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Pre-fault tolerant quantum computers have already demonstrated the ability
to estimate observable values accurately, at a scale beyond brute-force clas-
sical computation. This has been enabled by error mitigation techniques that
often rely on a representative model of the device noise. However, learning
andmaintaining these models is complicated by fluctuations in the noise over
unpredictable time scales, for instance, arising from resonant interactions
between superconducting qubits and defect two-level systems (TLS). Such
interactions affect the stability and uniformity of device performance as a
whole, but also affect the noise model accuracy, leading to incorrect obser-
vable estimation. Here, we experimentally demonstrate that tuning of the
qubit-TLS interactions helps reduce noise instabilities and consequently
enables more reliable error-mitigation performance. These experiments pro-
vide a controlled platform for studying the performance of error mitigation in
the presence of quasi-static noise. We anticipate that the capabilities intro-
duced here will be crucial for the exploration of quantum applications on
solid-state processors at non-trivial scales.

A common primitive in many near-term quantum algorithms is the
accurate estimation of observable expectation values for a short-depth
quantum circuit1,2. Since, in practice, these circuits are run on noisy
quantum processors, the observable estimates tend to be biased away
from the true values. In the absence of fault tolerance, quantum error
mitigation methods provide a viable way to access more accurate
observable estimates3–9. These methods typically rely on combining
the results of several noisy quantum circuits in ways that cancel the
effect of noise on observable estimates, with no qubit overhead. One
of thesemethods, namely zero-noise extrapolation (ZNE),was recently
demonstrated to work on circuit sizes that are beyond brute-force
classical simulation7.

Several error-mitigation methods rely on access to a representa-
tive model of the device noise3,7,8. Learning and maintaining an accu-
rate model, however, is complicated by fluctuations in physical device
noise, which can occur over unpredictable time scales. In

superconducting quantum processors, one prominent source of such
fluctuations is the interaction between qubits and defect two-level
systems (TLS)10–16. It has been shown that the diffusion of TLS transi-
tion frequencies over time is a major contributor to fluctuations in
qubit relaxation times13,15,17, and these dynamics have been extensively
investigated through a number of experimental controls that mod-
ulate the qubit–TLS interaction, including: external electric fields18,19,
structural deformation of the physical processor11,20, flux tuning13, and
microwave drives15,17,21. Overall, fluctuations in qubit relaxation times
have crucial consequences for the stability22–24, uniformity, and
throughput of superconducting quantum computation. As an exam-
ple, previous studies have shown that qubit–TLS interaction can
degrade the performance of error-mitigation7, or even result in
unphysical observable estimates6.

In this work, we present experiments that focus on noise
instabilities in superconducting qubit hardware and their impact on
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the performance of error mitigation. We employ a device with six
fixed-frequency transmon qubits connected in a one-dimensional
chain (Q1-Q2- ⋯ -Q6) with tunable couplers25–29. Each transmon qubit
is equipped with an electrode that is placed above. The electrode is
controlled by a separate control line to modulate the qubit–TLS
interaction. Applying a bias on the electrodes, parametrized by kTLS in
arbitrary units, modifies the local electric field at defect sites and
modulates the TLS resonance frequency19. Therefore, representative
characteristics such as T1 can bemodulated by kTLS due to subsequent
changes in qubit–TLS interaction. We demonstrate that, on average,
controlling the qubit–TLS interaction can help improve and even sta-
bilize worst-case T1 instances. We then study the impact these results
have on noise characteristics and gate layer performance. Finally, we
leverage improved stability of qubit noise in the context of observable
estimation using quantum error mitigation.

Results
Stabilizing
T1 In this section, we focus on temporal fluctuations of the qubit–TLS
interaction anddifferent strategies tominimize its impact on T1. Over a
60h period, the qubit T1 values on the device are seen to fluctuate on
average by over 300% (see Supplementary SII). Figure 1a depicts an
exampleof thesefluctuations for oneof these qubits.Wenowconsider
modulation of the qubit–TLS interaction by means of a control para-
meter kTLS. To study its effect, we use the excited state population of
the qubit, Pe, measured after a fixed delay time of 40μs as a quick
proxy for T115. The resulting Pe values obtained for a range of kTLS
parameters are shown in Fig. 1b. The peaks and dips in the plot are a
reflection of the qubit–TLS interaction landscape asmodulated by kTLS

at the given time instance. In themeantime, we observe that no further
calibration is needed for the qubit itself, as we mainly modulate TLS
characteristics unless we had a pronounced qubit–TLS interaction
during initial qubit calibration. Repeating the same experiment at
different times, Fig. 1c illustrates the temporal fluctuation of the
qubit–TLS interaction.

