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Genetic architecture of bone marrow fat
fraction implies its involvement in
osteoporosis risk

Zuyou Wu1,6, Yang Yang2,6, Caibo Ning1,6, Jiali Li2,6, Yimin Cai 3, Yanmin Li3,
Zilong Cao3, Shuangshuang Tian3, Jingyi Peng3, Qianying Ma3, Chunyi He3,
Shuting Xia3, Jun Chen4, Xiaoping Miao 1, Zhen Li 2 , Ying Zhu 1 ,
Qian Chu 5 & Jianbo Tian 1

Bone marrow adipose tissue, as a distinct adipose subtype, has been impli-
cated in the pathophysiology of skeletal, metabolic, and hematopoietic dis-
orders. To identify its underlying genetic factors, we utilized a deep learning
algorithm capable of quantifying bone marrow fat fraction (BMFF) in the
vertebrae and proximal femur usingmagnetic resonance imaging data of over
38,000 UK Biobank participants. Genome-wide association analyses uncov-
ered 373 significant BMFF-associated variants (P-value < 5 × 10−9), with
enrichment in bone remodeling, metabolism, and hematopoiesis pathway.
Furthermore, genetic correlation highlighted a significant association between
BMFF and skeletal disease. In about 300,000 individuals, polygenic risk scores
derived from three proximal femur BMFF were significantly associated with
increased osteoporosis risk. Notably, Mendelian randomization analyses
revealed a causal link between proximal femur BMFF and osteoporosis. Here,
we show critical insights into the genetic determinants of BMFF and offer
perspectives on the biological mechanisms driving osteoporosis
development.

Bone marrow adipose tissue (BMAT) derives from mesenchymal line-
age cells within the bone marrow1 and may play an active role in reg-
ulating skeletal remodeling2. Specifically, BMAT can influence
osteoblast differentiation through a competitive differentiation
pathway3, potentially leading to osteoporosis. Additionally, recent
studies suggest that BMAT, as a complex and dynamic fat depot, may
contribute to the development of common diseases such as
diabetes4,5, obesity6, and anorexia nervosa7. Moreover, BMAT are also
involved in hematopoietic regulation and can promote the survival
and regeneration of hematopoietic stem cells by secreting stem cell

factors8,9. Therefore, BMAT emerges as a potential endophenotype in
multisystem diseases, and the exploration of its genetic architecture
may offer a fresh perspective on the mechanisms underlying the
occurrence of these diseases.

Magnetic resonance imaging (MRI) is one of themost widely used
medical imaging modalities for quantifying BMAT phenotypes due to
its noninvasive and versatile nature10. Specifically, chemical shift-
encoding-based water-fat separation methods are employed to cal-
culate the bone marrow fat fraction (BMFF)11. However, the process of
manually delineating bone marrow regions is prone to significant
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errors, poor reproducibility, and is highly time-consuming, especially
when quantifying large sample sizes. These challenges have posed
significant obstacles to the accurate estimation of BMFF in large-scale
studies. To enable large-scale genome-wide association study (GWAS)
of BMFF imaging phenotypes and explore the relationship between
BMAT and diseases through multiple strategies, we utilized a deep
learning algorithm, the integrated bone marrow automatic segmen-
tation and fat fraction calculation strategy (IBAS-FFCS), to accurately
estimate BMFF. We quantified the BMFF of a large cohort population
from the UK Biobank (UKB), which provides both high-quality stan-
dardized MRI data and genotype information, offering a unique
opportunity to explore the genetic determinants of BMFF traits.

In this work, we aimed to investigate the genetic architecture of 15
BMFF traits, including theBMFFsof the thoracic vertebrae (Th8–Th12),
lumbar vertebrae (L1–L5), and the left and right proximal femur (LPF
and RPF) and the average BMFFs of these three anatomical sites
expressed as Th, L, and PF, respectively (Fig. 1a). Using the deep
learning-based method mentioned above, we first performed GWAS
on these 15 BMFF traits inmore than38,000UKBparticipants.We then
conducted variants-to-genes analyses to explore the biological sig-
nificance of the GWAS findings, with a focus on the genomic dis-
tribution of identified loci and the genes that significantly influence
multiple BMFF traits. Following this, we assessed the genetic associa-
tions between the 15 BMFF traits and a range of skeletal,metabolic and
hematopoietic diseases through genetic correlation analyses. We

further developed polygenic risk scores (PRS) based on BMFF traits
and validated their predictive ability for these diseases in approxi-
mately 300,000 individuals. Finally, we further leveraged Mendelian
randomization (MR) to evaluate causal connections between BMFF
and osteoporosis.

Results
Integrated bone marrow automatic segmentation and fat frac-
tion calculation strategy
Utilizing the available whole-body MRI available in the UKB, our IBAS-
FFCS procedure enables precise calculation of BMFF, with its basic
process illustrated in Fig. 1b. To achieve state-of-the-art performance
in segmentation tasks, a random sample of 406 subjects for the ver-
tebra and 257 subjects for the proximal femur were extracted from the
UKB database and annotated by three experienced radiologists. These
datasets were then randomly divided into training, validation, and
testing sets using a 7:3:3 ratio.

In the testing dataset, the dice coefficients of IBAS-FFCS were
greater than 0.863, and the intraclass correlation coefficients (ICCs)
betweenmanual segmentation and IBAS-FFCSwere greater than 0.970
(Supplementary Data 1). In addition, Dixon whole-body images of 180
external subjects collected from our own research institution (Sup-
plementary Methods and Supplementary Data 2) were used to inde-
pendently evaluate the performance of IBAS-FFCS, resulting in ICCs
consistently exceeding 0.9. Altogether, these results confirmed that
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Fig. 1 | Integrated bone marrow automatic segmentation and fat fraction cal-
culation strategy (IBAS-FFCS). a IBAS-FFCS can calculate the fat fractionof the 8th
to 12th thoracic vertebra, the 1st to 5th lumbar vertebra, and the proximal femur on
both sides. b Part1. This study aligned and concatenated the six 3D 2-point Dixon
MRI images and applied image enhancement strategies such as scaling intensity
and random flipping to the images. All data were cropped according to the
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The preprocessed imageswere fed into a deep learning 3D-Unetmodel for training,
leveraging a GPU server equipped with an NVIDIA RTX 4090D GPU. The U-Net
segmentation algorithm was continuously optimized based on the Dice loss

function and the Adam algorithm. The topology of the whole network consists of
the encoding and decoding subnetworks. Four stages in encoding and decoding
counterparts indicate that four-level scales of feature maps were formulated for
automatic feature extraction. Part3. The 3D-Unet outputted visual masks of the
femur and spine, with different colors representing the left and right femurs, aswell
as the spine from L1 to Th8. Part4. The volume of interest (VOI) for the spine and
femurs was extracted and transferred to the fat and water images of the two-point
Dixon sequence, where the bone marrow fat fraction is calculated based on a
computational formula. Panel a was created in BioRender. Wu, Z. (2025) https://
BioRender.com/qdjyk0e.
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the performance of IBAS-FFCS is comparable to that of radiologists.
The detailed results of each dataset are presented in Supplementary
Data 1. In addition, we performed inter-reader and model-reader
variability analyses in 30UKBsubjects andobserved ahigh consistency
(Supplementary Data 3, 4).

The completed model was applied to 51,487 participants within
UKB for whomMRI data were available, resulting in 15 BMFFs for each
participant. It must be noted that during application, the model yiel-
ded an average of 196 zero or missing vertebral BMFF data and an
average of 62 zero or missing femoral BMFF (Supplementary Data 5).
We randomly selected 200 cases with zero or missing data for manual
inspection. Based on this assessment, we summarized the segmenta-
tion error into four primary categories: (1) imaging artifacts; (2) fusion
image errors; (3) individual differences such as bone-related diseases
or skeletal developmental abnormalities; and (4) image inversion
(Supplementary Fig. 1).

The original 51,487 samples were screened, yielding participants
ranging from 38,522 to 39,178 as study subjects (Method, Supple-
mentary Fig. 2), whose characteristics are recorded in Supplementary
Data 6. To ensure the normality of the data, we performed the rank-
based inverse normal transformation of the residuals of BMFFs (Sup-
plementary Fig. 3). Further, we performed a principal component
analysis (PCA) and found that thefirst three principal components (PC)
could collectively explain 90.4% of the total variance (Supplementary
Fig. 4), and we therefore applied Bonferroni corrections on down-
stream analyses based on these three components to prevent overly
conservative correction.

