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Evidence triangulator: using large language
models to extract and synthesize causal
evidence across study designs

Xuanyu Shi 1,2, Wenjing Zhao1,2, Ting Chen3, Chao Yang4,5 & Jian Du 1,2,6

Health strategies increasingly emphasize both behavioural and biomedical
interventions, yet the complex and often contradictory guidance on diet,
behavior, and health outcomes complicates evidence-based decision-making.
Evidence triangulation across diverse study designs is essential for balancing
biases and establishing causality, but scalable, automated methods for
achieving this are lacking. In this study, we assess the performance of large
language models in extracting both ontological and methodological infor-
mation from scientific literature to automate evidence triangulation. A two-
step extraction approach—focusing on exposure-outcome concepts first, fol-
lowed by relation extraction—outperforms a one-step method, particularly in
identifying the direction of effect (F1 = 0.86) and statistical significance
(F1 = 0.96). Using salt intake and blood pressure as a case study, we calculate
the Convergency of Evidence and Level of Convergency, finding a strong
excitatory effect of salt on blood pressure (942 studies), and weak excitatory
effect on cardiovascular diseases and deaths (124 studies). This approach
complements traditional meta-analyses by integrating evidence across study
designs, and enabling rapid, dynamic assessment of scientific controversies.

It is increasingly recognized that health strategies should prioritize
both behavioral interventions and biomedical interventions (e.g.,
medications)1. Social determinants of health (SDoH), especially lifestyle
factors such as diet and exercise, are pivotal in managingmajor chronic
diseases such as cardiovascular diseases, cancer, chronic respiratory
diseases, and diabetes. For instance, according to data from the Institute
for Health Metrics and Evaluation (IHME), behavioral factors contribute
significantly to ischemic heart disease and stroke, accounting for 69.2%
and 47.4% of Disability-Adjusted Life Years (DALYs), respectively—the
highest among all diseases. In particular, dietary factors contributed
57.1% and 30.6% of DALYs, respectively2. Developing evidence-based
prevention and intervention strategies encounters significant challenges
due to the rapidly growing and piecemeal evidence, alongwith complex
causal relationships from various study designs, including confounding

and reverse causation. Evaluating the level of causality within a body of
scientific evidence is a fundamental task, especially when research
findings are inconsistent3–5.

Meta-analysis (META) is an effective scientific method for quanti-
tatively synthesizing research conclusions. Utilizing statistical techni-
ques, it combines the results of different studies to obtain an overall
quantitative estimate of the impact of specific interventions (e.g., salt
restriction) on particular outcomes (e.g., blood pressure). It balances
conflicting evidence quantitatively to achieve evidence-based decision-
making based on synthesized scientific evidence. Since its introduction
in the 1970s, meta-analysis has had a significant impact on various fields
such as medicine, economics, sociology, and environmental science6.
Over the past four decades, meta-analysis has evolved to include
increasingly complex methods for quantifying evidence, particularly

Received: 8 October 2024

Accepted: 29 July 2025

Check for updates

1Institute of Medical Technology, Peking University, Beijing, China. 2National Institute of Health Data Science, Peking University, Beijing, China. 3Business
School, Dublin City University, Dublin, Ireland. 4Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of
Nephrology, Beijing, China. 5Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing, China. 6State Key Laboratory of
Vascular Homeostasis and Remodeling, Peking University, Beijing, China. e-mail: dujian@bjmu.edu.cn

Nature Communications |         (2025) 16:7355 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0009-5261-6863
http://orcid.org/0009-0009-5261-6863
http://orcid.org/0009-0009-5261-6863
http://orcid.org/0009-0009-5261-6863
http://orcid.org/0009-0009-5261-6863
http://orcid.org/0000-0001-8436-778X
http://orcid.org/0000-0001-8436-778X
http://orcid.org/0000-0001-8436-778X
http://orcid.org/0000-0001-8436-778X
http://orcid.org/0000-0001-8436-778X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62783-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62783-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62783-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-62783-x&domain=pdf
mailto:dujian@bjmu.edu.cn
www.nature.com/naturecommunications


concerning the consistency of results from the same study design or the
replicability of studies. In contrast, convergency, reflecting the extent to
which a given hypothesis is supported by different study designs, has
not received the same attention4. Currently, considering consistency
and convergency is recognized as an important strategy for addressing
the reproducibility crisis for the scientific community4.

In recent years, the idea of “triangulation” has been intro-
duced into the scientific community to measure the convergency
of scientific conclusions derived from different study designs4,7,8,
particularly in human behaviours9. These study designs have dif-
ferent and independent potential sources of bias7 (see Table 1).
Triangulation is a research strategy involving the use of at least
two research methods to investigate and analyze the same
research question, mutually validating each other to enhance the
robustness and reproducibility of conclusions. If conclusions
derived from different research designs (such as observational
studies (OS), mendelian randomization studies (MR), and rando-
mized controlled trials (RCT), etc.) regarding the same cause-and-
effect question (in fact, these study designs all aim to establish
correlation) are consistent, the reliability of causality is stronger.
At this point, correlation is moving towards causality10. When the
results point to different directions, understanding the major
source of bias instruct researchers future study designs7.

However, current evidence triangulation studies primarily employ
qualitative methods to explain the reliability of causality, lacking
quantitative approaches. Researchers are accustomed to using retro-
spective descriptionof relevant literature in the “Discussion” sectionof
their papers, simply summarizing and discussing how many studies
support the conclusions of the current study, how many do not, and
reasons for lack of support, such asdifferent experimental conditions8.
A few pieces of empirical work on evidence triangulation involves a
very high proportion of manual evidence screening and extraction for
data elements11. Such retrospective, qualitative triangulation methods
are susceptible to issues such as subjective selectivity of evidence and
cognitive biases among different researchers.

Implementing a fully quantitative method for evidence triangu-
lation requires a computable representation of research findings and
relevant metadata obtained from different study designs. Apart from
determining the presence and direction of the effects (i.e., significant
increase, significant decrease, and no change) between an intervention
and outcome, finer-grained information of research design among
many lines of evidence need to be extracted. For evidence triangula-
tion task, it is important to extract information such as measured
outcomes, effect direction of intervention (increased vs. decreased),
characteristics of study populations (e.g., demographics), and other
relevant contextual information.