The value of the kTLS parameter clearly has a strong effect on Pe,
which raises the natural question of how best to select it. One way to
improve qubit coherence is to activelymonitor the temporal snapshot
of the TLS landscape and choose kTLS that produces the best Pe. The
results show a clear benefit from this optimization, improving the
overall T1 in Fig. 1a. This strategy, which we refer to as the optimized
noise strategy, requires active monitoring of the TLS environment.
Between monitoring events, the qubit remains exposed to random
fluctuations in thequbit–TLS interaction. Alternatively,wemitigate the
impact of these fluctuations by averaging over randomly sampled TLS
environments per shot. This is achieved by applying slowly varying
sinusoidal (or triangular) amplitude modulation on kTLS. The applied
modulation frequency (1 Hz) is much lower than the shot repetition
rate (1 kHz). Therefore, themodulation is effectively quasi-static within
each shot, but samples a different quasi-static TLS environment for
each shot over the duration of the entire experiment. We refer to this
approach as the averaged noise strategy. Figure 1a illustrates that the
averaged T1 value ismore stable than that of the control and optimized
experiments. Since this strategy only requires passive sampling of the
TLS environment from shot to shot, it does not require constant
monitoring. A natural question to consider is whether the T1 decay is
well approximated by a single-exponential in this case—this is seen to
hold for this data set (see Supplementary Fig. S2). However, this may

Fig. 1 | Stabilizing T1. a Experimentally measured T1 for a given kTLS. Black rec-
tangles show T1 fluctuation without any optimization procedure. Red triangles
illustrate T1 after optimization is carried out, as illustrated in (b). Blue circles show
T1 measured by averaging over the TLS landscapes. Averaging is achieved by
modulating kTLS with 1 Hz sine wave with amplitude 0.5 on top of the default value.
The corresponding T1 decay curves are shown in the Supplementary material. b At
each kTLS, we prepare an excited state for a given qubit and then probe the prob-
ability of measuring the excited state, Pe, after 40μs. Ideally, the qubit would stay
in the excited state; however, T1 decay results in Pe < 1

15. The decay of Pe therefore
serves as a proxy for T1 decay. By changing the magnitude kTLS of the TLS

modulation, we can alter the qubit–TLS interaction strength. This causesPe to vary
as a function of kTLS. When a strong qubit–TLS interaction exists, a pronounced
decay ofPe is observed

15, as seenby the dips in the curve. The vertical lines indicate
the choice of kTLS that maximizes Pe (dashed), compared to an arbitrarily chosen
default kTLS value (solid). cWemonitor the TLS landscape over time to illustrate the
fluctuation of qubit–TLS interaction dynamics. The black horizontal line indicates
kTLS of the control experiment, the red crosses indicate the values used for the
optimized experiment. The red rectangular box indicates the data illustrated in (b).
The experiments are carried out with 1 kHz repetition rate. Measured values and
error bars are obtained from 300 single-shot measurements.
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not always be the case, as is often seen in scenarios with strong cou-
plings to TLS, and the implications of this for noise learning and
mitigation are discussed later and detailed in Supplementary SIII.

Stabilizing noise in gate layers
Having demonstrated different modulation strategies to stabilize T1,
we now extend our study to the characterization of noise associated
with layers of concurrent entangling two-qubit gates. An accurate
characterization of the noise enables us to remove its effect on
observable estimation by means of probabilistic error cancellation
(PEC)3. Previous experiments have shown thatnoiseonourdevices can
be tailored in such a way that a sparse Pauli–Lindblad (SPL) model8

accurately captures the noise and facilitates the estimation of accurate
observable values using PEC, and even enables ZNE experiments
exceeding 100 qubits7. This motivates us to study the impact on the
optimized and averaged noise strategies have on the learned SPL
model parameters and their stability.

