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GraphVelo allows for accurate inference of
multimodal velocities and molecular
mechanisms for single cells

Yuhao Chen 1,2,7, Yan Zhang 2,7, Jiaqi Gan 3,7, Ke Ni2, Ming Chen 1,4 ,
Ivet Bahar 5 & Jianhua Xing 2,3,6

RNA velocities and generalizations emerge as powerful approaches for
extracting time-resolved information from high-throughput snapshot single-
cell data. Yet, several inherent limitations restrict applying the approaches to
genes not suitable for RNA velocity inference due to complex transcriptional
dynamics, low expression, or lacking splicing dynamics, or data of non-
transcriptomic modality. Here, we present GraphVelo, a graph-basedmachine
learning procedure that uses as input the RNA velocities inferred from existing
methods and infers velocity vectors lying in the tangent space of the low-
dimensional manifold formed by the single cell data. GraphVelo preserves
vector magnitude and direction information during transformations across
different data representations. Tests on synthetic and experimental single-cell
data, including viral-host interactome, multi-omics, and spatial genomics
datasets demonstrate that GraphVelo, together with downstream generalized
dynamo analyses, extends RNA velocities to multi-modal data and reveals
quantitative nonlinear regulation relations between genes, virus, and host
cells, and different layers of gene regulation.

Cells need to constantly detect and adapt to changes in extracellular
and intracellular environments. Regulation of their gene transcription
is a common mechanism of response. Multiple factors affect the
transcriptional activity of eukaryotic genes, including cis and trans
regulatory elements and chromatin structure. High throughput single-
cell sequencing data provide the landscape of cell genotype. These
data lack, however, information on how the cell state changes over
time. Continuous efforts have beenmade to extract information about
gene regulation and developmethods for connecting the cell states to
temporal sequences of events captured by single-cell snapshot data.
One group of methods that has received extensive attention is based
onRNAvelocity1 for predicting the changes inRNAexpression states in

the cell. The original RNA velocity method leverages the ratio between
nascent and mature transcripts to estimate the rate of change in gene
expression. This seminal study has inspired numerous methods for
improved RNA velocity estimation based on information from
splicing2–6, metabolic labeling7,8, lineage tracing9, and transcriptional
factor binding10, etc.

The RNA velocity framework has, however, its inherent limita-
tions. First, none of the RNA velocity estimation methods could be
applied to any single cell transcriptomic data without restrictions. For
example, the splicing-based method is not applicable to prokaryotes
or viruses, or organisms without introns. Erroneous inferences of RNA
velocities have also been noticed for genes having complex splicing
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dynamics11. Furthermore, it is difficult to estimate the RNA velocities of
genes with low expression, which excludes most transcription factors.
Second, multi-omics sequencing technologies provide multifaceted
information on cellular states alongside the transcriptome modality,
and there exist limited systematic methods to extend such velocity
estimations to other modalities12,13.

The single-cell transcriptome state is usually defined by the
instantaneous distribution of RNA levels, represented by a multi-
dimensional vector of RNA levels for all (measurable) genes. The usual
practice is to map such single-cell data onto a reduced space, e.g.,
transform from a principal component (PC) space to a UMAP repre-
sentation to facilitate the visualization of the time-evolution of cell
state, with each cell state being represented by a point in that space.
Numerous dimension reduction and manifold learning algorithms
have been developed for representation transformation. In compar-
ison, transforming a velocity vector between representations is a
nontrivial task not rigorously addressed in the single-cell field. Even
worse, a visually correct vector field does not necessarily imply accu-
rate high-dimensional velocity estimation14. LaManno et al. proposed a
cosine kernel method to address this challenge, which has been
adopted since then in most subsequent studies1. Li et al. mathemati-
cally proved that the cosine kernel asymptotically gives the correct
direction of a velocity vector in the large sampling limit, but the
magnitude information is completely lost due to a normalization
procedure15. This loss of information casts concerns when such
quantitative information is needed.

In this study, we tackle the above challenges through a graph-
theoretical representation of RNA velocities, called GraphVelo, with
dynamical systems underpinnings. GraphVelo takes an ansatz that the
measured single-cell expression profiles and inferred RNA velocities
collectively reflect a dynamical process and are connected through a
set of dynamical equations. It exploits such additional constraints that
couple a high dimensional velocity field and a corresponding single-
cell state manifold, and enables the generalization of the approach in
the context of multi-modal single-cell data. While the combined
expression and velocity information has been widely used to infer cell
state transition trajectories2,16, GraphVelo presents the advantage of
enabling downstream analyses such as that performed by dynamo7 to
extract quantitative information on causal gene-gene relations that
dictate the cell state transitions. Benchmarking of the proposed graph
framework against simulated and experimental single-cell data lends
support to its broad utility.

Results
GraphVelo infers manifold-consistent single-cell velocity vec-
tors through tangent space projection and transforms between
representations through local linear embedding
Consider that the internal state of a cell can be specified by an N-
dimensional state vector x, with N ≫ 1 generally. Assume that the
temporal evolution of the cell state follows a continuous and smooth
curve x(t) (see Methods for more general mathematical formulation).
The instant velocity vector v(x, t) = dx(t)/dt is always tangent to the
curve ofx(t) (as a function of t) atx. One can generalize to the situation
that the trajectories of a swarmof cells form aM-dimensionalmanifold
MðxÞ embedded in theN-dimensional state spacewithM≪N typically,
as revealed by high-throughput single cell omics data. Then under the
ansatz that a velocity vector v(x, t) dictates the evolution of a state
vector x(t), vmust lie in the tangent space ofMðxÞ, denoted as TpM.
In practice, the RNA velocity vectors inferred from existing methods
do not automatically satisfy this tangent space requirement (but see4).

Taking various inferred single-cell RNA velocity vectors, e.g.,
splicing-based, metabolic labeling-based, or lineage tracing-based, as
input, GraphVelo takes advantage of the nature of the low-dimensional
cell state manifold to: (1) refine the estimated RNA velocity to satisfy
the tangent space requirement; (2) infer the velocities of

non-transcriptomic modalities using RNA velocities. GraphVelo thus
serves as a plugin that can be seamlessly integrated into existing RNA
velocity analysis pipelines, and help process single-cell data for
downstream cellular dynamics analyses using methods such as
dynamo (Fig. 1a).

Practically, GraphVelo approximates the tangent space at a cell
state x by a k-nearest neighbor (kNN) graph following the local linear
embedding algorithm17, and uses the more reliable data manifoldM to
refine the velocity vectors by imposing the constraint that the
N-dimensional velocity vector v should lie in the tangent space
(Fig. 1b, c). Consider a given point xi on amanifold corresponding to the
expression state i of the single cell. Its infinitesimal neighborhood forms
an Euclidean space that approximates the tangent space TpM. With a
sufficient sampling of the neighboring cell states j in the state space, the
incremental displacement vectors between cell state i and its neigh-
boring cell states, δij =xj � xi, form a set of complete albeit possibly
redundant and nonorthogonal/non-normalized basis vectors of the
Euclidean space in the local region. Then the projection of themeasured
velocity vector onto TpM can be expressed as a linear combination (see
also Supplementary Notes 1.1),

vkðxiÞ=
X
j2N i

ϕijδij, ð1Þ

where N i is the neighborhood of cell state i, defined by its k nearest
neighbors in the feature space determined by sequencing profiles.
Direct application of Eq. 1 to determine the coefficients ϕij is numeri-
cally unstable in real data (see Supplementary Notes 1.2 for detailed
discussion). Instead, we performed the projection by optimizing the
following tangent space projection (TSP) loss function (Fig. 1c),

LðϕiÞ=a � kvi � vkik2 � b � cosðϕi,ϕ
corr
i Þ+ λkϕik2 ð2Þ

where k � k refers to vectormodulus.ϕcorr
i is a heuristic “cosine kernel”

widely used in theRNAvelocity analyses for projecting velocity vectors
onto a reduced space, the elements of which are ϕij withj 2 N i

� �
(see

also Supplementary Notes 1.3); the second term cos �, �ð Þ denotes the
cosine similarity. The first term in the loss function learns the correct
velocitymagnitudes, and the second term retains the reliable direction
information based on previous mathematical analyses showing that
ϕcorr

i asymptotically gives correct direction of the velocity vector15.
The L2 regularization is used to bound parameters ϕi. Hyperpara-
meters a, b and λ are for retaining the projection strength, direction,
and for regularization, respectively.

With local linear embedding, it is straightforward to transform
velocity between different representations. Assuming a mapping
function f exists connecting manifoldM and @ such that for cell iwith
state vector xi in M, the coordinate of the same cell in @ is given as
yi = f xi

� �
. Since a given local patch of a continuous manifold is

approximated by an Euclidean space, a locally linear transformation
connects the patch in the two representations. Consequently, for a
vector described by Eq. 1 in M, the velocity vector in @ is,

vkðyiÞ=
X
j2N i

ϕijδ
0
ij ð3Þ

where δ0
ij = yj � yi. That is, one only needs to change the basis vectors.

Therefore, Eqs. 1–3 form the mathematical and computational
foundation of GraphVelo. With Eq. 3 one can extend velocity inference
to datasets that velocity inference is not traditionally applicable such
as host-virus interactome and multi-omics datasets based on the
Whitney embedding theorem18. Details of the mathematical founda-
tion were given in Methods. With velocity vectors refined with
GraphVelo, one can readily perform downstream analyses, as
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exemplified in Fig.1d–f, which will be further elaborated below in the
context of specific applications.

