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Guanidine aptamers are present in
vertebrate RNAs associated with calcium
signaling and neuromuscular function

Kumari Kavita 1, Aya Narunsky 1, Jessica J. Mohsen 2,3, Isha Mahadeshwar4,
Michael G. Mohsen 1, Yu-Shin Chang 1 & Ronald R. Breaker 1,4

Guanidine is a protein denaturant that is a widely used constituent in explo-
sives, plastics, and resins. Its effects on muscle contraction were initially
reported in 1876, which eventually led to the use of guanidine as a treatment
for certain ataxia symptoms such as those caused by Lambert-Eaton disease.
However, itsmechanisms of therapeutic action remained unknown. Guanidine
was recently found to be a widespread natural metabolite through the dis-
covery of four bacterial riboswitch classes that selectively recognize this
compound. Here, we report the discovery and biochemical validation of ver-
tebrate members of guanidine-I and -II riboswitch aptamer classes that are
associated with numerous genes relevant to neuromuscular function, mostly
involved inCa2+ transport or signaling. Thesefindings suggest that guanidine is
a widely used signaling molecule that serves as an additional layer of regula-
tion of genes relevant to neuromuscular disorders.

Guanidine, or more specifically its protonated derivative guanidinium
(CH6N3

+; pKa = 13.6)1, was recognized as a widespread, natural meta-
bolite through the discovery2–6 of four distinct riboswitch classes in
bacteria. These structured RNA devices selectively sense guanidine
and regulate genes relevant to its metabolism and transport7–10. The
ligand-binding aptamer domains for these riboswitch classes, named
guanidine-I2,3, -II3, -III4, and IV5,6, form distinct binding pockets, and
crystallographic data11–14 have shown that representatives from gua-
nidine-I, -II, and -III use hydrogen bonding and cation-π interactions to
selectively recognize guanidine. Other commonbiologicalmetabolites
that carry a guanidinium moiety (e.g., arginine) are expected to be
strongly rejected, as are other synthetic analogs2–6. These findings
support the conclusion that many bacteria are naturally exposed to
guanidine and must make gene expression changes to adapt to its
presence.

Because guanidine riboswitches are associated with the messen-
ger RNAs (mRNAs) of protein-coding genes, an accurate list of bac-
terial proteins relevant to guanidine biology can be generated. For
example, genes commonly associated with guanidine-sensing

riboswitches and previously annotated as encoding urea carboxylase
enzymes have proven instead to code for guanidine carboxylases2.
Similarly, some associated genes generally annotated as small multi-
drug resistance (SMR) transporters have proven to be selective
transporters of guanidine2,15,16. These initialfindings inspired additional
studies revealing the extensive involvement of guanidine in various
biological processes. For example, some plant species produce large
amounts of guanidine17, and many bacterial species manipulate its
cellular concentration2 or otherwise exploit guanidine as a source of
fixed nitrogen10,18,19. Also, the location of guanidine riboswitches
upstream of a previously unknown gene class enabled researchers to
identify the associated gene products as nickel-dependent guanidine
hydrolases20,21.

Even though guanidine is known to be made by certain bacterial
and plant enzymes17,22–26, there have been no previous reports that it is
naturally produced as a metabolite in any animal species. However,
guanidine has been known since 1876 to affect muscle function27–30.
Furthermore, guanidine has been used31,32 as a therapeutic agent in
humans for the treatment of Lambert-Eaton myasthenic syndrome, a
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neuromuscular disorder wherein nerve cells fail to signal muscle
movement33. This disorder is caused by an autoimmune response
against divalent calcium (Ca2+) transporters. Similarly, guanidine can
help overcome the effects of the paralytic neurotoxin curare29 and
botulism34, and has been examined for treatment of other neuromus-
cular disorders35–37. These previously reported effects of guanidine in
humans and other animals have long hinted that vertebrates carry
either natural or fortuitous binding sites for guanidine, or perhaps for
one or more of its metabolic derivatives.

In the present study, we use computational methods based on
comparative nucleotide sequence analysis38,39 to search eukaryotic
genomes for RNA domains that closely correspond to any of the four
guanidine riboswitch classes from bacteria2–6. Dozens of RNA domains
are uncovered in vertebrates with sequence and structural features
similar to the consensus models of either guanidine-I or guanidine-II
riboswitch aptamers from bacteria. These bioinformatic hits are often
present, either in sense or antisense orientations, in the noncoding
portions ofmRNAs for genes relevant to Ca2+ homeostasis/signaling or
to neuromuscular function. Given the known relationship between
guanidine exposure and neuromuscular function, we conclude that
these vertebrate RNA domains likely represent components of guani-
dine riboswitches.

To assess the hypothesis that vertebrates make extensive use of
guanidine riboswitches, we conduct assays to evaluate the ligand-
binding functions of representative guanidine-II riboswitch candi-
dates. Although some of these RNAs have unusual sequence or struc-
tural features compared to their bacterial counterparts, vertebrate
guanidine-II candidates exhibit robust and selective binding to guani-
dine. In addition, a vertebrate proteinwhosemRNA is associatedwith a
guanidine-II aptamer alters guanidine concentration when expressed
in bacterial cells. Finally, the list of gene associations reveals a complex
network of proteins that appear to be integrally involved in Ca2+ sig-
naling, neuromuscular function, and, in rare instances, nitric oxide
production. These and other findings support the hypothesis that
many vertebrate species naturally make productive use of guanidine,
either directly or indirectly, to affect Ca2+ biology and neuromuscular
activities. Our findings also support the long-standing hypothesis that
animals use metabolite-binding riboswitches to regulate the expres-
sion of genes. Thus, riboswitchmechanisms formolecular sensing and
gene control are likely to be far more widespread among eukaryotic
species than is currently known.