Currently, there are natural language processing methods avail-
able for extracting conclusions from clinical research reports. This
includes the utilization of machine learning techniques and Large

Language Models (LLMs) to extract entities and relations from RCT
reports12–17. However, these methods are predominantly based on the
less specific framework of evidence-based medicine, which empha-
sizes Population-Intervention-Comparator-Outcome (PICO) related
concepts, such as Trialstreamer and the EvidenceMap18,19. While some
of these methods involve effect size and direction20,21, extracting and
representing research design information from various sources of
evidence, which is essential for triangulation, remains a subject for
ongoing research. Most recently, there are attempts trying to accel-
erate evidence triangulation process by taking advantage of compu-
table knowledgebase in the form of a Subject-Predicate-Object
semantic triple, such as SemMedDB22. However, the accuracy and
recall rates of medical concepts and their relations extracted in Sem-
MedDB are relatively low.

In this study, we try to examine the capabilities of LLMs in
extracting ontological information such as intervention-outcome
concepts, determining effect directions, as well as identifying metho-
dological information suchas study design. Our objective is to develop
an automatic approach to aggregate various lines of SDoH-related
evidence across different study designs into a computable and com-
parable format that is ready for quantitative evidence triangulation.
We also aim to utilize the extracted data elements to assess the Con-
vergency of Evidence (CoE, which represents the trending effect
direction after triangulation) and the Level of Convergency (LoC,
which denotes the strength of that converging direction). The overall
rationale and pipeline of this work is shown in Fig. 1.

Results
Validation of model performance
To validate the performance of ourmodel in named entity recognition
(NER) and relation extraction (RE) in SDoH research, we employed a
comprehensive evaluation approach using BERTScore, a state-of-the-
art metric for assessing the semantic similarity between textual
representations of exposure and outcomepairs23. BERTScore provides
precision, recall, and F1-score metrics to quantify the semantic simi-
larity between predicted and reference text sequences during valida-
tion. Given that LLM-extracted entities may not always perfectly align
with human-extracted entities, we employed this similarity-based
scoring method to more rigorously assess the extent to which the
LLM’s extractions correspond to the gold standard.

We compared the predicted associations generated by the model
against the manually curated gold standard dataset. The following
steps were undertaken:

• Similarity Assessment: BERTScore was calculated for each expo-
sure and outcome pair to evaluate the semantic similarity
between the model’s predictions and the gold standard. For each
PMID, precision, recall, and F1-score were computed, allowing for
a nuanced understanding of the model’s ability to capture
relevant associations.

Table 1 | Strengths and inherent causal biases of different study designs

Study Design Key Strengths Main Potential Biases Implications for Causal Inference

Randomized Controlled
Trials (RCTs)

- Gold standard for causality due to
randomization;
- Rigorous control of intervention and
outcome measurement

- Restricted generalizability;
- Attrition bias (dropout);
- Short-term follow-up limits cap-
turing long-term effects

- High internal validity;
- May not reflect real-world applicability if study
population is unrepresentative

Observational Studies (OS) - Large and diverse cohorts;
- Longitudinal tracking of real-world
behaviour;
- Often captures rare outcomes or
exposures

- Confounding bias due to non-
random exposure assignment;
- Selection bias;
- Reverse causation

- Broad external validity;
- Vulnerable to systematic biases if confounding
variables and study populations are not carefully
managed

Mendelian Randomiza-
tion (MR)

- Reduces confounding and reverse
causation via genetic instruments;
- Biological plausibility tests for causal
effects

- Horizontal pleiotropy (genetic var-
iant affects multiple traits);
- Population stratification;
- Weak instrument bias

- Offers quasi-experimental conditions;
- Violations of core assumptions can undermine
reliability of the causal estimate
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• Matching and Thresholding: We set a BERTScore threshold of 0.8
to identify matching pairs of exposures and outcomes between
the predicted and gold standard data. Only those pairs exceeding
this threshold were considered valid matches.

• Evaluation of Direction and Significance: For the matched pairs,
we further evaluated the model’s performance in predicting the
direction (e.g., increase, decrease) and statistical significance of
the associations. Precision, recall, and F1-score were calculated to
quantify the model’s performance in these dimensions.

• Error Analysis: We identified and reported falsely predicted
associations in terms of direction and significance, providing
insights into areas where themodel may need further refinement.
This part is provided in Supplementary Note 1.

Part 1: an expert-extracted dataset of relations between food&-
nutrition and cardiovascular outcomes
In the one-step one-shot extraction, GPT-4o-mini achieved the
highest F1 scores for exposure (0.86) and outcome (0.82) extrac-
tion, demonstrating strong overall performance (validation dataset
#1). However, glm-4-airx had slightly higher precision in extracting
the direction of the relationship, although all models showed
moderate performance in this category. For significance extraction,
deepseek-chat and GPT-4o-mini exhibited high F1 scores (0.86
and 0.87).

The two-step extractionmethod generally outperformed the one-
step approach, particularly in handling complex indicators like direc-
tion and significance. Deepseek-chat was the most reliable model with
an F1 score of 0.82 in direction and 0.96 in significance, especially in
the two-step approach (Fig. 2a).

Part 2: External validation of human-extracted relationships
between dietary factors and coronary heart disease
Additionally, we validated the approach in an external human-
extracted dataset (validation dataset #2). In the one-step extraction

approach, deepseek-chat achievedF1-scores of 0.76 for exposure, 0.88
for outcome, and 0.67 for association. Glm-4-airx performed con-
sistently with F1-scores of 0.77 for exposure, 0.82 for outcome, and
0.79 for association. Qwen-plus showed competitive results with F1-
scores of 0.76 for exposure, 0.84 for outcome, and 0.72 for
association.

In the two-step extraction approach, deepseek-chat improved to
F1-scores of 0.78 for exposure, 0.88 for outcome, and 0.75 for asso-
ciation. Glm-4-airx demonstrated balanced performance with F1-
scores of 0.76 for exposure, 0.85 for outcome, and 0.86 for associa-
tion. Qwen-plus maintained competitive performance with F1-scores
of 0.74 for exposure, 0.88 for outcome, and 0.77 for association
(Fig. 2b). Deepseek-chat and glm-4-airx emerged as the most reliable
models across both extraction methods.

