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Drivers of the pre-season drought thresholds
triggering earlier autumn foliar senescence
in the Northern Hemisphere

Wenbo Yan 1,2, Jian Zhou 1,2, Honghong Lin2,3, Jinyi Luo 1,2,
Xingwu Duan 2,3 & Ruidong Wu 1,2

Global warming can postpone the autumn date of foliar senescence (DFS).
Nevertheless, warming-associated droughts may induce earlier DFS. However,
pre-season drought thresholds triggering an earlier DFS (PDT-DFS) are not
clearly established. Using site-level DFS data since 1951, satellite-derived
DFS data for 1982‒2021, and drought indices, we construct a copula-based
Bayesian framework to identify the PDT-DFS over the Northern Hemisphere
(>30°N). A higher probability of droughts is associated with an earlier DFS.
The DFS for the <10%, <20%, <30%, and <40% quantiles (a lower quantile
indicates that DFS will occur earlier under the same drought conditions)
results in PDT-DFS values of −2.59, −2.30, −1.80, and −1.63, respectively.
The propagation thresholds from meteorological droughts to soil droughts
determine the PDT-DFS. However, an increase in resilience and leaf area index
hinders the sensitivity of an earlier DFS to droughts. In Sixth Coupled Model
Inter comparison Project (CMIP6) simulations, the PDT-DFS increases sig-
nificantly (p < 0.01) under most climatic scenarios in the future. This study
provides extensive evidence for the increasing sensitivity of DFS to pre-season
droughts and a basis for enhanced predictive responses to such droughts.

The autumn date of foliar senescence (DFS, i.e., autumn phenology)
plays a crucial role in controlling the length of the growing season in
the carbon (C) uptake of terrestrial ecosystems1–4. It is widely
acknowledged that global warming delays autumn phenology by
reducing the rate of accumulation of chilling units in autumn trees5–8.
However, some studies also suggest that global warming has a lower
explanatory power for delayed autumn phenology9,10. Warmer
autumns may sometimes be associated with an earlier DFS11. This
might be caused by the fact that water availability contributes more
substantially to interannual variation in DFS than warming12, particu-
larly in arid and semi-arid ecosystems13,14. Under drought conditions,
vegetation may modify its strategies for allocating C by prioritizing
essential physiological processes over growth, thereby accelerating

the senescence of leaves15. Moreover, hydraulic strategies, including
adjustments in stomatal conductance and xylem structure, play a
crucial role in alleviating water stress; they can also affect the timing
of DFS16.

Vegetation is resistant to short-termwater deficiencies because of
the buffering effect of soil moisture and the fertilization effect of
carbon dioxide (CO₂), which can alleviate the impact of droughts on
DFS. This resistance safeguards vegetation until it experiences max-
imum drought stress17. Once this threshold is exceeded, vegetation
transitions from highly resistant to highly vulnerable18,19, thus poten-
tially initiating an earlier DFS. However, the spatial distributions and
dynamic changes of these critical pre-season drought thresholds
triggering an earlier DFS (PDT-DFS) remain unclear despite their
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significant implications for understanding, simulating, and predicting
responses to droughts owing to autumn phenology.

Pre-season droughts related to warming may be crucial causes of
an earlier DFS5,6. This process is initiated by the accumulation of
abscisic acid and is accompanied by the breakdownof chlorophyll and
other pigments, such as β-carotene and lutein, along with the remo-
bilization of nutrients20. This process is also regulated by temperature,
solar radiation, water availability, and spring leaf-out dates11,21,22. This
suggests that a nonlinear and complex response exists between
autumn phenology and drought events.

For example, the compound effects of heatwaves and droughts
further influence vegetation23 because heatwaves can lead to soil and
hydrological droughts by propagating meteorological droughts into
soil and hydrological systems24,25. This can potentially lead to a more
pronounced and earlier DFS, owing to an increase in water stress and
the acceleration of physiological responses in vegetation.

However, the asymmetric effects in daytime and nighttime
warming may have different impacts on the earlier DFS caused by
droughts26. Daytime warming, which generally leads to an increase in
the diurnal temperature range, amplifies the adverse effects of
drought stress on vegetation growth by decreasing stomatal con-
ductance and photosynthesis27. However, nighttime warming, which
generally leads to a lower diurnal temperature range, has a more
nuanced relationship with vegetation growth and droughts. For
example, studies conducted in growth chambers have observed
heightened drought stress during nighttime warming28, whereas field
studies have indicated that nighttimewarmingmay reduce the impact
of drought stress on vegetation growth29. Thus, the physiological
impacts of nighttimewarming are still ambiguous. Nighttime warming
may elevate respiration rates, which causes a net loss in C over a
diurnal period30. However, it might also induce compensatory photo-
synthesis the following day, thereby enhancing C uptake. It is not clear
whether and how pre-season warming and its asymmetric changes
intensify changes in the critical drought state (drought thresholds)
that result in an earlier DFS.

We construct a framework to identify the PDT-DFS based on
copula functions. The advantage of copula functions lies in their ability
to capture the nonlinear relationships between pre-season droughts
and an earlier DFS, and they can identify drought thresholds that
trigger varying degrees of advancement inDFS.We focus on terrestrial
ecosystems across the Northern Hemisphere (>30°N) where vegeta-
tion dynamics exhibit distinct seasonal variations, with the goal of
addressing the following three questions: (1) What are the spatial
patterns in the PDT-DFS? (2) How do pre-season heatwaves alter the
PDT-DFS? and (3) What are the drivers of the PDT-DFS? First, we use
copula functions to construct a joint distribution function between
pre-season meteorological drought indices (unless otherwise speci-
fied, drought thresholds refer to meteorological drought thresholds
calculated by the Standard Precipitation-Evapotranspiration Index
[SPEI]) and an earlier DFS to identify the joint probability. We then
iterate the joint probability distribution to determine the PDT-DFS (see
Methods). Secondly, by establishing the joint probability distribution
for drought thresholds and heatwaves, we evaluate how pre-season
heatwaves enhance the PDT-DFS (see Methods). We then evaluate the
propagation mechanisms among the pre-season heatwaves and
droughts, and an earlier DFS based on a copula-based Bayesian fra-
mework (see Methods). Finally, we analyze the drivers of the PDT-DFS
by incorporating the propagation mechanism and other potential
drivers into a random forest model (see Methods).