Benchmark studies demonstrate the effectiveness of GraphVelo
across simulation datasets with diverse topology
To demonstrate the effectiveness of the geometry-constrained projec-
tion, we first benchmarked our method on a 3D bifurcation system

constrained on a 2D manifold (Methods). We added random compo-
nents vertical to the tangent plane to mimic the noise. The resulting
velocity vectors inferred byGraphVelo throughminimizing the TSP loss
were consistent with the ground truth vectors (Fig. 2a). Both GraphVelo
and cosine kernel successfully removed the normal components
(Fig. 2b i) and maintained the directional information (Fig. 2b ii), but
only GraphVelo kept the velocity magnitude information (Fig. 2b iii).
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Next, we performed multifaceted evaluations of the ability of
GraphVelo to robustly recover the transcriptional dynamics across a
range of simulated datasets with different underlining phenotypic
structures. We used dyngen19, a multi-modal scRNA-seq simulation
engine, to generate gene-wise dynamics defined by gold-standard
transcriptional regulatory networks (Methods). We generated simu-
lated scRNA-seq data for networks with a variety of underlying linear,
cyclic, and bifurcating topological structures, and recovered the cor-
responding vector field using GraphVelo-corrected velocity vectors
(Fig. 2c–e). To comprehensively assess the outcome, we used three
diversemetrics, cosine similarity, root-mean-square error (RMSE), and
accuracy, which evaluate the correctness of velocity direction, mag-
nitude, and sign, respectively. We presented (Fig. 2c–e) the compara-
tive results obtained with the cosine kernel and with GraphVelo (TSP
with (i.e., Eq. 2 with b ≠ 0) and without (Eq. 2 with b = 0) the cosine
regularization term). By minimizing TSP loss, GraphVelo preserved
both the direction and magnitude of the vector field (Fig. 2f–h). With
an increase of noise level by addingGaussian noise to the ground truth
vectors, GraphVelo refined the distorted velocity and outperformed
the cosine kernel projection consistently (Supplementary Fig. 1a-c).

Then, we tested whether manifold constraints could preserve the
speed of the cell progression across different representations.
GraphVelo was able to scale velocity vectors between the original
space and the PCA space, showing a high correlation with the ground
truth, even as noise levels increased, whereas the cosine kernel failed
(Supplementary Fig. 1d). The results on UMAP showed less agreement,
which is not surprising. UMAP is a convenient representation for
visualizing single cell data but is not designed for representing quan-
titative cell state transition dynamics. That is, UMAP is not a con-
tinuous transformation from the original gene space and cannot
preserve local distances after projection.

To further explore whether GraphVelo could correct the RNA
velocity estimated by the splicing kinetics, we took the velocity infer-
red using different packages (scVelo2, dynamo7 and VeloVI5) as input.
The output from GraphVelo agreed significantly better with the
ground truth compared to the raw input (Supplementary Fig. 1e),
highlighting the significant improvement achieved by GraphVelo in
evaluating both the direction and magnitude of the velocity vector
fields across all datasets.

GraphVelo achieved consistent improvements across multiple
real-world datasets
Although GraphVelo is designed as a velocity-correction and predic-
tion model complementing existing velocity estimation tools, we
benchmarked the performance of scVelo-based GraphVelo outputs on
five independent datasets (FUCCI20, pancreatic endocrinogenesis21,
dentate gyrus1, intestinal organoid22 and hematopoiesis7) against five
RNA velocity estimation methods (scVelo2, VeloVI5, UniTVelo23,
DeepVelo24, and CellDancer3) (Supplementary Fig. 2–4). GraphVelo

achieved noticeably improved cross-boundary correctness (CBC)
score25 against input velocity and other advanced methods (see
Methods for calculation details). We evaluated velocity consistency2

across two datasets whose trajectories were estimated using different
tools (Supplementary Fig. 4). While GraphVelo shows slightly lower
overall vector smoothness scores compared to others, we observed
that these models tend to produce overly smooth and homogenized
velocity fields, which may obscure biologically meaningful hetero-
geneity. In contrast, GraphVelo preserves fine-grained local transitions
and reveals subtle divergence in the vector field, particularly around
fate bifurcations in endocrinogenesis data.

We examined the cell cycle datasets annotated by the dynamo
package, which features a relatively simple geometry, to quantitatively
evaluate our method. First, we focused on the CBC score between cell
cycle states. The velocity vectors processed by TSP showed greater
consistency with the ground truth compared to the unprocessed
inputs (Supplementary Fig. 5a). To demonstrate the effectiveness of
GraphVelo in scaling velocities based on the data manifold, we used
the L2 norm of velocity vectors to quantify the cell cycle speed. This
analysis revealed a peak in velocity within the M and G1 phases, which
was also reflected in the distribution of total UMI counts (Supple-
mentary Fig. 5b). We further validated these findings using the cycling
A549 cell line sequenced by sci-fate26 (Supplementary Fig. 5c) and
through the temporal variation of stratified cell cycle speed based on
velocities inferred from metabolic-labeling data (Supplementary
Fig. 5d). Leveraging the quantitative velocity vectors generated by
GraphVelo, we classified genes by both the phase and peakmagnitude
of their velocities (Supplementary Fig. 5e). Analysis of phase-
magnitude relationships uncovered the sequential activation cascade
of marker genes throughout the cell cycle.

GraphVelo infers quantitative genome-wideRNAvelocity froma
subset of genes with manifold-consistent RNA turnover kinetics
Most RNA velocitymethods are based on biophysicalmodels ofmRNA
turnover dynamics with specific assumptions that may break down in
certain cases11. These methods typically provide velocities of only a
subset of (~500or less) genes, termed velocity genes in the subsequent
discussions, out of a larger list of (~2-4 k) highly variable genes in a
dataset, and some of the velocities are questionable. For example, the
splicing-based RNA velocity may have an erroneous sign for processes
under active regulation onmRNAdegradation or promotors switching
between states with different transcription efficiency (Fig. 3a, Sup-
plementary Fig. 6).

GraphVelo uses the velocities of high-confidence genes obtained
from any method as input to infer velocities of other genes. One can
use several existing approaches to evaluate the confidence scores of
inferred RNA velocity values of genes7. Alternatively, we identified a
subset of Manifold-consistent Kinetics (MacK) Genes based on their
agreement with prior knowledge or additional information acquired

Fig. 1 | Refining RNA velocity by tangent space projection and transforming
between representations using GraphVelo. a Workflow of RNA velocity-based
analyses incoporating GraphVelo. Note GraphVelo takes any form of RNA velocity
(i.e., not just splicing-basedvelocity) as input, and the kNNneighborhood isdefined
in the full state space (e.g., by both scRNAseq and scATACseq in multi-omics data).
b Schematic of tangent space projection and velocity transformation between
homeomophicmanifolds. Left: RNAvelocity vectors are projectedonto the tangent
space defined by the discretized local manifold of neighborhood cell samples.
Right: GraphVelo allows for transformation of velocity vectors from a manifold
embeded in a higher dimensional space ðMÞ to that in a lower-dimensional space
ð@Þ, and vice versa. c The process of minimizing the loss function of tangent space
projection. Noisy velocity vectors (left) generated by adding random components
orthogonal to those sampled from an analytical 2D manifold were projected back
onto the 2D manifold, resulting in smooth velocity vectors that lie in the tangent

space (right). d GraphVelo allows whole genome velocity inference based on the
robustly estimated MacK genes (see also Fig. 3). Velocities of genes undergoing
variable kinetic rates, such as rapid degradation or transcription burst, are difficult
to be correctly inferred by other methods, but can be inferred robustly with
GraphVelo. e Virus infection dynamics and underlying host-virus interaction
mechanisms uncoveredbyGraphVelo (see also Fig. 4). Upper: pathways involved in
host-virus interactions were identified using GraphVelo. Lower: GraphVelo pre-
dicted reversed trajectory of viral infection in response to in silico perturbations of
viral factors. fGraphVelo provides a consistent view of epigenetic and transcription
dynamics (see also Fig. 5). Upper: GraphVelo analyses onmulti-omics data revealed
that most cell-cycle dependent genes showed decoupling between transcription
dynamics and chromatin accessibility change dynamics. Lower: Effective dose-
response curves reconstructed from multi-omics data revealed pioneer transcrip-
tion factors increased chromatin accessibility then transcription of targe genes.
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from other methods such as lineage tracing (Fig. 3b), We first applied
GraphVelo to a mouse erythroid maturation dataset27. This study
provided a transcriptional landscape of the erythroid lineagewithwell-
documented differentiation trajectory during mouse gastrulation.
Previous analyses have shown that the dataset contains genes with
multiple rate kinetics, leading to erroneous prediction of the cell state
transition direction27,28. We selected the top 200 out of 450 velocity
genes as MacK genes, representing those with robustly estimated
velocities (seeMethods for details). Theprojected vectorfield inUMAP

showed consistency with prior knowledge in developmental biology
(Fig. 3c). We then used the corrected RNA velocities for dynamo
velocity field analyses. The vector field-based pseudotime accurately
predicted the lineage with scRNA-seq data of temporal mouse
embryos (Fig. 3d).

Previous studies identified multiple rate kinetics (MURK) genes
showing transcription bursts in the middle of erythroid
differentiation28. For example, two MURK genes (Smim1 and Hba-x)
showed complex patterns of phaseportrait (Fig. 3f). Consequently, the
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RNA velocity of Simi1 inferred with scVelo was negative along a major
part of the developmental axis (Fig. 3g i), contradicting the trend of
increasing Simi1mRNA levels (Fig. 3g iii). For Hba-x, scVelo even failed
to infer its RNA velocity. On the other hand, GraphVelo inferred velo-
cities and predicted correct kinetic patterns of these genes (Fig. 3g ii).
Similar performances have been observed in other MURK genes
(Supplementary Fig. 7a). To examine the overall prediction of cell state
transitions from transcription burst genes, we projected the MURK
genes velocity inferred from GraphVelo and scVelo to the predefined
UMAP. The velocities from GraphVelo but not scVelo correctly cap-
tured the directional flow of differentiation using only MURK genes
(Supplementary Fig. 7b).We further recapitulated gene succession and
oscillation magnitudes along the erythroid trajectory and evaluated
the phase-magnitude relationships of all highly variable genes (Sup-
plementary Fig. 8a). Compared to non-MURK genes, MURK genes
exhibited larger average velocity magnitudes and were predominantly
enriched in the late stages of lineage progression. Analysis of genes
with larger peak velocity amplitudes identified Fth1, Car2, and Hbb-bs
as candidates with altered kinetic parameters. These dynamics pat-
terns were evident in their phase portraits and gene expression trends
(Supplementary Fig. 8b, c), consistent with previous reports that Car2
transcription in erythroid cells is regulated by both the promoter
activity and long-range enhancer interactions29—such complex reg-
ulations lead to its transcription dynamics not well-described by the
simple transcription model used in the original splicing -based RNA
velocity inference.