We also calculated Cost-Effective Ratio (CER, the ratio of mean F1
of all extraction fields divided by cost per million tokens) for each
validation dataset. Figure 2 shows themodel performance and CER for
both datasets (Fig. 2c). The detailed performance of each model in
both validation datasets can be found in the Source Data file. Overall,
the mean F1 scores in both validations are higher for the two-step
approach compared to the one-step approach. Deepseek achieved the
best performance with the lowest cost. Thus, we used deepseek-chat
for later case studies. Detailed extraction scenarios can be found in
Supplementary Note 2. Extracted datasets by eachmodel can be found
in our data repository (see Data Availability).

We also compared SemRep24 and achieved notably lower
F1 scores on our validation dataset than any of the LLMs tested,
demonstrating the robustness of our two-step LLM-based extraction
(see Supplementary Note 3). Moreover, unlike rule-based or static
knowledge graph approaches, this LLM-based framework adapts to
new terminologies and better infers nuanced causal statements. A
more detailed discussion and comprehensive comparison with other
text‐mining and knowledge graph methods is provided in the Sup-
plementary Note 4.

Fig. 1 | Overall workflow of automatic evidence triangulation using LLM. a The
pipeline of using LLM to extract study designs, entities, and relations from textual
titles and abstracts. b The framework of evidence triangulation; The Convergency
of Evidence represents the integration algorithm of the supporting and opposing
evidence behind the relation. The LoC score represents the reliability of causal
relationship with scaled classification in three levels: weak (one star*), moderate
(two stars**), and strong (three stars***). Excitatory (E) Occurs when the outcome
changes in the same direction as the exposure or intervention. For instance, if an

increased salt intake increases blood pressure or a decreased salt intake decreases
blood pressure, we label the effect as excitatory.NoChange (N ) Refers to findings
that indicate the exposure or intervention does not lead to a statistically significant
change in the outcome (e.g., salt intake has no measurable impact on blood pres-
sure levels). Inhibitory (J ) Occurs when the outcome changes in the opposite
direction of the exposure or intervention. For example, if an increased salt intake
decreases blood pressure, we label this effect as inhibitory.
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Head-to-head comparisons with existing evidence synthesis
approach
We performed head-to-head comparisons between our method and
existing systematic reviews (as the golden standard) in two con-
tentious cases: 1) the effect of salt on blood pressure, and 2) the effect
of salt on cardiovascular diseases. These comparisonsweremade from
multiple aspects, including coverage rate of evidence, distribution of
the directions of effect, and the ability to track evidence in a timely
manner.

Case 1: examining the effect of salt on blood pressure. To validate
our automated evidence triangulation approach for assessing the
salt–blood pressure association in hypertensive populations, we
compared our resultswith a series of CochraneDatabase of Systematic
Reviews (CDSR) from 2002 to 202025–29. The CDSR has long been
considered a gold-standard reference, with multiple iterations evalu-
ating how salt reduction affects various outcomes including blood
pressure. In particular, we focused on studies included in the CDSR
that reported salt reduction interventions in hypertensivepopulations,
aiming to determine how well our automatic system captured similar
evidence for predefined and targeted population and whether our
conclusions aligned with those of traditional meta-analyses.

Coverage rate of CDSR included evidence in our method
From the CDSR, we manually extracted included studies from the
forest plots provided across 5 versions of the review, identifying a total
of 202 unique relations in 101 primary studies that specifically targeted
hypertensive population. Of these 101 primary studies, our automated
pipeline identified 80 (79.2%) as containing salt–blood pressure rela-
tions in our broader evidence pool, and 67 (66.3%) when strictly
focusing on hypertensive populations using matching module. The
slight discrepancy is likely due to our reliance on titles and abstracts:
some CDSR-included studies may have only specified hypertension in
the full text, which ourmethod does not presently parse. Nonetheless,
the high coverage indicates that our approach successfully captured
most of the key evidence scrutinized by the traditional systematic
reviews. Note that we did not refer to the query strategy used in
CDSR, and we only queried the PubMed bibliographic database.

Triangulation-ready dataset comparison to CDSR
We generated a triangulation-ready dataset by querying PubMed for
RCTs, MRs, and OSs published up to 2024. We developed a module to
check whether the extracted exposures and effect directions are
consistent with the target research question, ie, ‘salt’ and ‘blood
pressure’, in this case. Furthermore, we excluded any extracted

Fig. 2 | Model performance and cost-effective ratios in validation dataset 1&2. Pricing was recorded on 07/31/2024 which was the date for model performance
calculation. a Shows model performance in the part 1 dataset. b Shows model performance in the part 2 dataset. c Shows the cost-effective ratio in both datasets.
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relations where the “significance” field was marked as “not found,”
ensuring that our triangulation-ready dataset included only those
findings derived directly from study results rather than background or
methods sections.

When we examined the reported direction of effect in these stu-
dies, we categorized each as 1) “supportive” if the reported effect size
wasgreater than0with a confidence interval not crossing0 (indicating
reduced blood pressure with lower salt intake) or 2) “non-supportive”
if the effect size was ≤0 or the confidence interval overlapped 0. These
criteria mirrored the CDSR’s classification. Among the 202 CDSR
relations, 49.0% (99/202) were deemed supportive—a moderate
endorsement of salt reduction for hypertensive population. The latest
CDSR analysis suggests that existing evidence provides only limited
support for a causal relationship between reduced salt intake and
lowered blood pressure. We propose that this modest observed effect
may stem from the inclusion of a significant proportion of non-
supportive studies in the evidence synthesis.

In total, 1,954 extracted relations from942 studies were identified
using our method by February 2025. Restricting to studies published
up to 2018 produced 1,505 extracted relations from 719 studies,
enabling a direct comparison to the CDSR’s 2018 cutoff (actual cutoff
was April 2018). In our triangulation dataset, 62.8% (945/1505) of evi-
dence is supportive, while in the comparable evidence set included in
CDSR, only 49% held a supportive stance.

