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Non-reciprocal frequency conversion in a
non-Hermitian multimode nonlinear system

Sahil Pontula 1,2,3 , Sachin Vaidya 1,3, Charles Roques-Carmes 3,4,
Shiekh Zia Uddin 1,3, Marin Soljačić 1,3 & Yannick Salamin 1,3,5

Nonlinear optics has become the workhorse for countless applications in
classical and quantum optics, from optical bistability to single photon pair
generation. However, the intrinsic weakness of optical nonlinearity and reci-
procity of nonlinear interactions generally places stringent limits on the effi-
ciency of nonlinear optical processes and their ability to be tailored for
advanced applications in multimode systems. Here, motivated by recent
advances in using non-Hermitian photonics and gain/loss engineering to
enable non-reciprocal light transport, we explore how the interplay between
non-Hermiticity and optical nonlinearity leads to a fundamentally new regime
of nonlinear frequency conversion. We show how non-Hermitian coupling
between discrete frequency modes can result in non-reciprocal flow of energy
in a frequency dimension, closely resembling the non-Hermitian skin effect
(NHSE). Applying our theory to a multimode nonlinear cavity supporting
cascaded nonlinear processes, we demonstrate chiral energy flow in a fre-
quency dimension, leading to long-range frequency shifts of quasi-continuous
wave sources, shaped frequency combs robust to defects and disorder, ter-
ahertz (THz) generation far exceeding the Manley-Rowe limit, and nonlinear
multimodal limit cycles for multi-frequency pump-probe spectroscopy.

Nonlinear optical systems have long been a cornerstone of advanced
photonics, enabling a wide range of applications from frequency
conversion1,2 andhigh-speed communication3 to quantum information
processing4,5. More recently, the focus has shifted to multimode non-
linear systems, which offer the potential for more complex interac-
tions through nonlinear processes. For instance, frequency combs,
which consist of many discrete frequency modes, have found wide-
spread application in precision metrology and high-capacity data
transmission6–8. However, traditional nonlinear optical systems are
constrained by the intrinsic optical properties of nonlinear materials,
which are generally weak and obey laws of reciprocity. This restricts
conversion efficiencies and the ability to manipulate nonlinear energy
flow for more sophisticated functionalities. Achieving control over
nonlinear interactions in multimode systems could enable break-
throughs such as overcoming the standard efficiency limits in

frequency conversion9–11 and realizing new topological phenomena in
real and synthetic frequency dimensions12–14. Despite these promising
applications, control over multimode nonlinear systems has been
difficult to achieve, owing to high dimensionality and the intrinsic
complexity of many nonlinear interactions.

The introduction of non-Hermitian elements into optical systems
has opened new avenues for controlling light-matter interactions and
energy flow in real and synthetic dimensions15–21. These systems can
exhibit unique phenomena not seen in traditional Hermitian systems,
such as exceptional points22–24, non-reciprocity22, parity-time (PT )
symmetry breaking25, and the non-Hermitian skin effect (NHSE)26–28.
Recent studies have shown that breaking reciprocity in a discrete
synthetic frequency dimension can realize non-Hermitian Hamilto-
nians and topological windings in the photonic band structure29,30.
However, the intersection of non-reciprocity in a frequency dimension
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and nonlinear frequency conversion has not been explored, although
exciting related work in the optomechanical domain has recently been
reported31, in addition to reports of nonlinear skin modes and shaping
of quantum noise in non-reciprocal Hatano-Nelson systems with on-
site Kerr nonlinearity32,33. Overall, considerable attention has been
given to breaking spatial reciprocity in optical and optomechanical
systems34–41, with a notable gap existing in the interplay between
optical nonlinearity and non-reciprocal coupling in multimode non-
linear systems.

