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MR-EILLS: an invariance-based Mendelian
randomization method integrating multiple
heterogeneous GWAS summary datasets

Lei Hou 1,2, Hao Chen1,3,7 & Xiao-Hua Zhou4,5,6,7

Diverse genetic structures can lead to heterogeneity among GWAS summary
datasets from distinct populations. This makes it more difficult to infer causal
effects of exposures on the outcome when multiple GWAS summary datasets
are integrated. Here, we propose a Mendelian randomization method called
MR-EILLS, which leverages environment invariant linear least squares to
establish whether there is a causal relationship that is invariant in all hetero-
geneous populations. The MR-EILLS model works in both univariate and
multivariate scenarios and allows for invalid instrumental variables that violate
the exchangeability and exclusion restriction assumptions. In addition, MR-
EILLS shows the unbiased causal effect estimations of one or multiple expo-
sures on the outcome, whether there are valid or invalid instrumental vari-
ables. Compared to traditional Mendelian randomization and meta methods,
MR-EILLS yields the highest estimation accuracy, the most stable type I error
rates, and the highest statistical power. Finally, we apply MR-EILLS to explore
the independent causal relationships between 11 blood cells and 20 disease-
related outcomes, using GWAS summary statistics from five ancestries (Afri-
can, East Asian, South Asian, Hispanic/Latino and European). The results cover
most of the expected causal links that have biological interpretations aswell as
additional links supported by previous observational studies.

In recent years, with the increasing number of genome-wide associa-
tion study (GWAS) investigations, there has been a notable increase in
the public availability and utilization of GWAS summary data by
researchers1,2. This inclusive dataset encompasses information from
diverse populations and ethnic backgrounds3–6, a development that
researchers find valuable, thus making it a current focal point of
research interest. Owing to a range of influences, including geo-
graphical landscapes and varied lifestyles, genetic structures exhibit
significant diversity among distinct populations7,8, also called

population stratification, potentially leading to heterogeneity inGWAS
summary data across different ethnic groups, such as those of Eur-
opean, Asian, and American descent.

Mendelian randomization (MR)2,9 is a methodology that relies on
the utilization of publicly available GWAS summary data for causal
inference. It uses genetic variants as instrumental variables (IVs) to
infer the causal effect of one or multiple exposures on an outcome,
that is, univariable ormultivariableMR10,11, respectively. A valid IVmust
satisfy the following three assumptions: (A1) Relevance (IV is strongly
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associated with at least one of the exposures), (A2) Exchangeability (IV
is independent of confounders between exposures and outcomes),
and (A3) Exclusion restrictions (IV affects the outcome only through
exposures)9. These assumptions are also mentioned in the Methods
section. When we consider heterogeneous populations, one valid IV in
a populationmay be an invalid IV in another population due to various
genetic structures. For example, G1 is a valid IV in population I; it may
be correlated with the confounder U between exposure and outcome
inpopulation II, whereasU is not the confounder in population I. In this
case, G1 violates the exchangeability in population II. In addition, G1

may be correlated (linkage disequilibrium (LD))12 with another SNP G2,
which directly affects the outcome in population II, but G1 is inde-
pendent of G2 in population I. In this case, G1 violates the exclusion
restriction in population II because the LD references in different
populations are different. In addition, the effects of some traits, such
as body mass index, educational attainment or depression, on various
disease outcomes are mediated or modified by social and environ-
mental factors, which lead to inconsistent causal relationships in dif-
ferent societies or population groups. Therefore, the heterogeneity
among populations includes genetic and nongenetic differences, such
as social or environmental factors, also creating distinct challenges for
IV validity across groups. This complexity increases the difficulty of
deducing a purely causal relationship by integrating multiple hetero-
geneous GWAS summary datasets.

Therefore, the aim of this paper was to explore the pure causal
effect, in which “pure”means that we focus on the causal effect that is
not affected by social and environmental factors, i.e., the pure causal
effect is invariant across heterogeneous populations. One straight-
forward way to infer pure causal relationships using MR is to first
conductMRanalysis separately using valid IVs indifferent populations,
obtain causal effect estimations in each population, and then combine
all estimations by meta-analysis13,14. Even if there are invalid IVs in the
first step, many MRmethods15–18 have been proposed to eliminate the
influence of invalid IVs on causal effect estimation. However, the
accuracy of meta-analysis results depends on the robustness of dif-
ferent MR methods, and these MR methods require different
assumptions15–18, which may be difficult to satisfy or cannot be tested.
This may induce inconsistent causal effect estimation in different
populations andmake inferring pure causal relationships difficult (see
Application section). Another idea is to first conduct GWAS meta-
analysis for heterogeneous populations, and then select valid IVs to
infer causal relationships viaMR. The difficultywith this strategy is that
only a short number of independent SNPs (no LD) can be selected
because the LD reference panels in different populations are
different8,19. These two strategies are both two-step processes, and
result in doubled statistical errors, which results in a lower accuracy of
causal effect estimation. In addition, meta-analysis is a statistical
technique used to combine and analyze results from multiple
studies20; if one result is inaccurate, the meta-analysis results are also
incorrect. Meta-analysis is not a causal method in itself and does not
necessarily provide causal evidence that holds true in everypopulation
included in the analysis. Therefore, we proposed a one-step method
that integrates all the information, not only the MR results for each
population, and provides causal evidence that holds true (also called
invariant effects) in each population.

In this paper, we introduce anMRmethod calledMR-EILLS, which
utilizes the environment invariant linear least squares (EILLS)21 to
integrate multiple heterogeneous GWAS summary datasets and then
infer pure causal relationships. The MR-EILLS model works in both
univariate and multivariate scenarios and allows for invalid IVs that
violate exchangeability and exclusion restriction assumptions. In
addition, MR-EILLS shows the unbiased causal effect estimation of one
or multiple exposures on the outcome, whether there are valid or
invalid IVs. Compared with traditional MR and meta methods, MR-
EILLS yields the highest estimation accuracy, the most stable type I

error rates, and greater statistical power. Finally,MR-EILLSwas applied
to explore the independent causal relationships between 11 blood cells
and 20 disease-related outcomes, using GWAS summary statistics
from five ancestries: African, East Asian, South Asian, Hispanic/Latino,
and European.

Results
Method overview
The MR-EILLS model integrates the GWAS summary statistics from
multiple heterogeneous populations, and identifies the causal expo-
sures that have invariant effects on the outcome. The GWAS summary
statistics for E heterogeneous populations include the Gj � X asso-

ciation θ̂
ðeÞ
p, j and its standard error σðeÞ

GjXp
, as well as the Gj � Y associa-

tion Γ̂
ðeÞ
y, j and its standard error σðeÞ

y, j, where the subscript p represents

the p-th exposure (p 2 f1, 2, :::, Pg), j represents the j-th IV
(j 2 f1, 2, :::, Jg) and the superscript e represents the e-th population
(e 2 E, E = f1, 2, :::, Eg). We assume that the causal effects of causal
exposures (fXpg,p 2 P*) on Y are invariant in different populations,

that is βð1Þ
0p =β

ð2Þ
0p = :::=β

ðEÞ
0p = β

*
0p for p 2 P*, where P* is the set of causal

exposures, whereas the genetic associations between SNPs and
exposures/outcome/confounders may be different, and confounders
between exposures and the outcome are also different. The aim of the
MR-EILLS model (Fig. 1) is to explore the pure causal effect of causal
exposures on the outcome by minimizing the following objective
function