To validate the reliability of BMFF measurements, we examined
the associations between BMFF and sex, age, ethnicity, body mass
index (BMI), bonemineral density (BMD), and total body fat mass. The
result revealed that vertebral BMFF was lower in males compared to
females, while femoral BMFF was higher in males (Supplementary Fig.
5). Both vertebral and femoral BMFF increased with age (Supplemen-
tary Fig. 6). In addition, ethnic differences were observed, with indi-
viduals of White ethnicity exhibiting higher BMFF compared to other
ethnic groups (Supplementary Fig. 7). As expected, both vertebral and
femoral BMFF were negatively associated with BMD (Supplementary
Fig. 8). Femoral BMFF showed anegative correlationwithBMI, whereas
vertebral BMFF was positively correlated with BMI (Supplementary
Data 7). Total body fat mass was positively correlated with BMFF at all
sites, with a stronger association observed for vertebral BMFF com-
pared to femoral BMFF (Supplementary Data 7). These findings are
consistent with previously published studies12–14, supporting the relia-
bility of our BMFF measurements.

Genome-wide association studies of bone marrow fat fraction
To understand the common genetic basis for variation in BMFF, we
performed a series of GWAS on 15 BMFF with a maximum sample size
of 39,178 individuals. In total, we identified 405 independent sig-
nificant variants (r2 < 0.1) (Supplementary Data 8) and 373 lead variant
(r2 < 0.05) (Supplementary Data 9) associated with 15 BMFFs (P value
<5 × 10−9), including 35 for Th, 30 for L, and 26 for PF, among others,
involving 133 unique lead variants (Fig. 2 and Supplementary Figs. 9, 10).
Notably, 78 of the lead variants was shared across at least two BMFF
traits, highlighting a degree of overlap in the genetic architecture of
BMFF. For example, rs55953331 in the LEPR gene reaches genome-wide
significance in BMFF of Th8, Th9, Th10, and Th.

We conducted three sensitivity analyses (Methods) to assess the
robustness of the primary 15 GWASs. Firstly, we performed sex-
stratifiedGWASs and found that theManhattanplots formost of the 15
traitswere very similar (Supplementary Fig. 11), and the number of lead
variants was comparable across the traits (Supplementary Fig. 12 and
Supplementary Data 10). Additionally, we performed a correlation
analysis between the beta coefficients of the lead variants for each trait
in both sexes, which showed significant correlation (0.87–0.98). We

also performed Sex×Genotype interaction analysis, which did not find
P-sex genome-wide significant for any of the lead variants in 15 BMFFs
(SupplementaryData 11). Furthermore,we randomly divided the entire
population into two subsets at a 7:3 ratio (sex and age matched) and
performed GWASs separately in each subset. The results demon-
strated strong robustness, with highly correlated effect sizes between
the two subsets (0.88 <r < 0.98 for Pearson’s r) and no significant dif-
ferences (P >0.98 for two-sample t-test) (Supplementary Fig. 13 and
Supplementary Data 12), further supporting the absence of cryptic
population stratification in our primary GWASs. Additionally, to eval-
uate the influence of BMI adjustment on the BMFF GWAS, we com-
pared the results with and without BMI adjustment and observed no
substantial differences in the genetic associations (r > 0.99 for Pear-
son’s r; P >0.99 for two-sample t-test) (Supplementary Fig. 14 and
Supplementary Data 13), indicating that BMI adjustment did not sig-
nificantly alter the findings.

Functional characterization of risk variants
We defined variants that were in linkage disequilibrium (r2 ≥0.1) with
any independent significant variant as candidate variants and further
functionally annotated these variants using functional mapping and
annotation of the GWAS (FUMA) online platform15. The number of
candidate variants ranged from 5116 in L1 to 7838 in Th, most of which
were located in intronic and intergenic regions (Fig. 3a). Subsequently,
we investigated whether these candidate variants were enriched
among genetic regulatory elements. For a majority of BMFFs, the
enrichment analysis revealed the remarkable enrichment of candidate
variants in histone markers of enhancers (H3K4me1 and H3K27ac),
promoters (H3K4me3) and active transcription (H3K36me3 and
H3K9ac), but significant depletion in repressive transcription
(H3K27me3 and H3K9me3) (Fig. 3b). In addition, based on the current
knowledge, we assumed that BMFF and possibly related diseases (such
as osteoporosis, diabetes, etc.) have a common genetic structure, so
we analyzed the enrichment of candidate variants in disease risk loci.
Results showed that candidate variants were significantly enriched in
GWAS significant loci of osteoporosis, fracture, anorexia nervosa, type
2 diabetes, nonalcoholic fatty liver disease, and multiple myeloma
(Fig. 3c and Supplementary Data 14). Also, significant enrichment of
candidate variants was observed in risk loci associated with BMFF-
related traits, such as BMD and waist-hip ratio (WHR) (Supplementary
Fig. 15 and Supplementary Data 15). Notably, this enrichment reflects
shared genetic architecture at the locus level but does not imply
concordance in effect directions.

Gene mapping and functional enrichment
We further sought to identify candidate genes influencing BMFF var-
iation by combining evidence from four strategies: physical positional,
expression quantitative trait locus (eQTL) association, multi-marker
analysis of genomic annotation (MAGMA), and transcriptome-wide
association study (TWAS). A total of 409 mapped genes associated
with the 15 BMFF were identified, of which 82 genes were found by
positional mapping (Supplementary Data 9), 178 genes by eQTL
mapping (Supplementary Data 16), 186 genes by MAGMA mapping
(Supplementary Data 17), and 110 genes by TWAS mapping (Supple-
mentary Data 18 and Supplementary Fig. 16). When the susceptibility
genes of each BMFF were combined, there were 12 genes mutually
implicated by all four methods (Supplementary Fig. 17a). When the
genes identified by the four methods were combined, five unique
genes were found to be shared among 15 BMFFs (Supplementary
Fig. 17b). Among these genes, GSDMA was labeled by at least three
methods in 15 BMFFs, and the gene encodes a protein that is a family of
pore-forming proteins that cause pyroptosis, which is associated with
increased osteoclasts, increased bone resorption, and reduced bone
mineralization. In addition, other noteworthy genes identified through
multiple methods include a BMD-related gene CCDC170, PPARγ
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involved in the differentiation of bone marrow mesenchymal stem
cells and LEPR encoding leptin receptor. Other susceptibility genes are
summarized in Supplementary Fig. 18 and Supplementary Data 19.

Subsequently, we conducted gene ontology (GO) enrichment
analyses to gain a comprehensive understanding of the functions of
these susceptible genes. As expected, these genes showed significant
enrichment in several functional categories, including skeletal system

development, trabecula morphogenesis, glucose homeostasis, lipid
biosynthetic process, and hematopoiesis (Fig. 3d and Supplementary
Data 20). These findings suggest a close functional link between bone
marrow adipose tissue and skeletal, metabolic, and hematopoietic
systems, while the causal relationships remain to be elucidated. Fur-
thermore, the tissue-specific gene expression analysis revealed that.
Across 54 human organ tissues, most genes were overexpressed in
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adipose subcutaneous and adipose visceral omentum, with secondary
expression hotspots detected in breast mammary tissue, cervix
endocervix, and colon transverse. (Fig. 3e and SupplementaryData 21).

In addition, based on sex-stratified GWAS, sex-specific genes asso-
ciated with Th, L and PF were identified using four strategies (physical
positional, eQTL, MAGMA and TWAS) (Supplementary Data 22). In
males, 33 male-specific genes were detected, including SBNO2, HK1,
CCND2, TERT, CCDC91, and CTSB, which were consistently identified by
at least twomethods, with TERT, ATXN2, NTN1, CTSB, and EHD4 showing
associations with at least two BMFF sites. Among females, 42 female-
specific genes were identified, of which VMPI, MED24, SSPN, and JAZF1
were replicated by at least two methods, while VMPI, LEPROT, HLA-C,
SLC44A4, and EHMT2 demonstrated associations with at least two
BMFF sites.