Results
Pre-season drought thresholds triggering an earlier DFS
The results of the copula-based Bayesian framework indicated that an
earlier DFS is associatedwith higher drought thresholds based on both
satellite-derived and site-level ground datasets. When the PDT-DFS

approaches −0.5, a lower drought intensity is required to trigger an
earlier DFS. Conversely, when the PDT-DFS approaches −5.0, a higher
drought intensity is needed to trigger an earlier DFS.

For example, the DFS for the <10%, <20%, <30%, and <40%
quantiles (a lower quantile indicates that the DFS will occur earlier
under the same drought conditions) resulted in PDT-DFS values of
−2.59, −2.30, −1.80, and −1.63, respectively (Fig. 1a–d). The deserts and
xeric shrubland biomes (DXS) had a higher PDT-DFS compared to
other biomes, with PDT-DFS values of −1.75, −1.46, −1.56, and −1.60,
respectively, for quantiles <10% to <40% (Fig. 1e). This indicates that
the earlier DFS in these biomes is the most sensitive to pre-season
droughts.

Moreover, we also found that with the spatial transition of vege-
tation from isohydric to anisohydric biomes, the PDT-DFS increased
(tending toward −0.5) (Supplementary Figs. S1, S2). This indicates that,
compared to isohydric biomes characterized by stomatal closure
during drought periods, anisohydric biomes can keep their stomata
relatively open tomaintain photosynthesis, whichmay exhibit a strong
response to droughts.

The DFS based on the site-level ground datasets was less sensitive
to droughts compared to the satellite-derived dataset. For example,
for the DFS from the quantiles <10%, <20%, <30%, and <40%, the PDT-
DFS values were −2.81, −2.58, −2.25, and −1.64, respectively (Fig. 1f).
Despite this difference in their sensitivity, the PDT-DFS identified from
the satellite-derived data and site-level ground datasets were highly
consistent (r =0.92, p <0.01) (Fig. 1g). These results suggest that while
satellite-derived data may overestimate the sensitivity of the earlier
DFS to droughts, the overall patterns of drought thresholds are con-
sistent between the two datasets.

The PDT-DFS was not identified in regions where droughts are
unlikely to be the dominant factor controlling earlier DFS (joint
probability between drought and earlier DFS <0.5), or where more
intense drought conditions (i.e., SPEI<−5) may be necessary to trigger
an earlier DFS. For the DFS from quantiles <10% to <40%, the PDT-DFS
were identified in 55.15%, 58.51%, 64.28%, and 66.20% of the regions,
respectively (Fig. 1a–d). In central North America, Mediterranean
regions of Europe, and north-eastern regions of China, the PDT-DFS
was higher (closer to −0.5), which indicated that the earlier DFS in
these regions is the most sensitive to pre-season droughts.

In contrast, the PDT-DFS were not observed in most regions of
northwestern North America, the central northern part of Siberia,
and northern East Siberia (Fig. 1a–d). Similarly, heatwave thresholds
triggering an earlier DFS were also not observed in most of these
regions (Supplementary Figs. S6, S7a–d). However, in areas where
the drought thresholds caused an earlier DFS, the daytime heatwave
thresholds were a contributing factor in 66.8–84.7% of the regions
(Supplementary Fig. S8), and the nighttime heatwave thresholds
were also influential in 61.1–78.4% of the regions (Supplementary
Fig. S9). This suggests a potential association between pre-season
drought thresholds and pre-season heatwave thresholds in triggering
an earlier DFS.

Pre-season heatwaves increase the drought thresholds trigger-
ing an earlier DFS
A correlation analysis indicated that pre-season heatwaves amplified
the PDT-DFS based on both satellite-derived and site-level ground
datasets (Fig. 2c and Supplementary Fig. S10). However, daytime
heatwaves had a stronger amplifying effect on the PDT-DFS compared
nighttime heatwaves. For example, for DFS from the <10% to <40%
quantiles, the correlation coefficients between the drought thresholds
and the compound event probability calculated by the standardized
maximum temperature index (STImax) and SPEI were 0.76 (p < 0.01),
0.74 (p <0.01), 0.70 (p < 0.01), and 0.62 (p <0.01) (Fig. 2a, c). In con-
trast, such correlation coefficients between the drought thresholds
and the compound event probability calculated by the standardized
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minimum temperature index (STTmin) and SPEI were 0.64 (p < 0.01),
0.62 (p <0.01), 0.59 (p <0.01), and 0.51 (p < 0.01) (Fig. 2b, c).

Mechanisms of pre-season drought thresholds triggering an
earlier DFS
To explore how the pre-season heatwaves amplify the PDT-DFS, we
established propagation mechanisms among the pre-season heat-
waves, pre-season droughts, and earlier DFS based on a copula-based
Bayesian framework (see Methods). Pre-season heatwaves mediate
droughts and thereby lead to an earlier DFS, which is primarily
achieved through 14 potential propagation pathways (Fig. 3e). They
are divided into three categories. First, pre-season heatwaves trigger
an earlier DFS by propagating into meteorological droughts; second,

pre-season heatwaves directly induce soil and hydrological droughts,
which cause an earlier DFS; and third, pre-season heatwaves propagate
into meteorological droughts, which then trigger soil or hydrological
droughts, thus resulting in an earlier DFS.

Comparing the propagation thresholds of 14 potential propaga-
tion pathways showed that an earlier DFSwas themost sensitive to the
pathway in which the pre-season heatwaves cause meteorological
droughts, thus subsequently causing soil droughts. Satellite-derived
and site-level ground datasets both showed that thresholds for this
propagation pathway were closer to −0.5 (Fig. 3a–d and Supplemen-
tary Figs. S11–S21).