Qðβ*
0p; θ̂

ðeÞ
p, j , Γ̂

ðeÞ
y, j ,σ

ðeÞ2
y, j Þ

=
P

e2E
wðeÞEj2S*½jwðeÞ

j ε̂ðeÞj j2�+ γ P

p2P

P

e2E
wðeÞjEj2S*½θ̂

ðeÞ
p, j �wðeÞ

j ε̂ðeÞj �j2
ð1Þ

where E is the expectation, wðeÞ
j is the weight of IV Gj on the causal

effect estimation in the e-th population, and wðeÞ is the weight of e-th
population on the pure causal effect estimation. The first part of the
objective function (1) is the empirical L2 loss, which is the multiple-
population version of ordinary least squares in one population, and
ε̂ðeÞj = Γ̂

ðeÞ
y, j �

P
pθ̂

ðeÞ
p, jβ

ðeÞ
0p denotes the pleiotropic effect. Motivating

simulation (Fig. 1a and Supplementary Fig. 1a) demonstrated that as
the pleiotropic effect increased, the absolute value of ε̂ðeÞj increased.
The pleiotropic effect includes correlated and uncorrelated pleio-
tropy. When only the A3 assumption (exclusion restriction) is violated,
we say that an uncorrelated pleiotropic effect exists; when the A2
assumption (exchangeability) is violated, a correlated pleiotropic
effect emerges. The second part of the objective function (1) is the
empirical focused linear invariance regularizer, which discourages the
selection of exposures with strong correlations between θðeÞ

p, j and εðeÞj in
some populations because these correlations represent correlated
pleiotropy, whichwould distort causal effect estimation. The results of
the motivating simulation (Fig. 1b and Supplementary Fig. 1b)
demonstrated that as the correlated pleiotropic effect increased, the
correlation between ε̂ðeÞj and θ̂

ðeÞ
p, j became stronger. γ >0 is the

hyperparameter. In addition, we added the following restriction

S* = f j :
X

e2E
jεðeÞj j+

X

p2P

X

e2E
jθ̂ðeÞp, jε

ðeÞ
j j< λg ð2Þ

to select valid IVs, that satisfy the three assumptions and have no
pleiotropy. The first part of Eq. (2) represents the total pleiotropic
effect for the j � th IV, and the second part of Eq. (2) represents the
correlated pleiotropic effect, that is, the correlation between θðeÞp, j and
εðeÞj for the j � th IV. λ>0 is the hyperparameter controlling the
strictness of filtering IVs. When there are invalid IVs, the ridge plot of
P

e2E jεðeÞj j+Pp2P
P

e2E jθ̂
ðeÞ
p, jε

ðeÞ
j j has at least two peaks (Fig. 1c), whereas

the ridge plot has only one peak when there is no invalid IV. The
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Fig. 1 |MR-EILLSmodel.TheMR-EILLSmodel aims to infer the causal relationships
between one or multiple exposures and one outcome, integrating multiple GWAS
summary datasets from heterogeneous populations. There are different pleio-
tropic effects and IV strengths for the same IVs in heterogeneous populations. The
objective function of the MR-EILLS model considers both correlated and uncor-
related pleiotropy and removes invalid IVs. Panels a–c show the results of the
motivating simulation. Panel a shows the point plot for the absolute value of ε̂ðeÞj in
different populations, where a larger point indicates a larger value of jε̂ðeÞj j. As the
pleiotropic effect increases, jε̂ðeÞj j increases; thus, the first part of the MR-EILLS
model minimizes the pleiotropic effect between different populations. Panel
b shows the correlation between ε̂ðeÞj and θ̂

ðeÞ
p, j , which represents the correlated

pleiotropic effect or the violation of the InSIDE assumption. As the correlated
pleiotropic effect increases, this correlation becomes stronger. This corresponds to
the second part of MR-EILLS, the empirical focused linear invariance regularizer,
which discourages the selection of exposures with strong correlations between θðeÞp, j

and εðeÞj in somepopulations because this correlationwoulddistort the causal effect
estimation. Panel c shows the ridge plot of

P
e2EjεðeÞj j+Pp2P

P
e2Ejθ̂

ðeÞ
p, jε

ðeÞ
j j when

there are different proportions of invalid IVs. When there are invalid IVs, the ridge
plot has two peaks, whereas the ridge plot has only one peak when there is no
invalid IV. The corresponding abscission value at the lowest point between the two
peaks is the optimal λ. The thirdpart of theMR-EILLSmodel removes the invalid IVs
by λ.
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corresponding abscission value at the lowest point between the two
peaks is the optimal λ. Thus, Eq. (2) removes the invalid IVs with
pleiotropic effects larger than λ. Details for motivating the simulation
are shown in Supplementary Note 1.

Simulation
We generated GWAS summary statistics for heterogeneous popula-
tions with varying edge effects, IV strengths, and pleiotropy values
under both the UVMR and MVMR scenarios. We then compared MR-
EILLS with nine published methods: IVW, MR-Egger, MR-Lasso, MR-
Median, MR-cML, MRAID, Cause, MR-BMA, and MR-Horse. For these
MR methods, we implemented two analytical strategies: (1) metaMR,

which first performsmeta-analysis of GWAS summary statistics across
all datasets for each variable, followed byMR analysis; and (2)mrMeta,
which first conducts MR analysis separately for each dataset, followed
by meta-analysis of the MR results. Both random effects and fixed
effects meta-analysis approaches were employed.

In the UVMR scenario (a), with both correlated and uncorrelated
pleiotropy (30% invalid IVs), MR-EILLS, Cause, and MR-cML with
metaMRdemonstrated unbiased causal effect estimation, whereas other
methods exhibited bias (Fig. 2 and Supplementary Data 1, 2). Compared
with Cause and MR-cML with metaMR, MR-EILLS showed superior per-
formance with higher accuracy, more stable type I error rates when the
causal effect was null, and greater statistical power for nonnull effects.

Fig. 2 | Simulation results when P = 1 (UVMR). a, b Results of the causal effect
estimation and type I error rate when the causal effect is zero. c, d Results of causal
effect estimation and statistical power when the causal effect is 0.1. The number of

IVs is 100 and the proportion of invalid IVs is 30%. The number of populations is
E = 3. 200 repeated datasets were generated in all simulations. Data in boxplots are
presented as median values and interquartile range.
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When 80% of the IVs were invalid, all the MR methods, including MR-
cML and Cause, produced biased estimates, whereas MR-EILLS main-
tained unbiased estimation (Supplementary Figs. 8, 9,18, 19). Notably,
MR-EILLS displayed robust performance across all evaluation metrics: it
maintained appropriate type I error rates for null effects and achieved
>90% power with 300 IVs for nonnull effects (Supplementary Figs. 10, 11
and Supplementary Figs. 20, 21). In scenario (b), MR-IVW and MR-Egger
showed significant bias, whereas the other methods performed better
with smaller bias. Additionally, all methods yielded more accurate esti-
mates under balanced pleiotropy conditions than under unbalanced
pleiotropy conditions (Supplementary Figs. 22–29). For scenario (c), all
methods performed similarly well, exhibiting three key characteristics:
unbiased effect estimation, well-controlled type I error rates for null
effects, and high power (>80%) for detecting nonnull effects (Supple-
mentary Figs. 30–33). The complete simulation results are presented in
Supplementary Figs. 2–33 (Supplementary Note 2–5).