In this work, we investigate a multimode nonlinear cavity system
that leverages both Hermitian and non-Hermitian interactions to
achieve enhanced control over nonlinear energy flow. Our system fea-
tures a cavity supportingmultiple frequencymodes that are nonlinearly
coupled to a common idlermode. This configuration supports cascaded
parametric upconversion and downconversion processes, forming a
frequency comb. We demonstrate that the interplay between nonlinear
Hermitian coupling, dissipation, and anti-Hermitian amplitude mod-
ulation can be utilized to shape nonlinear frequency conversion pro-
cesses. Byfine-tuning the balance between nonlinearity, dissipation, and
amplitudemodulation,we achievenon-reciprocal frequency conversion
and enhanced energy localization in a chiral mode. This boosts the
energy conversion efficiency for both the chiralmode aswell as the idler
mode orders of magnitude above efficiencies imposed by reciprocity.
Our results further reveal how nonlinear frequency conversion can be
controlled using system parameters to generate frequency combs of
arbitrary asymmetry, with the asymmetry remaining robust to defects
anddisorder in the frequencycomb.Wealso identifydifferentbehaviors
(phases) in the nonlinear, non-Hermitian system’s mean-field dynamics,
demonstrating stable multimodal limit cycles that could provide a new
resource for time-domain multiplexing and multi-frequency pump-
probe spectroscopy42.

Results
Theory and system description
The system under consideration is depicted in Fig. 1a, representing a
multimodal nonlinear cavity that supports cascaded three-wave mixing
processes mediated by a common idler bath mode at frequency ωT. A
pump mode at ω0 initiates cascaded parametric upconversions and
downconversions mediated by the common idler mode to create
blueshifted and redshiftedmodes relative to the pumpmode, forming a
comb with spacing ωT. Energy conservation for each three-wave mixing
process readsωn =ωn−1−ωT, whereωn>0 corresponds to the combmode
associated with the generation of n idler photons, so thatωn=ω0 − nωT.

The system additionally undergoes amplitude modulation at fre-
quency ωmod =ωT , generating anti-Hermitian coupling between
neighboring modes (we consider the case ωmod≪ωT in the Supple-
mentary Information). We assume here that the modulation is pro-
vided by an external drive that gives rise to a modulation index J≪ 1.
However, amplitude modulation can also be self-started by the cas-
caded optical nonlinearity without an external drive atωmod, as shown
in the Supplementary Information. When externally driven, ωmod sets
the idler frequencyωT =ωmod as long as the three-wavemixing process
{ω0, ω1, ωT} lies within the nonlinear crystal’s phase matching band-
width, since the system is not seeded43. When self-driven, the differ-
ence frequency ωT =ω0 − ω1 naturally sets the modulation frequency
ωmod. The composite Hamiltonian reads (see Methods)
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From this Hamiltonian, equations of motion for the mean field
amplitudes of the combmodes an (with energy En = ℏωn∣an∣2) and idler
bathmode aT (with energy ET = ℏωT∣aT∣2) in the interaction picture read
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where βT ,n,n�1 = β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωTωnωn�1

p
is the nonlinear coupling strength

with β0 a constant dependent on the second-order nonlinearity
(see Supplementary Information), κ the strength of amplitude
modulation, sn the strength of external pumping, and γ, μ the
outcoupling and intrinsic losses. We provide numerical estimates for
these physical parameters in the Supplementary Information.
Although we simulate systems in the text with the full frequency
dependence of βT,n,n−1, because the comb span is generally much
smaller than the frequency of an individual comb mode, we will
approximate βT,n,n−1 → β as constant for simplicity in further
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Fig. 1 | Shaping nonlinear energy flow in a non-Hermitian nonlinearmultimode
cavity. a Tight-binding schematic of nearest-neighbor couplings in a frequency
multimode system with second-order nonlinearity. The interplay between non-
linear Hermitian coupling (NL) mediated by a common idler mode and the anti-
Hermitian coupling generated by amplitude modulation (AM) at the idler fre-
quency breaks reciprocity in the frequency conversion (κ+ ≠ κ−), which can create
unidirectional energy flow in the frequency dimension. b The presence of anti-
Hermitian coupling through AM or Hermitian coupling through NL alone is insuf-
ficient to break symmetry in the frequency conversion process. However, the
presence of both couplings simultaneously generates an effective non-Hermitian
system that can bias frequency downconversions and create an asymmetric fre-
quency comb. c In the nonlinear, non-Hermitian system, the interplay between NL
and AM is reflected in the temporal dynamics of the modal amplitudes since the
nonlinear coupling is time-dependent, βaT(t). The initial frequency conversion is
symmetric since κ+= − κ− (purely AM coupling). As the idler mode is populated,
βaT→ κ. A threshold is reachedwhere reciprocity in upconversion/downconversion
is broken and an NHSE-type phenomenon in the frequency dimension occurs, with
all energy flowing to the chiral mode aN. In (b, c), 2N + 1 = 19, β0= 2 × 10−4 J−1/2,
κ = 7.8 × 109 s−1, Q0= 9 × 105, μ =0.1γ, QT= 103, and ℏω0∣s0∣2= 5MW. In this system,
the pump frequency ω0= 2π ⋅ 282 THz, and the idler frequency ωT= 2π ⋅ 1.06 THz.