Results
Guanidine-II riboswitch aptamer candidates in vertebrates
More than 60 distinct riboswitch classes from bacteria have been
experimentally validated40–42, but only riboswitches for the enzyme
cofactor thiamin pyrophosphate (TPP) have been convincingly

demonstrated to exist in eukaryotes43,44 - primarily in fungi45–48 and
plants49–51. Although claims of additional eukaryotic classes have been
made, reasons why these reports are likely to be incorrect have been
described elsewhere42. Various technical challenges have hampered
past efforts to discover and confirm examples of riboswitches in ver-
tebrates. For example, eukaryotic genomes are orders of magnitude
larger than bacterial genomes, which makes it more difficult to use
biochemical, genetic, or computational approaches to find previously
undiscovered riboswitch classes in these species.

A powerful approach to uncovering eukaryotic riboswitch candi-
dates involves the use of computational algorithms52 to identify mat-
ches to (or close variants53,54 of) the consensus sequences and
structural models for known bacterial riboswitch aptamer classes.
Searching for additional representatives of a known class is less com-
putationally demanding than searching for members of a previously
undiscovered RNA aptamer architecture. In addition, the process of
assessing the validity of eukaryotic riboswitch candidates can benefit
fromexisting knowledge about the structure and functionofmembers
of the original bacterial riboswitch class. In response to the expanding
understanding of the roles of guanidine in biology2–26 and recognizing
the inherent utility of computational searches for riboswitch repre-
sentatives based on comparative sequence analysis algorithms52–54, we
conducted searches of eukaryotic genomes for close matches to the
four classes of bacterial guanidine riboswitches2–6.

We readily identified several strong matches to the bacterial
guanidine-II aptamer3 consensus (Fig. 1a) (previously called mini-ykkC
motif55) associatedwith the carbonic anhydrase 8 (CA8) gene of several
species of vertebrates, including elephants (Fig. 1b), parrots, and cer-
tain fish species (Supplementary Fig. 1). Mutations in the human CA8
gene (see below for further discussion regarding CA8 proteins) are
known to cause spinocerebellar ataxia56–58, which is a neuromuscular
disorder that causes a loss of balance, coordination, and muscle con-
trol. Most of these aptamer candidates reside in a region that corre-
sponds to an intron, often in an antisense orientation, of the CA8
mRNA. Candidates in other species were also observed in this same
region that carry imperfections compared to the bacterial consensus
model or that lack one of the two hairpins characteristic of bacterial
guanidine-II riboswitch aptamers.

After conducting our search, we noticed that some of these same
hits are also present in a list of candidate guanidine-II aptamers in the
Rfam database of RNA sequence families59. Over 100 examples are
listed that range throughout the eukaryotic domain of life. Many of
these additional candidates strongly correspond to the guanidine-II
aptamer consensus and likewise have intriguing gene associations
(Supplementary Fig. 2), such as candidates associated with the PISD
geneof the double-banded courser (Rhinoptilus africanus) (Fig. 1c) and
other birds, as well as the CACNA1C gene of the common bottlenose
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Fig. 1 | Sequence and secondary structure models for the consensus bacterial
guanidine-II riboswitch class and representative vertebrate hits. a Updated
consensus sequence and structural model for bacterial guanidine-II riboswitches.
The consensus was updated from previous models3,55 by examining 1977 distinct
bacterial representatives. b Sequence and secondary structure model for a
guanidine-II riboswitch aptamer candidate from the CA8 gene of African elephant
(Loxodonta africana). c Sequence and secondary structuremodel for a guanidine-II

riboswitch aptamer candidate associated with the PISD gene from the bird Rhi-
noptilus africanus. d Sequence and secondary structure model for a guanidine-II
riboswitch aptamer candidate associated with the CACNA1C gene of common
bottlenose dolphin (Tursiops truncatus). Note: Additional hairpins conforming to
the guanidine-II aptamer consensus reside near to the examples presented here.
Nucleotide numbering for each panel is based on the RNA constructs used for
ligand binding assays.

Article https://doi.org/10.1038/s41467-025-62815-6

Nature Communications | (2025)16:7362 2

www.nature.com/naturecommunications


dolphin (Tursiops truncatus) (Fig. 1d) and other marine mammals.
Intriguingly, the protein encoded by the CACNA1C gene is a calcium
voltage-gated channel subunit Alpha1 C60. Mutations in the human
gene are relevant to neuromuscular, skeletal, and heart (long Qt syn-
drome, Brugada syndrome) defects60,61. Characteristics of some of
these additional gene associations are discussed in more detail later.

A CA8-associated guanidine-II aptamer candidate binds
guanidine
Bacterial guanidine-II riboswitch aptamers are formed by short, tan-
dem hairpins that function cooperatively to bind two guanidine
ligands3,12,13,62–64. Likewise, biochemical evidence described herein
indicates that mammalian candidates also bind two guanidine mole-
cules in a cooperative fashion. An RNA structure analysis assay called
in-line probing65,66 was used to determine whether RNA constructs
encompassing guanidine-II aptamer candidates from eukaryotes
indeed bind guanidine. In-line probing exploits the fact that sponta-
neous scission of RNA phosphodiester linkages is accelerated in
structurally unconstrained regions compared to highly structured
regions65,67. If an RNA undergoes structural modulation upon ligand
binding, then the pattern of spontaneous RNA cleavage products
generated during in-line probing reactions will change accordingly.