The SPL noise model proposed in ref. 8 provides a scalable fra-
mework for learning the noise associated with a layer of gates. The
sparsity of the noise model is achieved by imposing assumptions on
the noise in real hardware. We tailor and learn the noise employing
protocols described in ref. 8 and references therein. First, by applying
Pauli twirling30–34, we ensure that the noise can be described by a Pauli
channel. We then model the noise as EðρÞ= exp½L�ðρÞ, where L repre-
sents a Lindbladianwith Pauli jump terms Pkweighted by non-negative
model coefficients λk. Second, we can obtain a sparse noise model by
making the reasonable assumption that noise originates locally on
individual or connectedpairsof qubits. This allowsus to restrict the set
of generators K to one- and two-local Pauli terms in accordance with
the qubit topology. The model parameters λk are characterized by
measuring the channel fidelities of Pauli operators using a procedure
described in theMethods section. The fact that the individual Pk terms
in L commute make the noise model ideal for probabilistic error
cancellation3,8, since the channels generated by each of these terms
can be inverted independently. The inverse channels, however, are
non-physical, and the observable is therefore reconstructed through
post-processing. In the absence of model inaccuracy, we obtain an
unbiased estimate for the expectation value of any Pauli operator. The
variance of the estimator, however, is amplified by a multiplicative
factor γ = exp

P
k2K2λk

� �
, which can be compensatedby increasing the

number of samples8. We therefore refer to γ as the sampling overhead.
In the following, we experimentally monitor individual model para-
meters, λk, and connect the overall noise strength to runtimeoverhead
for error mitigation by using the sampling overhead, γ.

We now experimentally characterize the optimized and averaged
noise channels over time with a goal of assessing whether the TLS
modulation strategies succeed in stabilizing the noise, and therefore
the model parameters. For this, we learn model parameters λk asso-
ciated with two different gate layers for a one-dimensional chain of six
qubits, covering all localCZ gate pairs. Figure 2a shows the parameter
values obtained for the optimized noise channel for a single learning
experiment. To quantify fluctuations in the noise, we repeat the noise
characterization over time and track the learned model parameters
over ~50 h of monitoring for the control, optimized, and averaged
noise channels in Fig. 2b–d.

The control experiment depicts large fluctuations in the model
parameters around 13 h of elapsed time, which shows reasonable
correlation with a strong Q2–TLS interaction occurring around the
same time (Fig. 2f). Meanwhile, the optimized experiment selects kTLS
that aims to avoid impact of nearby qubit–TLS impact while max-
imizing Pe, indicated by red cross symbols in Fig. 2f. This optimization
is performed right before learning experiment and help us to avoid
configurations that have particularly strong qubit–TLS interaction.
Aside from the relatively smaller aberrations associated with short-
term fluctuations that are fixed by the next optimization round, the

model parameters are seen to be largely stable over the duration of the
experiment, Fig. 2c. The smaller aberrations are seen to be further
stabilized in the averaged case, Fig. 2d.

The time dependence of the model parameters can be further
extended to track the stability of the total sampling overhead γ, which
is given by the product of γ1 and γ2, the sampling overhead values for
eachof the two layers, respectively. Figure 2e shows that theoptimized
strategy attains the lowest overall sampling overhead, while the aver-
aged noise channel experiment exhibits better stability compared to
the other two experiments. In addition, the stability we obtain from
this scheme does not require frequent monitoring, and we expect
more stable operation during periods when the experiment is running
and monitoring jobs are not.

Additional analysis in Fig. 2b–f shows that the observed stability γ
reflects the stability of single- and two-qubit model parameters. This is
an important observation since temporal fluctuations or noise control
strategies may induce discrepancies between learned parameters at
one time and actual parameters at a later time, which would greatly
reduce the ability to perform meaningful error mitigation. For
instance, one might worry that, after each T1 optimization stage, the
new T1 and, along with it, the noise channel may be completely dif-
ferent. Figure 2c experimentally shows that this is largely not the case.
Aside from the relatively smaller aberrations associated with short-
term fluctuations that are fixed by the next optimization round, most
of the model coefficients remain relatively consistent for most of the
time. Figure 2d similarly visualizes that the averaged noise models
exhibit consistentmodel parameter values throughout the duration of
the experiment.

