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Multi-scale and multi-context interpretable
mapping of cell states across heterogeneous
spatial samples

Patrick C. N. Martin1, Wenqi Wang2, Hyobin Kim 1, Henrietta Holze2,
Paul B. Fisher3,4,5, Arturo P. Saavedra6, Robert A. Winn3,7,8, Esha Madan3,4,5,7,
Rajan Gogna 3,4,5,7,9 & Kyoung Jae Won 1,9

There is a growing demand formethods that can effectively align and compare
spatial data in the absence of obvious visual correspondence. To address this
challenge, we developed an interpretable cell mapping strategy based on
solving a Linear Assignment Problem (LAP) where the total cost is computed
by considering cells and their niches. We demonstrate that our approach
outperforms other methods at capturing the spatial context of cells in syn-
thetic and real data sets. The flexibility of our implementation enhances the
interpretability of mapping and allows for accurate cell mapping across sam-
ples, technologies, resolutions, developmental and regenerative time. We
show spatiotemporal decoupling of cells during development and patient
level sub-populations in In Situ Mass Cytometry (IMC) cancer data sets. Our
interpretable mapping approach facilitates systemic comparison and analysis
of heterogeneous spatial data.Weprovide aflexible framework for researchers
to tailor their analysis to the specific biological and research context.

From the initial discovery of cells through early microscopes in the
17th century, we have come a longway in our understanding of cellular
organization1. Today, spatial transcriptomics (ST) has become an
increasingly popularmeans of probing cellular organization in relation
to cellular identity2–6. STmeasures the gene expression profiles of cells
as well as their location within a tissue. For clarity, we will refer to
spatial spots, barcodes, or indices simply as cells. Taken together, ST
methods - in their varying flavors – can highlight spatially resolved
gene expression patterns7–13. They can demonstrate how tumors
interact with their microenvironment and how disease can be under-
stood from a spatial perspective14–19. They can provide insights into
cellular communication through ligand-receptor dynamics as well as

cell-to-cell contact-triggered gene expression modulations20–23.
Importantly, ST emphasized how cellular identity should be viewed
through the lens of spatial context23,24.

With the increasing availability and breadth of ST technologies, it
comes as no surprise that they have become part of the biomedical
research arsenal. It is still difficult and expensive to obtain high-quality
spatial data, especially fromhumanpatients. Therefore, there is a need
tomaximize the use of the spatial data deposited in the public domain.
However, datasets that are already available in a biological conditionof
interest might have been produced using different methodologies or
technologies. Moreover, in a clinical setting where a researcher might
be interested in following the evolution of cells and their interactions

Received: 8 October 2024

Accepted: 28 July 2025

Check for updates

1Department ofComputational Biomedicine,Cedars-SinaiMedical Center,Hollywood,CA, USA. 2BiotechResearch and InnovationCentre (BRIC), University of
Copenhagen, Copenhagen, Denmark. 3Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA. 4VCU Institute of
Molecular Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, VA, USA. 5Department of Cellular, Molecular and Genetic
Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, VA, USA. 6Department of Dermatology, VCU School of Medicine, Virginia
Commonwealth University, Richmond, VA, USA. 7Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
8Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, VCU School of Medicine, Virginia Commonwealth University,
Richmond, VA, USA. 9These authors jointly supervised this work: Rajan Gogna, Kyoung Jae Won. e-mail: rajan.gogna@vcuhealth.org;
KyoungJae.Won@cshs.org

Nature Communications |         (2025) 16:7814 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4856-7415
http://orcid.org/0000-0002-4856-7415
http://orcid.org/0000-0002-4856-7415
http://orcid.org/0000-0002-4856-7415
http://orcid.org/0000-0002-4856-7415
http://orcid.org/0009-0000-0214-6853
http://orcid.org/0009-0000-0214-6853
http://orcid.org/0009-0000-0214-6853
http://orcid.org/0009-0000-0214-6853
http://orcid.org/0009-0000-0214-6853
http://orcid.org/0000-0002-2924-9630
http://orcid.org/0000-0002-2924-9630
http://orcid.org/0000-0002-2924-9630
http://orcid.org/0000-0002-2924-9630
http://orcid.org/0000-0002-2924-9630
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62782-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62782-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62782-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62782-y&domain=pdf
mailto:rajan.gogna@vcuhealth.org
mailto:KyoungJae.Won@cshs.org
www.nature.com/naturecommunications


across disease progression or as a response to treatment, it is difficult
to expect tissues to share similar structures. And yet, we have seen the
emergence of 3D spatial stacks9,25,26 taken from adjacent tissues and, in
parallel, a plethora of tools allowing the alignment of these tissue sli-
ces, including PASTE27, GPSA28, or STalign29 have been developed. The
assumption made by these tools is that adjacent sections share suffi-
cient structural similarity to locally and differentially deform tissue
sections to match the neighboring section. Importantly, these meth-
ods do not fold, break, or scramble the cells present in the tissue;
rather, they displace them by maintaining their relative position to
each other. But the irregular nature of tumors across patients and
conditions restricts their use to highly structured tissues. As such, the
question remains: howdowe compare the spatial context of individual
cells when tissue structures do not match across samples or where
sequential sampling is simply impossible?

Mapping single-cell data to a spatial assay based on the tran-
scriptomemay suggest an alternative solution to align two ormore ST
assays based on their transcriptome30,31. For instance, Tangram uses a
deep learning approach to match sc/snRNA-seq to their estimated
spatial location by maximizing the spatial correlation between scRNA
and spatial data30. CytoSpace solves a linear assignment problem (LAP)
to match single cells to spatial locations by accounting for cell type
proportions in low-resolution Visium spots31. In conjunction with
single-cell labels, CytoSpace can also map to high-resolution spatial
data. Along the same lines, methods designed to integrate single-cell
data, such as Scanorama32 can find the closest related cells in their
integrated latent space. However, datamapping or integrationwithout
spatial and biological context can lose the information related to tissue
or cellular microenvironment. Algorithms such as the Spatial-linked
alignment tool (SLAT) provide a solution to spatial mapping by
adopting a graph adversarial matching strategy33. Interestingly, SLAT
provides an integrated latent space, making it a spatially aware data
integration method. SLAT represents cells as neighborhood graphs
and applies a graph convolutional neural network to generate its
embeddings. This strategy can reduce both context flexibility and
interpretability. While SLAT considers the spatial context of cells
across samples, it has not been tested systematically for tissues whose
structure is highly dissimilar. More importantly, current mapping
strategies cannot be applied to a systemic, flexible, and interpretable
comparison of hundreds of samples.

To address the challenge of mapping cells between structurally
heterogeneous tissues, we developed an approach to map cells across
2 or more samples when structural heterogeneity impedes spatial
alignment strategies. We map cells using a Linear Assignment Solver
where the cost matrix is constructed by explicitly considering spatial
or biological context. Specifically, we designed the cost matrix to
minimize the pair-wise summation of multi-scale and multi-context
spatial similarity matrices, including cell similarity, niche similarity,
and spatial territory similarity (see Methods). Explicit use of context-
specific matrices increases the interpretability of cell mapping results
and provides sufficient flexibility tomap samples across technology or
collected over time. Importantly, our approach enables customized
and interpretable analyses tailored to the specific research needs of
individual researchers or datasets. We highlight the performance of
our approach using synthetic datasets in a variety of scenarios with
increasing complexity. We demonstrate how the performance
observed in synthetic data can be translated to real biological datasets,
including seqFISH mouse embryo34, Stereo-seq mouse embryo9, and
Slide-seq V2mouse hippocampus8. Vesalius accurately maps cells with
their spatial context and outperforms other approaches. We demon-
strate how our flexible framework can effectively map cells across
datasets, technologies (seqFISH to Stereo-seq), and resolutions (Vis-
iumHD to Visium). We also map cells across developmental and
regenerative time in high-resolution Stereo-seq9 data. This allowed us
to highlight genes involved in brain development and regeneration,

which were only present in a limited subset of cells. Additionally, the
cost of cellular mapping provides an interpretable and universally
comparable metric to cluster in situ mass cytometry (IMC) breast
cancer patient samples at the population level. The clustering results
demonstrated how cellular context can recapitulate broad clinical
metrics. Our cell mapping strategy grants us the ability to investigate
biological differences between samples with unprecedented flexibility
and interpretability.

