are provided in the
Figshare repository (https://doi.org/10.6084/m9.figshare.28830200)
and in Supplementary Data 6, source data for Fig. 4 is provided in
Supplementary Data 6. Source data are provided with this paper.
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