Colocalization
We conducted colocalization analyses to assess whether genetic var-
iants associated with BMFF influence gene expression in mesodermal
tissues (subcutaneous and visceral adipose tissue, skeletalmuscle) and
lymphoid tissues (spleen and lymphocytes). As shown in Supplemen-
tary Data 23, strong evidence of colocalization (PPH4 >0.98) was
observed for GSDMA in subcutaneous adipose tissue, visceral omen-
tum adipose tissue, skeletal muscle tissue, and spleen tissue across
most vertebral and femoral BMFF GWAS. Notably, GSDMA was also
identified through at least three independent approaches in previous
analyses. In femoral BMFF GWAS, we detected colocalization signals
(PPH4 >0.80) for CCDC170, RERE, ME3, PSMD3, JAZF1, and PPARG.
Similarly, in vertebral BMFF GWAS, significant colocalizations (PPH4
>0.80) were identified for EHD4, PSMD3, THA1P, MAPK4, MKRN2,
MLLT4, MSTO2P, DAP3, RAF1, NCAPD3, CYP19A1, RIT1, and CCBE1. Most
of these genes were supported by at least two independent gene
mapping strategies in prior analyses, reinforcing their potential func-
tional relevance. Strikingly, two genes (RAF1 and CYP19A1) were also
implicated in BMFF regulation by a previous study, further validating
our findings14.

Heritability and genetic correlation of bonemarrow fat fraction
Using summary statistics, we applied linkage disequilibrium score
regression (LDSC)16 to estimate theheritability of 15 BMFFs andgenetic
correlation among these BMFF. Themean heritability (h2) was 0.20 for
the 15 traits (ranging from h2 = 0.16 for L5 to h2 = 0.23 for Th; Fig. 4a).
Of significant note were the robust genetic correlations observed
within the same type of BMFFs, such as between vertebral BMFFs, the
genetic correlation coefficient (rg) ranged from 0.88 to nearly 1.00
(Fig. 4b bottom triangle). However, there was relatively low genetic
correlation between vertebral and femoral BMFFs, ranging from 0.28
to 0.41 (Fig. 4b bottom triangle). In addition, the phenotypic correla-
tion coefficient (rp) among the 15 BMFFswere calculated.We observed
a high degree of agreement between genetic and phenotypic correla-
tions, also as shown by strong correlations between the same types of

BMFFs (rp range: 0.68–0.96) and relatively low correlations between
vertebral and femoral BMFF (rp range: 0.29–0.39) (Fig. 4b top triangle).
These intriguing observations may reflect genetic effects dis-
criminately acting on the BMFFs of different sites, which further
manifests at the phenotypic level.

Building on this groundwork, we extended our inquiry to explore
the genetic connections between the BMFF and 13 skeletal, metabolic
and hematopoietic clinical measures (Supplementary Data 24). Note-
worthy negative associations between 15 BMFFs and BMD (rg range:
−0.20 to −0.30) were unearthed (Fig. 4c and Supplementary Data 25).
This reinforces the functional interplay between the BMFF and the
bone homeostasis, implying a relationship between BMFF and osteo-
porosis. Further, we observed that multiple BMFFs exhibited negative
genetic correlations with hemoglobin (rg range: −0.12 to −0.16), in
contrast to the positive genetic correlations observed between verte-
bra and triglycerides (rg range: 0.18–0.24). Collectively, these findings
support the justification for investigating the genetics of BMFF as a
complementary gateway to understanding the skeletal development,
metabolic and hematopoietic processes.

To examine shared genetic effects between BMFF traits and ske-
letal, metabolic and hematopoietic diseases. We further performed
genetic correlation analyses with GWAS summary statistics from 10
related diseases (Supplementary Data 24). As expected, we observed
statistically positive genetic correlations of 15 BMFFs with osteo-
porosis (rg range: 0.23–0.33; Fig. 4c and Supplementary Data 26).
Similarly, rg for fracture ranged from 0.18 to 0.26, which is consistent
with the results for osteoporosis. These findings provide genetic evi-
dence supporting the probable involvement of BMFF in skeletal dis-
ease pathophysiology, suggesting that alterations of BMFF may
contribute to both osteoporosis and fracture risk.

Polygenetic risk scores for osteoporosis risk stratification
To further explore the relationship between BMFF and diseases, we
formulated a PRS of BMFF by incorporating genetic dosage weights
based on the effect sizes of independent genetic variants (P value
<1 × 10−5, r2 < 0.1, kb = 250) derived from the corresponding BMFF
GWAS results (Supplementary Data 27). Then, we evaluated the ability
of PRSs to discriminate corresponding BMFFs. As shown in Fig. 5a–c
and Supplementary Fig. 19, higher PRSs tend to higher BMFFs. In
addition, multiple linear regression adjusted for age, sex, BMI, and
BMD also showed a positive correlation between PRS and BMFF with a
beta range from 0.20 to 0.24 (Supplementary Data 28), which proved
the validity of our formulated PRS.

Subsequently, we explored whether these PRS of BMFF are able to
affect ten diseases incidences. We calculated hazard ratio (HR) and 95%
CI using Cox proportional-hazards regression models in a cohort of the
remaining about 300,000 UKB white participants that were not inclu-
ded in the former GWASs. As shown in Fig. 5d–f, compared to the other
individuals, individuals with the high PRS derived from LPF, RPF and PF
BMFF had an increased risk of osteoporosis (HRLPF = 1.12, 95%CILPF:

Fig. 3 | Functional characterization for risk variants of 15 BMFFs and pathway
enrichment and tissue enrichment for susceptible genes of 15 BMFFs. a Bar
chart represents the proportions for risk variants of 15 BMFFs annotated with each
functional category (intron region, gene upstream, and downstream regions,
intergenic region, 3′-UTR, 5′-UTR and exon region). b Enrichment analyses for risk
variants of 15 BMFFs among regions of histone modification, such as H3K4
monomethylation marks (H3K4me1), H3K4 trimethylation marks (H3K4me3),
H3K27acetylationmarks (H3K27ac),H3K36 trimethylationmarks (H3K36me3), and
H3K9 trimethylation marks (H3K9me3). P value was calculated by two-tailed Fish-
er’s exact test. c Enrichment analyses for risk variants of thoracic vertebra, lumbar
vertebra and proximal femur mean BMFF, respectively, among ten related disease
risk loci. The number of candidate variants used was 7838 for Th, 7621 for L, and
7149 for PF. The number of control variants used was 7258 for Th, 7056 for L, and
6.646 for PF. P value was calculated by two-tailed Fisher’s exact test. The error bars

represent the 95% confidence interval. d Pathway enrichment analyses of Gene
Ontology terms were performed at http://kobas.cbi.pku.edu.cn. Significantly enri-
ched GO terms (unadjusted P <0.05, two-sided) were identified from the analyses
of significant genes for BMFF. Unadjusted P values were calculated by two-tailed
Fisher’s exact test. e Tissue expression result for 54 specific tissue types was
obtained from GTEx v8 using FUMA. FDR <0.05 was considered statistically sig-
nificant. Only the result for L5 is shown here. BMFF bone marrow fat fraction, Th
thoracic vertebra, L lumbar vertebra, PF proximal femur, LPF left proximal femur,
RPF right proximal femur, 3’-UTR 3′-untranslated region, 5′-UTR 5′-untranslated
region, H3K4me1 H3K4 monomethylation marks, H3K4me3 H3K4 trimethylation
marks, H3K27acH3K27 acetylationmarks, H3K36me3H3K36 trimethylationmarks,
H3K9me3 H3K9 trimethylation markers, OR odds ratio, CIs confidence intervals,
AN anorexia nervosa, T2DM type 2 diabetes, MM multiple myeloma, MDS myelo-
dysplastic syndrome, AA aplastic anemia.
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1.07–1.18, P value = 1.06× 10−6, PLog-rank = 3.38× 10−5; HRRPF = 1.13, 95%
CIRPF: 1.08–1.18, P value = 5.01 × 10−7, PLog-rank = 1.14 × 10−5; HRPF = 1.13,
95%CIPF: 1.08–1.19, P value = 1.71 × 10−7, PLog-rank = 7.54 × 10−6). This
demonstrates that PRS derived from proximal femur BMFF indeed owns
significant association with osteoporosis incidence. However, no rela-
tionship was observed between PRS derived from vertebral BMFF and
the incidence of osteoporosis. Characteristics of the osteoporosis
cohort population are recorded in Supplementary Data 6. Detailed
results of the Cox regression analysis are provided in Supplementary
Data 29. To evaluate the predictive ability of PRS for the onset of
osteoporosis, the receiver operating characteristic (ROC) curve and
calibration plot were drawn, and a series of indicators including area
under the curve (AUC), C-statistic, akaike information criterion (AIC),
bayesian information criterion (BIC), R2, net reclassification improve-
ment (NRI) and integrated discrimination improvement (IDI) were cal-
culated. As depicted in Supplementary Fig. 20, the results showed that
BMFF PRS had limited predictive power for osteoporosis
(AUC=0.532–0.533, C=0.528–0.530, R2 = 0.011–0.016). Interestingly,
an improvement is noted after further integrating the relevant PRS with
other clinical risk factors (AUC=0.783–0.785, NRI =0.424, IDI =0.007).
In summary, elevated BMFF demonstrates a significant association with
increased osteoporosis risk. However, the predictive utility of BMFF PRS
for osteoporosis risk assessment requires further refinement and
validation.