For MVMR analyses with eight exposures and 30% of IVs exhi-
biting either correlated or uncorrelated pleiotropy (case (a)), Fig. 3

(Supplementary Data 3) demonstrates that MR-EILLS provides
unbiased causal effect estimates for all exposures, whereas other
methods show varying degrees of bias, including slight biases
observedwithMR-cML usingmetaMR for certain exposures. Notably,
MR-EILLS achieves the highest estimation accuracy among all
methods. Figure 4 (Supplementary Data 3) presents type I error
rates under null effects and statistical power under nonnull effects,
revealing that MR-EILLS maintains the highest statistical power
for nonnull effects while showing the most stable type I error
control, albeit with marginally lower than nominal rates (0.05) for
some exposures—a phenomenon that diminishes with increasing
population sizes (Supplementary Figs. 52, 53). Similar performance
patterns are observed when P =3 (Supplementary Figs. 46, 47).
Under more extreme conditions with 80% invalid IVs, all MR
methods produce biased estimates except MR-EILLS, which main-
tains unbiased estimation (Supplementary Figs. 48, 49). Further-
more, MR-EILLS demonstrates robust type I error control and
achieves >90% statistical power with 300 IVs for nonnull effects
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Fig. 3 | Simulation results of causal effect estimation when there is correlated
and uncorrelated pleiotropy (MVMR). The number of IVs is 100, and the pro-
portion of invalid IVs is 30%. The number of populations is E = 3. Among a total of
eight exposures, two (X 1 and X2) are causal exposures (with a causal effect of 0.2),

and the other six (X3, :::, X8) are spurious exposures (with a causal effect of 0). 200
repeateddatasets were generated in all simulations. Data in boxplots are presented
as median values and interquartile range.
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(Supplementary Figs. 50, 51). For case (b), the results mirror those
from UVMR analyses regardless of pleiotropy balance status (Sup-
plementary Figs. 54–57). In the absence of pleiotropy (case (c)), all
methods performed comparably well, yielding unbiased estimates,
appropriate type I error rates, and high statistical power (>90%)
(Supplementary Figs. 58, 59). Comprehensive simulation results are
provided in Supplementary Figs. 38–59 (Supplementary Notes 6–9).
When evaluating P = 15, Fig. 5 displays the mean F1 score, recall, and
precision acrossmethods, withMR-EILLS consistently outperforming
all alternatives on these metrics.

Our analyses further revealed significant heterogeneity in causal
effect estimates across different populations. Supplementary Figs. 34,
60 summarizes the variation in I2 across all the simulations. To illus-
trate this heterogeneity, we randomly selected one simulation, and the
detailed forestplots of causal effect estimates for eachMRmethodand
dataset arepresented in SupplementaryFigs. 36, 37, 61–63. Theseplots
demonstrate substantial inconsistencies in effect estimates among
populations.

Our simulation studies were conducted under weak IV conditions,
with conditional F-statistics in simulations mirroring those observed in
the applied analysis (Supplementary Data 4). Comparedwith alternative
MR methods, our proposed approach exhibits minimal variance infla-
tion while preserving superior statistical power (Supplementary Figs.
44, 45). These findings proved robust across different genetic correla-
tion scenarios, maintaining consistent performance when accounting
for nonzero genetic correlations between populations (Supplementary
Figs. 4–7, 14–17, 40–43). In terms of computational efficiency,MR-EILLS
maintains high performance regardless of the number of exposures.
Conversely, methods such as MR-cML and MR-BMA—particularly MR-
Horse—exhibit progressively increasing computational requirements,
demanding significantly greater memory allocation and processing
time as the number of exposures increases (Table 1).

Application
We explored the causal relationships between a total of 11 blood cells
(five red blood cells: hemoglobin (HGB) concentrations, hematocrit
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Fig. 4 | Simulation results of the type I error rate for spurious exposures and
statistical power for causal exposures when there is correlated and uncorre-
lated pleiotropy (MVMR). The number of IVs is 100, and the proportion of invalid
IVs is 30%. The number of populations is E = 3. Among total of eight exposures, two

(X 1 and X2) are causal exposures (with a causal effect of 0.2), and the other six
(X3, :::, X8) are spurious exposures (with a causal effect of 0). This figure displays
the type I error rates for X 1 and X2, the statistical power for X3, :::, X8.
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(HCT), mean corpuscular hemoglobin (MCH) concentrations, mean
corpuscular volume (MCV), and the mean corpuscular hemoglobin
concentration (MCHC); five white blood cells: white blood cell (WBC)
counts, neutrophil (Neutro) counts, monocyte (Mono) counts, baso-
phil (Baso) counts, and eosinophil (Eosin) counts; one platelets: pla-
telet (PLT) counts) and 20 disease-related outcomes (asthma, body fat
percentage, body mass index, waist circumference, weight, fasting
blood glucose, HbA1cmeasurement, total cholesterol, type 2 diabetes,
cardioembolic stroke, ischemic stroke, large artery stroke, stroke, heel
bone density, pneumonia, schizophrenia, forced expiratory volume
(FEV), forced vital capacity (FVC), the FEV/FVC ratio, and peak
expiratory flow (PEF)) using GWAS summary statistics from five
ancestries: African, East Asian, South Asian, Hispanics Latinos, and
European.

First, we conducted traditional MR analysis in five ancestries, and
performed heterogeneous analysis for each MR method. The results
are shown in Fig. 6 (Supplementary Data 5). We found that there were
large heterogeneities (I2 > 0.75) for blood cells among five ancestries.
We subsequently conducted multivariable MR-EILLS analysis to

explore the independent causal effects of 11 blood cells on 20 disease-
related outcomes. We plot ridge plots for each outcome in five
ancestries, and the results are shown in Supplementary Figs. 64–66.
We used the ridge plot to set the λ for MR-EILLS (Supplementary
Data 6).

In Fig. 7 (Supplementary Data 7), we found that higher counts of
somewhite bloodcells, redblood cells or plateletswere independently
associated with decreased lung function. For FEV, higherWBC, Neutro
counts and HGB concentrations causally induced a lower FEV (WBC:
beta = −0.14, 95%CI: [−0.24, −0.04]; Neutro: beta = −0.17, 95%CI:
[−0.24, −0.04]; HGB: beta = −0.29, 95%CI: [−0.54, −0.03]). The counts
of Neutro and HCT were negatively associated with the level of FVC
(Neutro: beta = −0.09, 95%CI: [−0.18, −0.01]; HCT: beta = −0.06, 95%CI:
[−0.13, −0.002]). In addition, increases in the PLT and Neutro counts
were associated with a decreased FEV/FVC ratio (PLT: beta = −0.26,
95%CI: [−0.49, −0.02]; Neutro: beta = −0.16, 95%CI: [−0.30, −0.02]).
Higher MCH concentrations might result in a lower PEF level (beta =
−0.08, 95%CI: [−0.16, −0.004]). James et al. reported that an increased
WBC count is associated with lower levels of lung function and
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Fig. 5 | Simulation results of the F1 score, precision and recall when P = 15 (MVMR). The number of IVs is 100 and the proportion of invalid IVs is 30%. The number of
populations is E = 3.

