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The study of cortical geometry and connectivity is prevalent in human brain
research. However, these two aspects of brain structure are usually examined
separately, leaving the essential connections between the brain’s folding pat-
terns and white matter connectivity unexplored. In this study, we aim to elu-
cidate the fundamental links between cortical geometry andwhitematter tract
connectivity. We develop the concept of tract-geometry coupling (TGC) by
optimizing the alignment between tract connectivity to the cortex and mul-
tiscale cortical geometry.Weconfirm in two independent datasets that cortical
geometry reliably characterizes tract reachability, and that TGC demonstrates
high test-retest reliability and individual-specificity. Interestingly, low-
frequency TGC is more heritable and behaviorally informative. Finally, we find
that TGC can reproduce task-evoked cortical activation patterns and exhibits
non-uniform maturation during youth. Collectively, our study provides an
approach to mapping cortical geometry-connectivity coupling, highlighting
how these two aspects jointly shape the connected brain.

White matter tracts in the human brain form anatomical connections
between different regions, collectively constituting the human
connectome1,2. These tracts contribute to information integration and
activity coordination across the cerebral cortex, facilitating complex
cognitive functions3,4. However, few studies have sought to elucidate the
patterns by which white matter tracts connect different parts of the cer-
ebral cortex, i.e., the tract reachability2,5,6, represented by the probability
of a tract terminatingon the cortical surface.While themacroscale human
connectome provides a detailed map of region-to-region connectivity, it

does not fully account for the spatial andmorphological characteristics of
the regions innervated by each tract7,8. Furthermore, as posited by the
tension-based theory, mechanical tension generated by axons interacts
with cortical geometric patterning during morphogenesis9,10, implying
that white matter tracts may influence cortical geometry throughout
development. Thus, establishing a link between these two aspects is cri-
tical to understanding evolving brain patterns across the lifespan.

Cortical gyrification begins during embryonic development and
yields complex cortical geometry to maintain a large surface area
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relative to the limited cranial volume11,12, accompanied by substantial
changes in white matter13. Evidence suggests that developmental
increases in cortical gyrification are associated with disproportionate
cortical expansion relative to subcortical structures14. White matter
undergoes significant concurrent changes, including subplate
thickening15, increasing complexity of cortico-cortical fibers, and the
emergence of short association fibers around the gyri13. Recent studies
have demonstrated that cortical geometry is linked to brain functions
and behaviors16,17, and its abnormal changes may be partly explained
by axonal fibers18,19. These findings underscore the coupling between
cortical geometry and white matter tracts, implying a dynamic inter-
play that is crucial for normal brain development and function. How-
ever, the precise nature by which cortical geometry and connectivity
are coupled remains unknown, let alone how this coupling develops
over time. Thus, measures are needed to quantify the extent of this
coupling.

Therefore, we here aimed to quantify the coupling between
white matter tracts and cortical geometry in the human brain using
high-quality multimodal MRI data. To characterize white matter
tracts, we used diffusion-weighted MRI to derive the cortical pro-
jection patterns of each tract, referred to as tract reachability maps,
that represent the spatial distribution of tract endpoints on the
cortical surface. For cortical geometry, we adopted an approach
consistent with recent studies20,21, decomposing the cortical surface
into a set of geometric eigenmodes. To quantify the coupling
between tract reachability and cortical geometry, we implemented a
linear model in which the geometric eigenmodes were used to
reconstruct each tract’s reachability map. The resulting set of
reconstruction coefficients was defined as the tract-geometry cou-
pling (TGC), providing a quantitative measure of the relationship
between white matter pathways and cortical geometry. The logic of
the subsequent analyses to validate and explore the biological sig-
nificance of TGC is illustrated in Fig. 1.

In summary, we demonstrated that TGC exhibited high test-retest
reliability and strong individual specificity. We further differentiated
the contributions of high- and low-frequency eigenmodes to TGC
across tract types and heritability strength. Importantly, TGC was
shown to predict a range of individual behavioral measures, under-
scoring its biological relevance. Moreover, TGC was able to effectively
reproduce task-evoked cortical activation patterns, highlighting its
functional implications. Finally, we observed significant age-related
changes in TGC, reflecting developmental effects on the coupling
between cortical geometry and white matter tracts from childhood
through adolescence. Taken together, our study not only provides an
approach to quantify the coupling relationship between cortical geo-
metry and white matter tracts but also underscores how these two
interconnected aspects jointly shape the brain activation and indivi-
dual behavior.

Results
Linking cortical geometry and tract reachability
We here provided an overview of the construction of TGC. A
population-averaged template of the cortical surface was used to
obtain cortical eigenmodes21 (Fig. S1), which were then employed to
reconstruct the tract reachability map for each white matter tract. To
generate the tract reachability map, we first used a pre-trained deep-
learning model, TractSeg22, to delineate each white matter tract. The
reachability of these tracts to the cortical surface was then quantified
using the connectivity blueprint approach, in which tract volume was
multiplied with a gray matter surface-to-whole brain tractogram23. The
rows of resulting matrix corresponded to the cortical projection pat-
terns of white matter tracts, which is explicitly referred to as the “tract
reachability map” in the following text. Note that the superior cere-
bellar peduncle (SCP), middle cerebellar peduncle (MCP), inferior
cerebellar peduncle (ICP), and fornix (FX)were disregarded becauseof

their absence of projection to the cortex, and overall corpus callosum
(CC—all) was excluded as its seven subsections were already available.
Therefore, 36 tracts were used to construct the TGC for each hemi-
sphere (29 unilateral and 7 commissural tracts).

We calculated the TGC for each participant in two large datasets,
including the Human Connectome Project (HCP) dataset (n = 968)24

and IMAGEN dataset (n = 661)25. For each participant, the tract reach-
ability map of each tract was reconstructed using 200 decomposed
eigenmodes via a general linear model (GLM; Fig. S2), and recon-
struction accuracy was assessed by the Pearson correlation coefficient
between the empirical and reconstructed maps. We observed high
reconstruction accuracy in both datasets. The median reconstruction
accuracy for each tract across all participants consistently exceeded
0.8, indicating that the tract reachability map could be precisely
reconstructed for each tract (Fig. 2A). To further assess the significance
of these reconstructions, we generated null models by spatially
rotating the eigenmodes using two independent methods, i.e.,
BrainSMASH26 and eigenstrapping27. Across 1000 surrogate maps,
reconstruction accuracy was significantly lower than when using the
actual eigenmodes (Fig. S3). To provide an intuitive understanding of
reconstruction performance, we also included visual examples of
reconstructed tract reachability maps for four representative asso-
ciation tracts with important functional significance, the three sub-
tracts of the superior longitudinal fasciculus (SLF_I, SLF_II, SLF_III) and
the arcuate fasciculus (AF), in a representative HCP participant. In the
HCP dataset, we observed that the reconstructed tract reachability
maps of these four white matter tracts closely matched the actual
anatomical projections (Fig. 2B).

We next examined the impact of including varying numbers of
eigenmodes on the reconstruction accuracy. As expected, accuracy
increased with the number of eigenmodes, with r =0.5 reached using
the first 10 eigenmodes and r >0.7 with the first 50 eigenmodes
(Fig. S4A). The reconstruction accuracy asymptotically became stable
when reaching the first 200 eigenmodes (Fig. S4B). Therefore, we
selected the first 200 eigenmodes for the reconstruction throughout
this study.

We additionally confirmed that the reconstruction accuracy was
not affected by using the either the eigenmodes derived from the
population-averaged surface or those derived from the individual
surfaces. Accuracy remained high when using individual-specific geo-
metric eigenmodes (Fig. S5A). Meanwhile, TGC computed using indi-
vidual eigenmodes was highly similar to that computed using group-
level eigenmodes (Fig. S5B), leading us to use the latter for subsequent
analyses. Moreover, although the eigenmodes were computed sepa-
rately for each hemisphere, the reconstruction accuracy in the right
hemisphere also remained high when using 200 eigenmodes (Pearson
r >0.8 for all tracts; Fig. S6). Moreover, TGC was calculated based on
datasets balanced for gender, ensuring that analyses were performed
simultaneously on male and female participants to reduce potential
gender-related biases.