An RNA construct (Fig. 2a) called 62 CA8, encompassing a 62-
nucleotide region antisense to an intronic region of the CA8 pre-mRNA
of Loxodonta africana, was prepared by in vitro transcription, 5′ 32P-
radiolabeled, and subjected to in-line probing in the presence of var-
ious concentrations of guanidine. Note that this construct includes
only the first two hairpins that fully match the bacterial consensus,
from among nine near-identical hairpins clustered in this region
(Supplementary Fig. 1, hairpins 2 and 3 or H2 and H3). The sponta-
neous RNA cleavage products (Fig. 2b) reveal robust binding to

guanidine with characteristics consistent with 2-to-1 guanidine-to-RNA
binding (Hill coefficient of 1.46)with an apparent dissociation constant
(KD) of ~115 µM (Fig. 2c). From a total of three replicate experiments
(Supplementary Fig. 3), the average Hill coefficient is 1.50±0.3 and the
average KD is 111 ± 3 µM.

Furthermore, RNA product bands corresponding to strand scis-
sion at positions 20 and 48 (Fig. 2a) in the highly conserved ligand-
binding loops of H2 and H3 are similar in intensity (Fig. 2b) to that
observed for the equivalent positions in bacterial examples3. This is
likely because the two A nucleotides at these positions stack on each
other by projecting outward compared to the rest of the loop
nucleotides12,13, thereby providing a greater probability of adopting an
in-line configuration compared to other parts of the conserved sub-
structures. All these features conform to the known structural12,13 and
ligand-binding3 characteristics for bacterial guanidine-II riboswitch
aptamers.

The 62 CA8 construct also exhibits a pattern of ligand binding
selectivity similar to that observed for bacterial representatives3. For
example, guanidine derivatives carrying small additions such as a
methyl or amino group exhibit binding affinities that are similar to that
for guanidine, whereas larger additions reduce binding affinity for the
analog (Supplementary Fig. 4). In addition, a mutation to the highly
conserved C nucleotide at nucleotide position 18 (C18U) eliminates
binding by H2 and greatly diminishes binding affinity at H3 as eval-
uated by in-line probing assays conducted with 1mM guanidine
(Supplementary Fig. 5).

A cluster of guanidine-II hairpins exhibits complex functions
Although all the binding characteristics of the 62 CA8 RNA construct
described above are consistent with the known properties of
guanidine-II aptamer function, the simplicity of the consensus
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Fig. 2 | Ligand binding by the guanidine-II aptamer candidate associated with
the elephant CA8 gene. a Sequence and secondary structure for the African ele-
phant representative 62 CA8, encompassing 62 nucleotides from the CA8 mRNA
antisense plus two additional guanosine nucleotides (gg) added to the 5′ end to
support production by in vitro transcription. The asterisk identifies the site of the
32P-radiolabel. b Representative image of the polyacrylamide gel electrophoresis
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sequence and secondary structure model for this aptamer class could
mean that false positive hits identified by computational searches
might also have a high propensity to exhibit aptamer function even if
they are not components of a natural riboswitch. However, it seems
unlikely that natural RNAs, by simple chance, would have more than
one or two hairpins that conform to the guanidine-II aptamer con-
sensus unless they had biological utility. Intriguingly, we found that an
RNA construct (called 112 CA8) carrying 112 nucleotides also from the
African elephant CA8 gene, encompassing hairpins 4 through 7 (H4-
H7) (Supplementary Fig. 2, Supplementary Fig. 6a), exhibits additional
unusual characteristics.

In-line probing of the wild-type (WT) 112 CA8 construct revealed
that hairpin H4, which naturally carries the disabling C-to-U mutation
noted above, as expected, fails to bind guanidine under the conditions
examined. Surprisingly, the loops of H5, H6, and H7 all undergo
structural modulation when guanidine concentrations are elevated
(Supplementary Fig. 6b), indicating ligand binding at these three sites.
This was unexpected because the cooperative binding of guanidine by
pairwise interactions between hairpins would mean that only two
hairpins should form such a partnership and bind two guanidine
molecules. However, three hairpins presumably bind three guanidine
molecules, suggesting that there is another way for an additional
hairpin to strongly bind guanidine without forming the typical con-
secutive Watson-Crick base pairs with a partner hairpin loop that
matches the consensus sequence.