Table 1 | Computing time for different methods in the simulation

UVMR

mrMeta

IVW Egger Lasso Median cML Horse

0.053 secs 0.045 s 0.186 s 1.060 s 0.384 s 1.588min

metaMR

IVW Egger Lasso Median cML MRAID Cause Horse

3.478 secs 3.221 s 3.475 s 3.970 s 38.968 s 3.801 s 36.068 s 1.109min

MR-EILLS

0.208 secs

MVMR

mrMeta

IVW Egger Lasso Median cML Horse

0.158 secs 0.156 s 0.272 s 18.271 s 4.132 s 126.325min

metaMR

MVIVW MVEgger MVLasso MVMedian MVcML MVBMA MVHorse

14.931 secs 14.950 s 14.845 s 26.557 s 4.612min 3.877min 91.088min

MR-EILLS

1.089 s
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provided biological explanations22. A 15-year longitudinal study
demonstrated that higher blood neutrophil concentrations were
associated with accelerated FEV decline23. The inverse relationships of
FEV and FVC with red blood cell counts were also supported by
observational studies24,25. A prospective longitudinal analysis revealed
that a higher baseline neutrophil count predicted a lower serially
obtained FVC26. Moreover, a retrospective study revealed a strong
correlation between the PLT count and the FEV/FVC ratio27.

Our study provides compelling evidence for causal relationships
between cytokine profiles and stroke pathogenesis. Elevated PLT
counts were independently correlated with increased overall stroke
risk (OR = 1.93, 95%CI: [1.37, 2.71]), particularly for the cardioembolic
stroke subtype. Increased Mono levels were positively associated with
stroke susceptibility (OR = 1.39, 95%CI: [1.24, 1.57]), whereas elevated
MCHC specifically amplified cardioembolic stroke risk (OR = 1.25, 95%

CI: [1.03, 1.53]). MCH levels exhibited a marginal yet statistically sig-
nificant association with ischaemic stroke incidence (OR = 1.06, 95%CI:
[1.01, 1.12]). Notably, reduced WBC counts conferred protection
against overall stroke risk (OR =0.63, 95%CI: [0.47, 0.84]), with
enhanced preventive efficacy observed in the large artery stroke sub-
type (OR =0.55, 95%CI: [0.40, 0.75]). Protective associations were
further identified across multiple hematological parameters: Eosin
(OR =0.38, 95%CI: [0.34, 0.44]), Neutro (cardioembolic: OR =0.74,
95%CI: [0.58, 0.95]; large artery: OR = 0.54, 95%CI: [0.39, 0.76]), Baso
(OR =0.39, 95%CI: [0.31, 0.49]), HGB (OR=0.64, 95%CI: [0.57, 0.72]),
and HCT (OR =0.69, 95%CI: [0.63, 0.76]).

These findings align with established mechanisms of
inflammation-mediated vascular pathology. Mansfield et al.28 demon-
strated that cytokine-driven endothelial dysfunction occurs through
the IL-6/TNF-α pathway, providing mechanistic support for our
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observed mono-stroke associations. The neuroprotective neutrophil
subset (N2) identified by ref. 29 offers a plausible explanation for the
reduced stroke risk at lower Neutro counts through inflammatory
modulation. Rodhe et al.30 further substantiated cytokine-mediated
vascular injury through IL-8/TNF-α correlations in geriatric popula-
tions, whereas ref. 31 delineated cytokine polarization patterns
affecting vascular homeostasis, which is consistent with our PLT and
HGB findings. Tyagi et al.32 established chemokine-specific inflamma-
tory cascades (e.g., CXCL10), reinforcing our conclusions that Eosin
and Baso count reductions attenuate stroke risk.

Our analysis demonstrated that elevated PLT counts
independently increased body fat percentage (beta = 0.01, 95%CI:
[0.005, 0.02]), although no significant causal associations were
detected between blood cell indices and body mass index or waist
circumference. Higher MCHC values were positively related to weight
(beta = 0.02, 95%CI: [0.004, 0.02]), whereas lower HCT levels
were causally linked to increased weight (beta = −0.01, 95%CI:

[−0.002, −0.02]). Our findings align with studies linking hematological
indices to metabolic outcomes. Zhang et al.33 demonstrated that ele-
vated HCT in obese individuals with dyslipidaemia correlates with
worsened lipid profiles (higher TC, TG, LDL-C; lower HDL-C), sup-
porting our observation that lower HCT levels are causally associated
with increased weight. Similarly, ref. 34 established HCT as a key
determinant of blood viscosity, which impairs insulin sensitivity and
promotes adiposity—mechanisms consistent with our positive asso-
ciation between MCHC and body mass. These studies reinforce the
role of red blood cell parameters in metabolic regulation, although
causal relationships remain nuanced compared with BMI/waist
circumference.

Elevated PLT (beta = 0.57, 95%CI: [0.26, 0.89]) and MCHC
(beta = 0.3, 95%CI: [0.01, 0.58]) values were independently positively
associated with fasting blood glucose. Conversely, Baso (beta = −0.18,
95%CI: [−0.29, −0.08]) andMono (beta = −0.14, 95%CI: [−0.17, −0.007])
counts demonstrated inverse correlationswith glucose levels. For lipid
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metabolism, the PLT (beta = 0.001, 95%CI: [0.002, 0.023]), WBC
(beta = 0.01, 95%CI: [0.001, 0.02]), and Neutro (beta = 0.01, 95%CI:
[0.002, 0.02]) counts exhibited positive dose-response relationships
with total cholesterol. In contrast, HGB (HGB, beta = −0.01, 95%CI:
[−0.013, −0.0001]) and HCT (beta = −0.01, 95%CI: [−0.014, −0.0007])
levels displayed protective associations against cholesterol elevation.
Our findings align with the established literature linking hematological
indices tometabolic outcomes. Elevated PLT andMCHC levels predict
fasting blood glucose, which is consistent with studies demonstrating
the role of platelet activation in insulin resistance35 and the impact of
erythrocyte rigidity on endothelial function36. Lower Baso and Mono
counts are correlated with increased glucose levels, supporting their
anti-inflammatory roles in glucose metabolism37,38. For lipid metabo-
lism, the PLT, WBC, and Neutro counts are positively associated with
total cholesterol, mirroring leukocyte-driven atherosclerosis
mechanisms39 and haemorheological contributions to dyslipidaemia40.
Conversely, lower HGB and HCT levels have protective effects against
hypercholesterolemia, which aligns with the role of ironmetabolism in
lipid regulation41.