Convergency of Evidence (CoE)
Toquantitatively assess the extent of consensus regarding the effect of
salt on blood pressure, we applied our CoE metric. By 2018, the CoE
reached0.441 and remained stable at this level from2000, indicating a
moderate, albeit not overwhelming, consensus that the relation
between salt intake and bloodpressure is excitatory. This intermediate
level of agreement aligns with the traditional meta-analytic findings in
theCDSR, suggesting that bothmethods convergedon a similar stance
regarding the direction of effect.

After 2018, the addition of new designed studies—particularly
four supportive MR analyses—boosted the overall CoE to 0.688 by
February 2025. Surpassing two-thirds in the CoE score signifies a
more decisive consensus in favor of the excitatory relation, reflect-
ing the impact that more robust or genetically informed evidence
(e.g., MR studies) can have on solidifying scientific understanding.
See Fig. 3 for evidence matrices and CoE calculation, and Fig. 4 for
yearly trend of CoE.

The substantial overlap with CDSR included studies and parallel
evolution of conclusions demonstrates that our LLM pipeline—despite
relying solely on results reported in abstracts—closely aligns with
established systematic review processes.

This automated approach enables the rapid integration of new
studies, providing a near real-time snapshot of how scientific con-
sensus shifts as new evidence emerges. This dynamic feature is parti-
cularly valuable in understanding and addressing controversies, such
as the impact of reduced consumption of salt on blood pressure,
where scientific opinion can evolve over time.

While lacking the rigor of full-text scrutiny inherent to systematic
reviews/meta-analyses, our pipeline provides efficient preliminary
assessments to determine when a systematic review andmeta-analysis
is warranted. By identifying instances where the CoE remains low or
contested, the approach can guide researchers to more rigorously
investigate potential sources of heterogeneity or bias.

In summary, comparing our automated system to the author-
itative CDSR shows that our approach not only coversmost of the core
evidence but also reaches broadly consistent conclusions regarding
the excitatory effect between salt reduction and blood pressure low-
ering in hypertensive populations. The iterative integration of new
studies—especially from emerging research designs like MR—further
strengthens the robustness of these conclusions. It highlights the

potential of automated evidence synthesis for validating and updating
the scientific consensus on contentious health problems.

Case 2: examining the effect of salt on cardiovascular diseases. To
further validate our approach, we extended its application to evaluate
the associations between salt intake and cardiovascular diseases (CVD)
or mortality. We utilized amanually curated dataset of 82 publications
(14 systematic reviews and 68 primary studies) published in 2014, each
examining the impact of sodium intake on cerebro-cardiovascular
disease or mortality30,31. The positions of these publications were ori-
ginally labeled as “supportive,” “contradictory,” or “inconclusive”
regarding the hypothesis that salt reduction benefits population
health31; for our analysis, “contradictory” and “inconclusive” were
merged into a single “non-supportive” category.

Among the 50 primary studies included in the 14 systematic
reviews, 21 (42%)were supportive.When comparing the conclusions of
the reviews to the findings of the included studies, we found that 53.7%
(101/188) of the time, the direction of effect in the primary studies
aligned with the reviews’ conclusions, while 46.3% (87/188) of the time
they did not. Specifically, reviews classified as supportive included
similarly supportive studies 45.0%of the time, whereasnon-supportive
reviews included non-supportive studies 61.0% of the time. Despite
this relatively low rate of alignment, some reviews still reached a
supportive conclusion overall. To visualize this potential bias, we
plotted amodified evidence inclusion networkwith stance accordance
between reviews and their included primary studies (see Supplemen-
tary Fig. 1).

Using our triangulation method, after matching for exposures
(salt) and outcomes (CVD or mortality), we generated a dataset of
124 studies with 201 relations by 2014. Considering studies with only
one type of relation, 49.0% (55/113) are supportive. We observed an
overall CoE of 0.237 by 2014, suggesting a weaker excitatory effect at
that time. However, our temporal visualization of CoE indicates that
since 2005, the direction and strength of the evidence have steadily
converged on an excitatory relationship, suggesting that as more evi-
dence accumulated, the conclusion that salt reduction benefits cardi-
ovascular outcomes became more stable (Fig. 5).

Thus, while readers of these 14 systematic reviewsmight perceive
conflicting results, our automated approach reveals an emerging
consensus. Even though the bodyof evidencehas continued to grow in
multiple directions since 2005, the net effect has stabilized in favor of
salt reduction conferring cardiovascular benefits.

Searchqueries for evidence triangulationof both comparisons are
provided in Supplementary Note 5.

According to analyses on two cases, evidence demonstrates
strong consensus regarding the beneficial impact of salt reduction on
blood pressure lowering, reflected by high CoE. In contrast, salt
reduction’s protective effects against cardiovascular disease and all-
cause mortality remain subjects of ongoing debate in the literature,
manifesting as moderate CoE.

Discussion
This study illustrates the potential of using LLMs to automate the
extraction and triangulation of SDoH-related evidence across diverse
study designs. Our approach utilizes a two-step extraction method,
which first sequences exposure-outcome concept extraction followed
by relation extraction, exhibiting better performance over the one-
step method. This strategy essentially functions as a triple extractor,
capturing entities and the relations between them, similar to the
SemRep system that extracts Subject-PREDICATE-Object semantic
triples from biomedical text using a rule-based approach. The related
ASQ platform has provided a user-friendly way to query SemRep-
extracted triples along with associated evidence sentences, con-
tributing to a novel approach for evidence triangulation. However, the
extraction performance of SemRep is limited due to its reliance on a
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rule-based method developed two decades ago, despite ongoing
updates and extensions with relation classification approaches24,32,33.
Through data evaluations usingCoE and LoCwith a focused case study
on the impact of salt intake on blood pressure, we demonstrated that
LLMs can remarkably simplify the synthesis of medical evidence,
enhancing the efficiency of evidence-based decision-making. After
triangulating evidence from different study designs, the relationship
between salt intake levels and blood pressure tends to indicate an
excitatory effect direction. However, the LoC for this effect just
reaches ‘strong’, suggesting that there are still some contradictory
research findings. This result is consistent with the evidence status of
salt controversy discussed in recent years31,34,35.