Furthermore, the apparent KD values for guanidine binding at H5,
H6, and H7 (less than 5 µM) (Supplementary Fig. 6b) appear to be
substantially better than that of the construct carrying only H2 and H3
(~110 µM) (Fig. 2, Supplementary Fig. 3) or for examples of bacterial
guanidine-II aptamers (~60 µM) reported previously3. This hints at the
intriguing possibility that the nine hairpins, which mimic guanidine-II
binding aptamers, form structures that enable cooperative ligand
binding between two sets of hairpin dimers, in addition to the local
cooperative interactions resulting from each pairwise hairpin part-
nership. Further evidence for this hypothesis is observed when a
mutant version of the 112 CA8 construct carrying a single C-to-U
mutation in the loop of H5 is examined by in-line probing. This con-
struct, called M1, fails to exhibit evidence of guanidine binding by H4
or by the mutated H5, but retains guanidine-induced structure mod-
ulation in the loops of H6 and H7 (Supplementary Fig. 7). These results
suggest that H6 and H7 partner to form the classic aptamer structure
that binds two guanidine molecules cooperatively. We speculate that
the naturallymutatedH4 andWTH5normally partner, perhaps using a
U•G wobble pair and a G-C base pair to permit guanidine binding only
by the loop of H5. When the loop of H5 is mutated, as in construct M1,
binding in H5 by the H4-H5 partnership is disrupted. With the loss of
guanidine binding by H5, cooperative improvement of ligand binding
affinity by the H6-H7 partnership is also precluded. This is evident by
the fact that the KD values for guanidine binding by H6 and H7 are
substantially poorer in the M1 construct (~20 µM) compared to WT
(Supplementary Figs. 7, 8).

Although additional experiments will be needed to establish the
structural features and characteristics of the larger stretch of nine
hairpins found in the African elephant, the complexity described
herein strongly indicates that there is an intricate interplay between
guanidine and the antisense RNA transcript of the CA8 gene in this
species. This complexity is unlikely to occur in an RNA that is a
bioinformatic false positive, but rather these characteristics are con-
sistent with the hypothesis that most guanidine-II aptamer candidates
in vertebrates are biologically functional.

Human CA8 protein increases guanidine when expressed in
bacteria
The association of guanidine-II aptamers with CA8 genes suggests that
the activity of CA8 proteins, also called CA-VIII or carbonic anhydrase

related protein (CARP)68–73, might instead be relevant to guanidine
metabolism. Guanidine riboswitches in bacteria regulate the expres-
sion of proteins that transport or metabolize this same ligand. CA8
proteins have no previously assigned enzymatic function despite their
similarity to well-established carbonic anhydrase enzymes69–71.
Expression of CA8 is most abundant in Purkinje cells69,72,73, which are
involved in neuronal signaling of muscle activity. Intriguingly, dis-
abling mutations in CA8 cause spinocerebellar ataxia in humans56–58,
which is a neuromuscular disorder involving disrupted Ca2+ signaling
that in some instances results in quadrupedal locomotion in patients56.
As noted above, guanidine has previously been used to treat certain
neuromuscular disorders32–37.

One intriguing possibility is that CA8 catalyzes a reaction analo-
gous to the decarboxylation of water (carbonic anhydrase activity),
such as the decarboxylation of carboxyguanidine (carboxyguanidine
decarboxylase). Note that carboxyguanidine is already known to be
commonly produced by bacteria to avoid the toxic effects of
guanidine2, or as part of a pathway for guanidine degradation19. To
assess whether CA8 influences guanidine concentration in cells, the
human CA8 gene was expressed in a strain of the bacterium Bacillus
subtilis that was previously2 adapted to carry a guanidine-responsive
reporter gene system. Specifically, a bacterial guanidine-I riboswitch
has been fused to the Escherichia coli β-galactosidase (lacZ) gene to
yield increased reporter gene expression when guanidine concentra-
tions areelevated. This riboswitch-reporter fusion construct is ideal for
the current study because the guanidine-I riboswitch aptamer is highly
selective for guanidine2 and thus is expected to reject even close
metabolite analogs such as arginine, agmatine, creatine, or others that
naturally carry a guanidine or guanidine-like moiety. Thus, reporter
gene expression, as measured by the blue color generated when β-
galactosidase cleaves the indicator molecule X-gal, should be pro-
portional only to cellular guanidine concentrations.

As observed previously2, when WT B. subtilis cells are grown on
solid (Luria-Bertani, LB) agar media, the riboswitch-reporter fusion
construct is in theOFF state. However, the addition of a solution of 6M
guanidine to a cellulose filter disk on inoculated plates grown over-
night (agardiffusion assay) results in a small no-growth zone causedby
guanidine toxicity. Farther from the filter disk is a visually evident halo
of blue color (ON state) indicating that a high but sublethal con-
centration of guanidine is present (Fig. 3a, left). Intriguingly, plates
inoculated with B. subtilis cells carrying the human CA8 gene (+CA8)
exhibit a larger blue halo when subjected to the same amount of
guanidine in the agar diffusion assay (Fig. 3a, right). This visual effect is
also apparent when photos of the culture plates are quantitated
(Fig. 3b), supporting the hypothesis that the human CA8 protein
increases cellular guanidine concentrations.

To further evaluate the effects of CA8 on guanidine concentra-
tions, we conducted riboswitch-reporter assays using liquid LBmedia.
WTand+CA8 cells gave similar, lowexpression in the absence of added
guanidine, and when 300 µM guanidine was added to the media
(Fig. 4a). The low reporter gene expression exhibited by B. subtilis cells
is expected due to the action of the guanidine transporter system
naturally encoded by the ykkCD operon in this species2. This trans-
porter is also likely to keep pace with any modest increases in guani-
dine production that might be caused by the presence of human CA8.
We previously2 determined that deletion of the ykkCD operon
(ΔykkCD) causes B. subtilis cells to become more sensitive to guani-
dine, and that these knock-out cells yield higher reporter gene
expression from the riboswitch-reporter fusion construct used in the
present study. With consideration of these characteristics, we reeval-
uated the effects of guanidine exposure on reporter gene expression
for both the ΔykkCD strain and this same strain carrying the human
CA8 gene (ΔykkCD/+CA8).