TGCexhibits high test-retest reliability and individual specificity
To explore the test-retest reliability of TGC, which guarantees the
further application of TGC, we adopted the HCP test-retest dataset
(n = 44), in which participants underwent the same scanning on sepa-
rate days. We found that TGC showed high test-retest reliability (all
r >0.96; see one example participant in Fig. 2C). That is, for each
participant, Pearson correlation coefficient between the TGC from the
two scans was higher than 0.96.

Validating the individual specificity of TGC was another impor-
tant step in further exploring its biological implication. Therefore, we
examined whether TGC was capable of identify individuals in a test-
retest scenario. Specifically, we measured the similarity between
each pair of subjects across the two scans in the HCP test-retest
dataset28. For each participant from the first scan, we computed the
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Pearson correlation coefficient between their TGC and that of every
subject in the second scan. If the coefficient for the correct subject
was greater than the maximum coefficient for all other subjects, the
identity of that subject was predicted. We found that TGC could
correctly identify all subjects (identification accuracy [IA] = 100%),
indicating its strong individual specificity (Fig. 2D, left). We repeated

the same procedure using the TGCof each tract separately and found
that all tracts performed well in individual identification, except for
four white matter tracts having IA < 95% (uncinate fasciculus [UF]:
IA = 93%, striato-fronto-orbital tract [ST_FO]: IA = 84%, corpus callo-
sum rostrum [CC_1]: IA = 82%, corpus callosum anterior midbody
[CC_4]: IA = 86%; Fig. 2D, right).

Fig. 1 | Overview of the study. A Definition and reliability test of tract-geometry
coupling (TGC). Left: We defined TGC to quantify the relationship between cortical
geometry and tract reachability. Right: TGC was shown to be stable and to capture
individual-specific traits. B Heritability and behavioral relevance of TGC. We
assessed the heritability of TGC and its behavioral predictability. C High-low fre-
quency ratio of TGC and its distribution across regions and tracts. We obtained the
high-low frequency ratio of TGC by splitting the spectrum into high and low

portions with equal signal energy based on average energy spectral density (ESD).
D Functional association of TGC.We used task activationmaps (AM) to explore the
functional relevance of TGC scores. E Developmental trajectory of TGC. Using the
HCP-D dataset, we charted developmental pattern from age 8 to 22 and validated
these trends using the IMAGENdataset, which includedparticipants atbaseline (BL)
at 14 y and follow-up (FU) at 16 y, 19 y, and 23 y. Brainmaps in (A,D) were visualized
using BrainSpace and Connectome Workbench.
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The contribution of eigenmodes to TGC is frequency-related
As the eigenmodes correspond to spatial frequencies, we wanted to
examine the different contributions of high- and low-frequency
eigenmodes. Following Preti et al.29, we decomposed the tract reach-
abilitymaps into two components: one closely coupledwith geometry,
yL, represented by low-frequency eigenmodes, and another less closely
coupled, yH, represented by high-frequency eigenmodes (Fig. S7). We
found a stronger coupling relationship in the low-frequency

eigenmodes, while a weaker relationship was observed in the high-
frequency eigenmodes (Fig. 3A, B), suggesting that high-frequency
eigenmodes may capture individual differences in the coupling
between cortical geometry and connectivity. This motivated us to
evaluate TGC heritability using twins from the HCP dataset (n = 388,
102monozygotic and92dizygotic pairs).We found that low-frequency
eigenmodes showed higher TGC heritability than high-frequency
eigenmodes (r = −0.74, p = 2e-35; Fig. 3C, left). This difference was

Fig. 2 | Characterization of TGC. A Reconstruction accuracy of tract reachability
maps for the HCP (n = 968) and IMAGEN FU3 (n = 661) datasets. For each tract, the
center line of the box plot indicates the median correlation coefficient (r) between
empirical and reconstructed reachability maps across participants. The box edges
represent the interquartile range (25th–75th percentiles), whiskers denote the data
range within 1.5×inter quartile range (IQR), and individual data points are overlaid
with the medianmarked by a central line (blue for HCP1200, pink for IMAGEN). All
tracts showed median reconstruction accuracy above 0.8. B Empirical and recon-
structed reachability maps for several example tracts. C TGC exhibits high test-
retest reliability. The similarity of TGC between two scans of the same subject was
high. One representative participant was shown here, r =0.99. D Left: TGC

successfully captured individual differences and predicted the identities of all
subjects (identification accuracy [IA] = 100%) in the HCP dataset. Points above the
diagonal indicate incorrect individual identification, while points below the diag-
onal indicate correct identification. Right: The identification accuracy based on
TGC of each tract. SLF_I superior longitudinal fasciculus I, SLF_II superior long-
itudinal fasciculus II, SLF_III superior longitudinal fasciculus III, AF arcuate fasci-
culus, UF uncinate fasciculus, ST_FO striato-fronto-orbital tract, CC_1 corpus
callosum rostrum,CC_4 corpus callosumanteriormidbody. Tract andbrainmaps in
(B) were visualized using BrainNet Viewer and Connectome Workbench, respec-
tively. Source data are provided as a Source Data file.
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also observed in the association, commissural, and projection tracts
(Fig. 3C, right). The observed higher heritability of low-frequency TGC
suggests that genetic factors have a stronger influenceon the coupling
between white matter tracts and large-scale, low-frequency geometric
patterns, while the lower heritability of high-frequency TGC may
reflect a greater influence of environmental factors, experience-

dependent plasticity, and fine-scale individual variations. In other
words, the genetic factors firstly establish the global architecture of
white matter-cortex coupling, while environmental influences gradu-
ally refine and modulate the high-frequency, fine-grained connectivity
patterns throughout development and adulthood. This dual influence
could underpin individual differences in cognitive and behavioral

Fig. 3 | Heritability and behavioral relevance of TGC. A Visualization of TGC. A
stronger coupling relationship was observed in the low-frequency eigenmodes,
while aweaker relationshipwas found in the high-frequencyeigenmodes.BTGC for
several example tracts.C Left: Heritability of TGC.Couplingbetween tracts and low-
frequency eigenmodes exhibited greater heritability than coupling with high-
frequency eigenmodes. Right: Differences in heritability between low- and high-
frequency coupling were also observed across different tract types. Pearson cor-
relation was performed between the frequency and the heritability, and the two-
tailed p-value obtained was provided. The black line represents the fitted linear
regression. The surrounding shaded band denotes the 95% confidence interval,
indicating the range in which the true regression line is expected to fall with 95%
probability. D TGC predicted the three behavior-derived components in the HCP

dataset (dissatisfaction: r =0.13, ppermutation < 0.01; cognition: r =0.24,
ppermutation < 0.01; emotion: r =0.16, ppermutation < 0.01, FDR corrected), as well as
four dysfunctional behavior measures in the IMAGEN dataset (Community
Assessment of Psychic Experiences [CAPE]: r =0.20, ppermutation < 0.01; Strengths
and Difficulties Questionnaires [SDQ]: r =0.20, ppermutation < 0.01; Fagerstrom Test
for Nicotine Dependence [FTND]: r =0.17, ppermutation < 0.01; Alcohol Use Disorders
Identification Test [AUDIT]: r =0.20, ppermutation < 0.01, FDR corrected). The two-
tailed p-values were obtained from 1,000 permutation tests by comparing the
observed correlation to the distribution of permuted values. **p <0.01.
E Contribution of TGC to behavioral predictions. Low-frequency TGC contributed
more strongly to all three behavioral components. Source data are provided as a
Source Data file.
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traits, further inspiring us to explore how TGC might predict beha-
vioral performance and the specific contributions of different eigen-
mode frequencies to this prediction.

To test whether TGC could predict behavior at the individual level
and whether predictive performance was related to eigenmode fre-
quency, we used kernel ridge regression (KRR) to predict the beha-
vioral scores in theHCPdataset. To enhanceprediction robustness and
efficiency, we first conducted principal component analysis (PCA) on
the 58 behavioral measures30, and focused on the first three principal
components, which broadly represented cognitive, emotional, and
dissatisfaction domains31. We found that the three behavioral com-
ponents could be well predicted (dissatisfaction: r = 0.13,
ppermutation < 0.01; cognition: r = 0.24, ppermutation < 0.01; emotion:
r =0.16, ppermutation < 0.01, FDR corrected; Fig. 3D, left, Fig. S8). To
provide a comprehensive assessment of the TGC’s predictive perfor-
mance,we also reportedprediction results for eachof the 58 individual
behavioral measures in Supplementary Data 1.