This study alsodistinguishes our approach fromothers thatutilize
LLMs for meta-analysis. While decision-making should ideally be
grounded in causal relationships between interventions and out-
comes, predictions can be based on correlative relationships. Our
objective was not to automate meta-analysis, which focuses on evi-
dence derived from the same study design, such as RCTs. Recent
proof-of-concept studies have shown that LLMs like Claude 2, Bing AI,

and GPT-4 can improve the efficiency and accuracy of data extraction
for evidence syntheses36–38. However, these studies often involve lim-
ited datasets, either based on a single case37 or a small sample size of
RCTs36,38. Although key data elements necessary for evidence trian-
gulation, such as primary outcomes and effect estimates, can be
accurately extracted in over 80% of RCTs, the performance of LLMs
remains suboptimal with larger datasets. Additionally, other studies
have evaluated the sensitivity and specificity of LLMs like GPT-3.5
Turbo in tasks such as title and abstract screening. The findings sug-
gest that while these models offer promise, they are not yet sufficient
to replace manual screening entirely39. On the other hand, GPT-4
Turbo-assisted citation screening has shown potential as a reliable and
time-efficient alternative to systematic review processes40. With these
technological advances, Mayo Clinic has proposed an AI-empowered
integrated framework for living, interactive systematic reviews and
meta-analyses, enabling continuous, real-time evidence updates41,42.

In contrast, our focus is onutilizing LLMs to perform convergency
analysis among results obtained from different study designs, known
as triangulation analysis. The key difference between meta-analysis

Fig. 3 | Triangulation result for Case 1: the effect of salt on blood pressure. Evidence matrices integrating multiple study designs (RCTs, MRs, and OSs) and detailed
evidence triangulation algorithms assessing the effect of salt intake on blood pressure, including related studies published through February 2025.

Fig. 4 | Convergency of Evidence (CoE) for the cumulative body of related
studies assessing the effect of salt on blood pressure, shown by
publication year. The blue dashed line at 2018 indicates the cutoff year for
inclusion in the latest Cochrane Database of Systematic Reviews (CDSR). Greens

lines represent ‘excitatory’, yellow lines represent ‘no change’, and red lines
represent ‘inhibitory’. Solid lines with circle markers represent the cumulative
probability of relations, and dotted lines represent the cumulative number of
studies.

Article https://doi.org/10.1038/s41467-025-62783-x

Nature Communications |         (2025) 16:7355 6

www.nature.com/naturecommunications


and triangulation analysis lies in their focus: while meta-analysis
assesses consistency within a single study design, triangulation ana-
lysis examines the convergency of conclusions across diverse study
designs. Although there are no widely accepted quantitative methods
for assessing convergency, insights can be drawn from convergency
analysis, originated from neurobiological studies, primarily using a
vote-counting approach across different study designs43–45. Lastly, in
causal graphical models, the concept of a causal relationship is uni-
form across different types of variables.Whether the graph pertains to
biological or economic phenomena, the underlying principles of
causality remain the same46. This perspective also applies to the
method in this study, that evidence should be and could be triangu-
lated with CoE and LoC to conclude a causal relationship, whether in
biomedical, economic, and environment field. As a result of constantly
evolving research, the CoE ratings may change as more research
findings becomes available. This is particularly the case for exposure-
outcome pairings with low LoC due to contradictory results. Our
approach is to harmonize confusion and help consumers make
informed decisions about diet, exercise, and other activities that can
affect their long-term health, as well as help researchers shape future
clinical studies.

Moreover, we argue that the strength of triangulation lies in its
ability to address issues related to ranking and the exclusion of studies
based on perceived quality. Rather than being a method for assessing
the weight of evidence, triangulation is a strategy for integrating evi-
dence from diverse approaches. It is not merely about gathering all
available evidence from different sources, nor is it solely concerned
with evaluating heterogeneity or effectmeasuremodification. Instead,
triangulation involves a thoughtful and explicit consideration of the
various biases that can lead studies in different directions. In evidence
syntheses, inclusivity is prioritized because even clearly flawed studies
may introduce biases that are predictable in the direction of effect.
These biased studies can be contrasted with others that offer a more
consistent and unbiased estimate on the direction of effect47. In fact,
triangulation synthesizes the direction of effects, rather than the effect
size reported in individual studies. Also, it was suggested that obser-
vational studies and RCTs should not be combined in the same meta-
analysis48, and extra caution is needed when interpreting the results of
meta-analyses that combine effect values from both types of studies49.
In contrast, our approach combines structure instead of value, pro-
viding a solution that minimizes the bias introduced by integrating
results from different study designs.

In general, if individual study evidence does not properly control
for confounding variables, it can lead to an overestimation of effect
sizes. When these overestimated effect sizes are subsequently com-
bined in ameta-analysis, the effect size is further exaggerated. Existing
studies have suggested that when causal modeling is guided by causal
directed acyclic graphs, evidence from a study that has not properly
controlled for confounding variables should be excluded and not
included in a meta-analysis. The triangulation approach, which syn-
thesizes structure rather than data, can help avoid this type of bias50,51.

Limitations
This study faced several limitations, including difficulties in accurately
classifying study designs and interpreting associations due to data
inconsistencies. The extracted entities were not mapped to standard
biomedical vocabularies like SNOMED CT52 or UMLS53, leading to
potential misalignment and incorrect relation pairing, which could
affect the final LoC. Furthermore, not all relevant study designs were
included, limiting the comprehensiveness of the conclusions. The
reliance on expert annotations also introduced subjective bias,
potentially affecting the generalizability of the findings.While the two-
step extraction approach showed improved performance, it requires
further refinement to handle the complexity and variability of bio-
medical data effectively.

To maximize the utility of LLMs in evidence triangulation, future
work should focus on addressing these limitations through continuous
model fine-tuning and the development of more objective evaluation
methods. A critical challenge remains in harmonizing evidence,
including standardizing study populations and cause-and-effect enti-
ties across different study designs. The study aims to use LLMs to
extract and align these elements through concept similarity measures
like BERTScore, rather than relying on superficial string-based mat-
ches. Future studieswill also introducebiomedical ontologies to better
map the hierarchical structure of cause-and-effect concepts, leading to
a more standardized and comprehensive approach to evidence
triangulation.