Article https://doi.org/10.1038/s41467-025-62853-0

Nature Communications |         (2025) 16:7544 2

www.nature.com/naturecommunications


expressions. As we will show, the interplay between on-site non-
Hermiticity (loss) and non-Hermitian intermodal coupling in this
model will enable us to have a new degree of freedom in controlling
nonlinear energy flow in a frequency dimension and shaping nonlinear
frequency conversion. We note that, in the Hamiltonian description of
this system, a unitary transformation can be used to move the off-
diagonal non-Hermiticity in the frequency mode basis onto the
diagonal (see Methods). Specifically, this shows how nonlinearity can
play the role of gain/loss in the frequency dimension, which will be
crucial for non-reciprocal frequency conversion.

The nonlinear system of differential equations specified by Eq. (2)
can be numerically solved as a function of time starting from an initial
condition where the fields are zero. If the system reaches steady state,
the power conversion efficiency in a given mode can be computed as
(see Supplementary Information for derivation using temporal cou-
pled mode theory)

ηk≠0 =
2ωkγk jak j2P

k0ωk0 �sk0 +
ffiffiffiffiffiffiffiffiffi
2γk0

p
ak0

� �2 , ð3Þ

where k0 indexes over all modes in the system, k denotes any mode
that is not coherently pumped, and μ≪ γ. The denominator of this
expression includes both the input pump power and the power drawn
from the amplitude modulator. It is useful to compare the power
generation efficiency to the Manley-Rowe (MR) limit44. The MR limit
describes the optimal efficiency in a difference-frequency generation
process where every high-energy pump photon produces a lower-
energy signal and idler photon. In the case of the idler mode in our
system, the MR limit is then given by ωT/ω0 (see Supplementary
Information for derivation).

When the system does not reach a steady state, interesting
behaviors such as stable limit cycles may exist, which we will
also explore.

Chiral energy flow in nonlinear multimode cavities
A key prediction of non-Hermitian point gap topology is the non-
Hermitian skin effect (NHSE), which occurs when the hopping reci-
procity in a lattice is broken, enabling bulk eigenstates of the Hamil-
tonian to be localized on the boundary of the lattice45–47. In one
dimension, the Hatano-Nelson model is a simple example exhibiting
the NHSE, where reciprocity is broken via unequal nearest-neighbor
rightward and leftward hoppings48,49. In our system, we realize a non-
linear analog of the Hatano-Nelson model, where nonlinear Hermitian
coupling and non-Hermitian amplitude modulation combine to give
non-reciprocal hopping amplitudes in the frequency dimension. In
Fig. 1b, c, we show how this can result in unidirectional (or chiral)
energy flow towards the lowest-frequency mode in our frequency
lattice. This chiral energy flow is not accessible with conventional
optical nonlinearity or electro-optic modulation on its own.

The chiral energy flow is associated with the formation of an
asymmetric frequency comb centered around ω0. As described in
Methods, we can quantify the comb asymmetry as

ξ =
log jr1j+ log jr2j

2 log jr2j
, ð4Þ

where we analytically solve the steady state of Eq. (2) using a non-
Hermitian Bloch wave ansatz a−n+1 = r2a−n, an+1 = r1an for the blue-
shifted (n <0) and redshifted (n >0) branches of the comb,
respectively.