To investigate the contribution of different types of eigenmodes
and tracts, we calculated feature contributions using the Haufe
transformation32, resulting in a (eigenmodes × tracts) matrix. Aggre-
gating the TGC contribution across all tracts, we found that low-
frequency TGCs were the most informative for behavior prediction
(Fig. 3E). When investigating the contributing tracts, we found that
dissatisfaction was positively related to corpus callosum splenium
(CC_7), anterior thalamic radiation (ATR), and SLF_II and negatively
related to corpus callosum rostral body (CC_3), commissure anterior
(CA), and thalamo-premotor tract (T_PREM). Cognition was positively
related to CC_3, SLF_I, and corpus callosum isthmus (CC_6) and nega-
tively related to CC_4, striato-precentral tract (ST_PREC), and thalamo-
prefrontal tract (T_PREF). Emotion was positively related to corpus
callosumgenu (CC_2), SLF_I, and superior thalamic radiation (STR) and
negatively related to CA, striato-postcentral tract (ST_POSTC), and
inferior longitudinal fasciculus (ILF; Fig. S9). Taking cognition as an
example, CC_3 and SLF_I, which connect the frontal lobe, contributed
more, highlighting the critical role of the frontal lobe in cognitive
behaviors33. Additionally, the posterior parietal and visual networks
targeted by CC_6 are also known to support cognitive functions34.

We also showed that TGC could predict high-risk behaviors using
KRR on the IMAGEN data. The results again demonstrated its ability to
reflect functionally abnormal behaviors (CAPE: r = 0.20,
ppermutation < 0.01; SDQ: r =0.20, ppermutation < 0.01; FTND: r =0.17,
ppermutation < 0.01; AUDIT: r = 0.20, ppermutation < 0.01, FDR corrected;
Fig. 3D, right, Fig. S8, Supplementary Data 1) and psychopathology
symptoms (depband: r =0.13, ppermutation < 0.05; spphband: r =0.22,
ppermutation < 0.01; dcgena: r = 0.23, ppermutation < 0.01; ocdband:
r =0.19, ppermutation < 0.01; eatband: r =0.19, ppermutation < 0.01;
ptsdband: r =0.15, ppermutation < 0.05, FDR corrected; Figs. S10, S8,
Supplementary Data 1). These findings suggest that the decoupling
between white matter tracts and cortical geometry is closely linked to
functional impairments. The contributing traits to these behaviors
were shown in Figs. S11, S12.

Tract reachability was also used to predict behaviors, and its
performance was compared to that of TGC. Both TGC and tract
reachability could predict cognitive behaviors in the IMAGEN dataset,
with TGC showing better performance (Fig. S13). These results high-
light the TGC’s close functional relevance, as it acts as a bridge that
links the white matter and the cortical geometry. Notably, TGC also
exhibited longitudinal predicted ability. We found that in the IMAGEN
cohort, TGC at age 14 was able to predict the cognitive scores at ages
19 and 23. This suggests that TGC can capture the developmental
changes, serving as a foundation for cognitive maturation across
adolescence. Behaviors in the HCP and IMAGEN datasets could also be
significantly predicted using TGC in the right hemisphere (Supple-
mentary Data 1), highlighting the individual variability of TGC in the
right hemisphere and its functional associations.

A high-low frequency ratio shows functional relevance
Given the finding of a stronger coupling relationship between white
matter tracts and low-frequency eigenmodes than high-frequency
eigenmodes, we sought to provide a quantitative measure of this dif-
ference, i.e., the high-low frequency ratio. Using tract reachability
maps that were separated into two components represented by high-
and low-frequency eigenmodes (yH and yL), we calculated the ratio
between the norm of yH and yL for each tract as a measure of tract-
geometry coupling. We then calculated the high-low frequency ratio
for each tract and assessed the difference across association, com-
missural, and projection tracts. A significant difference was found
between association and projection tracts (HCP: t = 3.50, p <0.005;
IMAGEN-FU3: t = 2.92, p <0.01; Supplementary Data 2). As con-
servative fiber pathways, projection tracts, such as thalamic-cortical
projection tracts, showed stronger coupling with large-scale low-fre-
quency geometric eigenmodes. In contrast, association tracts, which
are closely linked to complex cognitive functions, exhibited a larger
influence from high-frequency eigenmodes, which showed lower her-
itability, suggesting that they are more susceptible to environmental
influences.

We averaged the high-low frequency ratio map across tracts,
resulting in an average map (Fig. 4A). We assigned this map to the
multimodal parcellation scheme35 and found that regions showing a
high high-low frequency ratio included the dorsolateral prefrontal
cortex, inferior parietal lobule, rostroventral insula, and cingulate
cortex (Fig. 4A), which are components of the multiple demand
network36 and the default mode network37. Similar results were repli-
cated in the FU3 cohort from the IMAGEN dataset (r =0.91, p = 3e-68;
Fig. 4B) and using another atlas, the Brainnetome parcellation38

(Fig. S14).
When investigating the specific white matter tracts connected to

these subregions, we found that low-ratio regionswere associatedwith
the ILF, AF, cingulum (CG), and SLF_III, while high-ratio regions were
associated with the STR, SLF_I, striato-premotor tract (ST_PREM), and
UF (Fig. 4C). As the coupling between tracts and low-frequency
eigenmodes wasmore influenced by genetic factors, we hypothesized
that individualized and local information was more prevalent in the
coupling with high-frequency eigenmodes. This might be reflected in
the functional association of the high-low frequency ratio. Functional
decoding using NeuroSynth39 showed that regions with a high ratio
were related to “intention”, “arithmetic”, “saccade”, and “belief”,
whereas regions with a low ratio were associated with “voluntary”,
“motor”, “movement”, and “sensorimotor” (Fig. 4D).

We also explored the potential biological implications of high-
low frequency ratio by estimating its relationship to various neu-
robiological brain maps40,41. The high-low frequency ratio map
demonstrated significant correlations with MEG-derived power
maps across different frequencies (rmegbeta = 0.42, pmegbeta < 0.01;
rmeggamma1 = 0.35, pmeggamma < 0.01; rmegtheta = 0.35, pmegtheta < 0.01;
rmegalpha = −0.3, pmegalpha < 0.01, FDR corrected), the second gra-
dient of functional connectivity (r = −0.27, p < 0.01, FDR corrected),
and the cerebral blood flow (CBF) map (r = 0.23, p < 0.05, FDR cor-
rected; Fig. S15, left). Additionally, we tested a total of 19 receptor
maps obtained from autoradiography and in vivo PET imaging40.
These maps include the distributions of major neurotransmitter
systems, such as dopamine and serotonin, among others, providing
a comprehensive overview of the neurochemical architecture of the
human cortex. The ratio map showed significant associations with
seven receptor maps, including MU, CB1, A4B2, H3, 5HT2a, VAChT,
and DAT (rMU_carfentanil = 0.31, pMU_carfentanil < 0.01; rCB1 = 0.29,
pCB1 < 0.01; rA4B2 = 0.28, pA4B2 < 0.01; rH3 = 0.28, pH3 < 0.01;
r5HT2a_mdl = −0.27, p5HT2a_mdl < 0.01; rVAChT = 0.26, pVAChT < 0.01;
rDAT = 0.24, pDAT < 0.05, FDR corrected; Fig. S15, right), highlighting
specific neurochemical contributions to the observed white matter-
cortical coupling patterns.
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TGC reproduces the task-evoked brain activation pattern
To more directly test the connection between TGC and the brain
functions, we next investigated whether TGC is associated with task-
evoked cortical activation maps derived from fMRI. We used task
activation maps from 47 contrasts in the HCP dataset. For each con-
trast, we correlated eachTGCwith each cortical vertex across subjects,
resulting in a correlation matrix, which was then correlated with the
activation map, yielding a correlation for each activation map. We
found that the maximum correlation between the TGC and the acti-
vation map (TGC-AM-correlation) closely resembled the activation
map itself (Figs. 5A, S16). For example, a stronger correlation was
found in the posterior part of the inferior parietal lobule, which is also
the peak activation location of the contrast map for Language Story-
Math (Fig. 5A, left). This suggests that the variation trend of TGCacross
the population corresponds to the trend of activation intensity across
the population, especially at significantly activated vertex. This
observation was further validated by calculating the relationship
between the activation value of an example vertex and the TGC across
subjects (Fig. 5B). These results indicate that the association between
TGC and the activationmap is continuously and uniformly distributed
across subjects, rather than being coincidental or driven by a few
individuals with exceptionally high TGC and activation values.