Next, we evaluated the quantitative performance of GraphVelo
in estimating cell-wise transition speed. Specifically, we estimated
the speed of cell state transition using the norm of velocity vector in
high-dimensional space and identified the transcriptional surge
stage (Supplementary Fig. 7c). We hypothesized that the MURK
genes, which exhibited a sudden increase in transcription rate dur-
ing this stage, were responsible for the sharp acceleration in cell
state transition speed. Using dynamo, we estimated the acceleration
derived from the GraphVelo vector field and found that the accel-
eration value, as the derivative of the velocity vector, demonstrated
its potential as a predictor for transcription burst genes (Supple-
mentary Fig. 7d).

With the velocity estimation extended to the whole gene space,
we were able to perform comprehensive mechanistic analyses on the
entire genome spectrum. First, we calculated the MacK score for each
gene using the corrected RNA velocities. We hypothesized that a gene
with a higher MacK score indicated a better agreement between its
RNA velocity vector and the developmental axis, suggesting that the
gene served as a potential lineage-driver gene. We ranked genes based
on their scores and performed GO biological process enrichment
analyses for the top genes. Indeed, the enriched processes were
associated with erythropoiesis, including the heme biosynthetic pro-
cess and interleukin-12-mediated signaling pathway30 (Fig. 3e).

Next, we applied dynamo to perform differential geometry ana-
lyses of the vector field and mechanistically dissected the activation
cascade of erythroid marker gene Klf1 (Supplementary Fig. 9a, b).
Jacobian analyses based on GraphVelo vector field revealed sequential

activation of driver transcription factors (TFs) Gata2, Gata1, and Klf1
during erythroid lineage differentiation, with Gata1 subsequently
repressing the expression of Gata2 (Fig. 3h, Supplementary Fig. 9c)7.
To further demonstrate the crucial role of transcriptional factor Gata1
during erythropoiesis, we performed in silico genetic perturbation
across all cells. Results showed that both inhibiting Gata1 and upre-
gulating the Gata1 repressor Spi1 lead to a reversal of normal devel-
opmental flow (Fig. 3i, Supplementary Fig. 9d). The above analyses
collectively suggest that activation of Gata1 in the blood progenitors
biased its differentiation to erythropoiesis, agreeingwith experimental
reports28.

To further evaluate GraphVelo, we tested the method on
another dataset of human bone marrow development31. This devel-
opmental process has complex progressions from hematopoietic
stem cells (HSCs) to three distinct branches: erythroid, monocyte,
and common lymphoid progenitor (CLP). Again, we used the top 100
out of 454 velocity genes asMacK genes to predict the RNA velocities
of 2000 highly variable genes. The GraphVelo velocity field accu-
rately recovered the fate of cells on the sophisticated transcriptional
landscape in contrast to scVelo (Fig. 3j, k, Supplementary Fig. 10a). By
combining the likelihood estimated by scVelo with the MacK score,
we identified rapid degradation and transcription burst genes whose
dynamics deviated from the RNA velocity assumptions (Supple-
mentary Fig. 10b, c). ANGPT1 and RBPMS are two examples which
were overall highly expressed in the progenitors and decreased
quickly along the trajectories (Fig. 3l), reminiscent of what was
shown in Fig. 3a. These genes misled RNA velocity inference with
scVelo assuming a constant degradation rate constant. GraphVelo
revealed a cell context-specific transcription rate α =u+ du

dt and
degradation constant γ = ðu� ds

dtÞ=s, thus a degradation wave along
the differentiation path (Fig. 3l, Supplementary Fig. 10d), consistent
with simulation result and reports on regulation of ANGPT1mRNA by
microRNAs such as miRNA-153-3p32 (Supplementary Fig. 6d).

It is straightforward to apply Graphvelo to spatial transcriptomics
datasets that permit RNA velocity inference. Note that the transcrip-
tional dynamics of a gene can be affected by both the intracellular
expression state and extracellular environmental factors. A data
manifold containing additional spatial information allows distinction
of cell states with similar expression profiles but distinct extracellular
environments. Such a refined manifold leads to more accurate infer-
ence of the RNA velocities, which are typically performed over aver-
aging the neighborhood of a cell state1 (see Methods) and is also used
in GraphVelo for tangent space projection. We applied Graphvelo to
the mouse coronal hemibrain dataset33 processed with a bin size 60,
which includes spliced and unspliced transcript information at spatial
context (Supplementary Fig. 11a). GraphVelo inferred coherent velo-
city fields across brain regions, with streamlines on UMAP reflecting
anatomically structured transitions that align with the spatial annota-
tion (Supplementary Fig. 11b). Compared to the uncorrected RNA
velocities using the dynamo build-in module, GraphVelo captured
sharper transcription speed patterns, particularly in the dentate gyrus
(DG), a neurogenic region where cell proliferation and neuronal dif-
ferentiation persist into adulthood34 (Supplementary Fig. 11c, d).

Fig. 2 | Testing GraphVelo on simulated datasets. a Velocity vectors of an ana-
lytical three variables bifurcating vector field constrained to a spherical surface.
The data points were colored by simulation time. b Violinplots of: (i) normal
component of velocity vectors, (ii) cosine similarity and (iii) rootmean square error
(RMSE) between ground truth and velocity vectors projected by GraphVelo and
cosine kernel, respectively. The number of simulated cells is 2000 for statistical
test. c–e Simulation of scRNA-seq data using dyngen under linear, cycling, and
bifurcating differentiation models (left), and velocity fields projected on multi-
dimensional scaling (MDS) coodinates (right) using GraphVelo-corrected velo-
cities, respectively. Each simulation consists of 1000 cell states and 100 genes. The
cells in different states were colored by their simulation time along trajectory.

f–h Comparisons of cosine similarity, and accuracy between the ground truth
velocity vectors and dyngen simulated velocities after projection using GraphVelo
TSP loss without cosine regularization, GraphVelo TSP loss with cosine regular-
ization, cosine kernel, and random predictor, respectively. The number of dyngen-
simulated cells is 1000 for statistical test. In b and f–h, *** indicates Welch’s inde-
pendent two-sided t-test at p <0.05. Violinplot in panel b shows the distribution of
data points after grouping by projectionmethods. Boxplots in f–h indicatemedian
(middle line), first and third quartiles (box), and the upper whisker extends from
the edges to the largest value no further than 1.5 × IQR (interquartile range) from
the quartiles, and the lower whisker extends from the edge to the smallest value at
most 1.5 × IQR of the edge. Source data are provided as a Source Data file.
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Spatial mapping of representative genes revealed that GraphVelo
velocities were more spatially confined and aligned with known
expression domains, whereas the uncorrected velocities were noisier
and less localized (Supplementary Fig. 11e). These results highlight the
ability of GraphVelo to generate interpretable, spatially structured
transcription dynamics in spatial transcriptomic data when splicing
information is available.

GraphVelo reconstructs host–pathogen transcriptome dynam-
ics from infection trajectory
The continuous battle between human immune surveillance and viral
immune evasion takes place in the host cell system after viral entry.
scRNA-seq data provide a massive and parallel way of assessing the
time evolution of both host and viral transcripts, unraveling the deli-
cate inherent dynamics of a virus-host system35,36. For splicing-based
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RNA velocity methods, genes lacking sufficient unspliced transcript
counts are typically filtered out—which is inherently the case for viral
genes due to their absence of introns. However, several studies37–39

have applied tools such as scVelo to host-virus systems by focusing
exclusively on host velocity genes that accurately reflect the lineage
dynamics, rather than attempting to derive velocities directly from
viral transcripts. GraphVelo enables inference of the velocities of virus
RNA abundance based on the kinetics of host transcripts velocities, as
illustrated next.

We analyzed a human cytomegalovirus (HCMV) viral infection
dataset to learn viral transcriptomic kinetics in monocyte-derived
dendritic cells (moDCs)39. The result from GraphVelo unraveled how
viral infection progressed along the transcriptional space (Fig. 4a). The
velocity vectors pointed to directions consistent with an increasing
trend of the percentage of viral RNAs in individual cells, which inher-
ently served as an indicator of the infection time course40. Compared
to the trend obtained with the raw RNA velocities from scVelo, the
vector field-based pseudotime calculated using GraphVelo-corrected
RNA velocities consistently showed higher correlation with the
(pseudo)temporal progression of viral infection as reflected by viral
RNA percentage (Fig. 4b).

Furthermore, the examination of individual genes revealed that
the RNA velocities consistently predicted the trend of the mRNA
expression level change with increasing virus load (Fig. 4c, Supple-
mentary Fig. 12a, b).Most viral genes startedwith a fast-increasephase,
and the expressions of some genes (e.g.,UL22A) gradually saturated at
high virus load, together with the corresponding RNA velocities
approaching zero. One exception is UL122, whose expression profile
increased first then decreased to a steady state level lower than the
peak value. This overshooting is characteristic of a negative feedback
network structure41. Indeed, a recent study reported that UL122 nega-
tively regulates its ownpromotor42. Furthermore, comparison ofMacK
scores across GraphVelo, the CellRank pseudotime kernel, and ran-
domized prediction showed that GraphVelo-computed viral RNA
velocities aligned best with the transcriptome gradient of viral load
(Fig. 4d). Note that the MacK score also served as a reliable predictor
for dynamics-driving factors, specifically viral genes in this case (Sup-
plementary Fig. 12d).