Mendelian randomization for the causal relationship between
BMFFs and osteoporosis
To verify the potential causation between BMFF and osteoporosis, a
two-sample Mendelian randomization analysis was performed. As
shown in Fig. 6 and Supplementary Data 30, we observed that several
BMFFs were causally associated with osteoporosis, among which
proximal femur BMFF show positive causally association (ORLPF = 1.45,
95%CILPF: 1.11–1.88, P value = 5.62 × 10−4; ORRPF = 1.47, 95%CIRPF:
1.12–1.94, P value = 6.26 × 10−4; ORPF = 1.44, 95%CIPF: 1.11–1.85,
P value = 5.51 × 10−4). Detailed results of the MR sensitivity check are
presented in Supplementary Fig. 21 and Supplementary Data 31.

To assess potential collider bias introduced by BMI adjustment in
the GWAS for BMFF, we additionally performedMR analyses using BMI-
unadjusted BMFF GWAS summary statistics. Results were consistent
with the primary analysis (Supplementary Data 32, 33), suggesting
minimal bias from this source. In addition, we repeated MR analysis
using an alternative osteoporosis GWAS summary statistics yielded
consistent directional estimates, though with slightly attenuated effect
sizes (ORLPF = 1.27, 95%CILPF: 1.09–1.47, P value = 1.99 × 10−4; ORRPF = 1.26,
95%CIRPF: 1.06–1.49, P value = 8.43 × 10−4; ORPF = 1.27, 95%CIPF: 1.09–1.48,
P value = 1.65 × 10−4; Supplementary Data 34, 35), supporting the
robustness of our primary findings.

To address potential bias due to sample overlap between the
exposure (BMFF GWAS) and outcome (osteoporosis GWAS) datasets,
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Fig. 4 | SNP heritability and genetic correlations. a Bar chart represents the SNP
heritability of 15 BMFFs. The error bars represent the 95% confidence interval. The
heritability was calculated using LDSC based on 1,097,459 independent SNPs from
GWAS summary statistics, of the following sample sizes: Th8 (N = 39,007), Th9
(N = 38,937), Th10 (N = 39,144), Th11 (N = 39,178), Th12 (N = 39,172), Th (N = 38,715),
L1 (N = 39,030), L2 (N = 39,151), L3 (N = 39,162), L4 (N = 39,121), L5 (N = 39,134), L
(N = 38,897), LPF (N = 38,559), RPF (N = 38,560), and PF (N = 38,522). b The heatmap
shows genetic correlations (bottom triangle) and phenotypic correlations (top tri-
angle) between 15 BMFFs. Degree of correlation is indicated by the color legend,
ranging from −1 to +1. Two-sided P values shown unadjusted are estimated using
LDSC for genetic correlation. c Genetic correlations between 15 BMFFs and 13
clinical measures and ten clinical diseases. Degree of correlation is indicated by the
color legend, ranging from −1 to +1. Two-sided P values shown are estimated using

LDSC for genetic correlation. Only the correlation coefficient that survived Bon-
ferroni correction is shown. P value <1.28 × 10−3 (0.05 divided by 13 clinicalmeasures
and three principal components) was considered statistically significant for analysis
between BMFFs and measures. P value <1.67 × 10−3 (0.05 divided by ten clinical
diseases and three principal components) was considered statistically significant for
analysis between BMFFs and diseases. The exact P values were provided in Sup-
plementary Data 25, 26. BMFF bone marrow fat fraction, Th thoracic vertebra, L
lumbar vertebra, PF proximal femur, LPF left proximal femur, RPF right proximal
femur, BMD bonemineral density, HDL−C high density lipoprotein cholesterol, LDL
−C low density lipoprotein cholesterol, BMI body mass index, Hb hemoglobin
concentration, WBC white blood cell count, PLT platelet count, RBC red blood cell
count, RET reticulocyte count, AN anorexia nervosa, T2DM type 2 diabetes, MM
multiple myeloma, MDS myelodysplastic syndrome, AA aplastic anemia.
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Fig. 5 | Distribution of PRS and cumulative osteoporosis incidence stratified
by PRS. a–c Density plots show the distribution of PRS for participants with low,
intermediate, and high BMFF that was defined based on the tertiles of normalized
BMFF. PRS of left proximal femur (a), right proximal femur (b) and proximal femur
(c) BMFFyieldeddiscrimination for BMFFs.d–fCoxhazardproportional regression
was utilized to compare osteoporosis incidence rates between low, intermediate,
and high PRS groupswith adjustment for age, sex, and BMI. Disease outcomeswere
identified basedon ICD9 and ICD10. Strata based on PRS of left proximal femur (d),

right proximal femur (e), and proximal femur (f) BMFF. Those in the first tertiles of
PRS are depicted in blue, the second tertiles are depicted in orange, and the last
tertiles are depicted in red. The darker shades represent the central estimate of the
cumulative incidence (defined as the Kaplan–Meier survival estimate). The lighter
shades represent the respective 95% CIs. The x-axis depicts years since enrollment
in the UKB; the y-axis depicts cumulative incidence. BMFF bone marrow fat frac-
tion, PF proximal femur, LPF left proximal femur, RPF right proximal femur, PRS
polygenic risk score, HR hazard ratio, CIs confidence intervals.
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we conducted two complementary analyses. First, since the osteo-
porosis GWAS was derived from the UKB study, but individual-level
sample IDs were unavailable, we assumed potential sample overlap
and applied MRlap17, a method that corrects for bias induced by
overlapping samples. The corrected effect estimates showed no sta-
tistically significant difference compared to the observed estimates (P-
difference >0.05; Supplementary Data 36), suggesting minimal bias
from overlap. Second, to definitively rule out overlap bias, we per-
formed a non-overlapping GWAS for osteoporosis by excluding all
individuals included in our BMFF GWAS from the UKB cohort. MR
analysis using this independent osteoporosis GWAS yielded effect
estimates consistent in direction with the original results, though
slightly attenuated in magnitude (ORLPF = 1.20, 95%CILPF: 1.06–1.35,
P value = 3.76 × 10−4; ORRPF = 1.24, 95%CIRPF: 1.08–1.42, P value =
2.55 × 10−4; ORPF = 1.20, 95%CIPF: 1.07–1.36, P value = 2.91 × 10−4; Sup-
plementary Data 37, 38). This consistency across analyses supports the
robustness of our primary findings against sample overlap bias.

Furthermore, to investigate the reverse causality, we performed
Mendelian randomization of BMD on BMFF. The result shows that
there was a negative causal effect with the OR of 0.68–0.69 for prox-
imal femur BMFF and 0.80–0.86 for vertebral BMFF (Supplementary
Data 39, 40). These results, together with previous genetic correlation
and PRS analyses, strengthen the evidence for a causal relationship
between BMFF and osteoporosis.

Discussion
This study, as a large individual-level GWAS, investigated the genetic
architecture of BMFF and provided biological insights into the rela-
tionship between BMFF anddisease.We utilized a deep learningmodel
to calculate 15 BMFFs of more than 38,000 individuals, with which
GWASs identified 373 significant BMFF-associated variants. Pathway
enrichment analyses indicated that mapped candidate genes are
involved in bone development and remodeling, glucose and lipid
metabolism and hematopoietic pathways. Genetic correlation analysis
identified diseases, especially osteoporosis and fractures, associated
with BMFF. Notably, we found that higher PRS of proximal femur

BMFFs was associated with an increased incidence of osteoporosis.
Furthermore, Mendelian randomization verified the potential causa-
tion between proximal femur BMFF and osteoporosis (Fig. 7).

The IBAS-FFCS effectively achieves large-scale automatic quanti-
fication of BMAT and solves the limitation of quantitative methods,
especially the dependence onmanual image segmentation. Compared
with manual segmentation and calculation, the consistency rate was
more than 0.95, indicating that the performance of IBAS-FFCS is
comparable to that of radiologists. A sample size of more than 38,000
would provide >99% statistical power (α = 5 × 10⁻9) to detect common
variants influencing BMFF with a SNP-based heritability of ~0.2.