We now show how the asymmetry in the frequency comb can be
controlled through the interplay between nonlinear and non-
Hermitian coupling. In Fig. 2a, we plot the asymmetry parameter ξ
over a sweep of the quality factor of the frequency comb modes Q0.
When the comb modes are very leaky (low Q0), the nonlinear

coupling remains weak and a symmetric comb is created through the
amplitude modulation (Fig. 2b, (I)). As Q0 is increased, nonlinear
energy can more effectively flow in the frequency space lattice. The
asymmetry initially increases slowly, then undergoes a sharp increase
as the redshifted part of the comb (n > 0) is pulled upwards. This
occurs because βaT → κ, amplifying coupling to lower-frequency
modes while simultaneously suppressing the nearest-neighbor hop-
ping to higher-frequency modes.

When the asymmetry reaches ξ =0.5, hopping tohigher frequency
modes is completely suppressed, κ = βaT, and a flat comb for the red-
shifted cascading orders is created through a balance between gain
and loss for each mode. The steady state energy of the blueshifted
modes continue to decay from the pump mode ω0 as ∣r2∣−2∣n∣ (Fig. 2b,
(II)). For the highest Q0 considered, nearly perfect asymmetry in the
frequency comb is generated (Fig. 2b, (III)). The interference pattern in
the steady state modal energy distribution for this last case is due to
Bloch interference in the frequency lattice that emerges because the
boundaries of this system in the frequency dimension are not impe-
dance matched (i.e., are partially reflecting)50. The interference exists
because we only change Q0 in these simulations, but can be removed
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Fig. 2 | Asymmetric and highly efficient frequency conversion through non-
reciprocal frequency conversion. a For low Q0 (strong dissipation in comb
modes), the nonlinear coupling is very weak and AM creates a symmetric comb,
ξ ≈0 (because γ≫ κ, modes other than the pump mode are negligibly occupied).
As Q0 is increased, the interplay between AM and NL begins to dominate the
system dynamics, entering the regime of a high-finesse cavity in frequency space
and suppressing frequency upconversion through nonreciprocity. This biases the
frequency comb towards redshifted modes. Finally, for the highest Q0, nearly
complete asymmetry is obtained, ξ ≈ 1. The efficiency parameter ηN quantifies how
muchpower is converted into the chiralmode.A sharp increasenear the transition
to high asymmetry (ξ ≈0.5) is observed. b Varying levels of asymmetry in the
modal energy distribution for three different values of the Q0 sweep shown in (a).
The interference pattern in (III) emerges due to non-open boundary conditions at
the frequency boundaries ω±N, which results in Bloch mode interference in the
frequency space lattice. c As the asymmetry is increased through improving the
finesse of the frequency space cavity, so too is the THz conversion efficiency. The
non-reciprocity strongly biases THz generation (downconversion) over THz
annihilation (upconversion) processes. In these simulations, ℏω0∣s0∣2= 1 MW,
β0= 10−4 J−1/2, κ = 2π ⋅ 1060MHz,QT= 104, and N = 10. An intrinsic loss μ = 0.01γwas
assumed. In the absence of AM (NL only), a seed ℏωT∣sT∣2= 760W was added to
form the frequency comb, matching the drive power necessary to ensure J ~ 0.1 in
the presence of AM. Here, ω0= 2π ⋅ 282 THz, ωT= 2π ⋅ 1.06 THz. In (c), in the limit
μ→0,ηTHz for theNLonly case ranges from8 × 10−8 to 6 × 10−6 over the rangeofQ0,
effectively zero on the plot.

Article https://doi.org/10.1038/s41467-025-62853-0

Nature Communications |         (2025) 16:7544 3

www.nature.com/naturecommunications


by additionally tuning the boundary condition QN for example (as
shown in the Supplementary Information).