We further quantified the velocity norm of all viral factors as
infection speed, and observed that the transcription of viral factors
was significantly restricted initially, then gradually increased along the
trajectory (Supplementary Fig. 12e). Interestingly, most of the genes
that exhibited positive correlation with the infection speed were
related to viral DNA synthesis, while those negatively correlated to the

infection speed were engaged in host viral defense response43(Fig. 4e,
Supplementary Fig. 12f).

GraphVelo identifies host genomic response modules and pre-
dicts host-virus gene interactions
With GraphVelo-inferred RNA velocities, we probed the time evolution
of lytic infection and the complex interplay between host and viral
functional genomes. By fitting the GraphVelo velocity trends along the
viral load axis, we identified genes with similar kinetic patterns
(Fig. 4c). Using the smoothened velocity trends to calculate the dis-
tances, we clustered the genes into seven major modules and visua-
lized them on the UMAP space (Fig. 4f). Not surprisingly, viral genes
were concentrated in several enclosed regions, indicating that they
formed distinct functional genomic modules during the lytic cycle40.
The genes showed two major dynamical features: acceleration and
deceleration along the viral load axis (Fig. 4g).

To systematically investigate whether the dichotomy between
host kinetics genes and viral genes share similar dynamics, we per-
formed gene functional enrichment analyses of host genes residing
close to the viral gene clusters. Genes located in the deceleration part
were associated with repressing viral genome replication, which
includes negative regulation of viral life cycle and known restriction
factors in antiviral responses activated in DCs such as the induction of
cytokine and chemokine responses as well as interactions with
neutrophils44,45. In parallel, the toll-like receptor signaling pathway,
required for antiviral defense of the host, was arrested46. Neutrophil
related processes, which typically cooperate closely with DCs to
modulate adaptive immune responses47, were suppressed. Therefore,
the deceleration part also showed how critical set of host factors were
silenced by viral entry to achieve immune evasion.

The acceleration groups, on the other hand, demonstrated how
viruses hijacked the host cell endogenous cellular programs for
virus replication. Notably, the pathways related to viral genome
replication were triggered, promoting DNA replication and tran-
scription, such as negative regulation of G1/S transition of mitotic
cell cycle48, cellular response to DNA damage stimulus49 and reg-
ulation of transcription from RNA polymerase II promoter50. Cells
showed a shift towards a transcriptional signature resembling the G1
phase (Supplementary Fig. 12g), agreeing with previous report on
HCMV infection51. Along the infection process, antiviral interferon
(IFN)-γ response of moDC cells was first activated then suppressed.
These results highlighted the organized and antagonistic strategies
adopted by both host cells and viruses during their tug-of-war for
survival and proliferation.

Fig. 3 | Delineating transcriptome-wise progression with manifold-consistent
kinetic genes usingGraphVelo. a Schematitc of transcritional eventsmisleadRNA
velocity estimation in the phase portrait by standard approaches. Left: for genes
exhibiting rapid degradation, the cells appear above the steady state line on the
phase portrait, whereas the true velocity is negative. Right: For genes exhibiting
transcription burst, the transcription rate abruptly increases at intermediate states,
leading to a steady state line whose slope is overestimated. b Schematic of
manifold-consistent score calculation for robustly estimated velocity genes. c The
projected velocity field from GraphVelo are consistent with the erythroid differ-
entiation by using all highly variable genes. d The correlation between GraphVelo
vector field-based pseudotime and embryo time for erythroid lineage cells.
Spearman correlation coefficients are shown. e GO enrichment analyses of top
ranked MacK genes. f The phase portrait of two transcription burst genes (Smim1,
Hba-x). g Scatter plots of: i) velocities estimated by scVelo, ii) refined velocities by
GraphVelo, and iii) mature mRNA expression of transcription burst genes (Smim1,
Hba-x). Cells were colored by corresponding velocity, and mature mRNA abun-
dance, respectively, and visualized on the UMAP representation. hGene regulatory
cascade unraveled by GraphVelo-based vector field analyses that drives cell lineage
commitment. Gene set enrichment was performed using one-sided Fisher’s exact
test, Benjamini–Hochberg correction. Adjusted p-values represent FDR-corrected

significance of gene set enrichment. i Activation of Gata1 inhibitor TF Spi1 lead to
reversed velocity flows in gastrulation erythroid maturation investigated through
in silico perturbation analyses on GraphVelo-based vector field. j Velocities derived
from GraphVelo for the branching lineage in the hematopoiesis development and
projected onto a pre-defined TSNE embedding. Directions of the projected cell
velocities on TSNE are in agreement with the reported differentiation directions.
k Terminal states identified by CellRank based on Markov chain formulation
derived from GraphVelo velocities. l Phase portrait, velocity estimated by scVelo,
refined velocity by GraphVelo, and gene expression of mature mRNA of identified
rapid degradation genes (NPR3, ANGPT1). The cells were colored by the palantir
pseudotime31 in the phase portrait. The box plots showed cell-specific γ for cells
divided into bins according to pseudotime ordering in the phase protrait. The
number of cells within each time bins from early to late is 653, 650, 654, 657, 657,
respectively. Boxplots indicate median (middle line), first and third quartiles (box),
and the upper whisker extends from the edges to the largest value no further than
1.5 × IQR (interquartile range) from the quartiles and the lower whisker extends
from the edge to the smallest value atmost 1.5 × IQRof the edge, while data beyond
the end of the whiskers are outlying points that are plotted individually. Source
data are provided as a Source Data file.
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To investigate the crosstalk between host and viral factors sys-
tematically in depth, we performed dynamo Jacobian analyses. We
scanned the entire spectrum of viral genomes and delineated how the
HCMV factors silence IFN and NFκB signaling (Fig. 4i). A large pro-
portion of the identified viral factors functioned in evading host cell
immune responses, a finding supported by several recent studies52–54.
In silico virus-directed knock out experiments revealed altered

accumulation patterns of viral transcripts (Fig. 4j). Notably, inhibition
of UL123, which ranked first with the total viral RNA inhibition in our
analyses, led to a qualitatively distinct trajectory. These results high-
light themultifunctionalUL123 locus in the viral genome as a potential
target for antiviral intervention40,55. The analyses demonstrated
potential usage of GraphVelo-inferred velocities for understanding the
interactions between viral and host factors, assessing the effects of
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perturbations on infection, and designing potential antiviral
interventions40.

GraphVelo reaveals an abortively infected cell population in
SARS-CoV-2 infection
Although HCMV is renowned for its elaborate transcriptional land-
scape—characterized by extensive alternative splicing, overlapping
transcripts, and diverse isoform expression—the RNA virus SARS-CoV-
2 transcriptome reveals an even greater level of complexity within its
relatively compact ~30 kb genome56. To characterize the molecular
mechanisms of host response which protect cells from productive
trajectory, we applied GraphVelo to a SARS-CoV-2 infected Calu-3 cells
dataset57. To focus on the host-virus interactions and their corre-
sponding fate outcomes, we subset the infected cell population for
downstream analyses. The infected cluster M, characterized by inter-
feron production genes, was hypothesized to represent a subpopula-
tion of abortively infected cells57, similar to those described in
herpesviruses HSV-158 and HCMV40. We subsampled the infected cell
population for downstream analyses and visualization, where cluster
M exhibited distinct connectivity properties compared to the main
infected groups (Supplementary Fig. 13a). To confirm that M is one of
the terminal states of infectionoutcomeswith such lowcell abundance
(Supplementary Fig. 13b), we applied GraphVelo to gain the quantita-
tive velocity with dynamooutcomes as input (Supplementary Fig. 13c).
Using vector field topology analysis, we classified an initial state with
relatively low viral load, two terminal states associated with high
apoptosis activity, and a saddle point characterized by high viral load
(Supplementary Fig. 13d). Notably, the region corresponding to cluster
M was identified as an attractor, confirming it represents an abortively
infected cell state with a high death rate57.

We further validated the complex lineage commitments of SARS-
CoV-2–infected cells using the CellRank framework16, which success-
fully identified three potential terminal states as outcomes of
host-virus competition (Supplementary Fig. 13e). Interestingly, we
characterized the saddle stage in dynamo as a productive terminal
state governed by viral genes (Supplementary Fig. 13f), exhibiting high
viral transcription speed (Supplementary Fig. 13g). The pathogen-
triggered cell death can be driven for protecting the host or for
pathogen dissemination purpose59. To investigate the underlying
causes for host cell death, we performed gene functional enrichment
analyses on the top correlated genes along distinct lineages (Supple-
mentary Fig. 13h). Active programs in the abortive infection lineage
were highly enriched for host defense mechanisms against viral inva-
sion, consistentwithprevious studies40,58. In contrast, thedriversof the
apoptosis-associated lineage revealed a distinct profile. Notably, we

observed enrichment for cellular responses to unfolded proteins,
which have been implicated in facilitating pathogen-mediated dis-
semination of infected cells60,61. Additionally, ERBB2 inhibition has
been shown to suppress SARS-CoV-2 replication62. These findings
support the hypothesis that similar cell death outcomes may arise
from fundamentally different host responses. Abortively infected cells
appear to promote efficient pathogen clearance, likely through
cytokine-mediated immune activation that eliminates both the infec-
ted cell and the virus. Conversely, cells undergoing virus-induced
apoptosis fail to clear the virus, with cell death instead serving as a
mechanism for viral escape, immune evasion, and potential dis-
semination to deeper tissue layers or the bloodstream.