Furthermore, we found that the PDT-DFS, identified using the
standardized runoff index (SRI) and total water storage anomaly-

Fig. 1 | Pre-season drought thresholds triggering an earlier DFS (PDT-DFS)
based on both satellite-derived and site-level ground datasets. a–d Spatial
patterns of the PDT-DFS based on the satellite-derived dataset for DFS from the
<10% quantile to the <40% quantile, respectively. Bar charts in a–d represent the
density distribution of the spatial data, with the vertical dashed line indicating the
median value of the threshold range. P in a–d represents the percentage of land
area occupied by the regions with an identified PDT-DFS. M in a–d represents the
mean value of the PDT-DFS. e Mean value of the PDT-DFS across different biomes
based on the satellite-derived dataset. Letters on the vertical axis in e represent
abbreviations of different biome names, with their full names provided in Sup-
plementary Table S1. The longitudinal axes of ≤ DFS10th, ≤ DFS20th, ≤ DFS30th, and ≤

DFS40th in e represent DFS from the <10% to <40% quantiles, respectively. e The
statistical significance across different DFS quantiles was determined using a one-
way ANOVA. “Not Diff” indicates no statistically significant difference in PDT-DFS

between any two biomes (p > 0.01). f PDT-DFS based on site-level ground dataset.
The lower dashed line in the box plot represents the 25th percentile; upper dashed
line represents the 75th percentile; black line inside the box indicates the median
value; the points on the box represent the PDT-DFS of each site-level ground
dataset. M represents the average value in each box plot, and N represents the
number of points in eachboxplot. The longitudinal axesof SPEI10th, SPEI20th, SPEI30th,
and SPEI40th in f represent DFS from the <10% to <40% quantiles, respectively. The
statistical significance across different DFS quantiles was determined using a one-
way ANOVA. g Pearson correlation coefficients of PDT-DFS between satellite-
derived and site-level ground datasets were calculated. The statistical significance
of the correlation coefficients was assessed using a two-tailed t-test. No adjust-
ments for multiple comparisons were made. Source data are provided as a Source
Data file.
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drought severity index (TWSA-DSI) basedon both satellite-derived and
site-level ground datasets, were more dependent on daytime heat-
waves (Fig. 2c and Supplementary Fig. S8). Conversely, the PDT-DFS,
identified using the standardized soil index (SSI) derived from both
satellite-derived and site-level ground datasets, depended less on
daytime heatwaves (Fig. 2c and Supplementary Fig. S10). The results of
the propagation mechanisms also showed that thresholds for soil
droughts (measured by SSI) triggered by daytime heatwaves were
generally higher than those triggered by nighttime heatwaves
(Fig. 3a–d and Supplementary Figs. S22–S24). This indicates that
respiration may adapt to a higher STImin and partially offset C losses
caused by nighttime heatwaves31,32.

Drivers of the pre-season drought thresholds triggering an
earlier DFS
To further analyze PDT-DFS drivers, we incorporated 72 potential
drivers, including 14 propagation mechanism drivers and 58 environ-
mental drivers (Supplementary Table S3), into the random forest
model (see Methods). Recursive feature elimination methods were
used to select a subset of 16 influential drivers, which explained
0.81–0.86 of the spatial variation in the PDT-DFS (see Methods). The
drivers primarily included five categories: propagation mechanism
drivers, climatic drivers, vegetation drivers, hydraulic characteristics
of vegetation, and topographic drivers.

The PDT-DFS were predominantly governed by propagation
thresholds from the SPEI to SSI, which accounted formore than 0.55 of
their importance (average values of 100 cross-validations) (Fig. 4a–d).
Secondly, the PDT-DFS were governed by propagation thresholds
from the SPEI to TWSA-DSI, which accounted for more than 0.19 of
their importance (Fig. 4a–d). Partial dependenceplots further revealed
that the PDT-DFS also increased as propagation thresholds from the
SPEI to SSI and TWSA-DSI increased (close to −0.5), (Fig. 4e, f). This
suggests that stronger mediation of soil and hydrological droughts by
meteorological droughts results in higher drought thresholds (close to
-0.5) triggering an earlier DFS.

Furthermore, after excluding the 14 propagation mechanism dri-
vers in the random forest model, the recursive feature elimination
methodwasapplied to select a subset of 12 influential predictor drivers

from 58 environmental drivers (Supplementary Table S3). These 12
drivers explained 0.72–0.79 of the spatial variation in the PDT-DFS,
which were predominantly governed by resilience, and accounted for
more than 0.69 of the importance (Supplementary Fig. S25a–d and
Supplementary Fig. S26a–d). As resilience increased, the Shapley
values (SHAP) tended toward lower negative values, which indicated
that a higher ecosystem resilience would hinder the sensitivity of DFS
to droughts (Supplementary Figs. S25e and S26e).

Resilience and leaf area index (LAI) served as the primary
mechanisms buffering ecosystem sensitivity to droughts based on
structural equationmodeling (SEM) results. This finding alignedwith the
results derived from the random forest model after removing the 14
propagationmechanism drivers. For example, we found positive effects
of precipitation (PPT, path coefficients ranging from 0.54 to 0.55) and
aridity index (AI; higher AI values indicate more humid conditions with
path coefficients ranging from 0.77 to 0.78) on resilience that subse-
quently delayed the occurrence of an earlier DFS (path coefficient
approximately −0.05 to −0.06) (Supplementary Fig. S28). Increased
precipitation positively enhanced LAI (path coefficients 0.54–0.56),
which in turn significantly delayed an earlier DFS (path coefficient
around −0.02 to −0.03). These findings indicate that sufficient pre-
cipitation enhances vegetation growth potential and effectively miti-
gates ecosystem sensitivities to droughts (Supplementary Fig. S28).

Some variation existed in the buffering effects of resilience and
LAI on ecosystem sensitivity to droughts across different biomes. For
example, in temperate broadleaf mixed forests (TBMF), AI notably
delayed earlier DFS through enhanced LAI (Supplementary
Figs. S29–S30). In contrast, Boreal forests/taiga (BF) and tundra eco-
systems (TUN) showed stronger delayed earlierDFS through enhanced
resilience. Moreover, in deserts and xeric shrublands (DXS), both AI
and PPT significantly delayed earlier DFS through enhanced resilience
and LAI, thus reflecting the crucial role of water availability in drought-
prone ecosystems.