Elevated HGB and HCT independently elevated asthma risk (HGB:
OR = 1.22, 95%CI: [1.04, 1.41]; HCT: OR = 1.19, 95%CI: [1.01, 1.41]). Higher
Eosin counts were positively associated with heel bone density
(beta = 0.23, 95%CI: [0.02, 0.45]), whereas reduced PLT and mono
counts were inversely correlated (PLT: beta = −0.25, 95%CI:
[−0.47,−0.04];Mono: beta = −0.1, 95%CI: [−0.17,−0.02]). HGBandHCT
elevations were linked to pneumonia risk (HGB: OR = 1.63, 95%CI:
[1.04, 2.54]; HCT: OR = 1.48, 95%CI: [1.06, 2.03]). Schizophrenia risk
exhibited dose-dependent relationships with Eosin (OR= 1.27, 95%CI:
[1.14, 1.42]), Baso (OR = 1.56, 95%CI: [1.21, 2.05]), and Mono (OR= 1.15,
95%CI: [1.04, 1.28]) counts, in contrast with the protective effect of a
lower MCHC (OR =0.54, 95%CI: [0.39, 0.75]). The independent eleva-
tion of asthma risk by HGB and HCT aligns with studies showing that
iron deficiency anemia (proxied by low HGB/HCT) impairs lung func-
tion and increases airway hyperresponsiveness42. For bone health, the
positive correlation between Eosin counts and heel bone density
supports the role of eosinophils in osteoblast activation, as demon-
strated by the fact that eosinophil-derived growth factors promote
bone formation43. Conversely, lower PLT andMono countsmay reflect
anti-inflammatory environments that reduce asthma exacerbations44.
The links between HGB/HCT elevations and pneumonia risk corre-
spond with evidence that iron overload (high HGB/HCT) promotes
bacterial adherence and pulmonary inflammation45. With respect to
psychiatric outcomes, the dose-dependent relationships of Eosin,
Baso, and Mono counts with schizophrenia risk align with immune
dysregulation theories, where proinflammatory monocytes and baso-
phils exacerbate neuroinflammation46. Finally, the protective effect of
low MCHCs against schizophrenia may reflect iron homeostasis dis-
ruption in schizophrenic patients, as elevated MCHCs are correlated
with oxidative stress and dopamine dysregulation47. The details of the
results are shown in Supplementary Data 5–9 and Supplementary
Note 10.

Discussion
In this paper, we proposed an MR method MR-EILLS, which works in
both univariable and multivariable frameworks, and it outputs the
pure causal effect estimation of multiple heterogeneous populations
using only GWAS summary statistics. The results of the simulation
revealed the superior performance of MR-EILLS and its application in
exploring causal relationships from 11 blood cells to 20 disease-related
outcomes, which covered most of the expected causal links.

MR-EILLS integrates GWAS summary datasets from hetero-
geneous populations, and for each population, GWAS summary data-
sets for exposure andoutcomecanbe fromeither the same individuals
or different but heterogeneous individuals. This assumption is the
same as that in traditional two-sampleMR analysis, which requires two

homogeneous but nonoverlapping samples. MR-EILLS assumes that
the GWAS summary datasets for each population are from homo-
geneous but nonoverlapping samples. In the application, we assume
that the individuals in each ancestry are homogeneous, and that the
genetic diversity in different ancestries leads to heterogeneity among
ancestries (different IV strengths and pleiotropy). The heterogeneity
among populations includes genetic and nongenetic differences, also
creating distinct challenges for IV validity across groups. Genetic
architecture differences include allele frequency variations,
population-specific linkage disequilibrium (LD) patterns, divergent
selection pressures and unique mutation histories, etc. In addition,
nongenetic modifiers—such as socioeconomic status, environmental
exposures, cultural practices, and disparities in healthcare access—also
play a significant role in shaping population heterogeneity. These
contextual differences contribute to inconsistent causal relationships
across different populations, highlighting the complex interplay
between genetic predispositions and external determinants of health.

In our context, we assume that given the causal exposures, the
conditional expectation of the outcome is invariant, that is, the causal
effects of causal exposures on the outcome are invariant across dif-
ferent populations. The joint distribution of the candidate exposures
and outcomemay vary across different populations due to population
heterogeneity. Therefore, the conditional expectation invariance
structure assumption of the original EILLSmethod is satisfied. Another
two identification conditions for identifyingpurecausal effect are: (1) it
is necessary for identifying pre causal effect to select heterogeneous
populations with large differences in social and environment factors
including genetic difference; (2) a minimal identification condition
related to the heterogeneity of the populations: for a exposures’ set, if
θ̂
ðeÞ
p, j and ε̂ðeÞj is not independent in at least of one population, then there

must be two populations with different causal effects. However, both
of these identification conditions are untestable in practice. Therefore,
when applying this method, practitioners must rely on prior knowl-
edge to satisfy the identification assumptions as much as possible.

MR-EILLS is specifically designed for estimating causal effects in
biological pathways where variables and pathway effects remain
independent of social/environmental factors—either unaffected by or
unmodified through these contextual influences. Taking the causal
effect of hemoglobin concentration on stroke risk as an example, MR-
EILLS tend to estimation the causal effect on the biological pathway
like Hemoglobin level → Impaired oxygen transport → Elevated blood
viscosity → Thrombosis → Stroke risk, or Hemoglobin level → Anemia
development → Compensatory cardiac mechanisms → Left ventricular
hypertrophy → Stroke risk, etc., but not hemoglobin level → oxygen
transport efficiency → fatigue symptoms → reduced physical activity →
elevated stroke risk. MR-EILLS methodology excludes such socio-
environmentally mediated pathways when estimating invariant causal
effects, as the mediator (“exercise”) inherently exhibits environmental
variability. MR-EILLS aims to eliminate the influence of socioeconomic
factors on the causal invariant effect from exposures to the outcome.
The methodology does not require study populations to be globally
representative, as it remains applicable to specific observational study
cohorts. This is justified because socioeconomic confounders or effect
modifiers inherently exist within any defined study population in
observational research. Similar to MR, MR-EILLS requires no interac-
tion assumptions for causal exposures and environmental variables. If
there is an interaction between exposure and environmental variables,
then this exposure tends tobe considered a spurious exposure. If there
is an interaction between the environmental variable and themediator
variable in themediation pathway fromexposure to outcome, then the
pathway where this mediator variable is located is not included in the
invariant causal effect. The additional explanation for the pure causal
effect is shown in Supplementary Note 11.

MR-EILLS allows different IVs to be set in different populations.
However, the strategy for metaMR, that is, first conducting GWAS
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meta-analysis and then performingMR analysis, requires the SNPs that
are independent (i.e., no LD detected) in all populations, which redu-
ces the number of IVs substantially; however, GWAS meta-analysis
helps researchers identify more significant SNPs (i.e., P < 5× 10�8). In
addition, only a few MR methods allow the SNP set to have high LD.
MR-EILLS solves this tricky issue and only requires that the IV set in
each population is independent without LD.

The MR-EILLS model has two hyperparameters, which require
researchers to set appropriate values to estimate the causal effects of
exposures on the outcome. For γ, we recommend γ >0:4 in UVMR and
γ >0 in MVMR. The larger γ is, the stronger the role of the empirical
focused linear invariance regularizer is. For λ, we suggest that
researchers construct ridge plots to find the optimal value. In Model
(2), we keep the SNP for which the pleiotropic effect in all populations
is lower than λ. When the scales of different populations are different,
the Model (2) can be modified to the following Model (2-1)

S* = f j : jεðeÞj j+
X

p2P
jθ̂ðeÞ

p, jε
ðeÞ
j j< λe f orany eg ð2� 1Þ

Researchers can set different λe values for different populations.
For example, in our applications, we set different λe values for five
ancestries and five ridge plots are shown for each outcome. MR-EILLS
works only if there are at least J ≥P valid IVs in the IV set; this
assumption is less strict than the plurality assumption17, which requires
the valid IVs from the largest group of IVs sharing the same causal
parameter value.