As observed previously2, ΔykkCD cells exhibit higher reporter
gene expression (~25-fold increase) compared to WT cells when
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exposed to guanidine (Fig. 4a), consistent with the inability of ΔykkCD
cells to expel this molecule. Importantly, the ΔykkCD/+CA8 strain
exhibits the highest level of reporter gene expression observed (~50-
fold increase over WT), which is again consistent with the conclusion
that human CA8 modestly elevates cellular guanidine concentrations
and that this becomes detectable in liquid LB cultures supplemented
with 300 µM guanidine when guanidine export is disabled. Impor-
tantly, this small increase in reporter gene expression brought about
by WT CA8 protein is not observed when a mutant form of CA8 is
expressed that carries a Y218Cmutation (Fig. 4b). This mutant protein

was chosen for evaluation because it is known to be a cause of spi-
nocerebellar ataxia in humans74, which is an outcome of disabling
mutations in CA8. Similar results are observed in agar diffusion assays
(Fig. 4c), again demonstrating that the WT CA8 protein modestly
increases guanidine-induced reporter gene expression, whereas the
mutant protein does not.

One possible mechanism for producing these results is that B.
subtilis modifies excess guanidine, for example, to reduce its toxicity
(such as by carboxylation as seen with other bacterial species2), and
that CA8 proteins reverse this modification, thereby increasing the
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concentration of free guanidine. Unfortunately, carboxyguanidine is
highly unstable19 and cannot be obtained to assess whether CA8
functions as a guanidine decarboxylase. Another possibility is that CA8
generates guanidine by acting on a natural metabolite that carries a
guanidyl moiety, such as arginine or creatine, but uncertainty over
possible substrates and reaction conditions complicates any experi-
mental evaluation of this hypothesis. Given these technical challenges,
we sought further evidence for guanidine riboswitches in vertebrates
using other approaches.

Other guanidine-II aptamers associate with Ca2+ biology genes
To further search for evidence that guanidine-II riboswitch aptamers
are contributing more broadly to natural guanidine signaling in ver-
tebrates, additional hits (Supplementary Fig. 2) in the Rfam database59

were evaluated using bioinformaticmethods. Each of these candidates
must be interpreted with caution because some past eukaryotic
riboswitch candidates reported by others have proven to represent
bacterial sequence contamination or false-positive hits due to the
simplicity of the consensus model (unpublished findings). Further-
more, some of these additional hits that match the guanidine-II con-
sensus model are not associated with an annotated gene.

Intriguingly, when a hit clearly resides near or within a eukaryotic
gene, the function of the gene’s protein product is often relevant to
Ca2+ biology, neuromuscular disorders, or bone development diseases
(Supplementary Fig. 2). For example, the gene most associated with
vertebrate guanidine-II aptamer candidates from Rfam is annotated as
PISD, which codes for phosphatidylserine decarboxylase that catalyzes
the production of phosphatidylethanolamine75. Genetic defects in the
human PISD gene are the cause of Liberfarb Syndrome76, which results
in bone andneurological development problems. A total of ten distinct
representatives from fish and bird species (Supplementary Fig. 9) are
located ~10 kb upstream and in the same orientation of PISD mRNAs.
Intriguingly,many bacterial riboswitches40–42 and some eukaryotic TPP
riboswitches45,46 reside in the 5′ -untranslated regions of mRNAs,
although it is not known if the guanidine-II candidates are part of the
PISD transcript. Regardless, an RNA construct encompassing the two
hairpins of the PISD-associated candidate from Rhinoptilus africanus
(bird) exhibits an approximate KD of 1mM for guanidine (Supple-
mentary Fig. 10).

Another notable candidate guanidine-II aptamer system is asso-
ciated with the CACNA1C gene of diverse vertebrate species. As stated
earlier, the protein derived from this gene forms a voltage-gated cal-
cium ion channel whose disruption causes neuromuscular, skeletal,
and heart function defects60,61. The common bottlenose dolphin
(Tursiops truncates) and orca (Orcinus orca) carry a tandem hairpin
arrangement (Fig. 1d) antisense to the CACNA1C gene thatmatches the
consensus for bacterial guanidine-II riboswitch aptamers. Each species
carries an additional consensus hairpin plus one or two that violate the
consensus features (Supplementary Fig. 11). These variant hairpins
could be non-functional, or they might partner with an adjacent,
consensus hairpin to help form a single ligand binding pocket. In-line
probing analysis of an antisense CACNA1C RNA construct carrying two
consensus hairpins indeed bind guanidine (Supplementary Fig. 12),
although the apparent affinity for this construct is much poorer than
that observed for other candidates – perhaps due to the absence of
flanking nucleotides that provide necessary structural context.
Regardless, these findings again indicate that candidate guanidine-II
aptamer systems are receptors for guanidine that associate with
numerous genes relevant to Ca2+ signaling and neuromuscular
functions.