Projected future changes in pre-season drought thresholds
triggering an earlier DFS
Based on the Inter-Sectoral Impact Model Intercomparison Project
Phase 3b (ISIMIP3b) datasets from the averages of five global climate

Fig. 2 | Pre-season heatwaves alter the PDT-DFS based on the satellite-derived
datasets. a Spatial patterns of probabilities between daytime heatwaves and the
PDT-DFS. b Spatial patterns of probabilities between nighttime heatwaves and the
PDT-DFS. Bar charts in a, b represent the density distribution of spatial data. Vertical
dashed lines of bar charts in a, b represent median values of the probability range.
c Pearson correlation coefficients between drought thresholds and the compound
event probability were calculated. STImax of the transverse axis in (c) represents the

compound event probability calculated by STImax and the drought indices. STImin of
the transverse axis in c represents the compound event probability calculated by
STImin and the drought indices. 10th to 40th on the longitudinal axis in c represent
the PDT-DFS for <10% to <40% quantiles. “** ” in c represents the correlation coef-
ficient was significant at p <0.01. The statistical significance of the correlation
coefficients was assessed using a two-tailed t-test. No adjustments for multiple
comparisons were made. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-62847-y

Nature Communications |         (2025) 16:7568 4

www.nature.com/naturecommunications


models (GCMs) (for the dataset details, see Supplementary Notes S1
and Supplementary Tables S5–S6), we found that the PDT-DFS
increased significantly (p < 0.01) (Fig. 5a–d) under most of the cli-
matic scenarios over the Northern Hemisphere. This indicates that
there will be an increased sensitivity of DFS to pre-season droughts in
the future. Compared with the estimates for 1982–2021, more than
51.09% of the areas had higher drought thresholds in 2061–2100
(Supplementary Fig. S31). This indicates that the future DFS would be
more sensitive to pre-season droughts in most areas of the Northern
Hemisphere. Higher drought thresholds were primarily concentrated
in the northern part of the Eurasian continent under the three climate
scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5 (Supplementary Fig. S31).

Moreover, correlation coefficients between the compound
drought and heatwave events (CDHWs) and the PDT-DFS tended to
increase under most of the climatic scenarios (Supplementary
Notes S3 and Supplementary Figs. S38–S39). Furthermore, correlation
coefficients between the sensitivity of vegetation to extreme climate
events, including heatwaves, droughts, and CDHWs, and the PDT-DFS
also tended to increase under most of the climatic scenarios (Sup-
plementary Notes S3 and Supplementary Figs. S40–S44). These results
highlight the roles of CDHWs in enhancing PDT-DFS trends. However,
the adaptability of vegetation to extreme climates, including heat-
waves, droughts, and CDHWs, hindered increases in PDT-DFS.

Discussion
Implications of pre-season drought thresholds triggering an
earlier DFS
Water conditions are known to be crucial in the response of autumn
phenology to climate change33,34. This can be attributed to the typical
evolutionary response of vegetation to limited resources34. For
example, water availability serves as a limiting factor in arid and
semiarid ecosystems where vegetation is more sensitive to changes in
water availability than to changes in other factors35. However,

vegetation has evolved various strategies to maximize resource use,
such as water, CO2, and nitrogen, and to adapt to changes in
availability36. This may buffer the impact of droughts on DFS. There-
fore, identifying the PDT-DFS can reveal ecological deviations between
drought characteristics and actual DFS responses for different regions
and species.

Asymmetric impacts of pre-season heatwaves on pre-season
drought thresholds triggering an earlier DFS
Heatwaves and droughts are strongly correlated, and their joint
occurrence often results in a greater negative impact on terrestrial
ecosystems than when they occur separately23,37. Moreover, increases
in both daytime and nighttime temperatures commonly occur simul-
taneously rather than as mutually exclusive phenomena26,38. Their
relative magnitudes and temporal patterns can differ, which leads to
distinct impacts on vegetation. For example, in warm autumns, the
climate responses triggered by nighttime warming are stronger, which
causes delayed leaf senescence6,26,33. However, daytime warming, par-
ticularly in warm autumns, imposes drought stress, thus, accelerating
leaf senescence6.

We used a random forest model to predict differences in the
drivers of daytime and nighttime heatwave thresholds triggering an
earlier DFS. Among these drivers, LAI emerged as a consistently
important factor for both daytime and nighttime heatwave thresholds
triggering an earlier DFS (Supplementary Fig. S45a–h). Moreover,
compared to daytime heatwaves, partial dependence plots revealed
that increased LAI more strongly inhibits nighttime heatwave thresh-
olds triggering an earlier DFS (Supplementary Fig. S45i).

During the daytime, elevated temperatures increase stomatal
conductance and transpiration rates39, which increases water loss and
accelerates soil moisture depletion. This heightened water demand
under high temperatures imposes substantial drought stress on the
vegetation40, thereby lowering the drought intensity required to

Fig. 3 | Propagationmechanisms among the pre-season heatwaves, pre-season
droughts, and earlier DFS using a copula-based Bayesian framework based on
satellite-derived datasets. Black and red arrows in a–d represent the thresholds
required for different types of droughts caused by heatwaves, or the thresholds for
an earlier DFS triggered by heatwaves, or the thresholds for an earlier DFS caused

by different types of droughts. Numbers in a–d represent average thresholds of
potential propagation pathways. In a–d, we multiplied STImax and STImin by −1 to
correlate their directions with drought indices. That is, the larger the negative
value, the greater the severity of the heatwaves. e All the potential propagation
pathways triggering an earlier DFS in a–d.
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trigger an earlier DFS. In contrast, nighttime heatwaves exert a less
immediate impact on soil moisture levels even though they still con-
tribute to overall temperature stress. This is primarily because the
stomata are nearly closed during the cooler nighttime periods, which
reduces the amount of transpiration and conserves soil moisture41,42.

Potential links among pre-season heatwaves, pre-season
droughts, and an earlier DFS
Firstly, we found that the propagation of pre-season heatwaves into
meteorological droughts triggers an earlier DFS. On a temporal scale,
the periodic oscillations of El Niño and the Southern Oscillation
(ENSO), which lead to tropospheric warming and atmospheric block-
ing, are key processes that cause atmospheric droughts and
heatwaves43. Pre-season heatwaves intensify deficits in atmospheric
moisture, which thereby propagate into meteorological droughts.

Secondly, owing to the transferable risk, atmospheric droughts
can transition into hydrological and soil moisture droughts44,45, which
trigger an earlier DFS. Pre-season heatwaves can directly reduce soil
moisture and disrupt hydrological balances, thus causing soil and
hydrological droughts23,46. This direct pathway underscores the
immediate impact of heatwaves on soil water content and ground-
water levels, which are crucial for sustaining the physiological pro-
cesses of vegetation. The reduction in soil moisture hampers the

uptake of nutrients and activity of photosynthesis, which triggers an
earlier DFS34.

Thirdly, the propagation of pre-season heatwaves into meteor-
ological droughts, which then trigger soil and hydrological droughts,
results in an earlier DFS. This combined pathway involves pre-season
heatwaves that first exacerbate meteorological droughts and then
subsequently induce soil and hydrological droughts, thus culminating
in an earlier DFS. The cumulative effect of this sequential propagation
highlights the compounded stress on vegetation47,48.