As the first step of data analysis, candidate variances ranging from
5116 to 7838 were identified by GWAS, implying the existence of
extensive genetic regulation of BMFF. Most of the variants were loca-
ted in the intronic and intergenic regions, suggesting their potential
indirect roles in modulating gene expression as cis-regulatory ele-
ments. The enrichment in active histone markers, such as H3K4me1
and H3K4me3, also supported this opinion. Additionally, the enrich-
ment of candidate variants within disease GWAS loci, such as osteo-
porosis, fracture, and anorexia nervosa, indicated that a similar genetic
architecture may exist between BMFF and these diseases. This finding
strengthens the growing evidence that the majority of GWAS risk
variants influence disease risk via their regulatory activities.

Our GWAS identified similar genetic architectures across verteb-
ral BMFF traits, suggesting common regulatorymechanisms.However,
given variations in mechanical loading18 and endocrine influences19,20

across vertebral regions, analyzing individual vertebrae separatelymay
be a viable approach for future studies to uncover site-specific genetic
effects, although it would increase analytical costs. For femoral BMFF,
we define the proximal femur as a combined region of the femoral
head and total hip, which may provide insights into the overall role of
BMFF in hip-related bone health. However, clinically, the femoral head
is more relevant to conditions like osteoarthritis and osteonecrosis,
while the total hip region is critical for fracture and osteoporosis risk.
Moreover, previous studies have pointed out that there are differences
in genetic structure between the femoral head and total hip14. This
underscores the potential value of analyzing these subregions sepa-
rately. Future research should prioritize high-resolution phenotyping
to disentangle subregional BMFF contributions to distinct skeletal
pathologies.

We identified several susceptibility genes by four strategies, some
of which have been found to be involved in the maintenance of bone
homeostasis and regulation of metabolic balance, such as PPARγ21,
LEPR22,23, SBNO224, ALDH225,26, TBC1D827, CHD728, and CCBE129. For
instance, a classical gene, PPARγ, is a key regulator of adipocyte dif-
ferentiation in the bone marrow. Overexpression of PPARγ in bone
marrow progenitor cells in transgenic mice leads to increased
adipogenesis21. In contrast, inhibition of PPARγ gene expression
reducedbonemarrow fat inmice,while increasingbone formation and
osteoblast differentiation of bone marrow progenitors30. For another
example, the LEPR-encoded leptin receptor is indispensable for leptin
action. The high expression of leptin receptor subtypes in bone mar-
row adipocytes and osteoblasts suggests a direct effect of leptin on
bone metabolism22,23. Peripheral administration of serum leptin
showed that serum leptin increased bone formation and decreased
bone resorption while inhibiting the adipogenic differentiation of
bonemarrowmesenchymal stromal cells31,32, whichwas also confirmed
in some in vitro studies33,34. The results of pathway enrichment analysis
reinforced that the candidate geneswere significantly involved inbone
andmetabolic pathways, and the imbalance of these gene expressions
may have an impact on the occurrence of bone-related andmetabolic-
related diseases. Additionally, we also found several genes involved in
bonemarrow hematopoiesis, such asMLLT435, TERT36,37,DUSP1638, and
CCBE129. Pathway analysis also showed that candidate genes were
enriched in hematopoietic pathways. This provides a clue to a
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potential relationship between BMAT and hematopoiesis. Altogether,
these results suggest that candidate genes may contribute to the
development of skeletal, metabolic, and hematopoietic diseases.

A number of sex-specific BMFF-associated genes were identified.
For instance, the male-specific gene TERT encodes telomerase, which
plays a role in cellular senescence, as it is normally repressed in post-
natal somatic cells, resulting in progressive shortening of telomeres.
Diseases associated with TERT include pulmonary fibrosis and bone
marrow failure syndrome39, suggesting that TERT mutations may lead
tobonemarrow failure and thereby affectBMFF.Anothermale-specific
gene, CCDC91, which is involved in bone remodeling and regulating
osteogenesis, may indirectly affect BMFF production40,41. A female-
specific gene JAZF1 is found at particularly high levels in adipose tissue
and plays a role in lipid metabolism by suppressing lipogenesis,
increasing lipolysis and decreasing lipid accumulation in adipose
tissue42. It should be noted that VMPI was also reported as a female-
specific gene in another BMFF study14. VMP1 (vacuole membrane
protein 1) functions as a phospholipid scramblase critical for lipid
metabolism and cellular membrane remodeling, with emerging roles
in autophagosome formation43. Given that autophagy is a key regulator

of adipocyte differentiation and lipid droplet dynamics in white adi-
pose tissue44, the observed enrichment of VMP1 expression in bone
marrow stromal cells45 suggests its potential involvement in mod-
ulating marrow adiposity through autophagy-dependent pathways.
Compared to previous BMFF genetic studies14, we identifiedmore sex-
specific genes due to our multi-method approach, providing a more
complete understanding of sex-specific BMFF regulation. Future
investigations into sex-specific expression patterns of these candidate
genes will be critical to elucidate the molecular mechanisms under-
lying sexual dimorphism in BMFF regulation

Our estimated heritability of BMFF fluctuates around 0.20,
implying that about 20% of BMFF variance is attributable to genetic
factors. This estimate is slightly lower than the estimated heritability
(0.31–0.36) of volumes of visceral adipose tissue, abdominal sub-
cutaneous adipose tissue and gluteal adipose tissue from other
study46. The genetic correlation analysis among BMFF highlighted that
genetic correlation within the same type of BMFF was large, while
between different types of BMFFwas relatively low. Some studies have
also pointed out the differences between BMFF at different sites. For
example, the BMAT at the proximal tibia and distal femur can easily
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expandor deplete in response to a variety of stimuli, while the BMAT in
the distal tibia and rodent caudal vertebrae appears early in life and
remains relatively stable47. Our results suggest that the reason for this
difference is the discrepant genetic structure of BMFF.

We observed genetic correlations between BMFFs and multiple
clinical measures, especially BMD, triglyceride (TG) and hemoglobin
(Hb). Previous studies have reached the same conclusion at the phe-
notypic level. For example, Idoia Labayen et al. conducted a case-
control study and found that lumbar BMFF was negatively correlated
with lumbar BMD48, as did several other studies49–51. Apart from mea-
sures, wewould like to explore the genetic correlation between BMFFs
and clinical diseases. We discovered significant genetic correlations
between BMFFs and osteoporosis and fractures, which is also sup-
ported by phenotypic studies. In a study including 50 postmenopausal
women and 12 younger women as control subjects, proton density fat
fraction (PDFF9) at the spine was significantly higher in osteoporosis
patients compared to controls52. Other studies using bone biopsy to
assess bone marrow fat have also reported associations with
osteoporosis53,54. Not surprisingly, some studies have also reported an
association between higher BMFF and higher fracture risk53,55. For
example, in a case-control study, 26 women with vertebral fractures
had higher BMFF than age-matched controls (P value = 0.02)53. In
addition, case-control studies and animal experiments have also con-
cluded that there is a phenotypic association between BMFF and
anorexianervosa7,56. These results suggest that genetic andphenotypic
correlations complement each other to jointly demonstrate the rela-
tionship between BMFF and disease.

We constructed valid PRS for each BMFF and observed that
proximal femur BMFF PRSs associate with osteoporosis risk, which
also implies the hypothesis that BMFF is the etiology of osteoporosis.
Notably, although the ability of BMFF PRS alone to predict osteo-
porosis risk may be unsatisfactory, surprising results may be achieved
by optimizing the prediction by utilizing multiple PRS in the joint
model basedon a range of different traits such asBMD, serumcalcium,
estrogen, etc. At present, the predictive ability of PRS for disease has
been gradually validated in other domains, such as chronic obstructive
pulmonary disease57 and cardiovascular diseases58. How to develop
PRS for BMFF and even more traits to enhance risk stratification for
osteoporosis is a promising research direction in the future.