Methods
Our procedure begins by collecting titles and abstracts from relevant
literature. We then apply a LLM to systematically process these texts
across various study designs, extracting key outcomes and methodo-
logical details. This leads to the aggregation of data into a coherent,
transparent dataset that is ready for triangulation analysis. The

Fig. 5 | Convergency of Evidence (CoE) for the cumulative body of related
studies assessing the effect of salt on cardiovascular diseases or mortal-
ity (Case 2), shown by publication year. For comparison with existing systematic
reviews, only data up to 2014 are shown here. Greens lines represent ‘excitatory’,

yellow lines represent ‘no change’, and red lines represent ‘inhibitory’. Solid lines
with circle markers represent the cumulative probability of relations, and dotted
lines represent the cumulative number of studies.

Article https://doi.org/10.1038/s41467-025-62783-x

Nature Communications |         (2025) 16:7355 7

www.nature.com/naturecommunications


workflow ends with a quantitative evidence triangulation algorithm to
discover the LoC behind a relationship between a SDoH factor and a
health outcome.

Data sources
Validation dataset #1. Regarding data sources, the study utilizes lit-
erature categorized under publication types marked as meta-analy-
sis, systematic reviews, observational studies, randomized controlled
trials, clinical trials and related types available on PubMed. TheMeSH
terms “cardiovascular diseases” and “Diet, Food, and Nutrition” are
utilized as search terms, with MeSH major topic as the search field.
The resulting search query is outlined below: “(cardiovascular dis-
eases[MeSH Major Topic]) AND (Diet Food,and Nutrition[MeSH Major
Topic])”. For studies employing mendelian randomization (not a
conventional publication type in PubMed), we additionally narrowed
down the search to include only publication titles and abstracts
containing the phrase “Mendelian randomization”. In total, 4268
articles were retrieved. This first dataset consists of 100 randomly
selected studies from the corpus, used to validate the results
extracted by LLM. The extracted results dataset and validation
dataset are provided (see Data Availability). Entities and relations are
manually annotated by 4 domain experts and clinicians (see
Acknowledgement for details).

Validation dataset #2. The dataset used for external validation con-
sists of 291 human-extracted relations between dietary factors and
coronary heart disease, derived from the Nurses’ Health Study54. It
includes a wide range of dietary exposures, such as specific nutrients
and food items, and their associations with cardiovascular outcomes.
This data was meticulously curated and visualized in a knowledge
graph, capturing both positive and negative associations, as well as
effect size (hazard ratio, risk ratio, odds ratio, etc.)which can be served
as a critical external foundation for testing the two-step extraction
approach. The extracted results dataset and validation dataset are
provided (see Data Availability).

LLM-based study results extraction
For the task of extracting precise and insightful results from health-
related documents, we employed medium-tier LLMs, which includes
deepseek-chat55, glm-4-airx56, qwen-plus57, and GPT-4-mini58. While
these models were not the top performers in all metrics, they were
selected as a compromise, balancing both extraction performance and
economic accessibility, such as cost per token. This balance makes
them suitable for large-scale extraction tasks where both accuracy and
cost-effectiveness are critical. The cost-effectiveness analysis can be
found in the Results section.

The specific extraction tasks for the model are designed as
following:
Methodological information:

• Identification of study design
The initial step involves using LLM to categorize the study design
present in medical abstracts. The designs considered include
RCT, MR and OS.

Ontological information:
• Primary result identification
Next, we ask LLM to identify the primary result from each
abstract. This involves recognizing the main findings that the
study reports, which is essential for summarizing the study’s
major contribution to the field.

• Intervention/Exposure and outcome extraction
Following the identification of the primary results, the model
extracts key entities including intervention or exposure and the
corresponding primary outcome. The model also identifies the

direction (increased or decreased) of intervention/exposure for
later relation alignment.

• Relation and statistical significance
First the model extracts the direction of the relation from the
intervention/exposure to the outcome. The model assesses whe-
ther the intervention/exposure increases, decreases or an effect
was not found. Then we ask LLM to extract statistical significance
of the identified relation, ensuring the ability to distinguishing
positive results from negative results.

• Population, Participant Number and Comparator Group
information
Adhering to the standard representation medical evidence, we
ask themodel to extract information on the population condition
under study, the number of participants, and details of the com-
parator group if applicable.

This prompt is to follow a logical progression from study-level
information (study design), to more specific study result extraction
(intervention/exposure, primary outcome, relation direction, statis-
tical significance), then contextual details (population, participant
number, comparator). Figure 6 shows a graphical illustration of the
overflow and logics of the designed prompt. For each abstract, LLM
first determines the study design. Subsequently, it locates the primary
result, extracts relevant details about the intervention/exposure and
outcome, and assesses the direction and statistical significance of the
relation. Information about the study population, the number of par-
ticipants, and comparator group details are also extracted, providing a
comprehensive overview of each study’s evidence.

To enhance the accuracy and robustness of entity and relation
extraction, we implemented and compared a two-step extraction
pipeline with a direct one-step extraction approach (Fig. 7). The one-
step extraction method simultaneously identifies and extracts both
entities (e.g., exposures and outcomes) and their relations directly
from the text. In contrast, the two-step extraction process separates
these tasks: the first step involves using NER prompt to identify and
extract entities from the text, such as specific dietary factors and
cardiovascular outcomes. In the second step, these extracted entities
are then used to identify and extract the relations among them using
RE prompt. This sequential approach allows for more precise entity
recognition before relation extraction, potentially reducing errors and
improving overall extraction accuracy. Full prompts and code imple-
mentations for both theone-step and two-step extractionmethods can
be found at the GitHub repository, providing a comprehensive guide
for replicating these processes.