Results
Mapping cells and their context across samples
With the increased availability of ST datasets, we aim to provide a
flexible framework to compare spatial data bymapping aquery dataset
onto a reference dataset across conditions, technologies, and sections
(Fig. 1a). To achieve this, we formulate the matching of cell pairs as a
LAPwhere the goal is tomatch “a worker” to “a tasks”whichminimizes
the overall cost (Fig. 1b). To solve the assignment problemwe used the
Jonker-Volgenant algorithm35. In this instance, a “worker” is a cell from
the query data, whereas the “task” is a cell from the reference data. The
overall cost of mapping cells is defined by a pair-wise summation of
score matrices across biological features (see “Methods” section -
Fig. 1c). We account for transcriptional similarities between cells, their
niches, their spatial tissue territory, cell type labels, and the cell type
composition of their niche. In addition, we offer a straightforward
method to add custom and context-specific matrices. The total cost
matrix can be constructed from any combination of these biological
features. For instance, while cell type labels can be used, they are not
strictly required tomapcellsbetween samples.Our algorithmhasbeen
included in the Vesalius R package – a tool designed to retrieve spatial
territories by applying image processing methodologies to spatial
omics data24 (Fig. 1d). The territory similaritymatrix is computed using
Vesalius’s tissue territory detection capabilities24. The new and
improved functionalities of Vesalius provide a framework for spatial
mapping of cells across time, across technologies, and clustering
hundreds of spatial samples.

Benchmarking mapping performance in synthetic spatial data
To demonstrate the effectiveness of our mapping strategy, we elected
to use synthetic spatial data since this will provide a robust ground
truth (See “Methods” section). Specifically, we aimed to demonstrate
our ability to accurately map cells across samples along with their
spatial context. First, we generated 5 synthetic spatial regimes (circle,
layer, dropped, random one cell, random two cell) that mimic the
complexity of biological scenarios (Supplementary Figs. S1–S5). For
each regime, we generated 12 samples where we aimed tomap a query
dataset onto a reference data for a total of 132 mapping events
(excluding 12 self-mapping events) (Supplementary Figs. S1–S5).

Since Vesalius provides a flexible framework to construct the total
mapping cost, we compared the performance of Vesalius across 14
different cost matrices in addition to two scRNA-to-spatial mapping
tools (CytoSpace31 and Tangram31), spatial alignment tools (PASTE27

and GPSA28), and scRNA/Spatial data integration tools such as
Scanorama32 and SLAT33. The cost matrix combinations were built
using cell similarity (f = feature), niche similarity (n = niche), territory
similarity (t = territory), niche cell type composition (c = composition),
cell type labels (y = cell type labels), or a combination of thesemetrics.

To measure the effectiveness of each tool in mapping cells across
samples, we computed an Adjusted Rand Index (ARI)36 between
mapped cell labels. In parallel, we measured each tool’s ability to
capture spatial context by adding an “interaction” label to our datasets
(see “Methods” section). This label concatenates the cell type labels of
the k-nearest neighbors (k = 6) of a center cell. Using these labels, we
computed a Jaccard index (JI) to ascertain how similar the neighbor-
hoods are in terms of cell type composition.
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Vesalius demonstrated performance satisfying both cell type
score (ARI) and interaction score (JI) in these tests. When measuring
the ability to recover the identity of mapped cells in the circle regime,
for instance, Vesalius showed comparable performance with SLAT,
Scanorama, and CytoSpace (Fig. 2a) in ARI. The perfect score of
CytoSpace was expected, as it only maps cells of the same cell type.
With its requirement of shared cell type labels between datasets,
CytoSpace was incapable of mapping samples when not all cells were
shared (121 were mapped out of 132). This was particularly evident in
the dropped regime, where CytoSpace only mapped 7 samples out of
132 (see Supplementary Fig. S7). We show the mapping performance
for all other regimes in Supplementary Figs. S6–S9. The performance
of CytoSpace dropped dramatically when cell labels were removed
(CytoSpace_noLab in Fig. 2, Supplementary Figs. S6–S9).

If we consider each tool’s ability to map spatial context, we see
that Vesalius outperforms all other tools when including the cellular
context to construct the cost matrix. Unsurprisingly, including
neighborhood composition strongly improved Vesalius’s perfor-
mance. It is of note that CytoSpace (with true labels) and Scanorama

excelled at finding the right cell type but failed at recovering context,
falling behind Vesalius even when it did not include cell composition
(e.g., n, fn, nt cost matrices – legend key shown in figure legend). We
show pair-wise statistical comparison (Wilcoxon Rank Sum test- see
methods) between each tool for ARI scores and JI scores in Fig. 2c, d,
respectively.

We exemplify the performanceof each tool by plotting amapping
event in the circle regime (Fig. 2e). We aimed to map cells in the query
sample onto the reference datasets (panels in the top left of Fig. 2e).
For clarity, we selected only 3 cost matrix combinations for Vesalius.
Specifically, we selected fncty, fnct, and fnt. Our results indicate that
Vesalius was able to effectively map cells from the query sample onto
the reference sample while considering spatial context. We noticed
that spatial alignment tools such as PASTE and GPSA failed to recover
the structure of the reference sample from the query sample. The task
of mapping cells across samples is a distinct task from spatial align-
ment, and the constraints applied to the samples by PASTE and GPSA
are incapable of overcoming thesedifferences.We show the results for
all other synthetic datasets in Supplementary Figs. S6–S9.

Fig. 1 | Overview of Vesalius’s cell state mapping strategy. a Samples across
conditions, technologies, and sections are likely to present a heterogeneous
structure, and yet, to capitalize on the growing wealth of spatial omics data, it is
crucial to accurately map cellular context across conditions. b To achieve cell
mapping in heterogeneous spatial samples, Vesalius solves an LAP, which aims to
minimize the overall cost. To account for spatial context during mapping, Vesalius
leverages a multitude of biological features. c The total cost matrix can be

constructed from a pair-wise summation of reciprocal similarity scores, including
cell similarity, label similarity, niche similarity, composition similarity, territory
similarity, and even custom similarity scores. d Vesalius maps cells across samples,
across time, and across technologies. The total cost also provides a usefulmetric to
define patient-level spatial similarities and allow for sample clustering. Source data
are provided as a Source Data file.
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Fig. 2 | Benchmarking mapping performance in synthetic spatial data – circle
regime. We provide a Legend Key on the figure describing the nomenclature of
Vesalius cost matrices as well as the meaning of acronyms. a Performance com-
parison in recovering cell types across samples using an ARI in synthetic spatial
data. We compared Vesalius using 14 different cost matrices to SLAT, CytoSpace,
CytoSpacewithno cell type labels (noLab), Tangram, Scanorama,PASTE, andGPSA.
The number of samples (n) used in each box plot is included in the axis labels. The
box shows the interquartile range (IQR=Q3 −Q1), with a line at the median, and
whiskers extending to the most extreme values within 1.5× IQR. CytoSpace obtains
a perfect score since it only maps cells from the same cell type. b JI of cell

interactions. To account for the spatial context of cells, we computed the JI
between cell type labels in the neighborhood of mapped cells (k = 6). c Heat map
representing p-values after performing a two-sided Wilcoxon rank sum test
between tools on ARI scores. d Heat map representing p-values after performing a
two-sided Wilcoxon rank sum test between tools on JI scores. e Example mapping
event in the circle regime. In the circle regime, there are 5 randomly sized and
randomly placed territories in a background territory. Each circle can contain 2
different cell types. We show mapping events for 3 Vesalius cost matrices (fncty,
fnct, fnt). Source data are provided as a Source Data file.
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Finally, we highlighted computational performance (run time and
memory usage) when increasing the number of cells from 100 to
200,000 (Supplementary Fig. S10) in a synthetic circle regime (See
“Methods” section). For each tool, we computed the mean run time
and peakRAMusage (Resident Set Size) across 3 runs for each number
of cells.We also included a comparison of run time andmemory usage
across cost matrix combinations for 5000 and 10,000 cells.

Benchmarking mapping performance in real spatial data
We further tested Vesalius using the same 14 cost matrices against
other tools (excluding GPSA due to excessive memory requirements)
in seqFISHmouse embryo34, Stereo-seqmouse embryo9, and Slide-seq
V2 mouse hippocampus8 (see “Methods” section). We found that the
mapping by Vesalius with all available information (fncty) showed ARI
larger than 0.75 for all datasets we tested. This was compared with
other approaches, whose performance was substantially compro-
mised in real datasets. Again, the perfect ARI score for CytoSpace was
expected as it only maps to cells with the same cell type. When the cell
type information is lost (CytoSpace_noLab), the ARI becomes less than
0.3 for all datasets. Due to the requirement of matching cell type,
CytoSpace cannot run on the Stereo-seq dataset without removing
label information (Supplementary Fig. S11). SLAT, which showed good
performance for synthetic datasets, showed ARIs around 0.5 and even
0.25 for Slide-seq data. Regardless of the datasets, Vesalius showed the
best performance when assessed with JI, especially when using cell
composition (c). The JI score decreased when adding other config-
urations to compute the cost in Vesalius, while ARI, in general, is
enhanced, indicating that Vesalius tries to find a balance between cells
and spatial context depending on the configuration.