GraphVelo permits multi-omics velocity inference and chroma-
tin dynamics analyses
The molecular anatomy during cell development entails multiple lay-
ers, and how different layers coordinate to regulate gene expression is
a fundamental problem. For example, the anagen hair follicle features
distinct lineages branching from a central population of progenitor
cells. Ma et al.63. used SHARE-seq to capture both the transcriptome
and the epigenome data simultaneously for the lineage commitment
process from transit-amplifying cells (TACs) to the inner root sheath
(IRS), cuticle layer, and medulla. Upon robust selection of estimated
genes following dynamo criteria (Methods), we further refined the
RNA velocities of these genes through tangent space projection and
obtained the chromatin open/close dynamics from the corresponding
scATAC data using GraphVelo. The resultant vector field in the com-
bined transcriptome-epigenome space proved to reconstruct the
correct multilineages differentiation paths during the anagen
phase (Fig. 5a).

To test the consistency of dynamics across different modalities,
we performed CellRank terminate stage analyses16 from the refined
velocity vectors.UsingGraphVelovelocities of either theRNAmodality
or the ATAC modality, we accurately estimated three diverse terminal
stages (Fig. 5b). For comparison, we also performed similar analyses
using MultiVelo, scVelo with all velocity genes or robustly estimated
genes in above GraphVelo studies and pseudotime-based vector field
inferred by CellRank. The 2D projection of these vector field functions
also exhibited seemingly correct velocity flow direction (Supplemen-
tary Fig. 14a). However, none of them captured the cell fate commit-
ment based on coarse-grained transition matrix (Fig. 5b,
Supplementary Fig. 14b). Notably, the results from the RNA modality
and the ATAC modality of MultiVelo gave inconsistent results.
GraphVelo-corrected velocities, on the other hand, helped identify the
top-correlating genes towards individual terminal populations which

Fig. 4 | Using GraphVelo velocities to infer host-virus infection trajectory and
identify host-pathogen interactions. a Viral infection captured by the GraphVelo
velocity field. Cells were colored by the percentage of viral RNAwithin a single cell.
b Correlation between viral RNA percentage and pseudotime inferred by scVelo or
GraphVelo. Correlation was calculated using a two-sided Spearman rank correla-
tion test. c Viral RNA velocities infered by GraphVelo along the viral RNA percen-
tage axis. The black dot line highlights the zero velocity. The solid line denotes the
mean trend, dashed lines denote 1 s.d. d Boxplot summarizing the MacK scores of
all viral genes calculated by GraphVelo, CellRank pseudotime kernel and random
predictor. The number of viral genes is 67 for the statistical test. *** indicates
Welch’s independent two-sided t-test atp <0.05. Boxplots indicatemedian (middle
line), first and third quartiles (box), and the upper whisker extends from the edges
to the largest value no further than 1.5 × IQR (interquartile range) from the quartiles
and the lower whisker extends from the edge to the smallest value atmost 1.5 × IQR
of the edge, while data beyond the end of the whiskers are outlying points that are
plotted individually. e Correlation between viral infection speed and RNA abun-
dance. Genes were ranked by Spearman correlatioin coefficients. Host and viral
genes that contribute to viral DNA synthesis weremarked in the left side and those
contribute to viral defense responseweremarked in the right side. Viral genes were

highlighted in red. f UMAP representation of host and viral genes with distances
defined by their dynamic expression patterns along the viral RNA percentage axis.
g Example dynamic expression patterns within specific clusters (Leiden4, 5, 3, 6
from top to bottom) along the viral RNA percentage axis. Zero velocity was high-
lighted by black dot line. The solid line denotes mean trend, Shaded region
represents 1 s.d. h GO enrichment of each cluster in (g). Gene set enrichment was
performed using one-sided Fisher’s exact test, Benjamini–Hochberg correction.
Adjusted p-values represent FDR-corrected significance of gene set enrichment.
i Top host genes inhibited by each viral factor based on dynamo Jacobian analyses.
Host effectors were organized by their involved pathways. j Dynamo prediction of
total viral RNA change in response to in silico viral factor knockout. Viral factors
were rankedby themeanof total viral RNA changes. The number of samples is 1454
for virtual perturbation screen. Boxplots indicate median (middle line), first and
third quartiles (box), and the upper whisker extends from the edges to the largest
value no further than 1.5 × IQR (interquartile range) from thequartiles and the lower
whisker extends from the edge to the smallest value at most 1.5 × IQR of the edge.
kVectorfield change resultant from infinitesmal inhibitionofUL123 during the viral
infection process. Source data are provided as a Source Data file.
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showed agreement with previous study64 (Fig. 5c, Supplemen-
tary Fig. 15).

Next, we conducted differential geometry analyses based on the
compositeGraphVelo vectorfield.We identifiednovel root cells,which
were also characterized by chromatin potential (Fig. 5d)63. These novel
root cells expressed distinct marker genes compared to the expected
root cells using the Wilcoxon test (Fig. 5e). Moreover, we unraveled

differentially expressed markers identified by the original study63, as
well as new differentiation-potent genes and validated their initiation
properties in another transcriptome dataset (Supplementary
Fig. 16a)64. To further investigate how these two distinct groups of root
cells convert to other cell types, weperformed a least actionpath (LAP)
analysis between different cell phenotypes. The expected and novel
root cells converted to the IRS terminal state following two distinct
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least action paths in the vector field (Supplementary Fig. 16b, c). The
twopaths revealeddifferent temporal changepatterns of transcription
factor expression profiles (Supplementary Fig. 16d). We calculated the
mean-squared displacement (MSD) for every transcription factor to
explore the dynamics of TFs along the path fromnovel root to IRS. The
result demonstrated that the fate conversion by novel root was
mediated by the Shh-Runx1 signaling axis (Fig. 5f, Supplementary
Fig. 16d), which has been demonstrated in human embryonic stem
cells65 and is crucial for hair development66. In summary, GraphVelo
unraveled the multiple molecular mechanisms that orchestrated hair
follicle morphogenesis.

With available chromatin velocity and RNA velocity, we set to
quantify the coupling/decoupling relationships between chromatin
structure and gene expression for each gene (see Methods). Here
chromatin structure refers to the extent of exposure/accessibility of
the gene locus to the environment as indicated by scATACseq data,
shortly called open or closed state; and chromatin velocities refer to
changes between these states as inferred from scATACseq counts at
the examined gene locus. We used dynamic time warping (DTW) dis-
tances between the velocities from different omics layers to quantify
the similarity between temporal patterns of these two modalities for
each gene. A higher DTW value indicates higher similarity. Using the
elbow of the ranked distance curve as a cutoff we identified genes that
showed decoupled transcription and chromatin structure dynamics.
These decoupled genes had an accumulation of cell cycle-dependent
(CCD) genes found in previous study20 (Fig. 5g). This group of genes
showed strong involvement in cell cycle-related processes, as indi-
cated by GO enrichment analyses (Fig. 5h). Close examinations indi-
cated that the transcription of cell cycle related genes decreased along
the differentiation path, while the chromatin structure at the corre-
sponding loci remained open (Fig. 5i, Supplementary Fig. 17). To vali-
date this hypothesis, we further applied GraphVelo to a recently
published 10x Multiome dataset from developing human cortex67

(Supplementary Fig. 18a). Following the same analyses, we identified
decoupled genes and found out that most of these genes were related
to cell cycle (Supplementary Fig. 18b–f). which has also been reported
in a previous MultiVelo study13.

We further performed dynamo differential geometry analyses on
the composite transcriptome-chromatin vector field. One intriguing
phenomenon observed in lineage dynamics is that Lef1 andHoxc13 are
the driver TFs correlated with domains of regulatory chromatin
(DORCs) of Wnt363. Differential geometry analyses on the composite
vector field can go beyond correlation analyses and provide an
underlying casual mechanism. As a prerequisite for such analyses,
GraphVelo-inferred RNA and chromatin velocities of the three genes
correctly predicted the trendof changeofmRNAandATAC-seq counts
(Supplementary Fig. 19a, b), in contrast to the performance of Multi-
Velo (Supplementary Fig. 19c). Then, Jacobian analyses on the Graph-
Velo vector field confirmed that priming activation of Lef1
subsequently activated the Hoxc13 TF68 (Supplementary Fig. 19d, e).

Both Lef1 and Hoxc13 were found to activate the Wnt3 target gene,
initiating lineage commitment (Supplementary Fig. 19f, g). To quanti-
tatively understand how the two TFs affect Wnt3 chromatin structure
and transcription, we plotted the response heatmap to reflect the
distributions of Jacobian elements versus the abundance of mature
mRNA for each TF (Fig. 5j). The two terms ∂f Wnt3�chrom=∂xLef 1 and
∂f Wnt3�chrom=∂xHoxc13 started with positive values at low concentra-
tions of TF mRNA copy numbers then decreased to zero, indicating
that increasing the level of either TF lead to further opening of the
Wnt3 chromatin region, and the effect saturated at high TF expression.
The other two term ∂f Wnt3=∂xLef 1 and ∂f Wnt3=∂xHoxc13 increased with
the TF levels, indicating that these two TFs also activated Wnt3 tran-
scription. Upon integration of the Jacobian elements over regulator
expression changes, we obtained the effective dose-response curves
obtained (see Methods), which revealed more transparently the TF
dose lag between the opening of the target chromatin region and the
initialization of transcription (Fig. 5k).

Our results therefore illustrated the sequential events that these
two driver TFs, Lef1 and Hoxc13, drove as pioneer transcription factors
(PTFs) to initiate local chromatin opening and then activated the
transcription of Wnt3. Notably, computational methods and experi-
mental research confirm that Lef1 acts as a nucleosome binder and
exhibits diverse binding patterns across various cell lines69. The Hox
family of TFs has also been shown to have the capacity to bind their
targets in an inaccessible chromatin context and trigger the switch to
an accessible state70, consistent with our analyses that Hoxc13 reveal-
ing that it shared a regulation mechanism similar to that of PTF Lef1.