Stability of quantum error mitigation
In the previous section, it was shown that noise models for the opti-
mized and averaged noise channels remain consistent over time. We
now study their impact on the error mitigation of a benchmark circuit.
The circuit we use is a mirror circuit on a chain of six qubits with
alternating layers ofCZ gates that cover all neighboring qubit pairs, as
illustrated in Fig. 3. Since the circuit is mirrored, it effectively imple-
ments an identity operator; the ideal expectation value of all Pauli-Z
observables is equal to 1. Each experiment consists of a noise learning
and a mitigation stage. During the first stage, we learn the noise
associated with the two layers of CZ gates for each of the control,
optimized, and averaged noise channel settings. We then run error
mitigation using the learned noise models in their respective settings.
For each stage, we interleave the circuits for all three settings to ensure
they all run within the same time window.

Figure 4a–c shows the mitigated and unmitigated values for the
weight-6 observable 〈ZZZZZZ〉 for the control, optimized, and aver-
aged noise channels, respectively, with independent runs over a ~50 h
period. In all three settings, the unmitigated values are 0.341 ± 0.052,
0.446 ±0.036, and 0.371 ± 0.027 for control, optimized, and averaged,
respectively—a large deviation from the ideal value of 1. While fluc-
tuations in themitigated observable values are seen in all three setting,
they are most pronounced in the control setting, where they correlate
with periods of strong TLS interaction, as shown earlier in Fig. 2f. In
principle, one could run separate background circuits to monitor TLS
interactions and trigger disposal of data acquired during periods of
large fluctuation to improve performance. However, the limited shot
budget for such monitoring circuits greatly reduces the ability to
accurately detect all but the largest fluctuation events, as discussed in
Supplementary SIV and SV. Another strategy to reduce fluctuations in
the observable values is to average the results ofmultiple independent
learning-mitigation cycles, as seen from the cumulative average trace
of Fig. 4a. However, such an approach is increasingly expensive for
larger circuits, as discussed in Supplementary SIV. Meanwhile, Fig. 4b,
c demonstrates that both the optimized and averaged noise strategies
help stabilize the error mitigation results and enable smaller
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fluctuations than observed in the control experiment. The improve-
ment is predicted to be even more prominent at larger depths, see
Supplementary Fig. S7.

A leading sourceoffluctuations in themitigated results in all three
settings could be attributed to drifts in the device noise between the
noise-learning step and the subsequent mitigation step. To quantify
such deviations, without relearning the noise model, we proceed as
follows. First, note that Clifford circuits subject to Pauli noise can be
simulated efficiently. This allows us to predict the expected noisy
observable value h~Oipred = f predhOi, where 〈O〉 is an ideal observable
value. Second, by running unmitigated benchmark circuits interleaved
with themitigation circuits, we canmeasure both the noisy observable
value h~Oi= f exphOi, and the error-mitigated estimate 〈O〉mit. In the
absence of noise-model fluctuations, we have fexp = fpred, which allows
us to recover the ideal observable hOi= h~Oi=f pred. In the presence of
the noise fluctuations, however, this no longer holds. The noise fluc-
tuation may lead to under- or over-estimation on the target obser-
vable, and sometime even results in unphysical value. We quantify this
known source of deviation on the mitigated observable as
δpred = h~Oi=f pred � hOi= h~Oi=f pred � 1, where 〈O〉=1 for our bench-
markingmirror circuit. In Fig. 4d, we plot an expected deviation due to
the noise fluctuation (δpred) on the x-axis and an observed deviation
(δmit = 〈O〉mit − 1) on the y-axis. The plot shows a clear correlation

between δpred and δmit. This quantifies that time fluctuation plays a
major role in the observed spread of the error-mitigated observable. A
similar analysis applies to the optimized and averaged noise channels
in Fig. 4e, f, albeit with a distribution that is packed more closely
around the origin. The tighter histograms in the inset of Fig. 4e, f
highlight that both optimized and averaged noise channels effectively
stabilize the temporal fluctuation of the errormitigation performance.
In addition to the Z parity analyzed here, we extend the comparison to
observables of all weights in Supplementary Fig. S6.