We then quantified the significance of the correlation by per-
forming multiple comparisons on the correlation matrix described
above and counting the number of vertices showing significant cor-
relation values for each TGC. The similarity between activation maps
for contrasts within the same behavioral domain was high (Fig. S17),
indicating that TGC captures functional information relevant to task
activation domains.

Development of TGC during youth
Since understanding the structural coupling between gray matter and
white matter is crucial for comprehending brain development and its
relation to cognitive functions, and TGC has shown its potential in this
regard, we further explored its relevance by delving into its develop-
mental trajectory during childhood and adolescence. We used data
from Human Connectome Project in Development (HCP-D) (n = 590)
and IMAGEN (n = 661) datasets to investigate the developmental
trajectory of TGC. The same methodology was applied to construct
TGC in both datasets. We first used cross-sectional data from the
HCP-D dataset to establish the developmental trajectory of the TGCL1-
norm value for each tract using a generalized additive model
(GAM), showing that the development of most tracts was significantly
related to age (Fig. 6A). The tracts were sorted by the rate of increase,
represented by the first derivative of the GAM (Fig. 6A, inset), and
exhibited significant differences across tract types (Mann-Whitney U
test: passociation-commissural = 5.8e-04; passociation-projection = 4.4e-05;
pcommissural-projection = 0.45; Fig. 6A, inset). This suggests that tracts with
higher L1-norm values, reflecting stronger coupling with geometry,
demonstrate greater increases with age.

Figure 6B presents six example tracts. The left column of each
subfigure illustrates the developmental trajectories derived from the
HCP-D dataset, while the right column displays the corresponding
validation using the IMAGEN longitudinal dataset. In the IMAGEN
dataset, pair t-tests were performed between each pair of time
points. The TGC of all six tracts in FU2was consistently higher than in
BL. Interestingly, tracts associated with language functions, such as
the UF, middle longitudinal fasciculus (MLF), and AF, exhibited
growth starting around age 14 and peaking around age 19.

Fig. 4 | High-low frequency ratio of TGC. A Average high-low frequency ratiomap
across tracts. Regions with higher ratios are located in the dorsolateral prefrontal
cortex, inferior parietal lobule, rostroventral insula, and cingulate cortex, which are
part of the multiple demand network (MDN) and default mode network (DMN).
B Replication using the FU3 cohort from the IMAGEN dataset (r =0.91, p = 3e-68).
Black line: linear regression fit; shaded area: 95% confidence interval, indicating the
range within which the true regression line is expected to lie with 95% probability.
The two-tailed p-value obtained was provided. C Associated tracts for cortical
regionswith high and low ratio values. The x-axis represents the top 10 regionswith

the highest and lowest ratio values, and the corresponding tracts associated with
these regions.D Functional decoding of the average high-low frequency ratiomap.
ILF inferior longitudinal fasciculus, AF arcuate fasciculus, CG cingulum, SLF_III
superior longitudinal fasciculus III, MLF middle longitudinal fasciculus, STR
superior thalamic radiation, SLF_I superior longitudinal fasciculus I, ST_PREM
striato-premotor tract, UF uncinate fasciculus. Brain maps in (A) were visualized
usingConnectomeWorkbenchand tractmaps in (C)were visualizedusingBrainNet
Viewer. Source data are provided as a Source Data file.
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Furthermore, we analyzed the age effect for each TGC and found that
most TGC exhibited significant developmental changes (Fig. S18A).
These changes were consistently observed in both the HCP-D and
IMAGEN datasets (Fig. S18B), further highlighting that TGC can cap-
ture developmental changes and reflect heterogeneity across dif-
ferent tracts.

Discussion
The present study addressed a critical yet underexplored question of
how cortical geometry and white matter tracts, two fundamental and
interconnected aspects of brain structure, are coupled. By introducing
TGC, we quantified this relationship, integrating recent advances in
cortical geometry decomposition21 and white matter tract
segmentation22,23. TGCwaswell-validated in the current study, showing
high test-retest ability and individual specificity. These results are not
influenced by the gender of the participants, as we ensured a balanced
representation of genders in all analyses. We further analyzed the
frequency-related contributions of eigenmodes to TGC, finding that
the low-frequency eigenmodes, which correspond to long-wavelength
signals in the brain21, exhibited higher contributions. Moreover, TGC
demonstrated significant predictive ability for a range of individual
behaviors, extending the conventional brain-behavior paradigm to
include the coupling between cortical geometry and white matter
tracts. Furthermore, we demonstrated that TGC well reproduced the
task-evoked brain activation patterns, indicating that the strength of
coupling was functionally relevant and potentially affected task-
specific brain dynamics. Developmental analyses further revealed
distinct age-related trajectories in TGC from childhood to adoles-
cence, underscoring the interplay between cortical geometry and
white matter organization throughout neurodevelopment. Taken
together, our findings not only introduced a robust methodological

framework for quantifying the coupling between cortical geometry
and white matter tracts but also emphasized their integrative role in
shaping brain function and behavior. By simultaneously examining
these two interconnected aspects of the brain, we provided a con-
solidated step forward in bridging the gap between cortical surface
geometry and its underlying white matter architecture.

Previous studies have focused on region-to-region connectivity
but have overlooked the influence of white matter on these regions,
which are physically embedded in three-dimensional space and man-
ifest complex geometric shapes. This gapmotivates us to consider the
mutual constraints between cortical geometry and white matter
pathways, aiding our understanding of how the brain’s architecture
gives rise to cognition and behavior3,21. A hypothesis about the for-
mation of geometric patterns in gray matter is supposed to be related
to the tension from the underlying whitematter, which also constrains
the direction and range of axonal growth9,10. This process begins dur-
ing the fetal period42 and continues to evolve through childhood and
adolescence43,44. This phenomenon could be explained by synaptic
construction, increased axonal diameter, and myelination at the
microstructural level, as indicated by physical-mechanical models,
lesion studies, and molecular experiments45,46. However, studying
associations of a single brain region has its limitations. Therefore, we
proposed to characterize the coupling relationship between tract
connectivity and cortical geometry from a global and macroscale
perspective. Tract reachability, characterized using connectivity
blueprints that help mitigate bias to some extent when fiber bundle
enters the graymatter, provides a comprehensive description of tract-
to-cortex connectivity23,47. We provided clear evidence that tract
reachability was preferentially expressed using low-frequency, smooth
spatial patterns obtained fromthe harmonic decomposition of cortical
geometry. In addition to the highly repeatable observations of this

Fig. 5 | TGC represented functional association. A The maximum correlation
between TGC and the activation map (TGC-AM-correlation) closely resembled the
actual activation pattern. For example, a stronger correlation was observed in the
posterior part of the inferior parietal lobule, also corresponds to the peak activa-
tion location in the Language Story-Math contrast map. B The activation value at a
specific vertex showed a significant correlation with TGC across subjects. The
vertex marked by the black circle in (A) was negatively correlated with TGC,

whereas the vertex marked by the black triangle in (A) was positively correlated
with TGC. REL relational, TOM theory ofmind, T_PREC thalamo-precentral tract, AF
arcuate fasciculus, ST_PREF striato-prefrontal tract. Blue/red line: linear regression
fit; shaded area: 95% confidence interval. The two-tailed p-values obtained were
provided. Brainmaps in (A) were visualized using ConnectomeWorkbench. Source
data are provided as a Source Data file.
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coupling across different cohorts, we demonstrated both stability and
uniqueness in each subject, as well as individual predictability for
cognitive and high-risk abnormal behaviors. These findings suggest
that tract-geometry coupling is a reliable indicator of the relationship
between cortical geometry and white matter connectivity.