Discussion
In this work, we provided a general framework that extends the fra-
meworkdeveloped for RNA velocity and related approaches to various
data modalities such as proteomics, spatial genomics, 3 d genome
organization, and imaging data, which were originally beyond the
reach of this framework. We validated GraphVelo using various in vivo
cellular kinetics models, confirmed its efficacy and robustness in
handling complex and noisy multimodal data. Upon application to
various datasets, we unraveled gene regulation relations of an exten-
ded list of genes, host-virus gene regulations, and coupling between
transcription and local chromatin structures. GraphVelo can be
seamlessly integrated with broad downstream analyses, such as
dynamo continuous vector field analyses, as well as Markovian ana-
lyses using graph dynamo or CellRank.

Methods
Dynamical systems theory formulation of cellular state
transitions
Assume that a cell state can be represented by the cell volume V (or
cellular compartment size) and the copy number of L≫ 1 pairs of gene
products (nm,np), wherem andpdesignatemRNAandprotein, and the
bold fonts indicate vectors. For simplicity herewe only considerm and

Fig. 5 | Inferring epigenome and transcriptome consistent dynamics in mouse
hair follicle development using GraphVelo multi-omics velocities. a GraphVelo
velocity fields of mouse hair follicle development. Cells were colored by cell mac-
rostates. b Number of terminal states predicted by CellRank using velocities
inferred with different methods. c Driver genes along multiple lineages identified
throughCellRank.dTopological analyses ofGraphVelo vector field identifiednovel
root cells and attractors residing in three terminal states(IRS, hair shaft-cuticle
cortex, and medulla). e Expression levels of marker genes in novel root cells and
expected root cells. Markers identified by Ma et al.63 were highlighted with stars,
and newly identifiedmarkers were highlighted in bold. f Regression results of MSD
values along the transition path from the expected root or novel root to IRS. Two
genes Runx1 and Shh genes with large MSD originating from the novel root were
highlighted. The solid line denotes mean of regression result, Shaded region

represents 1 s.d. g DTW distance between RNA velocity and chromatin velocity of
individual genes. CCD genes were colored in red. The dotted line indicates the
elbow point separating the decoupled genes from the rest. h GO enrichment of
decoupled genes in (g). i Line plot of nomarlized RNA and chromatin velocity along
pseudotime for genes predicted by GraphVelo to have notable decoupling pat-
terns. Chromatin velocity trends were colored as brown and RNA velocity trends
were colored as green. j Heatmaps of Jacobian element distribution along the axis
of regulator RNA abundance of four regulator effector circuits: i) Lef1 versus Wnt3
chromatin accessibilities. ii) Hoxc13 versus Wnt3 chromatin accessibilities. iii) Lef1
versus Wnt3 transcription. iv) Hoxc13 versus Wnt3 transcription. k Effective dose-
response curves obtained from integrating the averaged Jacobian elements over
the corresponding normalized regulatormaturemRNA regulator level in (j). Source
data are provided as a Source Data file.
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p. It is straightforward to generalize tofiner cell state specifications, for
example, with distinction of nuclear and cytosol localizations, post-
translational states of proteins, other species such as microRNAs,
epigenetic states, etc.

The temporal evolution of the cell state is described by a set of
chemical master equations. When the copy numbers of molecular
species are not too small, and the chemical reactions are not strongly
coupled, Gillespie showed that the chemical master equations can be
approximated by a set of chemical Langevin equations71. With extrinsic
noises also included, we assume the ansatz that the dynamics of cell
state is described by a set of generic stochastic differential equations,

dxm

dt
=F xm,xp

� �
+ ζ xm,xp, t
� �

dxp

dt
=G xm,xp

� �
+ηðxm,xp, tÞ ð4Þ

where the L-dimensional vectors xm and xp are cellular concentrations
ofm and p, and the ζ and η are taken as white noises with zero mean.

The low-dimensional manifold assumption is central to machine
learning approaches on data analyses. From a dynamical systems
theory perspective, after a transient time, a multi-dimensional dyna-
mical system often converges to a low-dimensional slow manifold. In
practice, such property has been exploited with techniques such as
quasi-steady-state approximation, quasi-equilibrium approximation.
For a rigorous formulation, assume that one can identify a set of
variables z,Zð Þ with (2L-M) dimensional fast variables z= zðxm,xpÞ and
M-dimensional slower variables Z=Zðxm,xpÞ. Xing and Kim extended
the celebrated Zwanzig-Mori projection72,73 to a general dynamical
system described by Eq. 474. The projection procedure results in a set
of stochastic integral-differential equations of Z with colored noises,
which are formally equivalent to Eq. 4. Then if one assumes clear time
scale separation between z and Z, the equations reduce to a set of
Langevin equations with white noises,dZdt =AðZðxm,xpÞÞ+η Z, tð Þ, where
Z, tð Þ are white noises with zero mean. Through ensemble averaging
over the vicinity of a given point Z, one has

v � <
dZ
dt

> Z =A Zðxm,xpÞ
� �

: ð5Þ

The equations define aM-dimensional manifold embedded in the
ðxm,xpÞ space. A scRNA-seq data then measures the corresponding
manifold projected to the transcriptomic subspace.

One should note that in practice the reported RNA velocity vector
of a cell state i is typically obtained through averaging the raw
velocity vectors of cell states within its neighborhood N i on the
manifold as a numerical approximation of the ensemble average,
vxi = < dxm

dt > �Pj2N i
vxj . In this work, we used the k-nearest neighbor

(kNN) algorithm to define the neighborhood in single-modality data-
sets, including spatial-transcriptomics datasets. For multi-omics data,
the neighborhood of a cell state was defined using weighted nearest
neighbors (WNN)75 in the composite cell state space. The procedure of
applying GraphVelo is the same for different data types, except using
the neighborhoods defined on their corresponding data (cell state)
manifold.

Mathematical foundation for applying GraphVelo to multi-
omics datasets
Equation 3 in the main text applies to the transformation between a
manifold embedded in a state space and in a subspace. According to
the Whitney Embedding theorem18, any smooth real M-dimensional
manifold can be embedded in a 2M-dimensional real space provided
that M >0. Consider a full set of genes versus a subset in a scRNAseq
dataset, or a combined scRNAseq/scATACseq multi-omics dataset

versus the scRNAseq subset. Assume that the full cell state space has a
dimensionality N, while a single cell data manifold is typically low-
dimensional with M ≪ N. Then the Whitney Embedding theorem18

suggests that with proper choice of the subset themanifolds in the full
space and the subspace are homeomorphic or at least piece-wise
homeomorphic (Fig. 1b, Supplementary Notes 1.4), i.e., a one-to-one
mapping exists between the two. Then applying Eq. 3 allows one to
infer the velocity vectors for the full-space representation from those
of the subspace.

Denoise velocity vectors in the space of principal
components (PCs)
Learning coefficients ϕi in the gene space directly often fails due to
thousands of gene profiles. To avoid the curse of high dimensionality
and learn parameters in a compactmanifold, we designed a procedure
to denoise the velocities in a reduced PCA space. Specifically, we
extrapolated the cell state i in the original space using the infinitesimal
propagation operator to extrapolate the future state:

x0
i =xi +vi � dti

Moreover, we estimated an optimal step size dt based on the local
density to guarantee the cell states are bound to the manifold:

dti =median
1
k

Pk
j = 1kδijk
kvik

 !

After utilizing the cell-dependent ti to forcing the predictions
inhabiting regions of thephenotypicalmanifold,we applieddimension
reduction to project both current and future status from the gene
space to the PCA space through linear transformation. Then we
obtained the projected velocity vectors as:

vPCA
i =

x0
iQ � xiQ

dti

where Q is the PC loading matrix estimated using x that serves as the
coordinate transformation matrix.

Manifold-consistent kinetic genes
The kinetic assumptions between nascent and mature RNA fail when
the underlying parameters shift along the developmental trajectory11,
which leads to transcription burst and rapid degradation in the phase
portraits (Fig. 3a). An internal clock exists during cell proliferation and
differentiation. Current methods rely on different criteria to select
confident estimated velocity genes (see Supplementary Notes 1.5 for
detailed discussion). Here, we presume that the velocity of robustly
estimatedgenes shouldbe consistentwith the (pseudo)timederivative
estimated under themanifold assumption.We can utilize any available
ts inferred from data manifold by either pseudotime, velocity latent
time, or lineage tracing to approximate the temporal information and
use k nearest neighbors to define the locally linear plane. After
ordering cells within the local Euclidean space, we calculate the MacK
score for any gene g as an indicator of whether the sign of estimated
velocity agrees with the dynamic cascades within manifold,

MacKscore=
1
n

X
j2N ðiÞ

I sgn
ΔxijðgÞ
Δtij

 !
= sgn viðgÞ

� � !

Where N i indicates the neighbor points of cell i, l represents the
indicator function and sgn returns the sign of the values. Δxij gð Þ, viðgÞ
are the difference in abundance of gene g between cell i and j, and the
velocity of gene g in cell i, respectively.Weparallelize the calculation to
scale efficiently with the number of genes, which is important due to
the number of highly variable genes.Wewant to point out that one can
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use methods other than the MacK score to identify genes with reliable
velocity estimations.

Dynamo criteria
Dynamo7 offers a correction strategy by removing genes with low
gene-wise confidence in the phase plane. This allows us to identify
genes that appear in incorrect phase portrait positions and contribute
to erroneous flow directions (illustrated in Fig3. a). To filter out genes
with misleading dynamic patterns, one can supply the established
lineage hierarchy information to the dyn.tl.confident_cell_velocities
function in dynamo. This function scores each gene based on the
agreement of its behavior in the splicing phase diagramwith the input
lineage hierarchy priors.

Post-GraphVelo analyses
Reconstruction of extended dynamo vector field from multi-
omics data. Dynamo is a general framework of reconstructing
dynamical models from scRNAseq data, and it is straightforward to
generalize to multi-modal data. The framework is based on specific
realizations of Eq. 5, v � < dx

dt > x =A xð Þ, with state vector x being the
transcript concentrations for scRNAseq data, and combined tran-
script concentrations and continuous quantification of locus-specific
chromatin open-close state for multi-omics scRNAseq/scATACseq
data. The variables x can be defined in various representations, e.g.,
the original gene space, principal component subspace, latent space
defined by a variational autoencoder, etc. With GraphVelo it is
straightforward to transform vx between different representations.