There are several limitations for MR-EILLS. The first is that MR-
EILLS does not yet work in the high-dimensional case. One future key
researchdirection is to extendMR-EILLS tohigh-dimensional exposure
scenarios, especially for high-dimensional omics biomarkers; for this
purpose, correlated IVs are also important issues to be solved. Another
point is that inappropriate settings of hyperparameters may lead to
incorrect inference of causal relationships between exposures and
outcomes. It is important to choose the appropriate hyperparameters,
especially for λ. The value of λ determines whether the invalid IVs are
removed, and if λ is too large, the causal effect estimation would be
distorted. If λ is too small, the number of remaining IVs is small; thus, in
the future, it is necessary to extend MR-EILLS to correlated IV sce-
narios. Our empirical application of MVMR to analyse 11 potentially
correlated blood cell traits presents notable methodological chal-
lenges. The high degree of intertrait correlation, combined with the
difficulty of identifying truly independent IVs for each exposure, ren-
ders this analysis particularly vulnerable to weak instrument bias.
While acknowledging these fundamental limitations inherent in ana-
lyzing highly correlated traits, our proposed methodology demon-
strates improved robustness by substantially reducing variance
inflation compared to conventional approaches. This enhancement
enablesmore reliable inferencedespite the analytical challenges posed
by trait correlations.

In conclusion, we propose the MR method MR-EILLS, which
integrates multiple heterogeneous GWAS summary datasets to infer
the pure causal relationships between exposures and outcomes. This
study has important guiding significance for the discovery of new
disease-related factors. We look forward to offering constructive
suggestions for disease diagnosis and applying our method beyond
the scope considered here.

Methods
Ethics
Since our research solely employs de-identified, publicly accessible
GWAS summary datasets, ethical approval and participant consent
procedures were addressed in the primary source publications. We
have therefore omitted this information from our manuscript in
accordance with secondary analysis guidelines.

Overview of MR methods
For one population, assume P exposures Xp,p 2 f1, :::, Pg and one
outcome Y . The J independent IVs Gj, j 2 f1, :::, Jg satisfy the following
three assumptions:

A1. Relevance,Gj is associatedwith at least oneof the P exposures;
A2. Exchangeability, Gj is not associated with the confounder

between P exposures and the outcome;
A3. Exclusion restriction, Gj affects the outcome only through

exposures.
The MR model based on the individual data is as follows:

U =
X

j
ωjGj + εXU

Xp =
X

j
αpjGj +

X

Xk2paðXpÞ
βXkXp

Xk +β1pU + εXp

Y =
X

j
γjGj +

X

p
β0pXp +β2U + εY

ð3Þ

where εXU
, εXp

, εY � Nð0, 1Þ. γj represents the uncorrelated pleiotropic
effect and ωj represents the correlated pleiotropy. Xk 2 paðXpÞ is the
father node of Xp, which is the direct cause of Xp, and where βðeÞ

XkXp

represents the effect ofXk onXp.β0p denotes the causal effect ofXp on
Y . We call the exposures with β0p≠0 causal exposures, which we want
to discover, whereas the exposures with β0p =0 are the spurious
exposures, which are not the true cause of the outcome.We define the
set of causal exposures as fXpg,p 2 P* � f1, :::, Pg. When P = 1, the
abovemodel is called UVMR,whereaswhen P > 1, it is calledMVMR. To
simplify the expression, our model below uniformly uses P exposures,
both of which are applicable to UVMR and MVMR.

The GWAS summary statistics include the Gj � Xp association θ̂p, j

and its variance σ2
p, j, as well as the Gj � Y association Γ̂y, j and its var-

iance σ2
y, j . Based on Model (3), we have

θp, j =αp, j +ωjβ1p +
X

Xk2paðXpÞ
θk, jβXkXp

Γy, j =ωjβ2 + γj +
X

p
θp, jβ0p

ð4Þ

When Gj is a valid IV (no pleiotropy), that is, γj =ωj =0, then
εj = Γy, j �

P
pθp, jβ0p is zero and is dependent on θp, j . For j 2 f1, :::, Jg,

we can identify β0pðp 2 f1, :::, PgÞ by the system of linear equations
Γy, j =

P
pθp, jβ0p if and only if J ≥ P. The causal effects of exposures on

the outcome β0p can be estimated by a weighted version of ordinary
least squares (OLS), that is, the IVW regression

Γ̂y, j =
X

p
θ̂p, jβ0p + ζ j , ζ j � Nð0,σ2

y, jÞ ð5Þ

which sets the intercept equal to zero. This model minimizes the
empirical L2 loss objective function

Qðβ0p; θ̂p, j , Γ̂y, j ,σ
2
y, jÞ

=E½jwjεjj2�
=E½jwjðΓ̂y, j �

X

p
θ̂p, jβ0pÞj2�

ð6Þ

wherewj represents the weight of IVGj in the causal effect estimation.
If Gj has uncorrelated pleiotropy (γj≠0), that is, if Gj is causally asso-
ciatedwith Y not through anyXp, then εj = γj is no longer equal to zero,
and it represents the uncorrelated pleiotropic effect. MR-Egger
regression18 is proposed to solve this problem by allowing the
intercept term �γ in Model (5), and the intercept represents the mean
pleiotropic effect. The causal effect can be estimated by minimizing

Qðβ0p; θ̂p, j , Γ̂y, j ,σ
2
y, jÞ=E½jwjðΓ̂y, j �

X

p
θ̂p, jβ0p � �γÞj2�:

MR-Egger regression requires the InSIDE assumption, which
means that the pleiotropic effect is independent of θp, j . If Gj has cor-
related pleiotropy (ωj≠0), that is, if Gj is causally associated with the
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unmeasured confounding U between Xp and Y , then the pleiotropic
effect εj =ωjβ2 + γj is not independent of θp, j because of the common
term ωj . This is a violation of the InSIDE assumption. Equations (5–6)
and MR-Egger require that εj is independent of θp, j because the cor-
relation between the intercept term and the independent variables
would distort the causal effect estimation. The results of the moti-
vating simulation for correlated and uncorrelated pleiotropy are
shown in Supplementary Fig. 1.

The MR-Lasso method applies lasso-type penalization to the
direct effects of IVs on the outcome. The causal estimate is described
as a post-lasso estimate and is obtained via the IVW method, which
uses only those IVs that are identified as valid by the lasso procedure.
The objective function is as follows:

Qðβ0p; θ̂p, j, Γ̂y, j, σ
2
y, jÞ=E½jwjðΓ̂y, j �

X

p
θ̂p, jβ0p � γjÞj2 + λLjγj j�

If γj shrinks to zero, the IV is treated as a valid IV. The MR-median
estimator is defined as the 50th percentile of either an unweighted or
IVW empirical density function of the Wald ratio, and it is consistent
even when up to 50% of the information comes from an invalid IV. The
aforementionedmethods are classified into a categoryofMRmethods,
namely, the Wald ratio-based MR method.

The MR-cML and MRAID methods are representative of the
likelihood-basedMRmethod.MR-cML infers causal relationships using
constrainedmaximum likelihood. It is robust to both uncorrelated and
correlated pleiotropic effects, under the plurality assumption. MRAID
models an initial set of candidate IVs that are inpotentially high linkage
disequilibrium with each other and automatically selects among them
the suitable IVs for causal inference, under the joint likelihood fra-
mework. MRAID also explicitly models both uncorrelated and corre-
lated horizontal pleiotropy.