Physiological responses of pre-season drought thresholds trig-
gering an earlier DFS
Our results further revealed that increases in LAI, resilience, and
hydraulic resistance hinder the PDT-DFS (Fig. 4f, g and Supplementary
Fig. S46). This indicates that the impacts of droughts and/or heatwaves
on vegetation phenology result from physiological responses49. For
example, the physiological responses of vegetation to drought across
space are primarily controlled by aridity and are additionally modu-
lated by abnormal hydro-meteorological conditions and vegetation
types49.

For example, ecosystems with a higher LAI possess enhanced
water-use capacity and transpiration efficiency50,51, thus enabling the
vegetation to maintain physiological functions longer under drought

Fig. 4 | Drivers of the PDT-DFS. a–d The importance of drivers in controlling the
PDT-DFS. DFS ≤ DFS10th (n = 125,488), DFS ≤ DFS20th (n = 125,918), DFS ≤ DFS30th

(n = 126,428), and DFS ≤ DFS40th (n = 126,957) in a–d represent DFS from the <10%
quantile to the <40% quantile, respectively. Numbers in the parenthese are the
sample size for each group. The box plots in panels (a–d) represent the range of
each variable across 100 cross-validation runs. The lower dashed line indicates the
25th percentile, while the upper dashed line indicates the 75th percentile. The black
line within each box denotes themedian, and the dots on the boxes show themean

absolute SHAP value from each random forest iteration. The x-axes in (a–d) are
uniformly truncated to the range [0.23, 0.52] to better display the data distribution.
The tags on the y axis in a–d represent the drivers (Supplementary Table S3). R² in
a–d represents the coefficient of determination; RMSE in a–d represents the root
mean square error. e–h Partial dependence plots of the top 3 drivers. The shaded
area of the partial dependence plots represents the mean velues ±SD of SHAP
values for DFS ≤ DFS10th–DFS ≤ DFS40th. Source data are provided as a Source
Data file.
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conditions before they initiate senescence. Furthermore, higher resi-
lience reflects robust physiological and structural traits, such as deep
rooting systems and efficient strategies of water use52,53, which enable
vegetation to maintain its physiological functions under prolonged
drought stress. Moreover, higher hydraulic resistance can impede
water flow16, which mitigates drought stress by reducing excessive
water loss and lowers the drought thresholds, which can hinder the
triggering of an earlier DFS. This highlights the importance of efficient
water transportmechanisms in sustaining the vegetative physiological
processes during drought conditions54.

Wemapped the PDT-DFS over the Northern Hemisphere (>30°N).
We found that 61.1–84.7% of the regions had a potential association
between the PDT-DFS and pre-season heatwaves. Furthermore, day-
time heatwaves were more effective at amplifying the PDT-DFS. The
propagation mechanisms indicated that the PDT-DFS is primarily rea-
lized by pre-season heatwaves leading to meteorological droughts,
thereby causing soil droughts. The random forest model further
indicated that the propagation thresholds from the meteorological
droughts to the soil droughts determine the PDT-DFS. However, the
increase in LAI and resilience hinders the sensitivity of earlier DFS to
droughts. Simulations using ISIMIP3b datasets further suggest that the
PDT-DFS would increase significantly (p < 0.01) in the future. Com-
pared with the estimates in 1982–2021, more than 51.09% of the areas
showed higher drought thresholds in 2061–2100. This indicates that
the futureDFSwill bemore sensitive to pre-season droughts inmost of
the areas over the Northern Hemisphere. These results offer a per-
spective for decision-makers to address the nonlinear relationship
between water deficiency and vegetation growth with warming.

Methods
Satellite-derived DFS datasets
The satellite-derivedDFSdatasets for 1982–2021were developedusing
the normalized difference vegetation index (NDVI). The NDVI data
were sourced from the third-generation V1.2 (GIMMS-3G+ ) dataset,
with a 0.0833° × 0.0833° spatial resolution at the global level from
1982 to 2022. NDVI values are reported twice per month. This dataset
was assembled fromvarious AVHRRsensors and accounted for various

problematic issues, such as calibration loss, orbital drift, and volcanic
eruptions.

First, we excluded areas with a multi-year average NDVI of <0.1.
Secondly, we excluded farmland and areas that lacked vegetation
based on the moderate-resolution imaging spectrometer Land Cover
Version 6 data product (MCD12C1 v006). Third, we applied the
Savitzky-Golay smoothing method to the NDVI time series data to
reduce noise, while preserving seasonal trends in vegetation
dynamics55. In particular, we used a 5 × 5 moving window, where the
window size represented a temporal span of five observations that
were centered on each point, with a polynomial order of 3 for the
optimalfit. This approachhasbeenwidely used inphenological studies
because it effectively reduces high-frequency noise,while retaining the
signal of vegetation growth and patterns of senescence34,55.

Based on the reconstructed NDVI time series, we extracted the
DFS dataset for 1982–2021 over the Northern Hemisphere (>30°N) by
applying the Hants-Maximum56, Polyfit-Maximum57, double logistic58,
and piecewise logistic methods59. These methods utilize different
mathematical models to describe the NDVI time series, which enabled
us to identify the critical transition point where the vegetation activity
shifts from peak growth into the rapid decline phase, which denotes
the acceleration of senescence (Supplementary Notes S2). To reduce
the uncertainty of DFS extracted from a single method, we calculated
the annual arithmetic average DFS based on these four methods34,60

(Supplementary Fig. S47a).
Additionally, we chose the MidGreendown band from MCD12Q2,

which represents the date when EVI2 last crossed 50% of the segment
EVI2 amplitude (MODIS-derived DFS). Since the MODIS-derived DFS
reflects the acceleration phase of senescence, it serves as a valuable
indicator to validate the consistency and robustness of our DFS data-
set. We found that the DFS derived from AVHRR GIMMS-3G+ and
MODIS-derived DFS are highly correlated (r =0.73, p < 0.01) (Supple-
mentary Fig. S49). Furthermore, we found that calculating the PDT-
DFS using AVHRR GIMMS-3G + -derived DFS and MODIS-derived DFS
results in similar values (Supplementary Figs. S50, S51). This indicated
that the PDT-DFS driven by AVHRR GIMMS-3G + -derived DFS and
drought indices were highly robust.

Fig. 5 | Projected future changes in the PDT-DFS. a–d Trends in the PDT-DFS for
1982–2100 under the SSP1-2.6, SSP3-7.0 and SSP5-8.5 climate scenarios. The hor-
izontal axis label of End Year represents the last year of the 15-year sliding window.