We show mapping examples using fncty, fnct, and fnt. The map-
ping examples of Vesalius also demonstrated a strong resemblance to
the reference (Fig. 3c, f, and Supplementary Fig. S11c). While SLAT’s
mapping generally aligned with the reference, it exhibited mis-
annotations in highly heterogeneous brain regions (Fig. 3f). SLAT and
Scanorama still perform decently in mapping cells across seqFISH
samples but fell behind in capturing the cellular context. In fact,
Vesalius, using only cell and niche similarity, performs similarly to
SLAT at capturing cellular context. Again, PASTE failed to recover the
structure of the reference sample from the query sample as observed
in the examples using synthetic data.

Finally, we further investigated the role playedby each costmatrix
in mapping cells across samples. We first computed a coefficient of
variation (CV) on each cost matrix across these 3 biological samples
(seqFISH, Stereo-seq, and Slide-seq V2). A higher CV would indicate a
higher ability for a cost matrix to discriminate cells during the map-
ping. We also computed a Proportion of Contribution (POC), which
measures the proportion of contribution of each cost matrix to the
total cost used for mapping (Supplementary Fig. S12). A higher POC is
associated with higher JI or correlation. Cell type labels and neigh-
borhood composition showed a higher ability to discriminate cells
during mapping, but participatedmuch less in the total mapping cost.
On the contrary, territory and niche similarity tended to have a low CV
but contributed significantly to the total cost of mapping.

Mapping cells across technologies and resolutions
More often than not, datasets of interest are generated using different
technologies, and yet we would still like to mine insights from them.
We tackled this challenge using our flexiblemapping strategy. First, we
mapped high-resolution Stereo-seqmouse embryo9 (E9.5) onto image-
based seqFISH34 in the same tissue at a slightly earlier developmental
stage (E8.75). While both datasets contain cell type labels, these dif-
fered greatly between datasets, as is often the case when using data
from different sources. As such, we forwent the use of cell type labels,
and we constructed the total cost from cell similarity and niche simi-
larity only. Overall, the broad cell type labels matched well when

mapping across technologies (Fig. 4a). We show the mapping of cells
to different cell labels in an alluvial plot (Fig. 4b). For instance, Brain
and Notochord cells in Stereo-seq aremapped to Forebrain/Midbrain/
Hindbrain and Spinal Cord in seqFISH (accuracy = 0.901). We show the
cell mapping results for Stereo-seq to all 3 seqFISH sections (Supple-
mentary Fig. S13) and performed the converse mapping - seqFISH
mapped to Stereo-seq (Supplementary Fig. S14).

To test mapping across spatial resolutions, we mapped the Vis-
iumHD mouse brain onto Visium of the same tissue (See “Data avail-
ability” section).Weelected touse the 8μmbins since thiswould strike
a balance between having high-resolution and reducing noise at each
spatial location. In this context, we reasoned that, given the difference
in resolution, themost appropriate strategywas to only consider niche
similarity and territory similarity. More specifically, for each cell, we
defined the niche by using a distance radius around the center cell (see
“Methods” section). We defined the radius as equal to the radius of a
Visium spot to ensure that a Visium niche would only contain a single
spot, while VisiumHD would contain all spots within that radius. We
detected tissue territories in the reference Visium sample and the
query VisiumHD sample (Fig. 4c) and recovered expected tissue
structures such as theCA1 field, CA3 field, and theDentateGyrus. Since
mapping high-resolution data onto low-resolution data signifies that
multiple spots will be mapped to the same low-resolution spots, we
added randomnoise (jitter) to the coordinate values to better visualize
the mapping results. Alternatively, we omitted the jitter to create
pseudo-Visium data where each mapped cell will be merged into a
mini-bulk count data at the spot level (Fig. 4c – left panels). We dis-
covered that we were recovering the expected tissue structures,
demonstrating that we can effectively map cells across resolutions.
Interestingly, we observed finer tissue territories in themapped region
of the Visium assay compared with the reference.

To further investigate the cell types' matching abilities
between resolutions, we used RCTD37 to estimate cell type pro-
portions in both Visium and VisiumHD using the same reference
scRNA-seq dataset38. We scaled cell type frequencies (see “Meth-
ods” section) to create a contingency matrix of cell type pro-
portions. We performed a Chi-squared test to determine whether
cell type proportions exhibited significant differences between
Visium and mapped VisiumHD. The p-value distributions across
all mapped cells show that nearly all mapped cells display similar
cell type proportions (Fig. 4d). When we discretized the p-value,
we observed only a few instances where cell type frequencies
statistically differed. In addition, we computed a JI between
cell types associated with Visium spots and the mapped cell
identities from VisiumHD. Our results showed a reasonable
correspondence in mapped cell types between Visium and Vis-
iumHD (Fig. 4e). The distribution of Jaccard scores showed that
the median Jaccard score was around 0.32 (Fig. 4e - right panel
with 25th, 50th, and 75th percentiles shown by vertical orange,
blue, and green lines). Taken together, our results indicated that
while Vesalius occasionally missed cell types associated with
Visium spots or VisiumHD cells, the cell type frequencies did not
statistically differ.

Mapping cells across time in brain regeneration and embryo
development highlights spatiotemporal expression patterns
among mapped cells
The STOmics database provides a wide variety of high-resolution
Stereo-seq data collections. Most notable are the MOSTA9 and
ARTISTA26 data collections, which provide spatial-temporal maps of
murine embryo development and Axolotl brain regeneration. Using
these collections, we applied our approach to mapping cells across
developmental time. First, we focused our attention on brain regen-
eration with the aim of mapping cells forward in time. We selected 20
Days Post Injury (DPI) as the reference onto which we would map 15
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DPI (Fig. 5a) with a cost matrix constructed from cell similarity, niche
similarity, and territory similarity. Since cell type labels will differ
between time points, we reasoned that these 3 cost matrices repre-
sented the most appropriate combination of metrics. We observed
that cells are accurately mapped in the 20DPI brain (right side of the
spatial assay). Ependymoglial cells (ECG) – equivalent to neural stem
cells – formed a mass of reactive ECG cells (reaECG) where

regenerative intermediate progenitor cells (rIPC3 and rIPC4 cells) will
form at a later stage (Highlighted in Fig. 5a by dark blue circle).

We created an integrated image stack (see “Methods” section)
upon which we applied image processing and isolated common terri-
tories between reference and query datasets (Fig. 5b). The left assay
represents the mapped cells while the right represents the reference
cells. The temporal alignment provided a unique opportunity to

Fig. 3 | Benchmarking mapping performance in real spatial data. a ARI of
mapped cell type labels between a reference seqFISHmouse embryo dataset and a
query seqFISH mouse embryo dataset. We compared Vesalius using 14 different
cost matrices to SLAT, CytoSpace, CytoSpace with no cell type labels (noLab),
Tangram, Scanorama, and PASTE. In seqFISHdata, the addition of cell type labels or
composition of cellular neighborhoods improves Vesalius’s ability to accurately
map cells across samples, even outperforming SLAT and Scanorama. b JI of cell

interactions of the neighborhood (k = 10). c Example mapping event in seqFISH
mouse embryo. We show mapping events for 3 Vesalius cost matrices (fncty, fnct,
fnt). d ARI of mapped cell type labels between a reference Slide-seq V2 mouse
hippocampus dataset and a query Slide-seq V2mouse hippocampus dataset. e JI of
cell interactions of the neighborhood (k = 10). f Examplemapping event in Slide-seq
V2 mouse hippocampus. We show mapping events for 3 Vesalius cost matrices
(fncty, fnct, fnt). Source data are provided as a Source Data file.
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identify differentially expressed genes, focusing on associated cell
pairs. We computed differentially expressed genes between reference
andmapped cells at the injury zone (territory 8 –darkblue) to uncover
which genes were involved in the regeneration process (two-sided
Wilcoxon rank sum test–p-value < 0.05– FDRadjusted).Out of the 123
differentially expressed genes, we found 2 notable genes
AMEX60DD048805 (EDNRB) and AMEX60DD022398 (ARPP19). The
former – homologous to the EDNRB human gene involved in
vasculature and cell proliferation – was expressed in a subset of
vascular leptomeningeal cells (VLMC) in the outer layers of the
brain (Fig. 5c). The latter – a gene involved in the cell cycle, was
expressed in a specialized set of ECG cells, srfpECG, and wtnEGC. The
full list of differentially expressed genes is available in Supplemen-
tary Data 1.