The continuous vector field functions A xð Þ contain quantitative
regulation relationsbetweengenes that are learned fromsingle cell data
points of (x, vx). Various algorithms can be used to learn the analytical
forms of A xð Þ. The original dynamo paper illustrated a Reproducing
Kernel Hilbert Space (RKHS) representation method. The method
expresses A xð Þ as a linear combination of pre-selected basis functions,
v=A xð Þ=PαcαΓαðxÞ, similar to themore familiar Taylor expansion that
uses a linear combination of polynomial functions to represent a con-
tinuous analytical function. It should be noted that the basis functions
and soA xð Þ are generally nonlinear functions of x. FollowingQiu et al.7.,
we chose Gaussian functions centered at selected reference pointsexα, Γa x, exα

� �
= e�2wkx�exαk

2

, with default parameter value of w in the
package dynamo. Then we determined the coefficient vectors
cα through minimizing the loss function Φðc1, c2, . . . , cmÞ=Pn

i = 1kvi �
P

αΓðx, exαÞcαk2 + λ
2

Pm
α = 1

Pm
β= 1c

>
α Γ ðexα , exβÞcβ, where the first

sum was over all the data points, and the second term was Tikhonov
regularization weighted by λ. The superscript T means matrix trans-
pose. One can also use neural networks, e.g., variational autoencoders,
to learn an optimal set of basis functions, and other algorithms such as
neuralODE to learnB xð Þ. Thedifference ismerely algorithmic under the
same framework of dynamical systems theories.

Jacobian analyses and reconstruction of effective dose-response
curves of gene regulation. The extended dynamo vector field gen-
erally contains a nonlinear relationship about regulation between
genes, and between genes and other modalities (e.g., chromatin
open/close conformations). Several posterior interpretation meth-
ods exist to analyze the vector field. Below, we will describe two
of them.

With the analytical form of F(x), one can calculate efficiently the
Jacobian field J at any cell state x. Each element of J, ðJij =∂Fi=∂xjÞ, can
be understood as an in-silico perturbation experiment on how
upregulating gene j affects the transcription rate of gene i, with all
other gene expression levels kept constant at state x. For example, a
positive value of Jij indicates that at x further increasing the
expression of gene j causes increase of the transcription rate of gene
i. Note that the sign and value of a Jacobian element alone does not
unambiguously reflect the nature of the regulation. A close-to-zero

Jacobian element can be associated with either no regulation or the
regulator is at a saturating concentration of regulation. The regula-
tion relation can be direct, or indirect through intermediate mole-
cular species not implicitly treated as variables of the vector field
function.

Complementary to the local Jacobian analysis is to reconstruct
effective dose-response (D-R) curves of a regulator-target gene pair.
The curve reveals the rate of change of one quantity, e.g., the tran-
scription rate or the chromatin open/close dynamics of the target
gene, as a function of the value of a regulator, e.g., the mRNA level of
a regulator or the chromatin open/close status of a specific genomic
region. Note that the D-R curve is generally a multi-variate function,
we designed a procedure to reconstruct an effective one-variate
function7. One can genetically write the regulation on quantity xi as
two terms with and without dependence on variable xj,

dxi

dt
= Fi x1, . . . , xN

� �
= F1

i x1, . . . , xN
� �

+ F2
i x1, . . . , xj�1, xj + 1, . . . , xN

� �
:

Notice that F2
i is not a function of gene j. First, we calculated the

Jacobian element ∂Fi
∂xj

for each measured cell state. Note ∂Fi
∂xj

= ∂F1
i

∂xj
, so the

background variation from F2
i due to effects of other genes has been

numerically removed. Then from the histogram of ∂Fi
∂xj

versus xj , we

binned ∂Fi
∂xj

over xj and calculated < ∂Fi
∂xj

> α , which was averaged over all

data points of ∂Fi
∂xj

within bin α. Next, weperformednumerical integration

to obtain �F1
i ðxjÞ= F1

i0 +
R xj
0 < ∂Fi

∂xj
> αdxj � F1

i0 +
P

α <
∂Fi
∂xj

> αΔxjα . In prac-

tice, if ∂Fi
∂xj

shows large variance within each bin of xj, it may imply that

other factors affect theD-R curve. For example, the regulation of xj on xi

may even be opposite at the presence or absence of a specific cofactor.
In this case, one should first cluster cells, e.g., grouping cells based on
whether an identified cofactor reaches a threshold value, then perform
the D-R curve reconstruction on individual clusters.

Markovian analyses. Marius et al.16 have developed a framework
named CellRank to study cellular dynamics based on a Markov chain
formulation. We use CellRank to identify cell state transitions using a
velocity kernel and identify terminal states within datasets by the
GPCCA function module. In addition, CellRank pseudotime kernel8 is
used for methods comparison in real datasets.

Analytical function form of a vector field and differential geometry
analyses. Dynamo learns a nonlinear function form of RNA velocity
vector field, providing a physics-informed framework that integrates
mechanismmodeling and single-cell data analyses. We use dynamo to
learn continuous vector field functions and perform differential geo-
metry analyses such as gene acceleration, vector field-based pseudo-
time, least action path (LAP), Jacobian analyses and in silico
perturbation.

Pseudotemporal orderings. GraphVelo itself does not compute an
ordering index of cells as we are seeking for a more quantitative
method to infer RNA velocity. With an accurate RNA velocity as input,
we can approximate the vector field precisely. Thus, we use the scalar
potential estimated from the functional form vector field with Hodge
decomposition as a proxy of time, which is implemented by dynamo
package.

Cross boundary correctness scoring. While the GraphVelo frame-
work is designed to quantify velocity vectors across different repre-
sentations, known transitions between coarse cell states—such as cell
types or cell cycle phases—can be used to evaluate the correctness of
velocity directions. Suppose there are two cell populations A and B,
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with A a progenitor state of B. One can define the set of boundary cells
between A and B as

CA!B = c 2 CAj9c0 2 CB \N c

� �
,

where CA or CB denote the sets of cells in state Aor state B,N c indicates
the kNN of cell c. The CBC score is then defined as

CBC score =
1
n

X
c

1
#c0 2 CB \N c

X
c02CB\N c

vc � xc0 � xc

� �
vc
�� �� � xc0 � xc

�� ��
where #c0 2 CB \N c is the number of cells in state B which is also the
kNN of cell c. While the ðxc, vcÞ can be represented in different basis
(raw count, PCA, or UMAP), we computed the CBC score in the original
count space to ensure that all genes contribute to the velocity esti-
mation. We deliberately avoided using 2D embeddings like UMAP for
this purpose, as such visualizations may distort the true geometric
relationships in the high-dimensional space and could lead to
misleading interpretations.

Velocity consistency scoring. For most of the cases, we expect the
inferred RNA velocity vectors to be coherent in a uni-directional vector
field. Toquantify the local consistency of the velocityflow for each cell,
we calculate the velocity consistency score2 for each cell i as the mean
correlation of its velocity vi with velocities from neighboring cells,

ci =
1

j 2N i

� ��� ��X
j2N i

cos vi, vj
� �

where cell j is the neighbor of cell i and cos indicates the cosine simi-
larity. One thing should be clarified is that overly smooth and homo-
genized velocity fields may obscure biologically meaningful
heterogeneity.

Approximate smooth velocity trends with a generalized
addictive model. The variation of transcription rates contains the
high-order dynamic information of the cell system. To model the
dynamic patterns of RNA velocity along the transition path from noisy
data, we refine the velocity vectors by local geometry via TSP and
further fit GAM to velocity value of each gene that has been refined by
GraphVelo. For any gene g, we model the velocity trend for the tem-
poral variable t via

vgi = β0 + f ti
� �

Where vgi indicates the velocity of gene g in cell i, f is built using
penalized B-splines which allow us to automatically model non-linear
mapping while maintaining additivity76. To visualize the velocity
trends,we select 100 equally spaced testing points along the transition
path and predict gene expression at each of them using the fitted
model. The estimated velocity trends can be treated as smoothed time
series for further analyses.

Clustering velocity trends along infection trajectory. Withmanifold-
constrained velocity estimated by GraphVelo, we are able to cluster
genes into different functional modules that are involved in the same
regulatory circuit. We recover transcription variation of both host and
virus factors along the infection trajectory by fitting GAMs in the
temporal indicator, the percentage of viral RNA. Next, we select 100
equally spaced time points and generate the GAM-smoothed velocity
trends. We compute a kNN graph and cluster the kNN graph using the
Leiden algorithm. We used k = 15 for the velocity-trend kNN graph and
the Leiden algorithm with a resolution parameter set to 0.3 to avoid
over-clustering the trends. For each recovered cluster, we compute its
mean and standard deviation (pointwise, for all generated points that

were used for smoothing) and visualize the smoothed trends per
cluster.

Characterizing decoupling genes based on the dynamic time
warping distance between multi-modality velocities. We perform
the DTW distance calculation by dtaidistance package. To eliminate
the influence of scale in different modality, we maximum-normalize
the chromatin/RNA velocity to the same range of [0, 1]. Then we fit
the velocity trends of both modalities along vector field-based pseu-
dotime to yield the smoothed velocity trends. We calculate the DTW
distance between velocity trends per gene. To distinguish the decou-
pling genes based on theirmulti-modality velocities, we rank the genes
based on the DTW distance and identify the elbow point as a cutoff.
Geneswith a distancemetric larger than the cutoff are characterized as
decoupling genes and used for visualization and functional analysis.