The each shaded area in (a–d) of the trends represent the mean velues ± 0.5 SD of
five global climate models. 10th–40th in (a–d) represent DFS for the <10% quantile
to the <40% quantile, respectively. Source data are provided as a Source Data file.
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Site-level ground DFS datasets
Site-level ground DFS datasets were sourced from the Pan European
Phenology project (PEP725). The site-level ground DFS datasets for
PEP725 were based on the autumnal foliar senescence (50%) (BBCH=
94). We selected four temperate tree species, including Aesculus hip-
pocastanum, Fagus sylvatica, Betula pendula, and Quercus robur, and
each site had at least 30 years of continuous observational data.
Moreover, based on themedian absolute deviation (MAD)method, we
excluded outliers that deviated from the median by more than 2.5
times61. The results included 283, 203 sites of DFS recorded from
1951–2015 (Supplementary Fig. S52c). The mean number of sites for
1951–2015 for each species was 1203, 1156, 1001, and 996 (Supple-
mentary Table S7).

Drought and heatwave indicators
Weused the SPEI function inR to calculate themonthly SPEI values at 1-
to 12-month scales using the potential evapotranspiration (PET, mm)
and precipitation (Pre, mm) for 1951–2021. The monthly PET and Pre
were sourced from CRU-TS 4.08 of the Climatic Research Unit Time
Series (CRU) with a spatial resolution of 0.5°.

The monthly soil moisture values (m3·m−3) for 1951–2021 were
sourced from the ERA5-Land reanalysis dataset. The soil moisture data
consisted of four layers (0–7 cm, 7–28 cm, 28–100 cm, and
100–289 cm)with anoriginal spatial resolutionof0.1° × 0.1°.Weused a
weighted average method to calculate the soil moisture for the top
100 cm indepth basedon thefirst three layers62. Basedon themethods
for equiprobability transformation, we standardized the soil moisture
as SSI at 1- to 12-month scales63.

Terrestrial water storage anomalies (TWSA) were obtained from
Yin et al.64. These data provide a longer time series compared with the
terrestrial water storage data measured by the Gravity Recovery and
Climate Experiment (GRACE) satellitemission. TWSA-DSIi,jwas defined
as follows:

TWSA DSIi, j =
TWSAi, j � TWSAj

δj
ð1Þ

where SPEI and SSI indicate meteorological droughts and soil
droughts, respectively. We acknowledge that soil droughts are not a
formal drought type. However, they are often used to represent agri-
cultural droughts. We referred to the SSI as soil droughts rather than
agricultural droughts because our analysis excluded areas affected by
humans, such as farmlands and urban zones. We also used SRI and
TWSA-DSI to represent hydrological droughts (Supplementary
Table S8).

Furthermore, we collected monthly maximum temperature
(Tmax, °C) and monthly minimum temperature (Tmin, °C) data from
CRU-TS 4.08 with a spatial resolution of 0.5°. Based on the methods
for equiprobability transformation, we first converted Tmax and Tmin

to standardized temperature indices at 1–12-month scales (STImax,
and STImin, respectively). We then multiplied STImax, and STImin by −1,
to conform to the same direction as the drought indices; i.e., larger
negative values indicate more severe heatwaves (Supplementary
Table S8).

To match the spatial resolution of the DFS, we used an area-
weighted mean approach to adjust the drought indices to a 0.083° ×
0.083° spatial resolution65. Moreover, to verify the impact of the dif-
ferences in resolution on the drought thresholds that trigger a DFS, we
also resampled the climate indices to a 0.5° × 0.5° spatial resolution
using an area-weighted mean approach. We generated spatial dis-
tribution maps of the PDT-DFS at 0.083° × 0.083° and 0.5° × 0.5°,
respectively (Supplementary Figs. S53–S56 and Tables S9–S12). We
found that the PDT-DFS is not sensitive to resolution (Supplementary
Notes S5).

Auxiliary dataset
The auxiliary dataset included global land use datasets (Supplemen-
tary Fig. S52b and Table S2) and global biomes (Supplementary
Fig. S52a and Table S1). Based on the MCD12C1 v006 dataset, land use
pixels that remained constant between 2001 and 2020 were analyzed,
while excluding regions classified as barren, terrain, ice formations,
and urban areas. The Earth was divided into eight biomes based on the
Terrestrial Ecoregions of theWorld (TEOW) dataset66. We analyzed the
PDT-DFS in different biomes.

Quantifying the joint probability distribution of the pre-season
drought indices and an earlier DFS
First, we used copula functions to construct a joint distribution func-
tion between the pre-season drought indices and DFS. The copula
functions can overcome the shortcomings of counting the cooccur-
rence rate between pre-season drought indices and an earlier DFSwith
few samples44,67.

We performed linear detrending of the DFS dataset. The detren-
ded DFS dataset was then converted to a percentile dataset to repre-
sent varying degrees of the advancement of DFS68. Lower percentiles
ofDFS represent earlier advancements ofDFS,while higher percentiles
of DFS indicate delayed DFS. We used DFS ≤ 10th percentile, DFS ≤ 20th

percentile, DFS≤ 30th percentile, andDFS≤40th percentile to represent
the advancement of DFS.

To account for the pre-season drought legacy effects on DFS34,69,
we identified the optimal response months of DFS to pre-season
drought indices (SPEI, SSI, SRI, and TWSA-DSI) by calculating the
absolute correlation coefficients between the DFS and drought indices
for each pre-seasonmonth (1–12) during the period from 1982 to 2021
(Supplementary Figs. S57, S58(a)–(d)).

Furthermore, we aggregated daily DFS values into months. The
optimal response months of DFS to pre-season drought indices for
each pixel were then calculated based on the 1–12 months that pre-
ceded the DFSmonth (Supplementary Fig. S47(d), (e)). For example, if
a DFSpixel is located inAugust, the length of its pre-season 1–12 period
will start from July and move backwards.