The results ofMendelian randomizationweregenerally consistent
with upstream analysis, upgrading the association to the causal link
between BMFF and osteoporosis. Genetic correlation, PRS, and Men-
delian randomization analyses all suggest a significant effect for
proximal femur BMFF on osteoporosis. These finding provides cred-
ible evidence to support the hypothesis that BMFF exerts a causal
influence on osteoporosis, which can be partially supported by pre-
vious researches. For instance, it has been proposed that BMAT can act
as an endocrine/paracrine organ, affecting the homeostasis of osteo-
blasts and osteoclasts59, which are key cells in the development of
osteoporosis3. Specifically, marrow adipogenic lineage precursors
(MALPs) express key osteoclast regulatory factors (including RANKL)
atmuch higher levels thanothermesenchymal cells in young and adult
mice, which enhances bone resorption and leads to pathological bone
loss60. BMAT secretes adiponectin, which acts on receptors on osteo-
blasts, hamper their proliferation and favor their apoptosis, altogether
decreasing bone mass61. These findings effectively support our results
and contribute to the identification of BMFF as one of the etiologies of
osteoporosis and fracture. Furthermore, our reverse Mendelian ran-
domization analysis revealed a negative causal effect of BMDonBMFF,
suggesting a bidirectional relationship between BMD and marrow
adiposity. This reciprocal interaction underscores the complexity of
bonemetabolism, where changes in one componentmay influence the
other, potentially through shared regulatory mechanisms. Further
studies are needed to elucidate the underlying pathways driving this
relationship. On the other hand, the occurrence of this causal

relationship may also be due to that high BMD may affect the deter-
mination of bonemarrow fat fraction, thus producing falsely low bone
marrow fraction. Given that our BMFF were generated using a two-
pointDixon sequence, it shouldbe noticed thatmeasurement errors of
roughly 3–5% may arise from B₀ inhomogeneity, T₁ weighting bias,
uncorrected T₂ decay, the multi-peak spectral complexity of fat and
partial-volume effects62–64, particularly in individuals with high BMD.
Consequently, although our Mendelian randomization analysis pro-
vides evidence for a causal effect of elevated BMD on reduced BMFF,
these inherent imaging biases necessitate cautious interpretation of
absolute BMFF values.

We acknowledge some limitations in our study. First, included
participants were predominantly sourced from European populations,
which constrains the broader applicability of our findings. In the
future, the reliability of our results should be validated inmore diverse
and larger cohorts representing various ethnicities. Second, despitewe
randomly split the GWAS cohort into two subsets for pseudo-replica-
tion, a true replication of the GWAS is needed in the future to ensure
that a genotype-phenotype association observed in the GWAS repre-
sents a credible association. Additionally, while PRSs derived from
proximal femur BMFF showed associations with an increased risk of
osteoporosis, it is important to recognize that the predictive perfor-
mance of these PRSs were relatively limited. Our future research will
focus on identifying additional genetic loci and molecular markers,
with the goal of enhancing the predictive capabilities of our models.
Lastly, although we identified numerous loci, genes and biological
pathways related to BMFF and established connections to disease, the
underlying mechanisms remain to be fully elucidated. Therefore,
precise cell and animal experiments are needed in the future.

In conclusion, we utilized an advanced deep learning model
capable of quantifying BMFF measured by whole-body MRI. We
uncover a large number of significant variant-BMFF associations, and
implicate candidate genes linked to skeletal, metabolic and hemato-
poietic systems. Moreover, we observe PRSs derived from proximal
femur BMFFs are associated with incident osteoporosis, and Mende-
lian randomization suggests a causal relationship between BMFFs and
osteoporosis. Altogether, these findings represent a substantial
advance in our understanding of the genetic architecture of BMFF and
shed light on the biological basis for osteoporosis etiology, whichmay
lead to potential therapeutic targets and personalized risk stratifica-
tion strategies in the future.

Methods
Ethics
The research reported herein was done in compliance with all ethical
requirements. Data for the present study were obtained under an
approved UKB project application (ID 94939), which provided specific
approval to measure BMFF from the UKB MRI data. UKB has ethics
approval from the National Health Service North-West Center
Research Ethics Committee (Ref11:/NW/0382). All UKB participants
provided their consent to take part in the UKB study. The UKB is
conducted in accordance with criteria set by the Declaration of Hel-
sinki, with participants providing informed written consent to take
part and to be followed up through national record linkage. Our own
independent external validation data were derived from a prospective
cohort, which was approved by the Institutional Review Board of
Tongji Hospital Affiliated to Tongji Medical College of Huazhong
University of Science and Technology (Approved No. of ethic com-
mittee: TJ-IRB20231272; Registration number: ChiCTR2400085853).

Study population
UKB is a large prospective cohort study that recruited more than
500,000 participants aged 40–69 between 2006 and 2010. At base-
line, comprehensive information on the participants was collected,
including demographic information, anthropometric measurements,
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biological samples, lifestyle, as well as genotype data and imaging data
necessary for this study. More detailed information about UKB have
been released65.

Semantic segmentation and deep learning model training
Imaging data in UKB. The Dual-echo Dixon Vibe protocol of UKB were
acquired from a Siemens Aera 1.5T MRI scanner (Magnetom Aera,
Siemens Medical Solutions, Erlangen, Germany). This scanning pro-
tocol consists of six independent sequences, covering the region from
the neck to the knees. Key scanning parameters include: TR/TE in-
phase 6.7/4.8ms, TR/TE out-phase 6.7/2.4ms, slice thickness 3.5/
4.5mm, field of view (FOV): 500 × 381mm. Formore detailed scanning
parameters, please refer to this ref. 66.

Model design and workflow. The study developed an integrated
bone marrow automatic segmentation and fat fraction calculation
strategy (IBAS-FFCS). We used ten vertebrae (the eighth thoracic ver-
tebra to the fifth lumbar vertebra) and the proximal femurs on both
sides to evaluate BMFF. The proximal femur consists of the femoral
head, femoral neck, and trochanter; the lower boundarywas defined as
the inferior tip of the greater trochanter. The whole-bodyMRI imaging
is not a continuous volume but is instead provided as six different
sequences, with overlapping images between adjacent sequences.
First, the Dixon data were preprocessed and fused into a unified 3D
image using an automated fat-water swap detection and correction
program67, with publicly available preprocessing code accessible at
https://github.com/recoh/pipeline. Then, spatial normalization was
conducted by resampling the MRI images into 2.23 × 2.23 × 3mm.

Following preprocessing of the data, three radiologists withmore
than 5 years of clinical experience manually outlined volumes of
interest (VOIs) on the native axial fat images using ITK-SANP (version
4.0.1) as the reference standard. To reduce delineation discrepancies
among observers, the three radiologists underwent training to ensure
consistent outlining, with a focus on avoiding cortical bone edges and
maximizing the inclusion of bone marrow tissue. To ensure the accu-
racy of the study, each radiologistwas asked todraw the same set of 30
cases and assess the consistency among observers. Moreover, the
accuracy of all VOIs was validated through visual inspection by sea-
soned experts before their integration into the modeling procedure.
For training and validating the segmentation model, a random sample
of 406 subjects for the spine and 257 subjects for the proximal femur
were extracted from the UKB database and manually segmented.

The 3D-Unet architecture was employed for the segmentation
algorithmof the vertebra andproximal femur. Afixed cropwasapplied
with patch sizes of 96 × 96 × 256 for the spine and 128 × 96 × 128 for the
femur to serve as inputs for the segmentation models. Notably, femur
cropping is automated through a fixed, predefined subvolume
extraction using the region [46:174, 40:104, 201:329] (x, y, z). This
standardized subvolume reliably captures the complete proximal
femur region from the whole-body volume, ensuring consistency
across all subjects. Additionally, data augmentation included scaling
intensity, random flipping, random Gaussian noise, and automatic
contrast adjustment were conducted. The model development
involved a basic structure comprising 3D Convolutional Layers, Leaky
ReLU activation, and Batch Normalization, with network initialization
following the Kaiming normal distribution. Four stages in encoding
and decoding counterparts indicate that four-level scales of feature
maps were formulated for automatic feature extraction. In the
encoding part, each stage consists of two convolutional layers with a
3 × 3 × 3 kernel and a max pooling layer with a 2 × 2 × 2 kernel and a
2 × 2 × 2 stride to compress spatial information; In the decoding part,
each stage consists of two convolutional layerswith 3 × 3 × 3 kernel and
a transpose convolutional layer with 3 × 3 × 3 kernel and 2 × 2 × 2 stride
for spine and femur reconstruction. For training this segmentation
model, the Dice loss function was utilized for optimization. Themodel
parameters were updated using the Adam Optimizer, with a weight

decay of 10−5 and beta values of 0.900–0.999. A cosine annealing
learning rate decay method was applied, starting with an initial learn-
ing rate of 10−3 and running for a maximum of 250 epochs.

MR-based BMFFmeasurements. The dual-echo Dixonmethod is a
widely used MRI technique to quantify fat fraction (FF) in tissues. The
dual-echo Dixon method utilizes the distinct resonant frequencies of
hydrogen atoms in fat and water molecules to separate and quantify
their respective signals in MRI imaging. Based on the intensities of
water and fat images, BMFF was measured using Eq. (1)68,69:

BMFF=
intensityfatimage

intensityfatimage + intensitywaterimage
ð1Þ

The VOIs of vertebra and proximal femur segmented using our
deep learning models, was eroded by a single boundary voxel in plane
to ensure measurements were exclusively obtained from cancellous
bone, but no cortical bone, before extracting the BMFF for each VOI.
BMFF is calculated based on the stitched original images.