We note that additional sources of bias in the error-mitigated
observables may remain, even for the average and optimized experi-
ments.One sourceof bias that is important to consider, particularly for
the averaged noise case, is the effect of quasi-static noise on learning
and mitigation, as detailed in Supplementary SIII. For instance, quasi-
static noise can lead to noise learning circuit fidelities that do not
follow a clean single-exponential decay with increasing depth, intro-
ducing bias in the mitigation that relies on an assumption of expo-
nential decay. These effects are also relevant in the absence of any
modulation, due to the natural temporal fluctuations in the TLS land-
scape and data collection over long periods of time. This essentially
implies that the noise channel is, in practice, always quasi-static to
some degree. As such, one remaining questionof broad interest is how
the quasi-static nature of noise, resulting frommodulation at a shot-to-

Fig. 2 | Stabilizing noise in gate layers. a Graphical representation of the coeffi-
cients of the sparse Pauli–Lindblad noisemodels of two layers. The layers consist of
CZ gates covering different qubit pairs (shaded box): {(1, 2), (3, 4), (5, 6)} for layer 1
and {(2, 3), (4, 5)} for layer 2. Themodel parameters apply to Pauli terms on each of
the six qubits, as well as weight-two Pauli terms on connected qubits. The model
parameters fλkgk2K are determined by applying the learning protocol separately to
each of the two layers. The inset on the right depicts the position of the Pauli
coefficients and the color bars for the one- and two-qubit terms. b–d Provides a
more detailed picture of model parameter instability by computing the model
coefficient fluctuation δλk(t) = λk(t) −median[λk(t)], where median[ ⋅ ] computes a
median value of the time-varying model coefficient. The plot shows δλk(t) at a
specific time t (x-axis) for various Pauli jump terms Pk (y-axis). We show the first 20
parameters sorted by maximum fluctuation. e Shows the total sampling overhead,
γ, monitored over time for three different scenarios: (i) a baseline control experi-
ment with kTLS = κ held at a constant neutral point κ for all qubits; (ii) an averaged
experiment where kTLS is set to κ plus a slowly varying triangular wave with 1 Hz

frequency and amplitude of ±0.2; and (iii) an optimized experiment carried out by
periodically update kTLS to a value that maximizes Pe. Optimization is performed
just prior to each learning experiment for the optimized noise channel. The right
inset illustrates the median value and the first and third quartiles of each experi-
ment. f For the optimized experiment, the qubit–TLS interaction landscapeof Q2 is
probed using TLS control parameter kTLS. The plot displays the resulting Pe over
time, along with the optimized control parameters, indicated by the red crosses.
Strong qubit–TLS interactions appear as dark green boxes, and can be seen to drift
close to the neutral point κ (horizontal black line) at an elapsed time of ~13 h. This
coincides with the elevated noise level γ and noticeably larger fluctuations over
time in plot (e). The data used for this plot is the same as that used for plot (b–d).
Error bars in e are determined using 100 bootstrapped instances of the experi-
mental data. Likewise, error bars for λk are obtained from 100 bootstrapped
instances, and the maximum fluctuation of each row in (b–d) is all larger than the
error bar. Further details on experiment conditions are described in the “Methods”
section.
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shot basis or intrinsic fluctuations, affects observable estimates and
error mitigation. We explore this partially in Supplementary SIII, but a
general investigation of these other sources and further closing the
gap between ideal and mitigated observables remains a question for
future work.

Discussion
We experimentally demonstrate that noise in superconducting quan-
tum processors can be stabilized by modulating the qubit–TLS inter-
action to improve the performance of error mitigation. Amongst the
considered modes of operation, the optimized strategy gives the best
performance, but remains exposed to random temporal fluctuations
of qubit–TLS interaction between parameter re-optimizations, which
could be particularly frequent at large qubit counts. By contrast, the
averaged strategy smooths out smallfluctuations andproduces amore
stable device noise model, albeit at the cost of a slightly increased
sampling overhead for error mitigation and potential bias in obser-
vable estimates.While thesemodulation strategies are complementary
to the continued development of cleaner devices and novel designs to
reduce the density and impact of defect two-level systems, we expect
that themethods discussed in thisworkwill be crucial for the reliability
of error-mitigated quantum computation with solid-state processors,
particularly at scales beyond exact verification.

For interested readers, we point to ref. 35 for additional details of
our implementation and control of the qubit–TLSmodulation.We also
note subsequent work36 on multi-qubit noise stabilization, using vol-
tage control of TLS, that appeared during peer review of our paper.