Moreover, owing to the limited efficiency of parametric distribu-
tions caused by uncertainties in the estimation of parameters and their
inapplicability to random variables <070, a kernel distribution was
utilized to fit the marginal distributions and in subsequent
calculations24. A copula function was used to construct the joint
probability distributionbetween theDFS (x) andSPEI (y) asFormula (2)
where FX and FY are the marginal distributions of x, y. C is the cumu-
lative distribution function of copula as shown below:

FXY ðX ,Y Þ=C FX ðX Þ, FY ðY Þ
� � ð2Þ

The kernel density estimator is defined by Formula (3) where xi, ran-
dom samples; n, sample size; K, kernel smoothing function; h, band-
width as shown below68.

f̂ hðxÞ=
1
nh

Xn

i = 1

x � xi
h

� �
ð3Þ

The bivariate copula function was applied to establish the joint dis-
tribution function of DFS and pre-season drought indices. Taking SPEI
as an example, it was described as Formula (4) shown below:

FDFSjSPEI ðDFS≤dfsjspeiu1 ≤ SPEI ≤ speiu2Þ

=
FðDFS≤dfs, speiu1 ≤ SPEI ≤ speiu2Þ

Fðspeiu1 ≤ SPEI ≤ speiu2Þ

=
FSPEI,DFSðspeiu2,df sÞ � FSPEI,DFSðspeiu1,df sÞ

FSPEI ðspeiu2Þ � FSPEI ðspeiu1Þ
ð4Þ
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where FDFSjSPEI ðDFS≤dfsjSPEI ≤ speiÞ represents the joint cumulative
probability distribution function (CDF) between DFS below a certain
threshold (DFS ≤ dfs) and SPEI within a certain range (speiu1 ≤ SPEI ≤
speiu2). The ranges of SPEI are defined as follows when calculating the
joint distribution (all drought, [−0.5, −5), mild drought, [−0.5, −1),
moderate drought [−1, −1.5), severe drought [−1.5, −2), extreme
drought [−2, −5)). F represents the CDF.

The specific implementation of the bivariate copula function for
DFS and pre-season drought indices was as follows
First, we performed normal fitting for the DFS and pre-season drought
indices. For the DFS and, SPEI, SSI, and TWSA-DSI, we used the normal
distribution and generalized extreme value distribution for fitting, and
then selected the optimal marginal distribution based on the
Kolmogorov-Smirnov (K-S) test and root mean square error (RMSE).
We then used five copulas—Clayton function, Frank function, Gumbel
function, Joe function, and t function—as potential joint distribution
functions (F) for the DFS and pre-season drought indices. The optimal
fitting function for each grid was selected based on the Akaike Infor-
mation Content (AIC)25,44. This represents the optimal joint probability
distribution between the DFS and different pre-season drought
indices.

The joint probability distribution between the DFS and different
pre-season drought indices ranges from [0,1]. A higher joint distribu-
tion probability indicates a greater likelihood of the simultaneous
occurrence of DFS and drought, while a lower joint distribution
probability indicates a lower likelihood of the simultaneous occur-
rence of DFS and droughts.

Based on the four scenarios (i.e., earlier DFS—DFS <40th percen-
tile, DFS <30th percentile, DFS <20th percentile, and DFS <10th percen-
tile) and four drought intervals (mild drought, moderate drought,
severe drought, and extreme drought), we established the possible
spatial distribution characteristics of 16 joint probability distributions
between an earlier DFS and droughts. As drought severity increased,
the probability of triggering an earlier DFS also increased. This implies
that more severe pre-season droughts are more likely to trigger an
earlier DFS (Supplementary Figs. S63–S66).

Quantifying the pre-season drought thresholds triggering an
earlier DFS
Based on the copula function, we iteratively applied the joint prob-
ability distribution between the pre-season drought indices andDFS to
establish a copula-based Bayesian framework to identify the PDT-DFS
as described in Formula (5) (Fig. 6) shown below:

FDFSjSPEI ðDFS≤dfsjspeixi�0:1 ≤ SPEI ≤ speixiÞ

=
FSPEI,DFSðxi,df sÞ � FSPEI,DFSðxi�0:1,df sÞ

FSPEIðxiÞ � FSPEI ðxi�0:1Þ
ð5Þ

Based on the optimal response months for the DFS and pre-season
drought indices for each grid, we constructed the joint distribution of
DFS and pre-season drought indices at the maximum time scale, pixel
by pixel. TakingDFS ≤ 40% andpre-season SPEI as an example, the SPEI
was iterated from −0.5 with intervals of −0.1 until it equated to −5.0.
The joint probability of SPEI and DFS was calculated at each iteration.
When the joint probability ≥ 0.5, the iterative process was terminated,
and the corresponding SPEI interval was returned. The left side of the
interval was taken as the triggering thresholds, which is the SPEI that
corresponds to the induction of earlier DFS. A lower triggering
threshold (SPEI close to −5.0) indicates that more extreme drought is
needed to trigger an earlier DFS. A higher triggering threshold (SPEI
close to−0.5) indicates that amilder drought can trigger an earlierDFS.
If the entire iterative process ends, and we do not retrieve the
corresponding drought thresholds, then no drought threshold exists
that triggers an earlier DFS for that pixel.

For the analysis of each pixel, we utilized a 3 × 3 moving window
to execute a copula-based Bayesian framework to identify the PDT-
DFS. In particular, we aggregated the values from the adjacent
3 × 3 pixels to increase the sample size by a factor of 971. Moreover,
we also utilized 1 × 1 and 5 × 5 moving windows to execute a copula-
based Bayesian framework to identify the PDT-DFS. We found little
difference between using 1 × 1, 3 × 3, and 5 × 5 moving windows to
execute a copula-based Bayesian framework to identify the PDT-DFS
(Supplementary Fig. S67). Additionally, executing the copula-based
Bayesian framework with a 3 × 3 moving window to identify the PDT-
DFS resulted in good marginal distribution characteristics,
which suggested a robust copula-based Bayesian framework (Sup-
plementary Figs. S68–S75). Considering the trade-off between the
computational cost and sample size of executing a copula-based
Bayesian framework, we ultimately used a 3×3 moving window to
identify the PDT-DFS. Moreover, we also assessed the robustness and
uncertainty of the copula-based Bayesian framework (Supplemen-
tary Notes S4–S5).