The coupling relationship between white matter tracts and cor-
tical geometric patterns undergoes rapid changes during fetal devel-
opment, while also dynamically evolving and adjusting during
childhood and adolescence43,44. For example, in children and adoles-
cents, a significant association has been observed between the rate of
cortical thickness reduction and the rate of fractional anisotropy
increase in the local gyral regions of the frontal lobe48. Thematuration
of cortical regions is influenced by the white matter tracts, where

structurally connected areas share similar cytoarchitecture49–51, neu-
rotransmitter receptor profiles40, and exhibit coordinated develop-
ment through interregional communication and spontaneous
neuronal activity coupling52. Our results demonstrate that the coupling
between most white matter tracts and cortical geometry evolves
dynamically throughout development. White matter tracts with sig-
nificant developmental patterns show stronger coupling with cortical
geometric structures during normal development. Notably, language-
related tracts such as the AF, MLF, and UF exhibit both high coupling
values and rapid rates of increase. These tracts play a critical role in the
structural connectivity underlying several cognitive functions,
including language processing53–55. The observed stronger coupling in
these tracts likely reflects the intricate co-development of cortical

Fig. 6 | Developmental trajectory of TGC. A The HCP-D dataset was used to
calculate the developmental trajectory of the TGC L1-norm value (n = 590; age
range, 8-22). GAM results are shown for each tract. The increate rate of each tract
was calculated as the first derivative of the GAM age spline curve. Significant dif-
ferences were observed by theMann-Whitney U test between each two tract types,
with the two-tailed p-values provided in the corresponding panels (association vs.
commissural: p = 5.759e-04; commissural vs. projection: p =0.4493; association vs.
projection: p = 4.447e-05). ***p <0.001, **p <0.01, *p <0.05. B Developmental tra-
jectory of six example tracts. Left in each subfigure: Detailed developmental tra-
jectories of the top six example tracts. Shade regions indicate 95% confidence

intervals. Twoblackdotted lines denote age 14 and 19. Right: TGCL1-normvalue for
the same tracts at age 14, 19, and 23 in the IMAGEN dataset. Each dot represents an
individual, with gray lines connecting repeated measures from the same partici-
pant. Half-violin plots display the kernel density of the data distribution. Boxplots
within each violin plot show themedian (center line), interquartile range (IQR) (box
edges). Pair t-test were performedbetween each pair of ages, with t-values and two-
tailed p-values indicated. CG cingulum, UF uncinate fasciculus, MLF middle long-
itudinal fasciculus, ILF inferior longitudinal fasciculus, SLF_III superior longitudinal
fasciculus III, AF arcuate fasciculus. Source data are provided as a Source Data file.
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regions and white matter pathways essential for linguistic and execu-
tive functions. Furthermore, aberrant coupling of these tracts during
adolescence—a period of heightened brain plasticity—has been linked
to disorders such as schizophrenia and depression, which often
involve impairments in language processing, emotional regulation,
and cognitive control56–58. In our analysis, we also demonstrated sig-
nificant predictive associations between TGC and psychotic-like
symptoms, such as CAPE, cognitive impairments (SDQ), and addic-
tive behaviors. Investigating the developmental trajectories and cou-
pling relationships of these tracts provides valuable insights into their
functional significance. Understanding how these patterns deviate in
neurodevelopmental disorders could help guide interventions aimed
at reducing functional impairments and improving outcomes for
affected individuals.

From the visualization of various cortical geometric eigenmodes,
the low-frequency components showed typical anterior-posterior and
dorsal-ventral patterns, with clear separations across different brain
lobes. As frequency increased,more refined brain regions or networks,
including the insula, default mode network, and motor areas, became
increasingly distinct. Additionally, we found higher heritability in the
coupling between low-frequency eigenmodes and white matter tracts
compared to high-frequency eigenmodes. This could be explained by
morphogens that guide axons along the dorsal-ventral, rostral-caudal,
and lateral-medial axes during early development, which aligns with
the low-frequency geometric eigenmodes and contribute to the
functional arealization of the cerebral cortex in adults59. This process
further leads to varying functional significance acrossdifferent cortical
areas. In addition, higher heritability was found in projection tracts,
consistent with their conserved roles across subjects during phylo-
genesis and ontogenesis60,61. In contrast, individual differences in
cortical structure and functions were more pronounced in the high-
frequency components, which influence the connectional patterns of
association tracts2,62.

In a recent study, Pang et al. constructed a more compact and
accurate macroscopic expression of brain function based on the
geometric basis of the cerebral cortex21 and captured the fundamental
anatomical constraints of brain dynamics. White matter networks
support the realization of brain functions and promote effective and
coordinated information transmission, including both spontaneous
and evoked brain activity across regions3,63–65, while also providing a
basis for the functional dynamics of the brain through modern bio-
physical models and network control theory66–69. In this study, the
coupling between cortical geometry and tract reachability across the
entire cortex showed greater decoupling in most of the association
cortex, particularly in the multiple demand network and default mode
network, which are domain-general in cognitive operations, indicating
that high-frequency, short-range, and local geometric eigenmodes
interacted more strongly with white matter tracts than low-frequency
ones. This consistent relationship is also supported by the predict-
ability of TGC for different aspects of brain functional activations and
behaviors. This indicates that TGC could serve as a valuable reference
for clinical and functional studies, enabling the investigation of how
variations in these connections might relate to neurological and psy-
chiatric conditions, thus supporting the development of diagnostic
tools and therapeutic strategies targeting specific white matter
pathways.

Several technical and methodological limitations should be
acknowledged. The first and most direct issue is the accuracy of
using diffusion MRI to map structural connectivity. Gyral bias caused
by current reconstruction and tractography methods may lead to
false positive results, especially when encountering crossing
fibers70–72. In addition, dMRI can only evaluate the microstructure of
white matter indirectly and is limited in its ability to describe intra-
axial characteristics, especially at lower diffusionweights. Thismakes
it difficult to interpret specific indicators related to development as

precise microstructural events73,74. In our current work, we quanti-
tatively analyzed the coupling relationship between cortical geo-
metric patterns and white matter tract reachability in two adult brain
datasets. However, what is evenmore interesting is how this coupling
relationship is formed and evolves during development and evolu-
tion. Previous studies have shown that patients with neurodevelop-
mental disorders exhibit abnormalities in cortical maturation and
whitematter connectivity75,76. In the future, more attention should be
given to studying how this coupling affects these atypical
populations.

Methods
Datasets used in present study are open sources and have been
approved by their local research ethics committees. Informed consent
has been signedby all participants. The current research complieswith
all relevant ethical regulations as set by the Biomedical Research Ethics
Review Committee, Institute of Automation, Chinese Academy of
Sciences (study number IA21-2402-020416).

Data acquisition
HCP dataset. We used a publicly available dataset containing
968 subjects (459 males; mean age, 28.70 ± 3.71; age range, 22–35)
provided by the Human Connectome Project (HCP) dataset24 (http://
www.humanconnectome.org/). All the scans and data from the indi-
viduals included in the study had passed the HCP quality control and
assurance standards.

The scanning procedures and acquisition parameters were
detailed in previous publications77. In brief, T1w images were acquired
with a 3DMPRAGE sequence on a Siemens 3 T Skyra scanner equipped
with a 32-channel head coil with the following parameters: TR= 2400
ms, TE = 2.14ms, flip angle = 8°, FOV = 224 × 320mm2, voxel size =
0.7mm isotropic. Diffusion data were acquired using single-shot 2D
spin-echo multiband echo planar imaging on a Siemens 3 Tesla Skyra
system (TR = 5520ms, TE = 89.5ms, flip angle = 78°, FOV= 210 × 180
mm). These consisted of three shells (b-values = 1000, 2000, and
3000 s/mm2), with 90 diffusion directions isotropically distributed
among each shell and six b =0 acquisitions within each shell, with a
spatial resolution of 1.25mm isotropic voxels.