Methods
Optimized noise channel
One way to improve qubit coherence is to actively monitor the tem-
poral snapshotof the TLS landscape and choose kTLS thatproduces the
best qubit property of interest. Assuming that we sample a TLS
environment i, with i∈ {1, 2,⋯ , Nt} for Nt different TLS environments
with corresponding kTLS values, the ideal unitaryU is then exposed to a

given TLS environment. Along with other noise sources, the given
qubit–TLS interaction incurs a noise channel Ei, resulting in a noisy
operator ~U i =U � Ei. The observable expectation value is then com-
puted as

hOii =Tr O~U iðρÞ
� � ð1Þ

for a given initial state ρ. One may sample an optimal TLS environment i
that minimizes the bias of Eq. (1) from its ideal value. In practice, we
choose a TLS control parameter that optimizes a representative metric,
such as T1 or a single-qubit randomized benchmarking result. This
requires activemonitoringof theTLSenvironmentvia this representative
metric. Throughout our study, we choose Pe (a proxy of T1) as an
optimizationmetric. We aim for the best target operation, assuming the
best coherencecanbeachievedbyminimizing thequbit–TLS interaction.
However, the qubit is still exposed to random fluctuations in qubit–TLS
interaction between monitoring events.

Averaged noise channel
Alternatively, we may obtain an observable by averaging over ran-
domly sampled TLS environments for each single-shot measurement.
In the limitof infinite shots, andassuming theTLS environment is static
for the duration of a shot, the observable expectation value obtained
by averaging over sampled TLS environments is given by

�hOi=
X
i

pihOii =
X
i

piTr O~U iðρÞ
� �

,

= Tr O
X
i

pi
~U iðρÞ

" #
=Tr O�UðρÞ� �

,
ð2Þ

where pi is the probability of having noise realization i at a given shot,
and we define an averaged noise channel

�U =
X
i

pi
~U i: ð3Þ

Fig. 3 | Benchmark circuit for errormitigation.We use a 6-qubit mirror circuit to
benchmark the error-mitigation performance. The circuit features two unique
layers,U1 andU2, of two-qubit entanglingRZZðπ=2Þ=CZ gates, as shown in the inset
on the right. We next define a compound block UL of single-qubit Hadamard gates

on each qubit, followed by the two layers. The benchmark circuit is then con-
structed by repeating the UL circuit N = 10 times, followed by an equal number of
reverse operations Uy

L.
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The averaged noise channelmay notbe optimal in termsofminimizing
the bias on the observable of interest. Nevertheless, the resulting
variation in the observable value due to a local fluctuation of the TLS
environment is reduced by averaging over the sampled TLS environ-
ments. Themethod aims to provide a stable observable estimate in the
presence of natural fluctuations of the TLS environment on timescales
shorter than the total duration of data collection for an experiment.
This method only requires passive sampling of the TLS environment
from shot to shot; thus, constant monitoring activities are not
required, unlike the optimized noise channel scenario.

Characterizing the model parameters
By applying Pauli twirling, we can assume the noise channel to be a
Pauli channel; that is EiðρÞ=

P
kαk, iPkðρÞPy

k where the αk,i ≥0 terms
sum up to one. Sampling TLS environment i by changing modulation
parameter kTLS changes the noise channel Ei, and, consequently, the
corresponding effective gate operation ~U i. In this section, we study
how the different TLS modulation strategies affect the noise asso-
ciated with two layers of concurrent CZ gates.

Learning a full n-qubit Pauli noise channel requires the char-
acterization of 4n parameters αk, and is therefore feasible only for a
small number of qubits. The sparse Pauli-Lindblad noise model pro-
posed in8 provides a scalable alternative obtained by imposing more
structure on the noise. In particular, the noise is assumed to be of the
form EðρÞ= exp½L�ðρÞ, where L represents a Lindbladian

LðρÞ=
X
k2K

λkðPkρP
y
k � ρÞ,

with Pauli jump terms and non-negative coefficients λk. Sparsity is
achieved by making the reasonable assumption that noise originates
locally on individual or connected pairs of qubits, which is done by
restricting the set of generatorsK to all one- and two-local Pauli terms
in accordance with the qubit topology. The set ofmodel parameters λk
are characterized by measuring the set of Pauli fidelities. The Pauli
fidelity for a Pauli Pk is given by

f k =
1
2n

Tr ðPkEðPkÞÞ= exp �2
X
k02K

λk0 hk, k0isp
 !

, ð4Þ

where the symplectic inner product hk, k0isp is zero if Paulis Pk and Pk0

commute, and one otherwise. As described in more detail in8 and
references therein, repeated application of the noisy layer of gates
allowsus to learnfidelity pairs f kf k0 , wherePk 0 = ±UðPkÞ. In general, it is
not possible tomeasure the individual fidelities in a readout-error-free
manner37, and a symmetry assumption that equates the fidelities
appearing in each pair is therefore imposed. Given the fidelities, a
nonnegative least-squares problem based on Eq. (4) can then be used
to obtain the model parameters λ.