We applied a similar process of mapping forward in time in the
mouse embryo. As an example, we selected developmental stage E12.5
as the reference data and E11.5 as the query data. The total cost matrix
was constructed using cell similarity, niche similarity, and territory
similarity using the same reasoning as for the brain regeneration data.
Once again, our approach showed a remarkable ability to map cells
across space and time (Fig. 5d). We aimed to explore how cell

populations preferentially mapped to the same set of cells in the
reference data. To achieve this, we performed hierarchical clustering
(see “Methods” section) using cell similarity in brain cells taken from
the query data and identified 5 clusters (Fig. 5e). We observed spatial
distinct structures in the mapped cells: for instance, cluster 2 and 4
highlight cells thatweremapped at the interface of these brain regions
(Fig. 5e). We computed which genes were enriched in each cluster
(two-sided Wilcoxon rank sum test – p-value < 0.05 – FDR adjusted).
For instance, Hes5, Stnm2, and Cacng4were differentially expressed in
clusters 1, 3, and 4, respectively (Supplementary Data 2). Spatial gene
expression patterns for each cluster indicated that our mapping
strategy recovered expected gene expression patterns across space
and time (Fig. 5f). Intriguingly, we discovered examples of spatio-
temporal decoupling (Supplementary Data 3). For instance, Crabp1
(Cellular Retinoic Acid Binding Protein 1), a gene involved in stem cell
proliferation anddifferentiation39,40, shows high expression in cluster 3
of the query cells but is not expressed in the reference data. To
demonstrate that our mapping strategy was able to map cells across
highly heterogeneous tissues such as cancer, we mapped cells from
prostate cancer tumor samples using Slide-seq V2 technology. Using
the metadata provided by the authors, we mapped cells across

Fig. 4 | Cell Mapping across technologies and resolutions. aMapping of Stereo-
seq mouse embryo cells onto seqFISH mouse embryo cells shows that Vesalius
recovers expected tissue structures across technologies. b Alluvial plot demon-
strating where each mapped cell type in the query (Stereo-seq) maps to in the
reference (seqFISH). c Mapping VisiumHD mouse brain onto Visium mouse brain
with the tissue territories detected by Vesalius in the reference, the query, aswell as
the mapped cells with a jitter added to the coordinates. We recover the overall
structure of the mouse brain, including the Dentate gyrus and the Cornus Amonis
fields (CA1&CA2– annotated onfigure).dThemapped p-values after performing a

Chi-squared test between cell type frequencies in Visium (after cell type decon-
volution) and the mapped cell types taken from VisiumHD. A discretized p-value
map shows that only a few spots exhibit a statistically different cell type frequency
between spots andmapped cells (p-value < 0.05). e JI ofmappedcell labels between
Visium and VisiumHD. 50% of cells have a JI score above 0.32. The orange vertical
line represents the 25th percentile. The light blue line represents the 50th per-
centile. The green line represents the 75th percentile. Source data are provided as a
Source Data file.
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Fig. 5 | Cell Mapping across time. a Mapping Stereo-seq Axolotl brain regenera-
tion datasets (ARTISTA) at 15 days post injury (DPI) to 20DPI using cell, niche, and
territory similarity. Blue circle highlights ependymoglial cells and their transition to
regenerative intermediate progenitor cells. b Integrated tissue territories of map-
ped cells and reference cells where tissue territories are recovered using a shared
latent space. For visualization purposes, we separate both samples. c Two differ-
entially expressed genes (two-sidedWilcoxon rank sum test – p-value < 0.05 – FDR
adjusted) at the zone of injury (territory 8 – dark blue): AMEX60DD048805 and
AMEX60DD022398 show expression patterns limited to a small subset of cells
involved in cell differentiation and proliferation necessary for wound healing.
dMapping Stereo-seqMouse embryo (MOSTA)development at stage E11.5 to stage
E12.5 using cell, niche, and territory similarity. e Clustering of query brain cells

mapped onto the reference brain cells. Brain cells are demarcated into sub-terri-
tories, including cells that lie at the interface between brain regions (cluster 2) and
the interface between the brain and other tissues (clusters 4). f Differential gene
expression (two-sided Wilcoxon rank sum test – p-value < 0.05 – FDR adjusted)
between clusters exemplified by Hes5, Stnm2, and Cancng4 as genes highlighting
the different spatial sub-structures present in the mouse brain and the accurate
mapping of gene expression patterns across time. gCrabp1 – a gene involved in the
regulation of stem cell differentiation – shows a spatial-temporal decoupling
behavior where the expression shows a spatial demarcation at the earlier devel-
opmental stage (E11.5), which is then extinguished at the following developmental
stage. Source data are provided as a Source Data file.
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samples using cell, niche, territory, and cell type labels to constructour
cost matrices. We show amapping example in Supplementary Fig. S15.
Our results indicate that even in highly heterogeneous cancer samples,
Vesalius could map cells across samples.

Mapping and Sample stratification through cellular context
mapping in cancer data
We further applied our strategy to align hundreds of spatial samples.
We randomly sampled 100 patients from Breast Cancer IMC data
containing a total of 37 protein markers41. We conducted an initial
filtering step to ensure that all datasets contained clinical-level metrics
such as ER Status (Positive or Negative), ERBB2 positive, cancer grade,
death, cancer subtype (PAM50), and years to outcome. We then
selected samples that contained at least 1000 cells. From the remain-
ing datasets, we used ER Status to select patient sub-populations since
thismetric enables balance and interpretability in our patient sampling
procedure. We then mapped each sample to all other samples
(excluding self-mapping) using a cost matrix generated from cell
similarities, niche similarities, territory similarities, cell labels, and
niche composition. Here, we aimed to leverage all available informa-
tion. From each mapping event, we extracted the average cost and
mapping scores to define overall sample mapping performance.

We selected the best mapping pairs based on the lowest overall
cost (Fig. 6a). Across all pairs, cell similarity, niche similarity, and ter-
ritory similarity exhibited the highest average mapping scores. Niche
composition had the lowest overall score. A large fraction of the best-
matching pairs also showedhigh correspondencewith clinicalmetrics,
with 80% having at least 3 out of 5 metrics correctlymatched (Fig. 6b).
ERBB2_pos was the most well-predicted feature for our cost function,
followed by ER Status. The least well predicted was cancer subtype
(PAM50) with 49 out of 100 correctly predicted. However, this metric
contains 5 sub-categories (Basal, HER2, Luminal A, Luminal B, Normal-
like), making our predictions well above a random baseline (20). The
majority of samples showed a low difference in years to outcome
between query and reference samples.

We further performed hierarchical clustering of the ER-negative
patients (n = 50) using our total cost as a measure of distance between
samples (Fig. 6c). In addition to cost, we show the average perfor-
mance associated with each cost metric. In total, we found 14 ER-
negative sub-populations. Some clusters were driven by cell compo-
sition and cell type labeling (clusters 10, 9, and 4). We did not observe
as strong a difference inmapping scores related to cell similarity, niche
similarity, and territory similarity in these clusters. We checked which
clinical metrics were associated with these clusters (Fig. 6d). Clusters
10 and 9 were characterized by Basal and HER2 cancer subtypes,
respectively. Our results suggest that cell type labels of neighboring
cells can dictate clinical metrics. Clustering results of ER-positive
patients are shown in Supplementary Figs. S16 and S17. Labels and
clustering results are also available in Supplementary Data 4.

Discussion
With the growing volume of spatial data, the necessity to map and
compare cells across samples has become increasingly crucial. To
achieve this goal, it is inevitable that we need to reconcile spatial
datasets that are dissimilar in their spatial structure, collected using
different technologies, different capture resolutions, or might have
been collected under different conditions or time points. More
importantly, we need to achieve this aim in such a way that flexibility,
interpretability, and understanding of the underlying biology are
possible. To address the challenge of mapping cell states across het-
erogeneous samples, we developed a new approach within the fra-
mework of Vesalius – a spatial omics toolkit.

Mapping cells across heterogeneous samples is a distinct task
from the spatial alignment of spatial samples. Tools such as PASTE27,
GPSA28, or STalign29make an assumption of structural rigidity, which is

expected in adjacent tissue samples. While they can locally and dif-
ferentially deform a query sample to match a target sample, the query
sample cannot be broken, folded, or scrambled. However, samples
taken from a tumor (even if it is the same tumor) are going to be
structurally heterogeneous, and this heterogeneity will be further
amplified when sampling across patients. We demonstrated in our
benchmarking (synthetic and real data) that spatial alignment tools
(PASTE andGPSA) are incapable ofmapping cells between samples in a
way thatwill recover the structure ofmorphologically complex tissues.

The many-to-many cell matching framework is similar to scRNA-
seq mapping tools such as CytoSpace31 and Tangram31. Neither tool,
however, includes spatial information to map cells across samples.
Alternatively, Scanorama32 and SLAT33 provide single-cell data inte-
gration methods, with SLAT utilizing spatial neighborhoods to con-
struct its integrated latent space. However, the inclusion of
neighborhood information alone is not always sufficient to accurately
map cells across samples. In fact, capitalizing on all available infor-
mation provides more accurate spatial mapping outcomes
(Figs. 2 and 3).