Vertebrate RNAs resemble the bacterial guanidine-I
aptamer class
Given the abundance of vertebrate RNAs that closely conform to the
guanidine-II aptamer class, we looked more exhaustively for RNAs in

these species that are similar to the consensusmodels for other known
classes of guanidine aptamers. A total of 89 hits (e-value less than 10)
similar to the bacterial guanidine-I aptamer class (Fig. 5a) were iden-
tified that are associated with genes broadly relevant to neuromus-
cular function and Ca2+ signaling (Fig. 5b, Supplementary Fig. 13).
Genes with the most initial hits (i.e., before iterative searching using
refined consensus models) among vertebrates include ITPR1 (12 hits),
MAGI1 (9), ATM (5), WWOX (4), BAZ1B (3), and STRN (3). An RNA con-
sensus model (Fig. 5c) based on an expanded collection of vertebrate
ITPR1 candidates is further discussed below.

Perhaps most noteworthy from this list of associated genes is
ITPR1 (inositol 1,4,5-triphosphate receptor type 1), whose protein
product plays a role in cellular Ca2+ control77. Intriguingly, ITPR1 pro-
tein binding is the only established function of CA8 proteins78, whose
genes in some species carry sequences and structures matching
guanidine-II riboswitch aptamers as described above. Mutations in
ITPR1 are also known to cause spinocerebellar ataxia79, like that
observed for mutations to CA8. Thus, candidate guanidine riboswitch
aptamers from two different classes map to genes coding for inter-
acting proteins whose disruption both cause the same neuromuscular
disorder.

Additional bioinformatic analyses reveal that most reptilian and
mammalian species carry an RNA sequence associatedwith their ITPR1
gene similar to the initial 12 hits noted above (Fig. 6). This distribution
of RNA structures similar to guanidine-I aptamers is consistentwith the
hypothesis that the vast majority of reptiles and mammals use guani-
dine to affect the structure and function of ITPR1 transcripts. A
sequence alignment of over 50 hits from mammalian ITPR1 genes
(Supplementary Fig. 14) exhibit extensive similarity to the 3′-most
nucleotides of the bacterial guanidine-I consensus model2. This sub-
structure of thebacterial aptamer formsmost of the guanidine binding
pocket, including regions that carry three of the four nucleotides that
directly contact guanidine11. The bacterial (Fig. 5a) and vertebrate
(Fig. 5c) RNA consensus models differ mostly in their 5′ regions, which
in bacteria is known to form a structural cradle into which the ligand
binding site docks11. It is possible that mammalian RNAs with simila-
rities to guanidine-I aptamers of bacteria use a different cradle struc-
ture to support the ligand binding pocket. Initial analysis of a human
ITPR1 RNA construct by in-line probing revealed that the RNA is poorly
folded under our assay conditions. Thus, assessment of its ligand
binding characteristicswill require the identification of constructs that
exhibit improved folding.

Other genes associated with guanidine-I aptamer candidates
expand the collection of genes with known links to neuronal devel-
opment or function and/or Ca2+ signaling. MAGI1 (membrane-asso-
ciated guanylate kinase) is involved in diverse cellular functions,
including the formation of neuronal synapses80. Evidence also indi-
cates that the protein makes direct interactions with at least one Ca2+-
activated ion channel81, which is consistent with our hypothesis that
guanidine is linked to vertebrate neuromuscular function and Ca2+

signaling. ATM (ataxia-telangiectasia-mutated) protein is linked to
neuromuscular function and Ca2+ signaling82,83. WWOX (WW domain-
containing oxidoreductase) protein is also linked to neuromuscular
function, including spinocerebellar ataxia84, and Ca2+ signaling85. This
striking associationofguanidine-I andguanidine-II aptamer candidates
with genes relevant to Ca2+ signaling and neuromuscular function is
unlikely to be coincidental.

Discussion
Bioinformatic data reported herein reveal that guanidine-I and
guanidine-II riboswitch aptamer candidates are widespread among
vertebrates, and that they associate with genes relevant to Ca2+ sig-
naling and neuromuscular function. Vertebrate guanidine-II aptamer
function is confirmed by ligand binding assays with several repre-
sentatives that fold to form the consensus P1 and P2 hairpin structures.
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These constructs cooperatively bind two guanidine molecules and
exhibit ligand affinities similar to those observed for their bacterial
counterparts. Although opportunities to quickly assess gene functions
to determine their relevance to guanidine biology are currently lim-
ited, the CA8 protein from humans increases guanidine-mediated
reporter gene expression in surrogate B. subtilis cells, which is con-
sistent with our hypothesis thatmetabolic enzymes in vertebrates also
manipulate guanidine concentrations. Most other genes associated
with candidate guanidine-I and guanidine-II riboswitch aptamers are
either directly or indirectly relevant to Ca2+ transport or signaling,
suggesting that vertebrate guanidine riboswitches are relevant to Ca2+

biology.
This broad hypothesis regarding the natural role of guanidine in

vertebrates is consistent withmany previous observations. The effects
of guanidine on neuromuscular functions were initially reported27–30 in
1876, and its connection to Ca2+ signaling of human motor nerve
function was observed nearly 100 years later31. As noted above,

guanidine has been used as a therapeutic treatment for certain
neuromuscular disorders such as Lambert-Eaton myasthenic
syndrome31–33. In addition, evidence that guanidine can overcome
neurological blocks caused by neurotoxins such as curare or botuli-
num protein has been reported over many decades86–89. These pre-
vious findings are consistent with the fact that genetic disruption of
the CA8 gene associated with a guanidine-II aptamer causes the neu-
romuscular disorder spinocerebellar ataxia56–58.