GWAS sample selection
The procedure for GWAS sample inclusion and exclusion is shown in
Supplementary Fig. 2. From an initial pool of 51,487 UK Biobank par-
ticipants with whole-body MRI data, we applied sequential exclusions
for: (1) missing genotypes, (2) non-White population based on UKB
field 22006, (3) BMI <16 or >40 kg/m², (4) Zero or missing BMFF data
due to the segmentation error (Supplementary Fig. 1), (5) extreme
BMFF values (<Q1 - 3 × IQR or >Q3 + 3 × IQR), and (6) individuals with
relatedness based on family relatedness derived by UKB (One indivi-
dual from each cluster of related individuals was retained based on
data availability). Finally, participants ranging from 38,522 to 39,178
were included in the GWAS.

Genotyping and imputation
The genotyping process and DNA arrays used in the UKB study have
been described in more detail elsewhere65. In brief, participants were
genotyped by Affymetrix using the Applied Biosystems UK BiLEVE
Axiom Array (807,411 markers tested for 49,950 participants) or
Applied Biosystems UKB Axiom Array (825,927 markers tested for
438,427 participants). More than 95% of the single-nucleotide poly-
morphisms (SNPs) tested are shared between these arrays. On the
basis of merged UK10K and 1000 Genomes phase 3 panels, IMPUTE3
and SHAPEIT3 were used for imputation. Variant positions refer to the
GRCh37/hg19 human genome.

Genome-wide association study
We computed residuals for each BMFF by regressing them on covari-
ates suchas age at the imaging assessment, sex, andBMIat the imaging
assessment. Subsequently, after rank-based inverse normal transfor-
mation of these residuals, we performed GWAS for the 15 transformed
BMFFs using BOLT-LMM v2.3.670. This analysis utilized ~8.5 million
well-imputed variants, eachwith aminor allele frequency (MAF) of ≥1%,
a deletion rate ≤0.05, Hardy–Weinberg P value ≥1 × 10−6 and an impu-
tation quality (INFO) score >0.4. GWAS analysis models were adjusted
for age at the imaging assessment, sex, BMI at the imaging assessment,
and PC 1-10. BOLT-LMM accounts for ancestral heterogeneity, cryptic
population structure, and sample relatedness by fitting a linear mixed
model with a Bayesian mixture prior as a random effect71–73. The
genomic inflation factor ranged from 1.011 to 1.014, and the LDSC
intercept consistently ranged from 1.0011 to 1.001916 (Supplementary
Fig. 10). This indicates that the BMFF traits were influenced more by
polygenicity than by population structure. GWAS power was calcu-
lated using GCTA package (https://yanglab.westlake.edu.cn/software/
gcta/#GREMLpowercalculator), resulting >99% statistical power
(α = 5 × 10⁻9). To identify genetic loci, we uploaded this summary sta-
tistic to the FUMA platform v1.5.015. Using the 1000GPhase3 EUR as a
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reference panel, we identified independent significant variants at the
statistical significance threshold P value <5 × 10−9. This threshold was
determined using a conservative Bonferroni correction, in which 0.05
was divided by the total number of SNPs analyzed in our GWAS
(8,412,349), yielding ~5 × 10⁻⁹. All variants at r2 < 0.1 with each other
were considered as independent significant variants, and a fraction of
the independent significant variants in approximate linkage equili-
brium with each other at r2 < 0.05 were considered as lead variants.

To check the robustness of our GWAS results, weperformed three
sensitivity check analyses, including a (1) sex-stratified GWAS for male
and female based on biological sex, (2) split-sample GWAS by ran-
domly dividing the entire population into two splits at a 7:3 ratio (sex
and age matched), and (3) GWAS without BMI adjustment. For each
analysis, we compared the effect sizes (β coefficients) of lead variants
between subgroups (e.g., men vs. women, split 1 vs. split 2) using
Pearson correlation analysis and two-sample t-tests to evaluate their
consistency. We also analyzed the Sex x genotype interaction to cal-
culate t-sex and P sex developed by ref. 74.

Gene mappings
We utilized four approaches to map genome-wide significant loci to
genes, the first three of whichwere through FUMAdefault settings and
specialized datasets, as described as follows: (1) physical positional
mapping assigns the lead variant to its physically nearest genes within
a 10-kB window in the human reference assembly (GRCh37/hg19). (2)
eQTL mapping found genes whose expression levels are associated
with variants, where we considered eQTLs within adipose sub-
cutaneous, adipose visceral omentum and whole blood fromGTEx v8.
P value <0.05 was considered statistically significant. (3) MAGMA75

mapping conducted a generalized gene-based analysis including
18,887 protein-coding genes. Variants within exonic, intronic, and
untranslated regions were chosen for each gene. The mean of the
summary statistic (χ2) of GWAS for the variants in a gene was used to
determine the gene-based P value. Bonferroni correction determined
2.65 × 10−6 (0.05/18887) as the threshold for significance. The above
three analyses were performed by FUMA. (4) TWAS identified themost
strongly associated gene at each locus based on imputed cis-regulated
gene expression by FUSION76. Pre-computed predictive models of
GTEx v8 multi-tissue expression (adipose subcutaneous, adipose
visceral, and muscle skeletal) were downloaded from the FUSION
website (http://gusevlab.org/projects/fusion/). Bonferroni correction
determined 0.05 divided by the number of genes as the threshold for
significance, resulting in 5.13 × 10−6 (0.05/9752), 6.41 × 10−6 (0.05/
7796), and 5.87 × 10−6 (0.05/8515) for adipose subcutaneous, adipose
visceral, and muscle skeletal, respectively.

Functional annotations of susceptible genes
The genes identified by the four strategies were pooled as sus-
ceptible genes. Gene Ontology (GO)77 term enrichment analyses
in biological process was performed for these susceptible genes
using an online tool Metascape78 (https://metascape.org/). We
defined a P value <0.05 as statistically significant. Tissue-specific
gene expression analysis were performed by MAGMA gene-set
analysis, which was integrated in FUMA. This analysis examines
whether the expression of susceptible genes in a given tissue is
higher than the average expression across all tissues. We reported
the results from the 54 tissue types using the GTEx v8 data. FDR
<0.05 was considered statistically significant.

Colocalization
Weperformed colocalization analyses between BMFF GWAS and eQTL
data. Common variants from our BMFF GWAS were integrated with
eQTL summary statistics derived from gene expression references in
mesodermal tissues (subcutaneous adipose tissue, visceral omentum
adipose tissue, and skeletal muscle tissue) and lymphoid tissues

(spleen tissue and Epstein-Barr virus [EBV]-transformed lymphocytes)
obtained from GTEx v8. The colocalization analysis evaluated five
hypotheses: H0 (no association), H1 (GWAS association only), H2
(eQTL association only), H3 (both associationswithout colocalization),
and H4 (both associations with colocalization). The posterior prob-
ability of hypothesis 4 (PPH4) quantifies the likelihood that a locus is
colocalized due to a single causal variant, as opposed to two distinct
causal variants (PPH3). Loci with PPH4 >80% were considered sig-
nificantly colocalized. Independent significant variants were mapped
to genes using the variant effect predictor79, and colocalization ana-
lyses were conducted using the coloc.abf function from the Coloc R
package80.

Heritability and genetic correlation
Previous literature demonstrates that BMFF, as a unique adipose tis-
sue, is associated with bone-related disorders (e.g., osteoporosis) and
metabolic diseases (e.g., diabetes and obesity)59,81. Additionally, given
its location within the bone marrow, BMFF has potential links to the
hematopoietic system2,82. Therefore, we focused on 13 clinical mea-
sures related to the skeletal, metabolic, and hematopoietic systems,
including bone mineral density83, oestradiol84, calcium84, glucose84,
triglycerides84, high density lipoprotein cholesterol84, low density
lipoprotein cholesterol84, body mass index85, hemoglobin
concentration84, white blood cell count86, platelet count84, red blood
cell count84 and reticulocyte count84, as well as ten diseases including
osteoporosis87, fracture83, anorexia nervosa88, nonalcoholic fatty liver
disease89, obesity90, type 2 diabetes91, leukemia92, multiple myeloma90,
myelodysplastic syndrome90, and aplastic anemia93, to comprehen-
sively investigate the clinical relevance of BMFF.