IMAGEN dataset. We also included the IMAGEN dataset in our
analysis25. IMAGEN is a large-scale longitudinal neuroimaging-genetics
cohort study designed to understand the biological basis of individual
variability in psychological and behavioral traits and their relationship
to common psychiatric disorders. The participants were recruited
from schools in France, the UK, Ireland, and Germany. MRI data were
acquired at eight IMAGEN assessment sites with 3 TMRI scanners from
differentmanufacturers (Siemens, Philips, GE Healthcare, Bruker). The
study involved a thorough neuropsychological, behavioral, clinical,
and environmental assessment of each participant. The participants
also underwent a biological characterization that included the collec-
tion of T1-weighted structural MRI and diffusion MRI data. A more
detailed description can be found in the standard operating proce-
dures for the IMAGEN project (https://imagen-europe.com/resources/
standard-operating-procedures/).

In this investigation, we used T1-weighted structural MRI data,
diffusion MRI data, and behavior data from ages 14 (baseline), 19
(follow-up2), and 23 (follow-up3). A total of 661 participants (304
males; mean age, 14.43 ± 0.39 in baseline, 18.97 ± 0.68 in follow-up2,
22.46 ±0.62 in follow-up3) with complete neuroimage and demo-
graphic data (including age, gender, handedness, and acquisition site)
were included. The scanning variables were specifically chosen to be
compatible with all the scanners. Diffusion imaging protocols were
specifically harmonized across sites and scanners for the IMAGEN
study, while structural scans were based on the protocols developed
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (https://
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adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-
scanner-protocols/), which are optimized to provide very similar
results despite differing scanner capabilities and thus differing acqui-
sition parameters.

T1w scans were acquired with a gradient-echo MPRAGE sequence
(1.1mm slice thickness, TR = 2300ms, TE = 2.8ms). Diffusion images
were acquired using an EPI sequence adapted for tensor measure-
ments and tractography analysis with the following parameters: TE =
104ms, matrix = 128 × 128, FOV = 307 × 307mm, voxel size = 2.4mm
isotropic. The scanning included 32 diffusion directions with b-
value = 1300 s/mm² along with 4 b =0 s/mm² images. Where available,
a peripherally gated sequence was used; otherwise, TR was set to 15 s,
approximately matching the effective TR of the gated scans.

HCP-D dataset. The HCP-D dataset is a cross-sectional dataset span-
ning ages 5–22, collected by the Human Connectome Project in
Development (HCP-D)78. This dataset was selected for its broad age
range, making it highly suitable for studying developmental patterns.
Demographic, cognitive, and neuroimaging data from653participants
were obtained from the NIMH Data Archive (NDA) Lifespan HCP-D
release 2.0. After applying several exclusion criteria79, 590 participants
with complete MRI data and without anatomical abnormalities (273
males; age range, 8.1–21.9) were included in the analysis.

MRI data were collected across four acquisition sites using iden-
tical protocols on 3 T SIEMENS Prisma scannerswith a 32-channel head
coil. The 3D T1-weighted images were acquired at a resolution of
0.8mm isotropic using a MPRAGE sequence. Two sessions of dMRI
scanning were conducted at 1.5mm isotropic resolution. These ses-
sions employed opposite phase-encoding directions to correct for EPI-
induced distortions. Each session included 185 diffusion directions
with two b-values (1500 and 3000 s/mm²) and 14 b = 0 s/mm² images.
Additional details on HCP-D acquisition protocol can be found in
previous publications80.

According to the SAGER (Sex and Gender Equity in Research)
guidelines81, we ensured gender balance in all the three datasets used
in this study were balanced in terms of gender, with a well-matched
number of male and female participants.

Image preprocessing
HCP dataset. The human T1w structural data had been preprocessed
following the HCP’s minimal preprocessing pipeline77. In brief, the
pipeline included imaging alignment to standard volume space using
FSL82, automatic anatomical surface reconstruction using FreeSurfer83,
and registration to a group average surface template space using the
multimodal surface matching (MSM) algorithm84. Volume data were
registered to the Montreal Neurological Institute (MNI) standard
space, and surface data were transformed into the surface template
space (fs_LR).

Diffusion images were processed using FDT (FMRIB’s Diffusion
Toolbox) of FSL82. The main steps included normalization of the b0
image intensity across runs and correction for EPI susceptibility, eddy-
current-induced distortions, gradient-nonlinearities, and subject
motion. DTIFIT was then used to fit a diffusion tensor model. The
probability distributions of the fiber orientation distribution were
estimated using BEDPOSTX85.

Next, skull-stripped T1-weighted images for each subject were co-
registered to the subject’s b0 images using FSL’s FLIRT algorithm.
Then, nonlinear transformations between the T1w image and the MNI
structural templatewereobtainedusing FSL’s FNIRT. By concatenating
these transformations, we derived bi-directional transformations
between the diffusion and MNI spaces.

IMAGEN dataset. For the IMAGEN dataset, T1-weighted images were
processed using the HCP’s minimal preprocessing pipeline. This
included alignment to standard volume space using FSL, automatic

anatomical surface reconstruction using FreeSurfer, and registration
to a group average surface template space. Volume data were regis-
tered to the MNI standard space, and surface data were transformed
into the surface template space (fs_LR).

Diffusion MRI was also processed using FDT. The pipeline began
with normalizing the b0 intensity, followed by estimating the EPI dis-
tortion, eddy current distortions, and subject head motion into a
Gaussian process predictor to allow for correction. Then the b0 image
was registered to the T1-weighted image using boundary-based regis-
tration. Finally, the diffusion data were registered to the native struc-
tural space and masked to the appropriate size. In an additional step,
FSL’s BEDPOSTX85 was applied to estimate fiber orientation uncer-
tainty for up to three possibledirections per voxel, as done for theHCP
dataset. Transformations between diffusion and standard spaces were
conducted in the same manner as for the HCP dataset.

HCP-D dataset. Minimally processed T1-weighted images were
acquired, which had been processed using the HCP’s minimal pre-
processing pipeline adapted for children data77. Diffusion data pre-
processing began with b0 intensity normalization, followed by
estimation of EPI distortion, eddy current distortions, and head
motion, again modeled using a Gaussian process predictor for cor-
rection. The b0 image was registered to the T1w image using
boundary-based registration. Diffusion data were then registered to
native structural space andmasked to the appropriate size. As with the
other datasets, BEDPOSTX was applied to estimate fiber orientation
uncertainty for up to three possible directions per voxel85. Transfor-
mations between diffusion and standard spaces were conducted in the
same manner as for the HCP dataset.

Construction of tract-geometry coupling
Cortical geometric eigenmodes. We followed the procedure from a
previous study to obtain the cortical geometric eigenmodes21. The
spatial aspect of brain structure satisfies the Laplacian eigenvalue
problem, also known as the Helmholtz equation, defined as,
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We derived the geometric eigenmodes of the cortical surface by

solving the eigen-decomposition problem ΔU =UΛ, where U is com-
posed of eigenvectors ui and the corresponding eigenvalue λi. Speci-
fically, we used a triangular surface mesh representation of the gray-
white matter interface cortical surface, comprising 32,492 vertices in
each hemisphere. For the HCP analysis, we used the published
fs_LR_32k surface template (https://github.com/ThomasYeoLab/CBIG/
tree/master/data/templates/surface/fs_LR_32k). For the IMAGEN ana-
lysis, templates were generated by averaging the reconstructed sur-
faces of all subjects in FU3.