Also shown in Fig. 2a is a plot of the power conversion efficiency
for the chiral mode ηN. We observe a sharp increase in ηN near the
transition to high asymmetry. ηN asymptotes near 86% for high Q0,
which is orders of magnitude larger than the efficiency for a system
with only nonlinearity and no amplitude modulation. Note that the
latter system requires a seed to generate comb modes and the THz
idler mode, so we set ℏωT∣sT∣2 equal to the input power of the drive for
amplitude modulation in the former system at a modulation index
J ~ 0.1 (see Supplementary Information for details).

High efficiency terahertz generation
The unidirectional energy flow enabled by non-reciprocal frequency
conversion in the frequency dimension biases frequency down-
conversions that produce idler photons at ωT (and suppresses fre-
quency upconversions that annihilate idler photons) in the cascaded
nonlinear system. When ωT lies at THz frequency, the system can
realize high efficiency THz generation.

This concept is shown in Fig. 2c, where the efficiency of conver-
sion into the propagating THz idler mode outcoupled from the cavity
increases withQ0. Notice that the curve of THz efficiency plateaus near
ξ ≈0.5. At this value of the asymmetry parameter, upconversions are
perfectly suppressed, a flat IR comb is generated, and THz generation
is enhanced by the number of comb modes. Here, the THz photon
generation rate is equally contributed by three-wave mixing between
eachpair of nearest-neighbor combmodes. AsQ0, ξ increases, the THz
generation becomes dominated by three-wave mixing at the low fre-
quency end of the frequency comb, which is populated strongly due to
the non-reciprocal frequency conversion.

We observe an order of magnitude enhancement in THz conver-
sion efficiency for thenon-reciprocal frequencycombcompared to the
reciprocal frequency comb without amplitude modulation. We attri-
bute this enhancement to the unique ability to suppress upconver-
sions in the non-Hermitian system and therefore break symmetry
between THz-generating and THz-annihilating processes. The critical
transition to high asymmetry and chiral mode efficiency (black dotted
line in Fig. 2a) is accompanied by a transition to high THz conversion
efficiencies.

In Fig. 3, we explore how THz conversion efficiencies strongly
surpassing the Manley-Rowe limit can be achieved through (1) longer
combs and (2) appropriate dissipation engineering, reaching
enhancement factors exceeding 32 times above theManley-Rowe limit
(ηTHz > 12%). The former enablesmorecascading steps to generateTHz
photons from a single pump photon, while the latter shapes the steady
state energy distribution in the frequency lattice to maximize THz-
generating nonlinear interactions. In Fig. 3, the dissipation engineering
corresponds to partially open boundary conditions and low occupa-
tion of the blueshifted comb modes (which correspond to THz anni-
hilation processes). As noted in the Supplementary Information,
dissipation engineering is another resource to control nonlinear
energy flow, and new capabilities can arise when dissipation engi-
neering is combined with non-reciprocal frequency conversion.

Note that in Fig. 3 we simulate a pump power of 10 kW, which is
achievable with microsecond pulses. This is too low to generate
appreciable THz using cascaded nonlinear conversion alone, but
nevertheless achieves high ηTHz when combined with amplitude
modulation to break reciprocity in nonlinear frequency conversion.
This highlights the ability of our mechanism to overcome the con-
ventional limitations of high pump power that usually plagues high-
efficiency frequency generation owing to the weakness of optical
nonlinearity. The high-power THz generation in the nonlinear, non-
Hermitian system is enabled through the interplay between optical
nonlinearity and non-Hermitian coupling between frequency modes.
Although chiral energy flow can be achieved through combined

amplitude and phase modulation without optical nonlinearity (as
described in the Supplementary Information), the latter is necessary to
simultaneously generate idler photons with high efficiency. It is this
nonlinear coupling that actually makes the comb robust to chiral
energy flow towards lower frequency instead of higher frequency.
Reciprocity is only broken when ∣βaT∣ ~ ∣κ∣, which necessitates pre-
ference towards downconversion processes that generate idler pho-
tons. Thus, chiral energy flow towards higher energy is not generally
allowed by this mechanism, but can be accessed using combined
amplitude and phase modulation (see Supplementary Information).