Both Lambert-Eaton myasthenic syndrome90,91 and spinocer-
ebellar ataxia92,93 involve a mechanism of disrupted Ca2+ signaling.
Indeed, the only proven function of CA8 protein is to block the binding
of phosphatidylinositol triphosphate from its receptor ITPR178. Thus,
the long but sparse history of guanidine effects on vertebrates, and the
previously known relationships between guanidine, CA8 protein, and
Ca2+, are consistent with the striking associations between other
guanidine-I and guanidine-II aptamer candidates and genes relevant to
Ca2+ transport and neuromuscular functions.
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These correlations are consistent with the hypothesis that ver-
tebrates exploit guanidine or a related chemical derivative to
manipulate Ca2+ signaling and utilization. If true, the locations of
guanidine-I and guanidine-II aptamers in the genomes of vertebrates
will reveal those genes whose functions are relevant to the nexus
between the newly recognized signalingmolecule guanidine and Ca2+

signaling/utilization. Various other associated genes are involved in
neuromuscular disorders or bone development diseases, which
provide newfound links between these widespread human ailments
and guanidine. It is intriguing to consider some of the other apparent
gene associations as well. For example, the affiliation of guanidine-II
aptamers with the gene for nitric oxide synthase94,95 (NOS1) (Sup-
plementary Fig. 2) presents an intriguing possibility that guanidine is
relevant to the biosynthesis of the important signaling compound
nitric oxide.

Themost likely function of guanidine aptamers in vertebrates is in
service as the sensory domains of riboswitches. The diverse locations
of guanidine aptamer candidates in or near associated genes suggest
that they regulate gene expression using various different mechan-
isms. Alternative splicing control44–51 is commonly observed for TPP
riboswitches of fungi and plants, and many vertebrate aptamer can-
didates are likewise located in the introns of mRNAs where they could
trigger alternative RNA folding to control spliceosome access to exon
splice sites or intron branch-site A regions. In rare instances, bacterial
riboswitches regulate the production of antisense transcripts to con-
trol the expression of sense-orientation coding regions96–98. Given that
eukaryotic genes are known to be regulated by various antisense
mechanisms99, the guanidine aptamer candidates in vertebrates anti-
sense to their associated gene might exploit these same gene regula-
tion mechanisms. Experimental validation studies will need to address
numerous possible mechanisms for how ligand-binding RNAs could
regulate gene expression in vertebrates.

Methods
Chemicals and biochemicals
Chemicals, including guanidine hydrochloride (≥99%), were obtained
from Sigma-Aldrich unless otherwise noted. Aqueous solutions were

prepared using deionized water (dH2O, Milli-Q) rendered sterile using
an autoclave. Radiolabeled nucleotides [γ−32P]-ATP were obtained
from Revvity and typically used within 15 days of receipt. Restriction
and ligase enzymes were purchased from New England Biolabs. RNase
T1 and rAPid alkaline phosphatase enzymes were purchased from
Roche. Synthetic oligonucleotides (Supplementary Table 1) used for
in-line probing were purchased from Sigma-Aldrich, IDT, or the Keck
Oligonucleotide Synthesis facility at Yale University. A gene block
containing the humanCA8DNA sequence (Supplementary Table 1) was
obtained from GenScript and used for PCR amplification and genetic
transformations to generate B. subtilis strains carrying human CA8 and
CA8 mutant constructs.

Bioinformatics analyses
The initial search for homologs of guanidine riboswitch aptamers in
vertebrates was conducted using the Infernal package39 release 1.1.4.
The covariation model for the previously published bacterial ribos-
witch aptamer classes guanidine-I2, guanidine-II3, guanidine-III4, and
guanidine-IV6 was queried to search the vertebrates taxonomic divi-
sions of the Reference Sequence (RefSeq) database100 release 214. Hits
were inspected to assess their relevance, based on their similarities to
the bacterial aptamer consensus and genomic contexts. Rfam hits for
guanidine-II aptamer candidates in vertebrates were identified using
the full alignment of Rfam family RF01068.

Iterative searches for riboswitch aptamer candidates in verte-
brates with specific gene contexts were conducted using the NCBI
Entrez Gene and Nucleotide databases101. The process was initiated by
collecting the nucleotide sequences for all vertebrate examples of a
gene, wherein some contained hits of interest from the initial search.
The Infernal package39 release 1.1.4 was then used again to scan the
gene sequences for additional hits of the motif by comparison to the
bacterial consensus model. A revised consensus model was then gen-
erated based on all vertebrate representatives of the candidate apta-
mer in this context, and this consensus was used to search the gene
sequences again. This process was iterated until reaching a con-
vergence for the consensus model, and when no additional hits were
identified.

RNA constructs
RNA constructs were prepared by in vitro transcription using T7 RNA
polymerase and specific synthetic DNA templates (Supplementary
Table 1). The resulting RNA transcripts were separated by employing
denaturing 10% polyacrylamide gel electrophoresis (PAGE). Bands
corresponding to the desired RNAs were excised, and the RNAs were
eluted with 500 μL crush-soak solution (200mM NaCl, 10mM Tris-
HCl [pH 7.5 at ~21 °C], and 1mM EDTA [pH 8.0 at ~21 °C]). The eluted
RNA was precipitated using ethanol, pelleted by centrifugation at
14,000 rpm for 20min, and the resulting pellet was resuspended
dH2O. RNAs were dephosphorylated using rAPid alkaline phospha-
tase (Roche), and 5 pmol of the dephosphorylated RNA was 5′-radi-
olabeled using (New England Biolabs) T4 polynucleotide kinase and
20 μCi [γ−32P]-ATP in 20μL reactions containing 25mMCHES (pH 9.0
at ~21 °C), 5mMMgCl2, 3mMDTT. The radiolabeled RNA was further
purified by denaturing 10% PAGE as previously described. The
sequences of the final products were partially evaluated through the
results observed in the marker lanes (-OH and RNase T1 partial
digestions) for in-line probing assays.