Convergency of evidence
Originally developed for neurobiological studies, ResearchMap pro-
vides a graph-based representationof empirical evidence, enabling the
systematic quantification of “convergency” and “consistency” across
diverse study designs. It uses a Bayesian scoring method called the
Cumulative Evidence Index (CEI) to evaluate the strength of causal
relationships. By drawing from its scoring strategy, our work adapts
similar principles to develop the Convergency of Evidence (CoE) and
Level of Convergency (LoC) metrics in a public health setting43–45.

To systematically evaluate the direction of effect for exposure-
outcome associations derived from multiple lines of evidence across
various study designs, our proposed frameworkquantifies the greatest
likelihood of three possible relations, i.e., excitatory, no change, and
inhibitory, reported in the evidence.
1. Excitatory (ε)

Occurs when the outcome changes in the same direction as the
exposure or intervention. For instance, if an increased salt intake
increases blood pressure or a decreased salt intake decreases
blood pressure, we label the direction of effect as excitatory.
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2. No Change (N )
Refers to findings that indicate the exposure or intervention does
not lead to a statistically significant change in the outcome (e.g.,
salt intake has no measurable impact on blood pressure levels).

3. Inhibitory (J )
Occurs when the outcome changes in the opposite direction of
the exposure or intervention. For example, if an increased
salt intake decreases blood pressure, we label this effect as
inhibitory.

To reduce bias by study size, we enhanced our triangulation
algorithm to better differentiate weight of evidence by incorporating
the number of participants from RCT and OS. We intentionally
excluded participant counts from MR, as MR relies on genetic var-
iants rather than traditional enrollment metrics, making participant
numbers less directly applicable within this specific framework. This
framework incorporates participant contributions by applying a

participant weight to the relations counts and utilizes Laplace
smoothing (or named Lidstone smoothing) to address zero-
frequency problems.

We also excluded relations within the ‘significance’ field labeled as
‘not found’ to ensure that only ‘empirical evidence’ stated in study
results with statistical test information is included to the final evidence
triangulation measurement. Relations extracted from statement lack-
ing statistical significance cannot be so-called evidence, as they are
often hypothetical claims found in background or method section,
rather than actual findings.

Probability estimation for the direction of effect. Let P Eð Þ, P Nð Þ, and
P Jð Þ represent the probabilities of the observed excitatory, no change,
and inhibitory effects, respectively. These probabilities are computed
by aggregatingweighted contributions across six distinct study design
SDi,where i= 1, 2, . . . , 6
� �

to present convergency. Below is the
detailed process of the proposed algorithm.

Fig. 6 | A flowchart describing the overall logic of using LLM to extractmedical evidence in structured format.Gray boxes represent each part of the prompt in each
step. Circled numbers (1-9) represent the extracted fields by the model.
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Each combination SDi represents a specificpairingof studydesign
and exposure direction:

• SD1 : RCT – increasing level of intervention
• SD2 : MR – increasing level of exposure
• SD3 : OS – increasing level of exposure
• SD4 : RCT – decreasing level of intervention
• SD5 : MR – decreasing level exposure
• SD6 : OS- decreasing level exposure

For each SDi, the relation counts are adjusted by the number of
participants in each study as the weight PWiX

� �
and smoothed using

Laplace smoothing with a smoothing factor of α=0:1 to prevent zero-
probability relations.

Probability of an excitatory effect. First, define the adjusted countgCiX for each study design SDi and relation type X 2 fE,N ,J g as:

gCiX =
CiX ×PWiE +α, if CiX ×PWiE =0,
CiX ×PWiE otherwise

�
ð1Þ

Then the probability for P Eð Þ becomes

P Eð Þ= 1
6

X6
i = 1

gCiEgCiE + gCiN + gCiJ
ð2Þ

P Eð Þ= 1
6

X6
i = 1

CiE ×PWiE +α
CiE ×PWiE +α+CiN ×PWiN +α+CiJ ×PWiJ +α

ð3Þ

Where:
• CiE is the count of excitatory relations in study design SDi
• PWiE is the participant weight for the excitatory relation in SDi (1
for MR)

• α=0:1 is the Laplace smoothing factor, used to handle zero-
frequency occurrences

Probability of no change.

P Nð Þ= 1
6

X6
i= 1

CiN ×PWiN +α
CiE ×PWiE +α+CiN ×PWiN +α+CiJ ×PWiJ +α

ð4Þ

Probability of an inhibitory effect.

P Jð Þ= 1
6

X6
i = 1

CiJ ×PWiJ +α
CiE ×PWiE +α+CiN ×PWiN +α+CiJ × PWiJ +α

ð5Þ

Participant size adjustment. Tomitigate disproportionate weighting
from studies with extremely large populations, we restricted to the
5th–95th percentile range. This adjustment reduces bias introduced
by large-scale studies, such as PMID 2485423959, which surveyed
approximately 96 million participants from an entire province in
China. If weighted directly by such a large population, the prob-
ability of the corresponding relation could disproportionately
dominate the overall analysis, leading to skewed interpretations.
Limiting the participant weight between 5th-95th ensures that no
single study can disproportionately influence the calculated
probabilities.

The participant weight (PW) is defined as:

PWiX =
AdjNumPartiXP
YAdjNumPartiY

ð6Þ

• PWiX : Participant weight for outcome X in study design i
• AdjNumPartiX: Adjusted number of participants:

• For non-MR studies: Number of participants is restricted to the
5th-95th percentile range.

• For MR studies: Original number of participants is retained
(unchanged).

• The denominator sums over all outcomes Y Y 2 fIncrease,ð
NoChange, DecreasegÞ within the same study design.

To quantify the strength of convergence toward a specific direc-
tional relation, we introduce the Convergency of Evidence (CoE) and
Level ofConvergency (LoC). Thismetric assesses the dominanceof the
most probable relation relative to an uninformed baseline of 1

3 (the
probability of a relation before any study conducted (no prior
knowledge)).