In our benchmarking across synthetic and real datasets, we
demonstrated how the inclusion multi-scale and multi-context infor-
mation improves themapping of cellular spatial context. We observed
that tools such as SLAT and Scanorama perform well at accurately
mapping cells with the samecell type across synthetic samples (Fig. 2a,
Supplementary Figs. S6–S9). However, they did not capture spatial
context with sufficient accuracy tomap the cellular and spatial context
of cells (Fig. 2b). Vesalius, on the other hand, could exploit all available
information (including cell type composition of niches and cell type
labels) to accurately map cells and their spatial context. It is of note
that Vesalius showed high performance when dealing with more
complicated real data where multiple cell types are co-localized, indi-
cating that Vesalius utilizes spatial context effectively for mapping. In
contrast, the high performance of SLAT and Scanorama was not
reproduced in real biological data.

CytoSpace proved to be an interesting case study on the over-
reliance on certain modalities. CytoSpace consistently obtained per-
fect scores at mapping cell identities across samples in both synthetic
and real data. However, this is due to the mechanism by which Cyto-
Space utilizes cell type labels: Only cells with the same cell type label
will bemapped to each other. In fact, when cell labels are not shared or
removed CytoSpace either fails to run or performs poorly. Even with
cell type labels, it does not capture the spatial context of cells (Fig. 2b,
Fig. 3b/e). While Vesalius can also capitalize on cell type labels, it does
so with much more flexibility. Cell type labels constitute only part of
the total cost matrix, and if a cell type label does not match, but the
other scores (cell, niche, or territory similarity, for example) are high,
then this mapping event might still occur. This mechanism allows
Vesalius to utilize cell labels while still accounting for the cell state
continuum and compensating for inaccurate cell type labels.

The flexibility with which Vesalius constructs its cost matrices
encouraged us to explore howwe can employ thismechanism across a
variety of analysis scenarios. First, we aimed at mapping cells across
technologies as distinct as seqFISH and Stereo-seq in mouse embryos
(Fig. 4a/b). Despite the technical differences, Vesalius showed himself
to be particularly adept at mapping cells across technologies by uti-
lizing the available information (cell and niche similarity). We
employed this flexibility with great success whenmapping cells across
spatial resolutions. By using niches defined by a spatial radius and
large-scale territory information, wewere able to recover expected cell
type composition between Visium and VisiumHD mouse brain data
(Fig. 4c–e). Second, we mapped cells across time in Axolotl brain
regeneration andmurine embryonic development, wherewewereable
to recapitulate the expected tissue structures despite only using cell,
niche, and territory similarities to construct our total cost (Fig. 5). Our
integrated territory approach allowed us to underline genes being
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activated at the zone of injury. Brain cells in the mouse embryo
demonstrated spatial sub-populations, which led to the discovery of
spatial-temporal decoupling events related to stem cell differentiation.

In addition to its flexible cost construction mechanism, Vesalius
uses simple and interpretable scores. A Pearson’s correlation coeffi-
cient or a JI represents universally interpretable measures of how
similar or dissimilar 2 datasets are. In contrast, distances within a

spatially aware integrated latent space computed by deep learning
methodologies (such as SLAT) are difficult to interpret. They do not
highlight which aspects of a spatial dataset can be used to discriminate
samples. To this effect, we used Vesalius’s interpretability to our
advantage by clustering spatial samples. We applied this sample clus-
tering approach across 100 breast cancer IMC samples and found
remarkable concordance with clinical metrics such as ER status and
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ERBB2-positive patients, even thoughwe used only 37 proteinmarkers
(Fig. 6). These results suggest that patient status can be at least par-
tially encoded in a cancer’s multi-scale organization.

A key aspect to consider when using our approach is which cost
matrix to utilize to obtain optimal cell mapping. In Supplementary
Fig. S12, we demonstrate how each cost matrix may contribute to
discriminating between cells and participate in the total cost. Discrete
and categorical cost matrices (cell composition and cell type labels)
tend to have a stronger effect on optimal mapping as seen in
Figs. 2 and 3, and Supplementary Fig. S12. The assumption is that cell
type labels (andby extension, niche composition) accurately represent
prior biological knowledge. Our algorithm uses this prior biological
knowledge to its advantage without requiring explicit weighting of
each costmatrix. Across all our benchmarking, we observed that using
all available information (cell, niche, territory similarities, niche com-
position, and cell type) provides the best combination for recovering
center cell identity and cellular context. With that said, if cell type
labels are not available or are not deemed appropriate (e.g., different
nomenclature), using cell and niche similarity can still provide highly
accurate mapping of cells across samples. We recommend including
territory information since cells can express global context markers as
we previously demonstrated24. Nevertheless, it is crucial to tailor any
analysis to the question at hand.

Vesalius provides amapping strategywith exceptionalflexibility and
interpretability, opening the door to tailored analysis utilizing all avail-
able information, includingmarker gene activity or cell fate information.
We further investigated running time and memory usage over the
number of cells (Supplementary Fig. S10 a/b). The running time and the
memory usage are also dependent on the configuration used for the cost
metric (Supplementary Fig. S10 c/d). Vesalius aims at understanding
spatial biology across contexts and scales and provides a unique toolkit
to investigate spatial samples as exemplified in our analysis related to cell
states during brain regeneration, development, andpatient classification.
Our results demonstrate how crucial it is to consider multiple scales and
contexts to understand the spatial relationship between cells.

Methods
Mapping cells across samples
To map cells across samples, Vesalius employs the Jonker-Volgenant
algorithm (O(n3))35, a variant of the LAP. The algorithm is to map
“workers” to “task” while minimizing the overall cost. To allow many-
to-many matching of cells, we implemented the solver in a divide-and-
conquer framework, which also provides a speedup for large batches
through parallelization.

Given a requestedbatch sizeB, we randomly sample cells from the
reference set R and the query setQ. We select a subset RB⊂ R andQB⊂
Q such that |RB| = |QB| =B. Once a cell is selected, it is removed from the
sampling pool to ensure all cells are eventually selected. If the number
of cells in one dataset is smaller than in the other, padding is applied.
Without loss of generality, assume |R| < |Q|. In this case, we create a
duplicated set R′ and concatenate it with R, forming R* = R∪ R′, where |
R*| ≥B or matches |Q|, whichever is smaller. The Linear Assignment
Problem (LAP) solver is then applied to each batch to optimize the
mapping between the sampled reference and query cells. Given a cost
matrixC for a batch, the optimal assignmentM* is found byminimizing

the total cost:

M* = argmin
X

ði, jÞ2M
Cij ð1Þ

If a one-to-one matching is required, duplicate matches can be
filtered by retaining only the pairs with the lowest overall cost.

Since themapping depends on the cells selected during sampling,
the batching and solving steps can be applied across multiple epochs.
At eachepoch t, new randombatchesR tð Þ

B � R andQ tð Þ
B � Q are selected

andmapped using the LAP solver. LetM(t) represent the set ofmatched
cell pairs at epoch t. The newly matched cell pairs are compared to
those from previous epochs, and a pair (i, j) is retained if it results in a
lower matching cost:

CðtÞ
ij < Cðt�1Þ

ij ð2Þ

where CðtÞ
ij is the cost associated with matching cell i from R to cell j

from Q at epoch t.
The final output is a many-to-many mapping of cells across sam-

ples, along with the mapping cost, epoch information, and mapping
scores for each cell pair.

Computing cost
To solve the LAP, we compute a total cost matrix constructed from
comparing cells through a variety of biological features. The default
features used by Vesalius are the following:

Cell similarity (f): compares the gene expression of cells between
each sample.
Niche similarity (n): compares the gene expression of cell niches
between each sample.

Optionally:
Territory similarity (t): compares the gene expression of territories
between each sample.
Cell label (y): checks whether both cells share the same cell
type label.
Composition similarity (c): compares the cell type composition of
cell niches between each sample.
Custom similarity: compares cells between samples using user-
defined similarities.