LDSC16 software was used to estimate the heritability of 15 BMFFs
and to evaluate genetic correlation (1) between 15 BMFFs; (2) between
BMFFs and 13 related clinical measures; (3) between BMFFs and ten
related diseases. Data sources of summary statistics for genetic cor-
relation analyses were listed in Supplementary Data 24. These analyses
were performed according to the standard analysis process of LDSC.
We performed LDSC using well-imputed HapMap3 variants (http://
ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip) and
pre-computed LD scores of European ancestry from the 1000 Gen-
omes Project Phase 3 (https://data.broadinstitute.org/alkesgroup/
LDSCORE/eur_w_ld_chr.tar.bz2). We did not constrain the intercepts
in LDSC analysis, which could not only account for residual con-
founding but also indicate whether there was potential sample overlap
between the twoGWAS studies. P value <1.28 × 10−3 (0.05 divided by 13
clinical measures and three principal components) was considered
statistically significant for analysis between BMFFs and measures.
P value <1.67 × 10−3 (0.05 divided by 10 clinical diseases and 3 principal
components) was considered statistically significant for analysis
between BMFFs and diseases.

Polygenic risk score
We adopted the C + T (clumping + thresholding) strategy94 to con-
struct PRS of each BMFF based on Eq. (2)

PRS=
Xn

i = 1

βiSNPi ð2Þ

where n means the number of variants, SNPi (0, 1, or 2) means the
number of risk alleles for the ith variant, and βi means the effect size of
the risk alleles from BMFF GWASs. As shown in Supplementary Fig. 22,
for SNP QC in PRS, in addition to the GWAS QC criteria, we further
removed ambiguous SNP,multi-allelic SNP, and SNPpreviously reported
to be associated with the corresponding diseases (P< 5× 10−8 in the
GWAS catalog (https://www.ebi.ac.uk/gwas//home)). We then applied
clumping using PLINK with the following parameters: --clump-kb 250,
--clump-p1 1e-5, --clump-p2 5e-2, and --clump-r2 0.1. For sample QC, we
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selected all participants available in the UKB (502,379), excluding (1)
participants lacking genotype data, (2) participants who do notmeetQC
for genetic data based on UKB Data field 22020, (3) non-White
participants based on UKB field 22006, (4) participants who have
withdrawn from UKB, and (5) already included in the GWAS, finally
leaving 303,911 individuals. Next, for each disease cohort, we excluded
individuals who had the corresponding disease before baseline, in
accordance with the principles of cohort study95. We repeated this
procedure for each of the 15 BMFFs, producing 15 PRSs.

Normality tests showed that PRSs conformed to a normal dis-
tribution. We categorized participants into three PRS groups: low
(lowest tertile), intermediate (second tertile) and high (highest tertile).
To evaluate the association between BMFF PRS and disease incidence
rates, Cox hazard proportional regression was utilized to compare
disease incidence rates between the three PRS groupswith adjustment
for age, sex and BMI. P value <1.67 × 10−3 (0.05 divided by 10 clinical
diseases and 3 principal components) was considered statistically
significant. ROC and calibration plot were generated, and the AUC, C-
statistic, AIC, BIC, R2, NRI, and IDI was calculated to evaluate the dis-
criminative ability of PRS on osteoporosis. DeLong’s test was
employed to compare the differences in the AUC. We tested three
predictivemodels: (1) adjusting clinical risk factors, including age, sex,
BMI, and BMD; (2) adjusting PRS; (3) adjusting clinical risk factors
and PRS.

Mendelian randomization
Two-sample Mendelian randomization was used to explore the causal
effects of 15 BMFFs on osteoporosis. The clump command of PLINK
v.1.9 was used to select the instrumental variables for each BMFF with
parameters of P value <5 × 10−8, r2 < 0.001, and kb = 10. SNPs within
highly pleiotropic regions, the MHC region (hg19 coordinates: Chro-
mosome 6, 28,477,797–33,448,354 base pairs) was excluded. In addi-
tion, we not only excluded SNPs that were directly associated with
osteoporosis or BMD but also any SNPs with LD proxies (r² ≥0.6) that
were associated with osteoporosis or BMD (P < 5 × 10−8 in the GWAS
catalog (https://www.ebi.ac.uk/gwas//home)). The osteoporosis GWAS
summary files were selected based on the largest sample size GWAS
studywith a harmonized genomebuild (hg19) and standardQCcriteria
conducted in theWhite population currently available90. TheMRmain
program uses the R package TwoSampleMR96, which by default con-
ducts five different MR methods, including Egger, weighted median,
simple mode, weighted mode estimators, and IVW. The most widely
used IVW is considered our main method. Cochran’s Q was computed
to quantify heterogeneity across the individual causal effects, with a
P <0.05 indicating the presence of heterogeneity, and that conse-
quently, random-effects IVWmodels are applied; otherwise, the fixed-
effect IVW models are applied97,98. To determine whether any dis-
cernible influence was mediated by outliers, the MR Pleiotropy RESi-
dual Sum and Outlier (MR-PRESSO)99. P value <0.003 (0.05 divided by
3 principal components and 5 MR methods) was considered statisti-
cally significant. The MR sensitivity analyses were conducted to test
heterogeneity (Cochran’s Q test), pleiotropy (MR-PRESSO), and
F-statistics. In addition, scatter plot, funnel plot, forest plot, and leave-
one-out analyses were drawn.

To support the robustness of our primary findings, we per-
formed two repeated MR analysis (1) using BMI-unadjusted BMFF
GWAS summary statistics, and (2) using an alternative osteoporosis
GWAS summary statistic100. To address potential bias due to sample
overlap between the exposure (BMFF GWAS) and outcome (osteo-
porosis GWAS) datasets, we conducted two complementary analyses:
(1) correcting causal effects estimate using MRlap17, a robust method
that corrects for bias induced by overlapping samples in two-sample
MR; (2)performing a non-overlapping GWAS for osteoporosis as
outcome GWAS of MR analysis by excluding all individuals included
in our BMFF GWAS from the UKB cohort. This GWAS analysis utilized

~8.5 million variants, each with MAF of ≥1%, deletion rate ≤0.05,
Hardy–Weinberg P value ≥1 × 10−6 and INFO score >0.4. For sample
QC, from an initial pool of UKB participants, we applied sequential
exclusions for: (1) missing genotypes, (2) non-White population
based on UKB field 22006, (3) participants who have withdrawn from
UKB, (4) already included in the BMFF GWAS, and (5) individuals with
relatedness based on family relatedness derived by UKB, finally
leaving 306,415 individuals (12,033 cases) as the osteoporosis GWAS
sample. The outcome of osteoporosis was defined and coded in the
ninth and tenth edition of the International Classification of Diseases
(ICD9 and ICD10) (Supplementary Data 42). This GWAS was con-
ducted using PLINK v.1.9 logistic model adjusted for age, sex, BMI,
and PC 1-10.

To investigate the reverse causality, we performed MR of
BMD101,102 on BMFF. The process of the instrumental variable selection
was the same as above. In addition, we not only excluded SNPs that
were directly associated with osteoporosis (P < 5 × 10−8 in the GWAS
catalog) or BMFF (independent significant SNPs) but also any SNPs
with LD proxies (r²≥0.6) that were associated with osteoporosis
or BMFF.

Covariates and disease definitions
The outcome of diseasewas defined and coded in the ICD9 and ICD10.
The UKB Data Fields of covariates and diseases were listed in Supple-
mentary Data 41, 42.

Additional and detailed analyses are available in the Supplemen-
tary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from the UKB are available to all researchers upon making an
application. This research hasbeen conductedusing theUKBResource
under Application no. 94939. All data for BMFF and BM segmentation
volumes have been deposited in the UKB (upload ID 6693), where they
will be available to any individuals with an approved UKB project. Data
sources of publicly available GWAS results were listed in Supplemen-
tary Data 24. The GWAS summary statistics generated in this study
have been deposited in the Human Genome Research Institute GWAS
Catalog (https://www.ebi.ac.uk/gwas//home) under accession codes:
GCST90652380 to GCST90652394 for the 15 BMFF.

Code availability
The code for deep learning-based segmentation of bone marrow
volumes is publicly available on the GitHub repository 1295433015/
IBAS-FFCS_project at https://github.com/1295433015/IBAS-FFCS_
project103 under the Apache-2.0 license and on Zenodo under
https://doi.org/10.5281/zenodo.16519540. Users may reuse, modify,
and distribute the code in accordance with the license terms, with
appropriate attribution to the original authors. Aside from this, other
bioinformatics and statistical analysis tools used in the present study
are open source, and details about them can be found in the Methods
section.
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