TheMR-Horse and causemethods produce unbiased causal effect
estimates under the framework of Bayesian inference, while avoiding
inflated false positive rates, and can account for both correlated and
uncorrelated pleiotropy. The disadvantage of these two methods is
that when the number of exposures is large, they require a significant
amount of memory and computation time.

MR-BMA is an MVMR method used to select likely causal risk
factors from high-throughput experiments. It uses Bayesian model
averaging and computes the posterior probability for all possible
combinations of risk factors, finally estimating the model-averaged
causal estimate (MACE) by weighting and summing the causal effect
estimation of eachmodel. To some extent, MR-BMA avoids pleiotropy
by considering as many risk factors as possible.

These methods are all based on a single dataset, and only infor-
mation from one dataset can be used. Therefore, we proposed a
method that fully exploits the information from multiple existing
datasets to identify causally invariant factors, comprehensively
improves the estimation precision and enhances the statistical power.

MR-EILLS model: MR integrating multiple heterogeneous
populations
When there are E heterogeneous populations, GWAS summary statis-

tics include θ̂
ðeÞ
p, j, σ

ðeÞ2
GjXp

, Γ̂
ðeÞ
y, j and σðeÞ2

y, j for e 2 E. We define εðeÞj = ΓðeÞy, j �
P

pθ
ðeÞ
p, jβ

ðeÞ
0p and ε̂ðeÞj = Γ̂

ðeÞ
y, j �

P
pθ̂

ðeÞ
p, jβ

ðeÞ
0p in the version of multiple popu-

lations. We use the superscript ðeÞ to denote the e-th population. We
assume that the pleiotropic effect, IV strength and relationships
amongexposures are different in heterogeneous populations, whereas
the causal effects of causal exposures on Y are invariant, that is

βð1Þ
0p =β

ð2Þ
0p = :::=β

ðEÞ
0p =β

*
0p for p 2 P*; this assumption is called the

structure assumption21. These assumptions are rational because the IVs
satisfying A1–A3 control only the unmeasured confounders between
Xp and Y , whereas other unmeasured confounders between IVs and

exposures, or between IVs and outcomes, or between exposures are
not controlled, and theseunmeasured confounders are also the reason
for heterogeneity between populations.

Note that a valid IV in one population may be an invalid IV in the
other heterogeneous populations. On the other hand, an IV may be
associated with exposure in all heterogeneous populations, while it
may have different uncorrelated or correlated pleiotropy in different
populations. This leads to inconsistent independence relationships
between θðeÞ

p, j and εðeÞj across different populations and inconsistent
causal effect estimation of exposures on the outcome in different
heterogeneous populations. Therefore, we leveraged the EILLS21, the
multiple heterogeneous population version of OLS, to construct the
MR-EILLS model. The MR-EILLS model integrates GWAS summary
statistics from multiple heterogeneous populations and finds causal
exposures that have invariant effects on the outcome in hetero-
geneous populations. The MR-EILLS model aims to minimize the fol-
lowing objective function

Qðβ*
0p; θ̂

ðeÞ
p, j , Γ̂

ðeÞ
y, j ,σ

ðeÞ2
y, j Þ

=
P

e2E
wðeÞEj2S*½jwðeÞ

j ε̂ðeÞj j2�+ γP
e2E

wðeÞ P

p2P
jEj2S*½θ̂

ðeÞ
p, j �wðeÞ

j ε̂ðeÞj �j2
ð7Þ

where

wðeÞ
j =

σðeÞ�2
y, j

P
j2S*σ

ðeÞ�2
y, j

and wðeÞ =
Ne

N
ð8Þ

wðeÞ
j is theweight of IVGj on the causal effect estimation in the e-th

population, and wðeÞ is the weight of the eth population on the final
causal effect estimation. The first part of the objective function (1) is
the empirical L2 loss, which is the multiple-population version of the
objective function (6) in one population. The second part of the
objective function (1) is the empirical focused linear invariance reg-
ularizer, which discourages the selection of exposures with strong
correlations between θðeÞ

p, j and εðeÞj in somepopulations because this will
distort the causal effect estimation. γ >0 is the hyperparameter. In
addition, we added the following restriction

S* = f j :
X

e2E
jεðeÞj j+

X

p2P

X

e2E
jθ̂ðeÞp, jε

ðeÞ
j j< λg ð9Þ

to select the valid IVs. The first part of Eq. (2) represents the uncor-
related pleiotropic effect for the j � th IV, and the second part of
Eq. (2) represents the correlated pleiotropic effect for the j � th
IV. λ>0 is the hyperparameter controlling the strictness offiltering IVs.
Equation (2) removes the invalid IVs with pleiotropic effects above λ.

The causal effects β*
0p can be identified under the assumption21 that

there are at least P valid IVs in the IV set, that isJ ≥P. We use a limited-
memory modification of the BFGS quasi-Newton method48 to find the
optimal solution β*

0p of the objective function (1) under the restriction of
Eq. (2). The confidence interval is estimated via bootstrap method.

Simulation
We generate the GWAS summary statistics of E heterogeneous popu-
lations via the following process:

θðeÞ
p, j =α

ðeÞ
p, j +ω

ðeÞ
j βðeÞ

1p +
X

Xk2paðXpÞ
θðeÞk, jβ

ðeÞ
XkXp

+ ξ ðeÞp, j

ΓðeÞy, j =ω
ðeÞ
j βðeÞ

2 + γðeÞj +
X

p

θðeÞ
p, jβ

ðeÞ
0p + ξ

ðeÞ
y, j

whereXk 2 paðXpÞ is the father node of Xp, which is the direct cause of
Xp, and where βðeÞ

XkXp
represents the effect of Xk on Xp. In total P
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exposures, the causal exposures are the top 30% of all exposures (e.g.,
P =8, f loorðP ×30%Þ= 2, then the top two (X 1 and X2) are the causal
exposures). The effect of causal exposure on Y (βðeÞ

0p,p 2 P*) is 0.2 for
MVMR (P > 1) and 0.1 for UVMR (P = 1), and the effect of other spurious
exposures on Y (βðeÞ

0p,p=2P*) is 0.βðeÞ
XkXp

� Uð�1, 1Þ for the effect of edge
Xk ! Xp.The structure between the exposures is randomly generated,
and the parameter βðeÞ

XkXp
represents the effect from Xk to Xp. We set IV

strength αðeÞ
p, j � Nð0, 0:2Þ for the eth population and Xp; ξ ðeÞp, j �

Nð0, σðeÞ2
p, j Þ for eth population and Xp, σðeÞ2

p, j � Uð0:01, 0:05Þ for Xp;
ξ ðeÞy, j � Nð0,σðeÞ2

y Þ for E = e, σðeÞ2
y, j � Uð0:05, 0:1Þ and different variances

represent different sample sizes; βðeÞ
1p � Uð0:5, 0:8Þ for Xp; and

βðeÞ
2 � Uð0:5, 0:8Þ. We consider three scenarios:
(a) uncorrelated and correlated pleiotropy effects, γðeÞj � Uð0, 0:5Þ

and ωðeÞ
j � Uð0, 0:5Þ;

(b) uncorrelated pleiotropy effect (balanced pleiotropy:
γðeÞj � Uð�0:5, 0:5Þ, unbalanced pleiotropy: γðeÞj � Uð0, 0:5Þ);

(c) No pleiotropy.