In-line probing assays
In-line probing assays were conducted on trace amounts of 5′
32P-labeled RNAs using a protocol similar to that described
previously66. Specifically, RNA was incubated in a solution containing
20mM MgCl2, 100mM KCl, 50mM Tris (pH 8.3 at ~21 °C) in the
absence or presence of guanidine or an analog at concentrations
specified for each assay. Reactions were incubated at room
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Fig. 6 | Phylogenetic distribution of RNAs similar to guanidine-I riboswitch
aptamers of bacteria in the ITPR1geneof vertebrate species.Abox indicates the
presence of a region similar to guanidine-I aptamers for the species evaluated. A
sequence alignment of the top 51 representatives is presented in Supplementary
Fig. 14, including the genus and species names for their host organisms.
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temperature for 48 h. RNA cleavage products were resolved using
denaturing 10% PAGE and visualized with a Typhoon FLA 9500 Mole-
cular Scanner (GE Healthcare). KD values for RNA-ligand interactions
were determined based on changes in cleavage product band inten-
sities at sites designated for each analysis. Band intensities were
measured using ImageJ software and KD values were calculated by
curve fitting using GraphPad Prism.

Bacterial strain preparation
Previously reported WT B. subtilis strain 168 1A1 or its ΔykkCD variant
carrying a construct with a guanidine-I riboswitch fused to a lacZ
reporter gene2 were made to carry either the human CA8 gene
sequence or a CA8 mutant (here designated CA8*) coding for a natu-
rally occurring Y218C amino acid change linked to spinocerebellar
ataxia74. The guanidine-responsive reporter construct is under the
control of a constitutive lysC promoter, and therefore reporter gene
expression changes should be regulated only by the riboswitch.

The CA8 gene was delivered to the reporter strain using the
plasmid pDG1664 (accession ECE117, Bacillus Genetic Stock Center
[BGSC], The Ohio State University). Insertion of the CA8 sequence into
pDG1664 was performed via restriction digestion of the initial DNA
constructs with EcoRI and BamHI, gel purification of the cleaved DNAs,
followed by ligation of the components using T4 DNA ligase. pDG1664
plasmids containing CA8 were then transformed into chemically
competent NEB 5-alpha E. coli and selected on LB agar plates con-
taining 100 µgmL−1 carbenicillin. The desired modified plasmid was
purified from a culture initiated by a single colony using a plasmid
isolation kit (QIAprep Spin Miniprep Kit, QIAGEN) following the man-
ufacturer’s directions. The purified plasmid was then used to trans-
form both WT and ΔykkCD B. subtilis strains carrying the reporter
construct. The CA8 sequence undergoes homologous recombination
to insert at the thrC locus. The resulting endogenously expressing
CA8 strainswere isolated using cultureplates containing erythromycin
and chloramphenicol. Confirmation of the presence of CA8 in the
resulting strains was achieved by sequencing a PCR product of the
insertion.

The CA8 Y218C mutant strains were generated by site-directed
mutagenesis of pDG1664 carrying the CA8 gene using a QuikChange
Lightning Site-Directed Mutagenesis Kit (Agilent) and the appropriate
primers (Supplementary Table 1). The plasmid carrying the CA8 Y218C
mutant sequence was transformed intoWT andΔykkCDB. subtilis cells
as described above to yield strains endogenously expressing the CA8
Y218C mutant protein from the chromosome. Confirmation of the
presence of CA8 Y218Cmutant in the resulting strains was achieved by
sequencing a PCR product of the insertion.

Riboswitch reporter assays
Liquid-based reporter assays were carried out by culturing the rele-
vant cells overnight 30 °C in LB. The media of all strains were sup-
plemented with 5 μgmL−1 chloramphenicol. The media for strains
carrying CA8 or CA8* genes also included 0.5μgmL−1 erythromycin.
Overnight cultures were diluted 1:50 into fresh LB supplemented
with the appropriate antibiotics in the absence or presence of
300 µM guanidine and incubated at 37 °C either for 6 h or until an
OD600 of ~1.2, as indicated for each experiment. The resulting cells
were subjected to quantitative β-galactosidase Miller assays102 using
o-Nitrophenyl β-D-galactopyranoside (ONPG) as the substrate.

Agar diffusion assay using various B. subtilis strains exposed to
guanidine was conducted with solid LB media including 100μgmL−1

X-gal and the appropriate antibiotics as described above. Ten mL of
6M guanidine was applied to a cellulose filter disc, and the develop-
ment of blue color was evaluated after 24 h incubation at 37 °C2,53. The
experiments were performed in duplicate or triplicate, and repre-
sentative photographs are presented and quantitated. Comparison of
β-galactosidase activities for different strains examined by agar

diffusion assays was conducted by plotting the intensities (in arbitrary
units) of pixels on a line through the center of the filter discs in pho-
tographs measured with ImageJ software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions herein are presented in the
main or Supplementary Information sections. Source data are pro-
vided with this paper.
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