The sparse PL noise model can equivalently be expressed as a
series of Pauli channels of the form ΛkðρÞ= ðwkρ+ ð1�wkÞPkρP

y
kÞ,

where wk =
1
2 ð1 + expð�2λkÞÞ. The fact that these Pauli channels com-

mute makes the noise model ideal for probabilistic error
cancellation3,8, since each channel can be inverted independently.
Here, the inverse channel is non-physical, and the observable is
therefore reconstructed through post-processing. Once we insert the
appropriate canceling Paulis following the quasi-probability described

Fig. 4 | Error mitigation results for different qubit–TLSmodulation strategies.
a–cWeight-6 observable (〈ZZZZZZ〉) estimates as a function of time using the three
different strategies with (filled markers) and without (open markers) error miti-
gation, along with the cumulative average of themitigated observable values (solid
line). The experiment is performed following the schedule described in Fig. 2 for
the a control,boptimized, and c averagedmodulation strategies. For reference, the
ideal observable of 1 is indicated as a dashed line. Themitigatedobservables can be
seen to fluctuate near the ideal value, and the shaded regions highlight time win-
dowswith highfluctuations asdeterminedby the analysis in Fig. 2d. Each data point
is obtained from 4096 random circuit instances with 32 shots per circuit. During

the experiment, we interleave 2048 random circuit instances for readout-error
mitigation38 and 512 random circuit instances for estimating the unmitigated
observable. Readout-error mitigation is applied to both the unmitigated and miti-
gated observable estimates. Error bars for the unmitigated and mitigated results
are obtained by bootstrapping the PEC result 25 times. d–f Scatter plots of the
predicted (δpred) and observed (δmit) deviations of the observable from the ideal
expectation value. The correlation between δpred and δmit confirms that the tem-
poral fluctuation of the noise model plays a role in themitigation error observed in
the PECprotocol. The histograms along the y-axis show the respective distributions
of δmit.

Article https://doi.org/10.1038/s41467-025-62820-9

Nature Communications |         (2025) 16:8439 6

www.nature.com/naturecommunications


by wk, the measured outcome is multiplied by a pre-factor given by

γ =
Y
k2K

ð2wk � 1Þ�1 = exp
X
k2K

2λk

 !
: ð5Þ

While we obtain an unbiased estimate, the variance is amplified by this
pre-factor. Therefore, more sampling is required to compensate for
the increased variance due to the scaling. For example, the sampling
overhead is proportional to γ2 for PEC8, thus we refer γ to as a sampling
overhead. The sampling overhead is a useful metric connecting the
underlying noise strength to an experimental overhead for error
mitigation. For instance, we track the sampling overhead to visualize
the overall model coefficient fluctuation in Fig. 2e. The sampling
overhead also provides a useful estimation of the relative runtime cost
between different error rates. For instance, the worst (best) case
sampling overhead for a given set of two-qubit layers in Fig. 2e is
roughly γw = 1.13 (γb = 1.06). The ratio ðγ2w=γ2bÞ

N
could be translated as a

relative extra sampling cost for PEC for the benchmark circuit with a
repeated unit layer depth N between the worst and the best error rate
scenario. As an example, the worst error rate scenario requires ~13
(~167) times more circuits to perform PEC than the best error rate
scenario for N = 20 (N = 40).

The learning protocol consists of two steps. First, the learning
procedure extracts a set of Pauli fidelities, ff bgb2B, defined by a set of
Pauli operators B much smaller than the set of all Pauli operators.
Second, we use nonnegative least-squares minimization to extract the
parameters fλkgk2K of our sparse PLmodel. The Pauli fidelities that are
used to extract model parameters described in Fig. 2 are obtained by
repeating the gate sequences an even number of times
(n =0, 4, 12, 24, 64) for both layer 1 and layer 2, independently. At each
depth, we generate 60 circuit instances with randomly sampled Pauli
for Pauli twirling for gates and final measurements. All experiments
were carried out with 1 kHz repetition rate and observable values for
each circuit are estimated from 32 single shot measurements.

Data availability
The data sets generated and analyzed during the current study will be
available at a public repository, 10.6084/m9.figshare.29614709.
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