Robustness to defect and disorder
In this section, we show how the non-reciprocal frequency conversion
we observe in the frequency dimension preserves the robustness to
disorder observed for NHSE51. In Fig. 4a, we introduce a random leaky
mode in the frequencymode,whichhas aQ factor lower than the other
modes in the comb, Qdefect <Q0. The original skin effect is preserved
for large defect strengths, even when the defect mode has a Q factor
over 90% belowQ0.When the defectmode becomes too leaky (Qdefect/
Q0≲ 1%), the comb terminates at the defect mode, and the new chiral
mode becomes the comb mode just before the defect mode.

In Fig. 4b, we consider disorder in the Q factor distribution for all
of the frequency modes in the comb. To model this disorder, we
sample each mode’s Q factor individually and uniformly from the
distribution [xQ0, Q0] with 0 ≤ x ≤ 100%. We see how the skin effect is
resistant to disorder, preserving the unidirectional flow of energy in
frequency space even for large amounts of disorder 1 − x > 50%. To
show that this emerges from the non-Hermitian coupling in the
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with only nonlinearity (NL only) included a seed ℏωT∣sT∣2= 0.484mW, equal to the
THz drive power necessary for modulation index J ~ 0.03 (free spectral range
FSR = 1 GHz) in the presence of amplitude modulation. The following efficiencies
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7, 4 × 107 and no dissipation engineering), ηTHz= 1.38 × 10−7 (NL only with
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7 and dissipation engineering). The case for the non-reciprocal system
(AM+NL) with Qmax = 4 × 107 without dissipation engineering is not plotted
because it did not reach a steady state within 1μs.
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system, we plot in the inset of Fig. 4b the standard deviation in the
modal energy of the chiral mode normalized to its mean in the pre-
sence (κ ≠0) and absence (κ =0) of amplitude modulation. (The mean
and standarddeviation are computed over 100 simulated systemswith
Q factors drawn from the aforementioned uniform Q factor distribu-
tion.) The variation in the chiral mode’s energy is larger and scales
more sharply with the dimensionless disorder parameter x in the case
κ =0, showing the robustness of the non-reciprocal frequency con-
version (κ ≠0) to the disorder considered here. This can have a very
strong impact for practical applications conventionally limited by
dispersion or impurities. In the Supplementary Information, we
explore how the system’s non-reciprocal frequency conversion
remains robust to comb-cavity mode detuning and dispersion. How-
ever, the shapingof the combprofileby dispersion suggests dispersion
engineering as an exciting tool, together with the dissipation and non-
reciprocity engineering we have explored here, to enable precise
control over energy flow in frequency dimensions.

Temporal dynamics and stable limit cycles
We now take a closer look at the temporal dynamics of states sup-
ported by the nonlinear, non-Hermitian multimode systems con-
sidered here. In Fig. 5, we show how these states can generally be
classified as steady state solutions or limit cycles (LCs). Thus far, we
have focusedon combsgenerated in steady state. LCs are aparticularly
interesting class of solutions unique to nonlinear systems that are
characterized by stable oscillations around a fixed point52. As shown in
Fig. 5a, the LC regime can be entered by gradually increasing the
quality factor of the idler mode, QT. The steady state solutions are
distinguished by an approach to equilibrium characterized by damped
relaxation oscillations (ROs) and Bloch oscillations, whereas the limit
cycle regime is characterized by periodic oscillations in the modal
amplitudes that never relax to a steady state. We numerically verified
the existence of a fixed point in between the extrema of the LCs.
Zooming inon the LC regime,weobserve that the repetition rate of the
LCs appears to be governed by the amplitude modulation strength κ,
while the pulsewidth is governed by the interplay between on-site loss
and gain/loss due to intermodal coupling. For each individual mode,
the LCs resemble picosecond pulses with GHz repetition rates. The
high powers in this system, particularly near the LC regime, are limited
by nonlinear saturation effects, which we model in our simulations by
inclusion of a two-photon absorption term in the rate equations with
βTPA ~ 0.1 cm/GW.