CoE =
max P Eð Þ,P Nð Þ, P Jð Þð Þ � 1

3

1� 1
3

ð7Þ

The LoC value ranges from 0 (indicating no convergency toward
any relation) to 1 (indicating complete convergence on a single rela-
tion). The LoC is further categorized to reflect the strength of the
evidence:

• Weak Convergency: 0≤ LoC≤0:3
• Moderate Convergency: 0:3< LoC≤0:6
• Strong Convergency: 0:6<LoC≤ 1:0

Fig. 7 | An illustration of LLM prompts in one-step and two-step NER and RE
from study results.On the left is the one-step extraction approach, which extracts
both entities and relations simultaneously. On the right is the two-step extraction
approach, which first identifies entities then determines the relations.
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Explanation of the rationale for choosing 0.3 and 0.6 as the LoC
thresholds

1. Heuristic Partitioning
The numeric cutoffs at 0.3 and 0.6 serve as a practical, rule-of-
thumb way to divide the 0 to 1 scale into “weak,” “moderate,” and
“strong” convergence. By setting three tiers, researchers can
quickly gauge how close the evidence is to a consensus—whether
it’s only slightly better than random chance, moderately
conclusive, or approaching unanimity.

2. Adaptation from ResearchMap’s Cumulative Evidence Index
The concept of “strong” vs. “weak” evidence broadly parallels
frameworks introduced in the neurobiological research tool
ResearchMap, which uses a similar Bayesian measure of con-
vergence. Although ResearchMap does not dictate specific
numeric cutoffs, our thresholds reflect a similar logic—where 0 to
0.3 indicates minimal convergence and above 0.6 signals robust
alignment of results.

3. Flexibility for Domain-Specific Needs
These thresholds are not intended as absolute. Researchers
focused on highly conservative domains (e.g., drug safety) might
lower the threshold for “strong” to 0.5, while more exploratory
fields might place it at 0.8. Thus, the 0.3 and 0.6 cutoffs are pri-
marily a pragmatic starting point for identifying levels of con-
sensus inmost general settings, yet can be fine-tuned to alignwith
specific fields or study distributions.

Dominant directional relation. The relation with the highest prob-
ability is identified as the dominant directional relation:

direction=argmaxP Eð Þ, P Nð Þ,P Jð Þ ð8Þ
Note that we categorize each study by design type (MR, RCT,

OS) but do not apply design-specific weighting when computing
CoE/LoC, ensuring a transparent and standardized triangulation
process. This approach prioritizes identifying whether different
lines of evidence align or conflict rather than assessing their relative
strength, avoiding additional assumptions about study hierarchy.
While RCTs are often considered stronger than observational stu-
dies, our method treats all designs equally, balancing the inherent
biases of each study design.

Advantages of proposed method. To track which newly published
studies notably influence the CoE score, we also developed a specia-
lized module. Specifically, for each year in which the CoE shifts by
more than 0.1 or the predominant direction of effect changes, the
module automatically flags and outputs the largest studies within each
relation category (excitatory, inhibitory, or no change). This provides
researchers a quick overviewof the high-impact studies from that year,
allowing themtomoreeasily interpret and validatewhy theoverall CoE
has changed. Examples of this module’s output are provided in the
Supplementary Note 6.

Our approach brings together three key advantages—breadth,
continuity, and adaptability—that traditional meta-analyses or other
design-specific methods typically cannot provide:
1. Breadth of Evidence

Rather than relying solely on RCTs or a specific study design, the
CoE/LoC framework draws in findings from all relevant sources—
observational studies, mendelian randomization, or smaller-scale
trials. This inclusivity guards against overlooking pivotal data
(e.g., contradictory or null results) that might not fit stringent
meta-analysis inclusion criteria. By weaving multiple lines of
evidence into a unified assessment, the method produces a more
well-rounded understanding of the causal landscape.

2. Temporal Evolution
Meta-analyses and systematic reviews often act as snapshots,
valid only for the range of studies available at a given time. In
contrast, our dynamic pipeline updates its convergency score
whenever new studies appear, thereby capturing real-time shifts
in the evidence base. In the case study of the association between
salt intake and blood pressure, the gradual aggregation of
multiple designs has steadily reinforced an excitatory effect—
providing a granular, year-by-year progression that showcases
how and when consensus grows. This evolving picture lets
clinicians, guideline committees, and policymakers see trends
emerging, rather thanwaiting for a new staticmeta-analysis cycle.

3. Adaptability to Contradictory Findings
Traditional meta-analyses often reduce complexities to a single
pooled estimate and may downweigh or exclude heteroge-
neous results, especially if the analytic model (e.g., fixed-effect
or random-effect) cannot reconcile significant between-study
discrepancies. Our scoring algorithm, by contrast, intrinsically
accommodates and highlights discrepancies among diverse
study designs, helping detect signals that warrant closer
scrutiny. For example, if observational data suggest a relation-
ship is weaker or nonexistent while mendelian randomization
findings strongly support it, the CoE/LoE framework visibly
reflects that tension—giving clinicians actionable insight into
ongoing controversies.

Overall, this dynamic, all-inclusive methodology does more
than simply tally results: it follows how evidence matures, intensi-
fies, or—if contradictory studies accumulate—weakens over time.
For decision-makers in evidence-based medicine, having this evol-
ving synthesis can be highly practical, providing a quick overview of
the status of body of evidence before conducting a detailed meta-
analysis or systematic review. It points to where the field is conver-
ging, how fast lines of research might challenge prevailing wisdom.
Consequently, clinicians and policymakers can respond more
quickly to emerging consensus, or pivot sooner if strong counter-
evidence surfaces.

Statistics & Reproducibility
No traditional analyses are used in this study, thus no statistical
method was used to predetermine sample size. The experiments were
not randomized. The investigators were not blinded to allocation
during experiments and outcome assessment. However, we proposed
a new analysis algorithm that involves data extraction from unstruc-
tured data for: study exposure, outcome, direction of relation, statis-
tical significance, population, study design.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source Data of tables are provided as an attachment with this
paper. And other related data including example input data
for information extraction, extracted output data by different
LLMs, and organized dataset for the two cases of evidence tri-
angulation can be found in the Figshare repository, https://doi.
org/10.6084/m9.figshare.28514210. Source data are provided with
this paper.

Code availability
The codes generated during and analyzed during the current study are
available in the GitHub repository, https://github.com/xuanyshi/llm-
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evidence-triangulation. Cite this article if any data or code re-used:
https://doi.org/10.5281/zenodo.15781463.
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