Quantifying the pre-season heatwaves that amplify drought
thresholds triggering an earlier DFS
Weestablished a joint distribution function for the drought thresholds
and corresponding monthly STI using Formula (6) as shown below:

FSPEIjSTI ðSPEI ≤ speijSTI ≤ stiÞ=
FðSPEI ≤ sPEI, STI ≤ stiÞ

FðSTI ≤ stiÞ =
Fðspei, stiÞ

FðstiÞ
ð6Þ

where FSPEIjSTI ðSPEI ≤ speijSTI ≤ stiÞ, CDF of drought (SPEI ≤ spei) and
heatwave (STI ≤ sti) conditions. SPEI ≤ spei represents drought
thresholds at each location; STI ≤ sti represents STI ≥ to a certain
heatwave threshold. In this study, we selected STI ≤ -2 to establish the
joint probability distribution of pre-season heatwaves and drought
thresholds. If no PDT-DFS were detected in the region, STI ≤ -2 and
SPEI ≤ -2 were used to represent the joint probability distribution of
pre-season heatwaves and drought thresholds for that region. This
represented relatively extreme compound heatwave and drought
events in the region.

Quantifying the mechanisms of propagation from the pre-
season heatwaves to an earlier DFS
Previous studies suggest that warming-related droughts, which lead to
water resource limitations, may in turn stimulate an earlier DFS9,69.
Moreover, meteorological droughts can propagate into soil and
hydrological systems24,25,47, thus causing soil and hydrological
droughts. Therefore, based on a copula-based Bayesian framework, we
established potential relationships among the pre-season heatwaves
and pre-season droughts, including SPEI, SSI, SRI, and TWSA-DSI, and
an earlier DFS.

Based on Formula (3), we calculated 15 sets of propagation
thresholds (Fig. 1a–d, Supplementary Figs. S3–S5a–d, and Supple-
mentary Figs. S11–S21). These included the following: SPEI thresholds
triggering an earlier DFS; SSI thresholds triggering an earlier DFS; SRI
thresholds triggering an earlier DFS; TWSA-DSI thresholds triggering
an earlier DFS; STImax thresholds triggering meteorological droughts
(SPEI as a proxy for meteorological drought); STImax thresholds trig-
gering soil droughts (SSI as a proxy for soil droughts); STImax thresh-
olds triggering hydrological droughts (SRI and TWSA-DSI as a proxy
for hydrological droughts); STImin thresholds triggering meteor-
ological droughts; STImin thresholds triggering soil droughts; STImin

thresholds triggering hydrological droughts; SPEI thresholds trigger-
ing soil droughts, and SPEI thresholds triggering hydrological
droughts.

These form 14 potential pathways that could lead to an earlier
DFS, which are divided into three categories (Fig. 3h). We calculated
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drought triggering thresholds for an earlier DFS under different sce-
narios (quantiles <10%, <20%, <30%, and <40%) and different drought
indices (SPEI, SSI, SRI, and TWSA-DSI). We also calculated the drought
and heatwaves triggering thresholds for other types of droughts under
different scenarios (quantiles < −0.5, < −1.0, < −1.5, and < −2.0) differ-
ent drought indices (SPEI, SSI, SRI, and TWSA-DSI). When the average
thresholds of a potential pathway are closer to −0.5, it is more likely

that the heatwaves cause an earlier DFS by influencing droughts along
that pathway.

Quantifying the drivers of pre-season drought thresholds trig-
gering an earlier DFS
This study used the random forest method to identify the drivers of
the PDT-DFS. A total of 72 potential drivers were selected

Fig. 6 | Copula-based Bayesian framework for identifying the PDT-DFS.
aDiagramofpre-season heatwaves enhancing the PDT-DFS. This figurewas created
by utilizing resources from the Integration and Application Network (IAN) of the

University of Maryland Center for Environmental Science. These resources are
made available under a Creative CommonsCCBY-SA 4.0 license.b Flowchart of the
copula-based Bayesian framework for identifying the PDT-DFS.
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(Supplementary Table S3), and they are categorized into six main
groups, including soil, topography, climate, vegetation, vegetation
hydraulic characteristics, and propagation mechanism drivers (14
propagation thresholds). As described by Green et al.72 and Deng
et al.73, the recursive feature elimination method was used to select
the variable combination with the highest coefficient of determina-
tion (R²). The number of drivers used for splitting each node was set
to 2, and the model contained 500 trees with the goal of maximiz-
ing the R².

SHAP values assessed the contribution of each predictor combi-
nation to the outcome. Partial dependence plots of the SHAP values
can be used to determine the impact of a single variable on the
response, independent of the interference of other drivers. A SHAP
value >0 indicates that the driving variable promotes the dependent
variable; conversely, a SHAP value <0 indicates that the driving vari-
able obstructs the dependent variable.

Based on the SEM, we estimated and examined causal relation-
ships between PDT-DFS and influential environmental factors. We
selected five influential environmental factors to discern their
mechanisms influencing the PDT-DFS. These five factors were selected
according to the random forest model after removing the 14 propa-
gation mechanism drivers. The relative importance of these five vari-
ables was consistently ranked in the top five across different DFS
percentiles ( < 10%, <20%, <30%, and <40%), and their ranking
remained unchanged, demonstrating that these indicators have an
important and stable influence on the PDT-DFS. We used the lavaan
package74 in R 4.2.0 to compute standardized path coefficients for the
predefined path diagram, calculating them as the product of the
standardized coefficients along each path.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
GIMMS-3G+NDVI available from the https://cmr.earthdata.nasa.gov/
search/concepts/C2759076389-ORNL_CLOUD.html. MidGreendown
band from MCD12Q2 available from the https://lpdaac.usgs.gov/
products/mcd12q2v006/. Site-level ground DFS datasets available
from the http://www.pep725.eu/. Potential evapotranspiration, Pre-
cipitation, Maximum temperature, and Minimum temperature avail-
able from the https://crudata.uea.ac.uk/cru/data/hrg/. Soil moisture
available from the https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-single-levels?tab=overview. Runoff available
from the https://cds.climate.copernicus.eu/datasets/reanalysis-era5-
single-levels?tab=download. Future dataset available from https://
data.isimip.org/search/tree/ISIMIP3b/. Global land use datasets avail-
able from the https://lpdaac.usgs.gov/products/mcd12c1v006/. Ter-
restrial Ecoregions of the World available from https://www.
worldwildlife.org/publications/terrestrial-ecoregions-of-the-world.
The source data underlying statistical figures are provided as a Source
Data file. The data generated in this study have been deposited in the
Figshare database under https://doi.org/10.6084/m9.figshare.
29365715. Source data are provided with this paper.

Code availability
The copula-based Bayesian framework was implemented using
MATLAB 2024b;mappingwas performed using Python 3.9.1. The code
generated in this study have been deposited in the Figshare database
under https://doi.org/10.6084/m9.figshare.29365715.
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