To generalize the formula for an arbitrary number of similarity
matrices, we define a set n of similarity matrices SðkÞf or k = 1, . . . ,n.
The final cost matrix C is then computed as the sum of the reciprocals
of all provided similarity matrices:

Cij =
Xn
k = 1

ð1� S kð Þ
ij Þ ð3Þ

where SðkÞij represents the similarity score between query cell i and
reference cell j in the k-th similaritymatrix. This formulation allows the
incorporation of any number of similarity metrics. Importantly, cost
matrices are not weighted. Cost matrices using discrete/categorical
inputs (niche composition and cell type labels) leverage prior

Fig. 6 | Mapping and clustering of IMC samples. a Scores of the best-matching
patient pairs across 100 sampled breast cancer datasets. We obtained higher
mapping scores inmetrics linked to the cell state continuum (cell, niche, territory).
For eachbest-mappedpatient pair,we also calculated the correspondencebetween
their respective clinical metrics. 80% of samples share at least 3 of the 5 clinical
metrics observed (PAM−50, ERRBB_2 positive, Grade, ER Status, and deathBreast).
b Across the 5 clinical metrics, we observed that ERBB2_pos is themetric that is the
most accurately recovered (89%) while PAM50 (cancer subtype) is the most poorly
predicted (49%). c Clustering using ER-negative breast cancer samples. The

distinction of these samples is mainly driven by cell label and niche composition,
which contrasts with the continuous cell state metrics. Clusters 9 and 10 – for
instance – show little to no difference in cell, niche, and territory similarity in
contrast to the stark difference in cell label and niche composition scores. d We
highlight the clinicalmetrics associated with each cluster.We use the termBoolean
to define True (1) or False (0). Cluster 9 is predominantly characterizedby theHER2
cancer subtype, and cluster 10 is characterized by the Basal cancer subtype. Source
data are provided as a Source Data file.
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biological knowledge and will yield a stronger discriminative ability
without needing to be explicitly weighted.

In the case of continuous features (cell, niche, and territory), we
first extract a gene expression signal. The signal represents a gene
expression profile (normalized or raw) of all genes, highly variable
genes, or a custom gene set. Alternatively, embedding values (PCA,
UMAP, LSI, NMF) can also beused to define the gene expression signal.
By default, and across all analyses presented here, we used the highly
variable genes. Since genes might not perfectly overlap between
datasets, we select the genes that lie at the intersection of gene
expression signals for each dataset.

We calculate a Pearson’s correlation coefficient between expres-
sion signals of each potential cell pair:

r =
Pðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2 P ðyi � �yÞ2

q ð4Þ

where xi and yi are the expression of genes i in sample x and y,
respectively. �x and �y are the mean expression of cell x and cell y.

For categorical features such as niche composition, we compute a
frequency-aware Jaccard index:

J A,Bð Þ= jA \ Bj
jA∪Bj ð5Þ

We assign a unique label to duplicated cell type labels. If cell type
A is present more than once, the first instance the label will be A, the
second instance A.1, and so on.

Similarity matrices, which are computed using Pearson’s correla-
tion coefficient or a Jaccard Index, can be filtered by a user-defined
threshold prior tomapping. For all cells in the query, we check if it has
at least one match higher than the threshold.

Wedefine an indicator function for the label agreement between a
reference cell j and a query cell i. Let Li and Lj be the labels of the query
cell i and reference cell j, respectively. Then, we define:

Iij =
1, if Li = Lj
0, if Li≠Lj

(
ð6Þ

This function assigns a value of 1 if the labels match and 0
otherwise. A query cell i that satisfies the following condition:

X
i

Iij =0 ð7Þ

Is assumed not to have any shared cell type labels with the
reference data and can be removed upon user request prior to
mapping.

Extracting niches
For each cell, we define a niche as the spatially neighboring cells using
the following methods:

KNN: K-Nearest Neighbors
Graph: Using Voronoi Tessellation, wedefine a neighborhood graph
and select niches by considering the graph depth from a center cell,
e.g., direct neighbors will have a graph depth of 1.
Radius: All cells within a certain radius of a center cell are defined as
this cell’s niche.

Inmost cases, we recommend usingGraph since thismethod best
captures the biological realities of cellular organization. We urge any
user to carefully consider their question and tailor their analysis (and
parameter selection) to the question at hand.

In the context of niche similarity, let Xc be the gene expression
profile of cell c, and N(c) be the set of cells in the neighborhood of
cell c.

Mean gene expression profile of the neighborhood for cell c:

�XNðcÞ =
1

jNðcÞj
X

c02NðcÞ
Xc0 ð8Þ

where |N(c)| is the number of cells in the neighborhood of c, and Xc′ is
the gene expression profile of cell c′.

Gene expression profile of cell c becomes the average expression
of its neighborhood:

Xc = �XNðcÞ ð9Þ

Extracting territories
Originally, Vesalius was designed to detect tissue territories from
spatial transcriptomics data using image processing techniques. We
have since improved the territory detection abilities. In addition to a
wider range of dimensionality reduction techniques (PCA, UMAP,
Latent Semantic Indexing (LSI), Non-Negative Matrix Factorization
(NMF), custom) and normalization methods (log-normalization,
SCtransform, Term-Frequency Inverse Document Frequency (TF-IDF),
custom), we have adapted the image processing steps of Vesalius to
function on image tensors instead of RGB formatted images. This
upgrade allows us to apply the image processing steps to all latent
space dimensions simultaneously and, in turn, improve our ability to
recover tissue territories.

In summary, spatial transcriptomics data is converted into a
grayscale image stack. We normalized counts and extracted highly
variable features. With these features, we compute a reduced dimen-
sion latent space for each cell. In parallel, we expand punctual coor-
dinates using Voronoi tessellation and rasterize the resulting tiles to
produce a grayscale image for each latent spacedimension. This image
stack can be processed using a variety of image processing techniques
such as histogram equalization, image smoothing, and image seg-
mentation. Color segments can be further divided to distinguish spa-
tially distinct color segments. The details of this process are discussed
in our previous publication24.

The territories isolated by Vesalius are used to compare the
expression of cells across larger-scale spatial domains. We compare
the average expression of the territory in which a cell finds itself across
samples.

Let T be a territory defined by Vesalius. Let Xc be the gene
expressionprofile of cell c∈T, andT(c) be the set of cells in TerritoryT.

Mean gene expression profile of the neighborhood for cell c:

�XNðcÞ =
1

jTðcÞj
X

c02TðcÞ
Xc0 ð10Þ

where |T(c)| is the number of cells territory T, and Xc′ is the gene
expression profile of cell c′.

Gene expression profile of cell c becomes the average expression
of its neighborhood:

Xc = �XTðcÞ ð11Þ

Spatial simulations
To benchmark our mapping approach, we elected to use simulated
data since they provide a strong ground truth against which we can
compare performance. We used 5 regimes: circle, layer, dropped, ran-
dom one cell, and random two cell. For each regime, we generate
12 samples, each containing 5000 cells and 2000 genes. We used the
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splatter42 package to generate synthetic single-cell-like count data for
all samples. All cells for each cell type across each sample are taken
from the same synthetic distribution. Reproducible generation of
synthetic samples is available in a dedicated R package called oneiric
(see “Code availability” section). The vignette of the package shows
how to generate different samples as well as the data used for this
analysis. The code is also available in the GitHub repository dedicated
to the analysis presented here (see “Code availability” section).

For the circle regime, we created 5 circular territories of random
size placed at random within a background territory. We allowed
overlaps between territories but ensured that all territories were pre-
sent across 12 samples. Each territory contains 2 cell types, and there is
a probability p = 0.5 of differential gene expression between cell types.

For the layered regime, we created 1 circular territory of random
size placed at random within a background territory. The circular
territory is divided into 5 layers. The background and each layer will
contain 2 cell types. There is a probability p = 0.5 of differential gene
expression between the cells in the background and the circular ter-
ritory. There is a probability p =0.05 of differential gene expression
between cells in each layer.

For the dropped regime, we created 2 circular territories of ran-
domsizeplaced at randomwithin abackground territory. Each circular
territory can be divided into 1–3 layers (the number of layers selected
randomly). The background and each layer can contain 1 or 2 cell
types. The selection of the number of layers and the number of cells is
done on a sample basis, meaning that cells and layers will not neces-
sarily be shared across samples. Cells from the same layers or cell type
within a layer will always be sampled from the same statistical dis-
tribution. There is a probability p =0.5 of differential gene expression
between the cells in the background and the circular territories. There
is a probability p =0.05 of differential gene expressionbetween cells in
each layer.

For a random one cell and a random two cell, we created a back-
ground territory where a random number of territories (1–3), of ran-
dom shape (circular, rod, or chaos map), with a random number of
layers (0–4) will be placed. Random one cell will only contain at most
one cell. Random two cell will contain at most 2 cells (number of cells
randomly selected). There is a probability p = 0.5 of differential gene
expression between the cells in the background and territories. There
is a probability p =0.05 of differential gene expressionbetween cells in
each layer.

For each synthetic regime, we exported the cell labels of each cell
as well as the neighborhood interactions. Simply put, we select the
K-nearest neighbors (k = 6) and concatenate the labels of the neigh-
borhood into an “interaction” label (using @ as separator for dis-
crimination later). Adding interactions is part of the oneiric package
with the add_interactions function. Data generation code is available
on the GitHub dedicated to the analysis presented in this manuscript
(see “Code availability” section).