Connectivity blueprints. To calculate the connectivity blueprints for
each subject, we performed probabilistic tractography using FSL’s
probtrackx286 accelerated via GPUs87. Specifically, the white surface
was set as the seed region for tracking to the rest of the brain, with the
ventricles removed and down-sampled to 3mm resolution. The pial
surface was used as a stopmask to prevent streamlined from crossing
sulci. Each vertex was sampled 5000 times (5000 trackings) based on
the orientation probability model for each voxel, with a curvature
threshold of 0.2, a step length of 0.5mm, and a number of steps of
3,200. This resulted in a (whole-surface vertices) × (whole-brain voxels)
matrix.
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We utilized probabilistic tractography to quantify the tract-to-
cortex patterns, i.e., the tract reachability for each tract segmented by
TractSeg22. This approach accounted for the inherent uncertainty in
measuring and mapping white matter tracts, providing a more com-
prehensive and accurate representation of the brain’s structural con-
nectivity. Specifically, we reconstructed 72 tracts using a pre-trained
deep-learning model, TractSeg22, and down-sampled the resulting
tract masks to 3mm resolution, yielding a (tracts) × (whole-brain
voxels) matrix. The connectivity blueprints were then generated by
multiplying this matrix with the vertex-wise connectivity matrix, fol-
lowed by normalization23. The columns of the resulting (tracts) ×
(whole-surface vertices) matrix showed the connectivity distribution
pattern of each cortical vertex, while the rows revealed the cortical
projection patterns of the tracts, i.e., the tract reachability maps. Note
that the superior cerebellar peduncle (SCP), middle cerebellar ped-
uncle (MCP), inferior cerebellar peduncle (ICP), and fornix (FX) were
excluded from further analysis due to the absence of cortical projec-
tions. Additionally, the overall corpus callosum (CC–all) was excluded
because its 7 subsections were already available.

Construction of tract-geometry coupling (TGC). We used the geo-
metric eigenmodes to decompose the reachabilitymaps for the tracts.
The orthogonal eigenmodes form a complete basis set, with the cor-
responding eigenvalues ordered according to the spatial frequency of
each mode. For each subject, the reachability map of a tract was
reconstructed as a weighted sum of geometric eigenmodes,

y=
XN

i= 1

aiui ð2Þ

whereai is the amplitude of eigenmode i, ui is the i
th eigenmode, andN

is the number of eigenmodes used. The tract-geometry coupling (TGC)
was then defined as TGC : = <a1,a2, . . . ,aN > . We used N = 200
eigenmodes derived from the Helmholtz equation in the current
analyses. We used the obtained amplitudes to reconstruct each tract’s
reachability map and quantified reconstruction accuracy by comput-
ing the correlation between empirical and reconstructed data.

Generate surrogatemaps for eigenmodes. We used two approaches
to randomize the geometric eigenmodes and reconstruct tract
reachabilitymapsusing surrogate data.We shuffled the eigenmodes to
generate 1000 surrogate maps using BrainSMASH26 and
eigenstrapping27, both of which preserve intrinsic spatial autocorrela-
tion. We then compared the reconstruction accuracy between the
actual and surrogate eigenmodes to test whether the empirical TGC
was significantly better than expected by chance.

Characterization of TGC
Individual identification. To explore whether TGC is generally stable
across subjects, we calculated the correlation coefficient of TGC
between two scans of the same subject in the HCP test-retest dataset, a
cohort that underwent two scans over several days (n = 44, 12 males;
mean age, 30.35 ± 3.76; age range, 22–35).

Moreover, we investigated whether TGC could capture individual
differences between subjects28. First, a databasewas created consisting
of all individual TGC from the second scan,

D= X 1
2,X

2
2, . . . ,X

i
2, . . . ,X

N
2

h i
, where Xi

2 represents the TGC of subject i,

and N denotes the number of subjects. To identify the current target

matrix Xi
1, similarity was computed between it and all matrices in D,

and the predicted identity was the one with the maximum similarity
score. Similarity was defined as the Pearson correlation between the
target and database matrices. This procedure was also repeated
separately for the TGC of each tract.

Definition of high- and low-frequency eigenmodes. Following Preti
et al.29, we implemented graph signal filtering to decompose the tract
reachability maps into two components: one that was well coupled
with geometry (i.e., represented by low-frequency eigenmodes) and
one that was less coupled (i.e., high-frequency eigenmodes). The cut-
off frequency C was selected by splitting the spectrum into two por-
tions of equal energy (median-split) based on the average energy
spectral density. The matrix Ulow contains the first C eigenmodes
(columns of U) complemented with N-C zero columns. In contrast, the
matrix Uhigh contains the first C zero columns followed by the
remaining N-C eigenmodes. The filtered patterns were obtained using
the following equations:

yL =UlowUTy

yH =UhighUTy
ð3Þ

Heritability of the TGC. We used APACE to evaluate the heritability of
the TGC88, i.e., the proportion of phenotypic variance attributable to
genetic factors. We fitted ACE models by partitioning the phenotypic
variance into three components: additive genetic effects (A), common
or shared environmental factors (C), andunique environmental factors
plus measurement error (E). Heritability (h2) reflects the proportion of
phenotypic variance (σ2

p) accounted for by additive genetic variance
(σ2

g), i.e., h
2 = σ

2

g=σ
2
p. Phenotypes showing stronger covariances among

genetically more similar individuals have higher heritability.
We selected 388 twins from the HCP dataset (102 monozygotic

and 92 dizygotic pairs; mean age, 29.96 ± 2.96; age range, 22−35) and
calculated the heritability of each TGC across subjects. As the TGC is
represented as a matrix of dimensions (tract × eigenmode), we com-
puted heritability estimates for each element of this matrix, repre-
senting the coupling strength between individual white matter tracts
and cortical geometric eigenmodes. The heritability of each eigen-
mode was obtained by averaging heritability values across all tracts.
We also assessed heritability between low- and high-frequency eigen-
modes in association, commissural, and projection tracts.

Behavioral data of HCP. We tested whether TGC could predict
behavior at the individual level. A total of 58behavioral scores from the
HCP were considered. Since many scores were correlated, we per-
formed a principal component analysis, consistent with a previous
study31, to derive components explaining different behavioral aspects.
The top three components explaining themost variance were retained
and interpreted asbeing related to (1) cognition, (2) life dissatisfaction,
and (3) emotional recognition.

Behavioral data of IMAGEN. We included four measures of dysfunc-
tional behaviors and sixmeasures of psychopathology symptoms from
the IMAGEN dataset (FU3). The four dysfunctional behaviors included
two psychiatric symptom scales (Community Assessment of Psychic
Experiences [CAPE], Strengths and Difficulties Questionnaires [SDQ])
and 2 addictive behavior measures (the Fagerstrom Test for Nicotine
Dependence [FTND], the Alcohol Use Disorders Identification Test
[AUDIT]). The primary questions of interest related to lifetime alcohol
use and cigarette consumption.

CAPE is a self-report tool used to measure subclinical psychosis
phenotypes with good reliability and validity89. It captures both
positive psychotic experiences and attenuated negative symptoms.
Here we used the Total Score CAPE, which is the sum of Positive
Dimension Frequency Score, Positive Dimension Distress Score,
Depressive Dimension Frequency Score, Depressive Dimension Distress
Score, Negative Dimension Frequency Score, and Negative Dimension
Distress Score. SDQ is a reliable and valid measure of emotional and
behavioral symptoms in youth. It assesses five dimensions of youth
pro-social and antisocial behaviors: emotional symptoms, conduct
problems, hyperactivity/inattention, peer relationship problems, and
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prosocial behavior90. Here we used sebdtot, which represents the
total difficulties score.

For the addictive behavior, we used the FTND and the AUDIT
score. The FTND is used to assess nicotine dependence and smoking
frequency91. Here we used ftnd_sum, which is the sum of ftnd1 to ftnd6.
Higher scores indicate that withdrawal symptoms from quitting
tobacco are likely to be stronger. The AUDIT was developed and vali-
dated by the World Health Organization to assist with the brief
assessment of alcohol use disorders and was specifically designed for
international use. Here we used the sum of the Frequency and Hazar-
dous Alcohol Use, Dependence Symptoms and Harmful Alcohol Use.

In addition, six psychopathology symptoms in the IMAGEN data-
set were included: depression (depband), specific fear (spphband),
generalised anxiety (dcgena), obessive compulsive disorder (ocd-
band), eating disorder (eatband), and exceptionally stressful event
(ptsdband).

Behavior prediction models. We used kernel ridge regression (KRR)
to predict the three behavioral components from the HCP dataset and
the IMAGEN behavioral measures, as KRR has demonstrated strong
behavioral prediction performance31. An L2-regularization term was
used to prevent overfitting.