The parameters of edge effects, IV strength and pleiotropy were
randomly selected from a uniform distribution; thus, they are dif-
ferent in different datasets and represent heterogeneous datasets.
We varied the number of populations to be E =3 or 8; the number of
IVs was 100 or 300; and the number of exposures was P = 1, 3, 8, or 15,
including the cases of univariable and multivariable MR. In addition,
we considered the situation in which genetic correlations among
different populations are nonzero, and we generated the IV strength
αðeÞ
p, j in different populations using multiple normal distributions,

with correlations in the covariance matrix of 0.2 or 0.6. Finally, as the
number of exposures increases, weak IVs are more likely to emerge;
thus, we observed the performance of ourmethod in the presence of
weak IVs, by setting the IV strength ranging from 0.01 to 0.05, and
the corresponding conditional F-statistics are shown in Supplemen-
tary Data 4.

We conducted 200 repeated simulations to evaluate the per-
formance of MR-EILLS. We also compare nine methods, including
IVW, MR-Egger, MR-Lasso, MR-Median, MR-cML, MR-BMA, MARID,
Cause and MR-Horse. For P = 1, we compare eight methods in the
UVMR version exceptMR-BMA; for P = 3, 8, and 15, we compare seven
methods in the MVMR version except MARID and Cause, because
these two methods have only the UVMR version. For these MR
methods, we considered two strategies: (1)metaMR, first meta all the
GWAS summary statistics of E datasets for each variable and then
conduct the MR analysis; and (2) mrMeta, first conduct the MR
analysis (excluding MR-BMA, MARID and Cause because they cannot
output the standard errors) in E datasets separately and thenmeta all
the MR results. Meta methods include random effects and fixed
effects meta-analyses.

We evaluated the performance of all methods via box-violin plots
for causal effect estimation, histograms for type I errors when the
causal effect is zero and statistical power when the causal effect is not
zero. In addition, we calculated the I2 statistics in each simulation to
evaluate the heterogeneity of causal effect estimation among different
datasets for each MR method. We constructed the violin plot of the I2

statistics for the estimations of each variable, randomly selected three
simulations to demonstrate the quartiles of estimation, and then
constructed the forest plot of the estimations for each method and
each variable. For P = 15, we calculated themeans of the F1 score, recall
and precision for each method. Recall (i.e., power, or sensitivity)
measures howmany relationships amethod can recover from the true
causal relationships, whereas precision (i.e., 1-FDR) measures how
many correct relationships are recovered in the inferred relationships.
The F1 score is a combined index of recall and precision. We also
summarize the computing time for different methods to assess the
computational efficiency.

Setting of hyperparameters γ and λ
We recommend that practitioners determine the value of λ by con-
structing a ridge plot. The abscissa is the value of
P

e2E jεðeÞj j+Pp2P
P

e2Ejθ̂
ðeÞ
p, jε

ðeÞ
j j for each IV in Eq. (8). We constructed

the ridge plot in the simulations in Supplementary Figs. 67–71. These
plots demonstrate that when there is no pleiotropy, the figure has only
one peak, and λ only takes the value of abscission after the first peak.
When there is pleiotropy, the figure has two peaks, and the corre-
sponding abscission value at the lowest point between the twopeaks is
the optimal λ. We provide the function of the ridge plot in the R
package MR-EILLS.

In addition, we evaluated the root mean square error (RMSE) of
causal effect estimation using a grid search: γ ranges from 0.1 to 200,
and λ ranges from 0.1 to 1. The results are shown in Supplementary
Figs. 72–80. We present the ranges of hyperparameters when the
RMSE <0.1 in Supplementary Data 10. For UVMR, we recommend
γ >0:4. When γ >0:4, the RMSE is less than 0.1, especially for the case
of correlated and uncorrelated pleiotropy, whereas in other cases, the
RMSE is less than 0.05. For MVMR, γ >0 is recommended. Compared
with all valid IVs, invalid IVs increased the RMSE of causal effect esti-
mation, regardless of whether correlated or uncorrelated pleiotropy
was used. Therefore, γ is loosely valued, especially when P > 1. The
larger γ is, the stronger the role of the empirical focused linear invar-
iance regularizer. Details are shown in Supplementary Note 12.

In our simulations, we employed a grid search approach to iden-
tify the optimal lambda value thatminimizes the RMSE. In addition, we
set γ =0:5 for MVMR and γ =3 for UVMR.

Application
We explored the causal effect of 11 blood cells on 20 disease-related
outcomes using GWAS summary statistics from five ancestries: African,
East Asian, South Asian, Hispanic/Latino, and European. GWAS summary
statistics for blood cells were extracted from ref. 49, who conducted
transethnic andancestry-specificGWASs in746,667 individuals fromfive
populations (15,171, 151,807, 8189, 9368, and 563,947 individuals for five
ancestries, respectively). GWAS summary statistics for 20 disease-
relatedoutcomes50 were extracted from theMR-Base andGWASCatalog
platforms. The details are shown in Supplementary Data 11.

First, we selected IVs forMR analysis.We separately selected SNPs
with P < 5× 10�8 and clumped the LD with r2 > 0:01 in each population
(Supplementary Data 8). In addition, we calculated the conditional
F-statistics for IVs to assess the IV strength for each exposure (Sup-
plementary Data 9). Then, we extracted the summary statistics for the
IVs and conducted MR-EILLS and MR analysis for each population. We
also calculated the I2 statistic to evaluate the heterogeneity of causal
effect estimation among different populations for each MR method.
For MR-EILLS, we constructed the ridge plot in each population, and
set γ =0:5. The settings of λ are shown in Supplementary Data 6. The
confidence interval is estimated via the bootstrap method, and details
are shown in Supplementary Note 13.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics for 20 disease-related outcomes and 11
blood cell traits are publicly available through MR-Base and the GWAS
Catalog. All dataset accession IDs are comprehensively listed in Sup-
plementary Data 11. Data points in Figs. 2–4 are shown in Supple-
mentary Data 1–3. Conditional F-statistics in simulation are shown in
Supplementary Data 4. Results of heterogeneity analysis in the appli-
cation are shown in Supplementary Data 5. Settings of parameters in

Article https://doi.org/10.1038/s41467-025-62823-6

Nature Communications |         (2025) 16:7668 13

www.nature.com/naturecommunications


the application are shown in Supplementary Data 6. Results of theMR-
EILLS analysis in the application are shown in Supplementary Data 7.
IVs and their GWAS summary statistics in the application are shown in
Supplementary Data 8. Conditional F-statistics in the application are
shown in Supplementary Data 9. Optimal ranges of hyperparameters
when RMSE <0.1 in the simulation are shown in the Supplementary
Data 10.

Code availability
R package MR-EILLS are available in the GitHub repository at https://
github.com/hhoulei/MREILLS under the MIT license (https://doi.org/
10.5281/zenodo.15951617). All the codes for simulation are available in
the GitHub repository at https://github.com/hhoulei/MREILLS_Simul
under the MIT license (https://doi.org/10.5281/zenodo.15951779). All
the analyses in our article were implemented in R software (version
4.3.2). The R packages used in our analysis include TwoSampleMR,
MendelianRandomization, meta, cause, R2jags, MARID and ggplot2.
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