We can sweep over the nonlinear and amplitude modulation
strengths β, κ to create a phase diagram portraying the distinct tem-
poral dynamics, as shown in Fig. 5b. For small κ, symmetric combs are
produced in a steady state irrespective of β (reciprocal frequency
conversion, RFC SS). As κ is increased, the non-reciprocal frequency
conversion drives the system towards an asymmetric comb in steady
state (NRFC SS). The nonlinearity acts as a loss mechanism to balance
the gain from amplitude modulation, so that for small nonlinearity β,
gain induced by κ drives the system to very high powers that would be
limited by nonlinear saturation effects (e.g., TPA). Finally, the largest
values of κ in nonlinearity-stabilized systems yield LCs. Like the sharp
transition to non-reciprocal frequency conversion, the transition to
LCs appears to be quite sensitive to κ, switching sharply from steady
state solutions to LCs for almost all values of β. Therefore, beyond a
certain threshold, the amplitudemodulation stabilizes the LCs, and the
LC phenomenon is relatively insensitive to the nonlinear strength. The
phase transition boundary is characterized by sustained Bloch oscil-
lations in the frequency spacecavity definedby the frequencycomb, as
shown in the inset53. These oscillations resemble solitons in a fre-
quency dimension, where nonlinear energy flow bounces back and
forth inside the frequency spacecavity (outsideof the LC regime, these
oscillations are damped and relax to a steady state).

Finally, in Fig. 5c, we explore the power in the outcoupled field
soutðtÞ=

P
nsn, outðtÞe�iωnt . Both the RFC and NRFC SS phases can show

approximate continuous wave operation when one mode has most of
the system’s energy (the pump mode (blue) in the former case, the
frequency-shifted chiral mode (red) in the latter case). NRFC SS can
additionally create flat combs with sinc-type pulse profiles (orange).
The LC regime features pulses with GHz repetition rate and THz sub-
pulse dynamics, providing the opportunity to encode information at
two different timescales in the optical field.

Discussion
The interplay between nonlinearity and non-Hermitian coupling in the
frequency comb systems studied here offers numerous exciting ave-
nues of research for both fundamental science and photonic applica-
tions. First, the non-reciprocal frequency conversion we explore
enables long-range frequency shifting, realizing coherent sources
whose frequency can be tuned simply by shifting the boundary con-
dition along the frequency dimension. In the quantum optical regime,
the interaction between optical nonlinearity and non-Hermiticity
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Fig. 4 | Robustness of non-reciprocal frequency conversion to defect and dis-
order. a A random low Q-factor defect is introduced in the frequency comb. The
non-reciprocal frequency conversion is robust to strong defects, though the
strongest defects result in the skin effect terminating just before the defect mode.
Here, the modal energy En = ℏωn∣an∣2 is plotted for various defect strengths Qdefect/
Q0= x, where Q0 denotes the Q factor of the remaining modes in the frequency
comb. b Robustness of non-reciprocal frequency conversion to disorder. Here, the
Q factor of all frequency modes in the comb is sampled uniformly from [xQ0, Q0].
Nsamp= 100 samples are drawn from this uniform distribution and individually
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mean modal energies. Shown in the inset is the robustness of the energy of the
chiral mode aN, plotted as the standard deviation normalized by the mean (coef-
ficient of variation), fN ≡ σN/〈EN〉, where 〈EN〉 denotes the ensemble average over
Nsamp samples. In the absence of amplitudemodulation κ =0, the disorder affects fN
muchmore strongly than the case κ ≠0, where reciprocity breaking helps stabilize
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remains to be explored and may enable the creation of topologically-
protected multimode quantum and non-Gaussian states of light54. In
addition, tailoring non-reciprocal hopping in a frequency dimension
offers an exciting resource forquantumwalk studies. Furthermore, the
multimode limit cycles explored in thiswork, in addition to being used
for multi-frequency pump-probe spectroscopy and timemultiplexing,
suggest the possibility of harnessing multistability for switching,
entangled state generation, and more55. Finally, we envision that
combining non-reciprocal conversion with techniques such as dis-
sipation engineering10,56 will lead to even more precise control over
nonlinear energy flow in multimode systems.