TGCwasused as the independent feature in the regressionmodel.
We performed 10-fold nested cross-validation for each behavior
measure. For each behavior measure, the KRR parameters were esti-
mated from the nine training folds, and the best L2-regularization
parameter was selected. This process was repeated across 60 random
replications of 10-fold cross-validation to reduce the sensitivity asso-
ciated with any single partitioning of the data.

Age and gender were regressed out from the behavioral scores
within the training folds, and the resulting coefficients were applied to
the test fold. Model accuracy was defined as the Pearson correlation
coefficient between the predicted and actual behavioral scores in each
test fold. Final performance for each behavioral measure was com-
puted by averaging these correlations across folds and replications. A
total of 1,000 permutation tests were conducted to assess statistical
significance.

Tract reachability was also used as an alternative feature set for
behavior prediction, and its performance was compared to that of
TGC. Notably, for a fairer comparison between the tract reachability
maps and TGC, we used the resulting 200 components for the
prediction, which is the same number of eigenmodes used to
construct TGC.

Model interpretation. To interpret feature contributions for each
behavioral component, we applied the Haufe transformation32. Briefly,
for each model, the covariance between each input feature and the
predicted behavior score was computed across subjects. A positive
feature importance score indicates that higher feature values are
associated with higher predicted behavioral scores.

The result was a 7,200-length feature importance vector, which
was reshaped into a 200 × 36 matrix (200 eigenmodes × 36 tracts). To
quantify the contribution of white matter tracts and geometric
eigenmodes,wecalculated the L2normof theTGCcontribution across
all eigenmodes or all tracts, resulting in an aggregate contribution
score for each tract and each eigenmode. This approach enabled us to
rank the tracts based on their influence on behavioral prediction,
thereby clarifying the roles of different fiber bundles.

High-low frequency ratio of TGC
High-low frequency ratio. As described above, we decomposed the
tract reachability maps into two components, yL and yH, which were
well coupled with geometry (i.e., represented by low-frequency
eigenmodes) and were less coupled (i.e., high-frequency eigen-
modes), respectively.

As a measure of the tract-geometry coupling for a specific tract,
we defined the high-low frequency ratio as the ratio between the
norms of yH and yL across the vertices where the white matter tract
reached the cortical surface. A high-low frequency ratio map was
generated for each tract, and an average map was obtained by aver-
aging these maps across tracts.

Functional decoding of the high-low frequency ratio map. We
projected meta-analytical task-based activation maps onto the
average high-low frequency ratio map to perform functional
decoding. Here, we chose 590 terms related to specific cognitive
processes that had been selected in previous publications92. The
activation maps for the 590 cognitive terms were downloaded from
the NeuroSynth database39 (https://neurosynth.org/). We generated
20 binarized masks at five-percentile increments of the high-low
frequency ratio map. Each of these 20 maps, ranging from 0–5% to
95–100%, was used as inputs to the subsequent meta-analysis. Each
function term had a mean activation z-score per bin. The terms
included in the visualization were those that had the highest five
z-scores in each bin. A significance threshold of z > 0.5 was added as
a visualization constraint.

Comparison to neurobiological brain maps. To explore the poten-
tial biological implications of TGC, we analyzed the relationship
between the average high-low frequency ratio map and various
brain maps from neuromaps41. Specifically, we analyzed (i) MEG-
derived power maps across canonical frequency bands (theta,
alpha, beta, and gamma), reflecting the regional distribution of
oscillatory power in resting-state conditions; (ii) the principal
functional connectivity (FC) gradient, representing a macroscale
axis of cortical organization; and (iii) cortical cerebral blood flow
(CBF) map, capturing resting-state perfusion across the cortical
mantle.

To examine the neurochemical basis of TGC, we analyzed 19
neurotransmitter receptor maps40. These maps include auto-
radiography and in vivo PET imaging data, covering key neuro-
transmitter systems such as dopamine (D1, D2), serotonin (5HT1a,
5HT1b, 5HT2a, 5HT4, 5HT6), acetylcholine (M1, M2, VAChT, A4B2),
glutamate (mGluR5, NMDA), GABA (GABAa, GABAaBZ), histamine
(H3), cannabinoid (CB1), opioid (MU), and dopamine transporter
(DAT). All the maps were obtained in their original coordinate system,
so we converted them all to fsaverage_LR32k space.

Spin tests (10,000 times)were used to assess the correspondence
between brain maps for the comparisons93. To account for multiple
comparisons across the various brainmaps tested, we applied the false
discovery rate (FDR) correction to the spin-test derived p-values.

Functional associations of TGC
HCP task activation data. We used the task fMRI data from the HCP
dataset, projected into 2mm standard CIFTI grayordinates space.
Task data included 86 contrasts from seven task domains94: EMO-
TION, GAMBLING, LANGUAGE, MOTOR, RELATIONAL, SOCIAL, and
WORKING MEMORY (WM). Paired negative contrasts were excluded
due to redundancy in regressionmodeling95, resulting in 47 contrasts
used for further analysis. The z-statistic was used to assess functional
activations.

Correlate activation map with TGC. To explore the relationship
between task activation and TGC, we first correlated each TGC with
each cortical vertex across subjects. Significant associations were
defined as those with p < 0.05, corrected for multiple comparisons
using FDR. The number of significant vertices was then used to
represent the strength of association between each TGC and the
activationmap. We also computed the correlation between the above-
mentioned uncorrected correlation matrix and the activation map.
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TGC with higher correlation values were interpreted as having a
stronger association with the activation map.

Developmental trajectory of TGC
Two developmental datasets were used in the investigation of devel-
opment of TGC, i.e., theHCP-Ddataset (n = 590; age range, 8–22 y) and
the IMAGEN dataset (n = 661; age range, 14–23 y). Tract reachability
mapswere derived as previously described. For each subject and tract,
the L1-norm value of the TGC was calculated to quantify the total
coupling strength with cortical geometry.

We used generalized additive models (GAMs) to assess the
developmental trajectories of TGC L1-norm values from age 8 to 22,
allowing for both linear and nonlinear effects of age. Statistical ana-
lyseswere conducted in R 4.1.0, withGAMsbeing fitted using themgcv
package96. The GAM model included TGC L1-norm as the dependent
variable, age as a smooth term, and gender and site as covariates,

TGC � s Ageð Þ+ Sex + Site ð4Þ

To visualize developmental trajectories of tracts, wepredicted the
model fits at 1000 age points evenly sampled across the age span. The
GAM-fitting process generated smooth developmental curves, illus-
trating developmental changes in TGC for each tract. Age effects (ΔR2)
were assessed by comparing the R2 values of the full model, which
included the age smooth term,with a reducedmodel that excluded the
age smooth term. Bonferroni correction was applied to all GAM
models to adjust for multiple comparisons.

Thefirst derivative of eachGAMage splinewas computed, and the
average derivative over adolescence (8−22 years) was used as the
increase rate of each tract. Increase rates were compared across tract
types using the Mann-Whitney U test. To verify findings, the same
analysis was replicated using the IMAGEN dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
HCP data are available at https://db.humanconnectome.org/. IMA-
GEN data are available at https://imagen2.cea.fr/. HCP-D data are
available at https://www.humanconnectome.org/study/hcp-lifespan-
development/data-releases. The activated maps of the cognitive
terms can be downloaded from the NeuroSynth database (https://
neurosynth.org/). Source data are provided with this paper.

Code availability
The HCP-Pipeline can be found at https://github.com/Washington-
University/HCPpipelines. The neuroimaging preprocessing software
used for the other datasets is freely available (FreeSurfer v7.3.2, http://
surfer.nmr.mgh.harvard.edu/ and FSL v6.0.7, https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki). The brain maps were presented using BrainSpace
(https://brainspace.readthedocs.io/) and Connectome Workbench
v1.5.0 (https://www.humanconnectome.org/software/connectome-
workbench/). The tracts were presented using BrainNet Viewer v1.7
(https://www.nitrc.org/projects/bnv/). Generalized additive models
(GAM) were fit using mgcv package in R (version 4.1.0). The code to
generate the results in this work is available at https://github.com/
FANLabCASIA/D_TGC_tract-geometry-coupling.git.
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