Synthetic datasets
Generating two genes bifurcation process and mapping it to 3d.
The bifurcation data (n = 2000 cells) for the toggle-switch system is
simulated using the Gillespie algorithm. We use activation and inhibi-
tion Hill functions to model the induction and suppression effects
between the two genes:

_x =
a1x

n

Sn1 + xn
+

b1K
n
1

Kn
1 + yn

� γ1x

_y=
a2y

n

Sn2 + yn
+

b2K
n
2

Kn
2 + xn

� γ2y

We use the simulation backend implemented by dynamo with
default parameters except the timescale (reset τ = 1) to generate the
bifurcating process. We then map the synthetic dataset onto a sphere
(radius r = 70) and yield the variable z as:

z =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max r2 � x2 � y2, 0

� �q
Then we are able to calculate the correctly-scaled 3d vectors by

infinitesimal propagation operatorwith sufficient small step size (dt= 1
in our case):

_z = lim
Δt!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max r2 � x + _xΔtð Þ2 � y+ _yΔtð Þ2, 0

� �r
� z

Δt

Generating scRNA-seq synthetic data with dyngen.\. To generate
high-dimensional single-cell transcriptomic data in silico, we use a
multi-modal simulation engine, dyngen, to account for different
developmental topologies. We constructe module networks to repre-
sent regulatory cascades and feedback loops driving progressive
changes in gene expression and influencing cell fate decisions. We
generate three datasets with 1000 cells and 100 genes using the linear,
cyclic, and bifurcating loop backbones provided by dyngen, with all
other parameters set to default values. These datasets include simu-
lated nascent and mature mRNA counts along with ground-truth RNA
velocities and known manifold structure.

Simulation of rapid degradation and transcription burst events on
phase portrait. As for geneswith variable degradation rate, we present
a minimal regulatory network with linear model in which an external
signal both inhibits transcription and promotes microRNA (miRNA).
ThemiRNA exerts a linear influence on the degradation rate of mRNA.
We have miRNA’s velocity as

dm
dt

=αm � γmm
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The nascent gene transcription rate and mature mRNA’s degra-
dation rate would change to

α =α0 � kαt

γ= γ0 + kγm

where α0 and γ0 represent the constant transcription rate and
degradation rate without the effect of miRNA, kα and kγ represent the
magnitude of influence frommiRNA, t indicates the simulation time to
mimic the cell-context change along trajectory.

du
dt

=α � βu=α0 � kαm� βu

ds
dt

= βu� γs =βu� γ0 + kγm
� �

s

We set the initial condition to a steady state with u0 =α0=β and
s0 =α0=γ0, while the miRNA abundancem0 =0. We simulate ut and st
as the microRNA signal mt gradually increases. The aim is to evaluate
whether the estimated RNA velocity consistently aligns in sign with the
ground truth RNA velocity.

To generate genes with transcription burst phase portrait, we set
the initial condition to u0 =0, s0 =0, together with γ as constant and α
promotes to α0 =3α when the simulation reaches specific time.

Processing of sequencing data
All sequencing data in this study are downloaded publicly (see details
in the ‘Data availability’ section). Though the number of confident-
estimated gene sets differed case by case, GraphVelo predicted the
velocity of all highly variable genes and used them for downstream
calculations such as CBC score, CellRank velocity kernel, and dynamo
vector field learning. We parallelized the TSP optimization to scale
efficiently and set the hyperparameters in loss with a = 1, b = 10 and
λ = 1 as default in all studies (Supplementary Fig. 20).

Analyses of scRNA-seq datasets. For the erythroid lineage of the
mouse gastrulation, we follow the standard data pre-processing pro-
cedures implemented by scVelo and select 9815 cells and 2000 highly
variable genes to construct the kNN graph using 30 nearest neighbors
for downstream calculation.

For the human bonemarrow dataset, we follow the standard data
pre-processing procedures implemented by scVelo and selected 5780
cells and 2000 highly variable genes to construct the k-nearest
neighbor graph using 30 nearest neighbors for downstream calcula-
tion. To estimate the variation of degradation rate γ along the differ-
entiation lineages, we divide the cells into five discrete time bins based
on precomputed Palantir pseudotime. We then estimate cell-specific
degradation rates and visualized their distribution shifts along the
hematopoiesis trajectory.

Analyses of spatial transcriptomics dataset. For the mouse coronal
hemibrain spatial dataset, we follow the monocle preprocessing
pipeline implemented in dynamo and select 7,765 cells and 2000
highly variable genes. To include spatial information during manifold,
webuild a spatial kNNgraphwith k = 8 and then take theunionwith the
kNN graph based on transcriptomic data. The combined graph is used
for downstream analyses.

Analyses of HCMV dataset. We sample the cells from donor 1 to
eliminate sample-specific variation and further filter out cells lacking
immediate early UL123 gene expression to focus on the viral infec-
tion trajectory. We adapt the monocle preprocessing recipe

implemented by dynamo and yield 1454 cells and 2000 highly
variable genes for further analyses. The number of nearest neigh-
bors were set to 30 as default. Then 1022 velocity genes are used for
downstream analyses.

We collect the pathway-related genes from MSigDB and perform
the Jacobian analyses implemented by dynamo, using viral genes as
regulators and host genes as effectors. We rank the regulation rela-
tionships based on the collections of Jacobian elements. We pick the
top 50 inhibited effectors of viral genome and select the common set
between pathway genes and all the effectors for visualization.

In silico knock-out experiments are performed via Dynamo. We
suppressed every single virus factors per a time using dyna-
mo.pd.perturbation function and calculated the change of total viral
gene expression after perturbation.

Analyses of SARS-CoV−2 dataset. We subsample the cells based on
their infection status. We adapt the monocle preprocessing pipeline
implemented in dynamo and exclude the UMI reads from lenti-virus.
We obtain 5001 infected cells and 1000 highly variable genes for
downstream analyses. We use both highly variable genes in host and
virus genes to perform PCA and calculate the nearest neighbors with
k = 30. Then 269 velocity genes are used for downstream analyses. We
use the apoptosis-related genes collected by KEGG to calculate the
apoptosis activity score of each cell using dynamo.tl.score_cells
function.

Analyses of multi-modality datasets
RNA velocity estimation for multi-modality datasets. In traditional
scRNA-seq datasets, RNA velocity methods use smoothed spliced and
unspliced RNA counts through nearest-neighbor pooling, based on the
PCA space computed from transcripts alone. However, this approach
is not suitable for multimodal scenarios, as it overlooks hidden vari-
ables by relying on a single modality. To construct a consistent mani-
fold combining information from multi-modal genomics data, we
utilized WNN as implemented in MultiVelo13. The WNN algorithm
combines low-dimensional representations fromRNAandATAComics
data. Specifically, we use PCA results from scRNA-seq data and latent
semantic indexing (LSI) from scATAC-seq as inputs. The nearest
neighbors identified by WNN were then used to calculate the first
moment, reducing noise in separate modalities and approximating a
unified manifold for GraphVelo.

Mouse skin dataset preprocessing. The preprocessed SHARE-seq
mouse skin dataset63 is adopted directly from MultiVelo data resour-
ces.All theprocedures are consistentwithMultiVelo, exceptweget the
LSI representation processed by SCARlink77. We construct the WNN
graph using 50 nearest neighbors for downstream calculation. We run
scVelo with ‘stochastic’ mode to estimate the RNA velocity based on
the WNN graph as we discussed above.

Human cortex dataset preprocessing. The preprocessed human
cerebral cortex data is adopted directly from the MultiVelo data
resources. All the procedures are consistent withMultiVelo, except we
get the LSI representation processed by SCARlink. We construct the
WNN graph using 50 nearest neighbors for downstream calculation.
We run scVelo with ‘stochastic’ mode to estimate the RNA velocity
based on the WNN graph.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the sequencing raw data are publicly accessible. The A549 dataset
can be accessed via https://figshare.com/ndownloader/files/53666738.
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The FUCCI cell cycle data can be downloaded from https://figshare.
com/ndownloader/files/53705057. The processed data used for bench-
mark are available at https://figshare.com/ndownloader/files/53667548.
The mouse gastrulation subset to erythroid lineage can be extracted
using scVelo’s CLI: scvelo.datasets.gastrulation_erythroid() or from the
original work under accession number E-MTAB-6967 of ArrayExpress.
The human bone marrow can be extracted using scVelo’s CLI: scvelo.-
datasets.bonemarrow() or through the Human Cell Atlas data portal at
https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42e5-
9437-f419a66c8a45. The mouse coronal hemibrain spatial tran-
scriptomic data can be downloaded from (https://www.dropbox.com/s/
c5tu4drxda01m0u/mousebrain_bin60.h5ad?dl=0). The original HCMV
infected moDC data can be accessed via Zenodo (https://zenodo.org/
records/10404879) and the processed data can be downloaded from
https://figshare.com/ndownloader/files/53666756. The SARS-CoV-2 data
can be accessed via https://figshare.com/ndownloader/files/53666588.
The preprocessedmouse skin development dataset can be accessed via
https://figshare.com/articles/dataset/Mouse_Hair_Follicle_RNA_Data/
22575307 and https://figshare.com/articles/dataset/Mouse_hair_follicle_
ATAC_data/22575313. The preprocessed human cortex dataset can be
downloaded from https://figshare.com/articles/dataset/Developing_
Human_Cortex_RNA_Data/22575376 and https://figshare.com/articles/
dataset/Developing_Human_Cortex_ATAC_Data/22575370. Source data
are provided with this paper.

Code availability
The source code of python package GraphVelo78 can be downloaded
from https://github.com/xing-lab-pitt/GraphVelo and is released
under the BSD 3-Clause License. Reproducibility and tutorials can
be found in https://github.com/xing-lab-pitt/GraphVelo/tree/main/
notebook and https://graphvelo.readthedocs.io/en/latest/. The spe-
cific version of the code associated with this publication is archived in
Zendo and is accessible via https://doi.org/10.5281/zenodo.15852884.
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