In addition to these datasets, we also generated 3 samples of the
circle regime with varying numbers of cells (100, 500, 1000, 2500,
5000, 10,000, 20,000, 50,000, 100,000, 200,000). These datasets
were used for computational performance benchmarking (see below).

Biological data preparation for benchmarking
For format consistency, we prepared and processed each biological
dataset used for benchmarking, namely, seqFISH mouse embryo,
Slide-seq V2 mouse hippocampus, and Stereo-seq mouse embryo (see
“Data availability” section).

We split datasets into slices when necessary. seqFISH is available
as a single R object, which we split into 3mouse embryo sections. This
step was not necessary for Slide-seq V2 and Stereo-seq since they are
provided as separate files. For all datasets, we rescaled spatial coor-
dinates to ensure that the minimum x and y coordinates would be 1.
Next, using oneiric, we added neighborhood interactions labels with

KNN (k = 10). All datasets are exported in the same format, consisting
of a coordinate data frame with 6 columns (barcodes, x, y, sample,
cell_labels, interactions) and a gene-by-cell count matrix.

For Slide-seq datasets, we first filtered cells that contained less
than 200 total counts. We also filtered genes with less than 100 total
counts across all cells. Then, we annotated datasets using RCTD37 with
the same mouse brain scRNA-seq reference data38 in order to quanti-
tatively assess cell and spatial context mapping abilities. For Stereo-
seq, we downsampled to 50,000 cells to reduce run time.

Data preparation code is available on the GitHub dedicated to the
analysis presented in this manuscript (see “Code availability” section).

Data preparation of cross-technology and cross-resolution
mapping
To compare cells across technologies, we processed seqFISH34 and
Stereo-seq data9. seqFISH data was filtered by removing low-quality
cells asdescribedby the authors. Next,wepre-processedbothdatasets
using Vesalius by log-normalizing the counts and producing a reduced
dimension latent space using PCA (PCs = 30). Our cross-technology
comparison only used cell similarity and niche similarity; as such, no
further processing was required.

Matching cells across resolutions required extra steps for data
preparation. First, we downsampled theVisiumHDmousebraindata to
retain 200,000 cells. We then used RCTD in doublet mode to decon-
volve and assign cell type labels. As a reference, we used the labeled
scRNA data provided by ref. 38. We remove all cells that contain the
“reject” tag. For all remaining cells, we annotated cells with one or two
labels depending on how RCTD defined them (singlet or doublet).
After this filtering, the VisiumHD data contained 84,287 cells. We also
used RCTD to deconvolve the Visium mouse brain data with the same
reference dataset38. In this instance, we only retained cell type labels
that were considered “high confidence”.

Benchmarking mapping performance
We contrasted our mapping approach to single-cell mapping tools,
spatial alignment tools, and data integration tools. More specifically,
we compared Vesalius to CytoSpace35, Tangram35, PASTE27, GPSA28,
SLAT33, and Scanorama32. It is of note that CytoSpace requires perfect
matching of cell type labels between reference and query and only
finds a proposed mapping of cells between the same cell type labels.
Importantly, if the cell labels are not shared, CytoSpace will not run to
completion. To demonstrate how this strategy differs from our
context-specific approach to cell mapping, we provided CytoSpace
with true cell labels as well as a single-cell label for all cells (noted with
the _noLab label).

For Vesalius, we ran mapping with 14 cost matrix combinations:
• feature
• niche
• territory
• composition
• feature-niche
• feature-niche-cell_type
• feature-composition
• feature-territory
• niche-territory
• niche-composition
• feature-niche-territory,
• feature-niche-composition
• feature-niche-composition-territory
• feature-niche-composition-territory-cell_type

Where features represent cell similarity, niche represents niche
similarity, territory represents territory similarity, composition repre-
sents cell type composition of niche, and cell type represents the cell
label score.
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Toquantitatively assess theperformanceof cellmappingbetween
samples, we computed an Adjusted Rand Index36 (ARI) between the
cell labels of the query and the reference. We also computed a Jaccard
Index between the cell labels of the neighborhood of mapped cells to
ascertain if we were capturing the spatial and cellular context of each
mapped cell. Since PASTE and GPSA do not match cells but rather
modify the coordinates of each cell, we computed the nearest cell
neighbor between the reference and query and compared their cell
type labels. While this approach disadvantages PASTE and GPSA, our
objective is to demonstrate that context mapping is a fundamentally
different task from spatial alignment. Scanorama is a tool designed to
integrate single-cell datasets; it only provides an integrated latent
space, but not best-matching cells. As such, we computed the nearest
neighbors between the reference data and query data in the integrated
latent space to determine best-matching cell.

For Vesalius (==2.0.0), we ran our mapping using 1000 cells (for
synthetic data) or 5000 cells (for real data) across 25 epochs. We set a
cell filtering threshold of 0.9 and allowed cell type label filtering if they
were provided. We used the log-normalized counts to define the gene
expression signal. Niches were defined using KNN with k = 6 for syn-
thetic data and k = 10 for real data. In both cases, we select the top
2000 variable genes for analysis.

For CytoSpace (==1.0.6a0), we reformatted synthetic data and
real data to fit the CytoSpace data requirement. We used 5000 cells as
a batch size since CytoSpace down-samples based on cell type labels.
We ran CytoSpace using their single-cell mode (does not require the
deconvolution step to be run).

For Tangram (tangram-sc = =1.0.4), we loaded data as AnnData
objects. We log-normalize the data and extract the top 2000 variable
genes. We use these variable genes as seed genes for Tangram map-
ping. We use “rna_count_based” as the density prior and ran Tangram
for 10,000 iterations.

For PASTE (paste-bio==1.4.0), we loaded data as AnnData objects.
Data objects do not need to be normalized prior to alignment. We ran
PASTE for 10,000 iterations.

For GPSA (==0.8), we loaded data as AnnData objects. We ran
GPSA for 50 iterations as recommended by the authors. The learning
rate for the Adam optimizer was set at 0.01 as recommended by the
authors.

For SLAT (scslat==0.2.1), we loaded data asAnnData objects. SLAT
does not require data to be normalized prior to mapping. We selected
neighborhoods using KNN (k = 6 for synthetic data and k = 10 for real
data). We ran SLAT with 5 Graph Convolutional layers across 25
epochs. Parameters were modified in accordance with developer
recommendations.

For Scanorama (==1.7.4), we loaded data as AnnData objects and
ran Scanorama with default parameters.

For all benchmarking, all code, parameters, and dependency lists
used in this analysis are available in the dedicated GitHub.

Computational performance benchmarking
We includedbenchmarking for computationalperformanceby varying
thenumber of cells usedduringmapping (100, 500, 1000, 2500, 5000,
10,000, 20,000, 50,000, 100,000, 200,000) in a circle synthetic
regime.

For this task, we aimed at making the performance as fair as
possible; as such, we assumed that a user would run a full analysis
pipeline, including data loading, preprocessing, and mapping on a
single CPU. We made this assumption since all tools have different
input requirements, different downstream tasks, and different opti-
mization options. Vesalius provides the widest variety of potential
downstream tasks and, as such, has themost requirements in terms of
preprocessing.

We also aimed to avoid any variation in language-specific
methods of measuring run time and memory usage. We measured

run time andmemory usage (Resident Set Size – peak RAMusage) for
each tool using custom bash scripts (Available on the dedicated
GitHub page) that measured these metrics across 3 submitted jobs.
We set hard computational limits: a maximum of 480GB of RAM and
a maximum run time of 12 h. If the job exceeded these limits, the run
was cut short.

We compared run time and memory usage across cost matrix
combinations for 5000 and 10,000 cells. We used the same 14 matrix
combinations described above and used the same performance mea-
suring strategy as described above.

Cross-technology and cross-resolution mapping
To map Stereo-seq mouse embryo to seqFISH and vice versa, we
mapped cells in batches of 10,000 cells across 10 epochs. Since our
approach selects the intersections of genes available between both
datasets, we use all genes (135 genes in the seqFISH datasets).

For cross-resolution mapping, we constructed the cost matrix
using niche and territory. We defined territories by processing each
dataset through the Vesalius pipeline, which includes color histogram
equalization, image smoothing, and image segmentation. The para-
meter details are available in the analysis scripts deposited in our
dedicated GitHub page (see “Code availability” section). We defined
niches using a radius from the center cell, where the radius is defined
as half of the scaled distance between Visium Spots. Cell matching was
achieved across 20 epochs with a batch size equal to the number of
Visium spots (n = 2310). We used log-normalized variable features as
the expression signal to compare. Once the matching was completed,
we ran the mapped dataset through the Vesalius pipeline to retrieve
spatial domains. We added a jitter to cell coordinates to enable each
mapped cell to have a distinct spatial coordinate. In contrast, no jitter
willmerge themapped cells into Visium-like spots. To compare the cell
types mapped across resolution, we first scaled the cell type fre-
quencies in the deconvoluted Visium Spots to assume 100 total cells in
each spot. We applied the same frequency scaling to the cell type
mapped from VisiumHD. We employed this strategy since RCTD
returns an estimated cell type proportion and not a number of cells,
and the number of cells can vary drastically between spots. Using these
scaled cell type frequencies, we constructed a contingency matrix
upon which we applied a Chi-squared test to determine if the cell type
frequencies were statistically distinct. In addition, we computed a
Jaccard Index between cell type labels in the Visium spots andmapped
VisiumHD cells to determine how many cell types were being missed
despite having potentially low occurrence frequencies.

Count integration
Once cells have been matched across samples, we can integrate the
counts and develop an integrated tissue analysis framework. Count
integration was only required during the analysis related to Stereo-seq
Axolotl brain regeneration and Stereo-seq Mouse embryo across
developmental time. To integrate counts, we used the Seurat imple-
mentation of Canonical Correlation Analysis43 (CCA), which returns
scaled and integrated counts and a common latent space between
samples. Vesalius can utilize all methods deployed by Seurat (e.g., scVI
or Harmony). The integrated latent space is directly used to generate
Vesalius images upon which our pipeline can be applied. To avoid
duplicated coordinates, we added a jitter to the duplicated coordi-
nates only. The resulting territories are the territories emerging from
this joint latent space, which can be used for spatially resolved dif-
ferentially expressed gene expression analysis.

For inter-sample differential gene expression analysis, Vesalius
can compare the cells from the integrated count matrix using either
territories or cells as a grouping criterion. By default, we used the
Wilcoxon ranked sum test with the p-value threshold set at 0.05 after
correcting for multiple testing (FDR).
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Cell mapping clusters
We developed a cell clustering method that clusters query cells based
onwhich reference cells they tend to co-map to. Our default clustering
approach is based on hierarchical clustering with community-based
clustering approaches (Leiden and Louvain) also available. First, we
define themetricmatrix that will be used for clustering. This approach
follows the same pair-wise summation of similarity scores used during
cost matrix creation described above. By default, we use cell similarity
only. We define co-mapping of cells using the following steps:

Order of preferential mapping
For each cell c, let M cð Þ= fm1,m2, . . . ,mkg be the set of mapping

costs wheremi represents the cost of mapping to reference cell i. The
preferential mapping order is given by sorting M(c) in descending
order:

M* cð Þ= sortðM cð ÞÞ ð12Þ

The numerical values are converted into categorical strings.
Selection of top n matches
We select the top n matches (default n = 30):

S cð Þ= fm*
1,m

*
2, . . . ,m

*
ng ð13Þ

Where S(c) represents the categorical vector of the top n mappings
for cell c.

Jaccard Index Computation
Given twoquery cells c1 and c2, their Jaccard Index is computed as:

J c1, c2
� �

=
jS c1
� �

∪ SðC2Þj
S c1
� � \ SðC2Þ

ð14Þ

A higher Jðc1, c2Þ indicates a greater likelihood that two query cells
map to the same set of reference cells.

Distance Matrix for Hierarchical Clustering
The reciprocal of the Jaccard Index is used as the distance matrix

for hierarchical clustering or community clustering algorithms.

d c1, c2
� �

= 1� Jðc1, c2Þ ð15Þ

For clarity, we used a fixed number of clusters with k = 5 in the
context of Stereo-seq mouse embryo clustering.

Mapping across spatially heterogeneous prostate cancer
samples
We mapped cells from 2 prostate cancer samples using Slide-seq V2
technology44. In this instance, we downloaded the count matrices,
spatial barcodes, and cell type annotations provided by the authors.
We processed 2 tumor samples (Tumor01 and Tumor02) using the
Vesalius pipeline. In brief, we normalized gene counts, selected vari-
able features (n = 2000), and reduced dimensionality via PCA (30 PCs).
Next, we smoothed the Vesalius image stacks and equalized the color
histogram before segmenting the images and isolating territories. We
mapped each sample to each other using cell, niche (KNN with k = 15),
territory similarities, and cell type labels. The mapping procedure was
carried out across 25 epochs with a batch size set to 5000, consistent
with our previous analysis. The details of the analysis are available on
the dedicated GitHub.

Spatial proteomics in situ mass cytometry sample preparation
and processing
To demonstrate the utility of Vesalius, we mapped spatial in situ mass
cytometry (IMC) data taken from human breast cancer patient
samples41. Out of the 709 samples, we filtered the samples to ensure
that they contained at least 1000 cells. We also filtered out samples
that contained NAs in the clinical metrics provided by the authors (ER

Status, ERBB2_pos, grade, deathBreast, PAM50, and YearsToStatus).
From the remaining samples, we randomly sampled 50ER-positive and
50 ER-negative samples. Next, we extracted the expression values for
the 37 markers measured, which we formatted into a count matrix for
Vesalius. We processed every sample using the Vesalius pipeline,
including log-normalization, dimensionality reduction (PCA) and
imageprocessing, and territory isolation. Thedetails of the parameters
used are contained in our analysis scripts deposited in a dedicated
GitHub page (see “Code availability” section).

Wemapped cells between samples using a costmatrix built from
cell similarity, niche similarity, territory similarity, cell label, and
niche composition. We optimized the matching pairs across 10
epochs with a batch size equal to the smallest dataset minus one (or
1000 - 1 cells if both datasets were larger than 1000 cells). The
neighborhood was defined through our graph method with a depth
of 2. For each mapping event, we extracted the mean cost and mean
mapping scores.

For each sample, we selected its best-matching pair (excluding
self-mapping) by taking the pair with the lowest overall cost. From this
best-matching pair, we computed the overlap between the clinical
metrics to check whether ourmapping strategy could recover patient-
level information. More specifically, we checked if we obtained the
same label between the reference and query. In the case of Grade and
PAM50, there are multiple labels: “1”, “2”, “3” for Grade and “Basal”,
“HER2”, “Luminal A”, “Luminal B”, “Normal-like” for PAM50. The delta
YearsToDeath was calculated by taking the absolute value of the dif-
ference in years between query and reference.

Δ= jQ� Rj ð16Þ

Sample mapping clusters
To cluster samples (IMC), we first mapped samples to each other,
extracted their average cost, and averaged mapping scores across all
cells in those samples. Sincewearemapping samples to each other,we
can directly use the mapping cost matrix as input to the hierarchical
clustering algorithm. In the case of IMC, we used height to define the
number of cluster cutoff (h = 0.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available datasets. We
provide the URLs below. Simulated datasets can be generated using
the dedicated R package. Source Data are provided with this paper.
Simulated data: https://github.com/WonLab-CS/oneiric Slide-seq V2:
https://singlecell.broadinstitute.org/single_cell/study/SCP815/
sensitive-spatial-genome-wide-expression-profiling-at-cellular-
resolution#study-summary seqFISH: https://content.cruk.cam.ac.uk/
jmlab/SpatialMouseAtlas2020/MOSTA: https://db.cngb.org/stomics/
mosta/stereo.seq/ Visium: https://cf.10xgenomics.com/samples/
spatial-exp/2.0.0/CytAssist_FFPE_Mouse_Brain_Rep1/CytAssist_FFPE_
Mouse_Brain_Rep1_web_summary.html VisiumHD: https://www.
10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-
libraries-of-mouse-brain-he scRNA: Molecular Diversity and Specia-
lizations among the Cells of the Adult Mouse Brain38. ARTISTA:
https://db.cngb.org/stomics/artista/ Prostate Cancer: Dissecting the
immune suppressive human prostate tumor microenvironment via
integrated single-cell and spatial transcriptomic analyses44 IMC:
Breast tumor microenvironment structures are associated with
genomic features and clinical outcome41 Source data are provided
with this paper.
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Code availability
The Vesalius package used in this study is publicly available and has
been deposited in GitHub at https://github.com/WonLab-CS/Vesalius
under GPL-3.0. The Oneiric package used to generate the synthetic
data is publicly available and has been deposited in GitHub at https://
github.com/WonLab-CS/oneiric under GPL-3.0. The code used to
performanalysis andgenerate results is publicly available andhasbeen
deposited in GitHub at https://github.com/WonLab-CS/Vesalius_
analysis under GPL-3.0. The specific version of the code (packages
and analysis) associated with this publication is archived in Zenodo
and is accessible via: https://doi.org/10.5281/zenodo.1573381745
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