We briefly comment on experimental platforms capable of rea-
lizing the effects described here. Most of the systems we simulate in
the main text are based on centimeter-scale free space/monolithic
cavities pumped by microsecond pulsed or nanosecond Q-switched
lasers, which realize quasi-continuous wave operation at kilowatt and
megawatt-level powers, respectively. A further discussion of typical
parameters expected in thisplatform is provided in theSupplementary
Information. The THz amplitude modulation (AM) we consider can
come in two forms (1) externally-driven AM and (2) self-driven AM. In
the first case, a weak THz drive (to ensure a modulation index J≪ 1) is
injected into the AM. The steady state THz energies are several orders
of magnitude larger, showcasing the ability of our system to generate
high-energy THz radiation from a weak THz seed with high efficiency.
In the second case, no external THz radiation is injected into the cavity.
Rather, the system is pumped and seeded at two infrared frequencies
to initiate the cascaded three-wave mixing, and the resulting THz
photons are recycled to drive the AM. We provide a more detailed
discussion with specific results for this case in the Supplementary
Information. To our knowledge, this is the first proposal of intracavity
terahertz amplification by recycling idler photons for electro-optic
modulation in anoptically driven cavity. Exciting steps in this direction
have been taken in demonstrations of THz time-domain electro-optic
sampling57.

Ring resonators have recently received significant attention in
studies of topological effects in synthetic frequency dimensions29,58,59.
For example, one such system used Mach-Zehnder-based
amplitude modulation of a fiber ring resonator to realize non-
Hermitian band topology. We view this platform as an excellent
candidate to realize the effects described here when combined
with lithium niobate photonics (or another nonlinear material) to
generate nonlinear coupling. On-chip nonlinear microring resonators
have also been extensively developed and suggest exciting
potential for developing integrated non-reciprocal frequency conver-
sion setups60–62. Advances in THz electro-optic modulation further
suggest exciting possibilities for using THz amplitude modulators
to generate the THz-spaced non-reciprocal combs considered in
this work63–65.

We emphasize that our theory is applicable to different frequency
regimes. In particular, THz modulation frequencies were considered
here to highlight the well-known difficulty in high-efficiency THz
generation that our mechanism addresses. However, optomechanical
and circuit quantum electrodynamics platforms are ideal platforms to
realize the physics described here at microwave frequencies66. Fur-
thermore, MHz/GHz amplitude modulation with THz-based cascaded
nonlinearity can lead to excitation of long-range Bloch modes, band
structures with very large winding numbers, and formation of a series
of flat combs at IR and mid-IR/THz frequencies, as described in
the Supplementary Information. Exploiting these two disparate fre-
quency ranges offers the potential for exploring higher-dimensional
non-Hermitian topology.

In summary, we have uncovered the phenomenon of non-
reciprocal frequency conversion in multimode systems supporting
simultaneous non-Hermitian and nonlinear intermodal coupling. We
envisionwidespread adoption of the physical concepts described here
in both fundamental studies of non-Hermitian topology in nonlinear
systems as well as applications to new classes of high-efficiency non-
linear photonic devices.
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Fig. 5 | Limit cycles and temporal dynamics in nonlinear, non-Hermitian mul-
timode systems. a For low quality factors of the idler bath mode (QT), the system
initially features damped relaxation oscillations (ROs) and the amplitude modula-
tion drives the system towards a stable steady state that features non-reciprocal
frequency conversion. As QT increases, the system eventually transitions into a
regime of stable limit cycles that feature periodic oscillations in modal energy.
Finally, larger QT cause a return back to damped ROs and Bloch oscillations, with
the nonlinearity and amplitude modulation enabling a gain-loss equilibrium.
Oscillations in modal energy in the limit cycle regime have a GHz repetition rate,
roughly corresponding to the amplitude modulation strength κ. b Phase diagram

showing steady state (SS) and limit cycle (LC) regimes as a functionof the nonlinear
and amplitudemodulation strengths. For small κ, a symmetric comb in steady state
is produced (ξ, η ≈0, with reciprocal frequency conversion (RFC SS)). For larger κ,
an asymmetric comb in steady state is produced by the non-reciprocal frequency
conversion (NRFC SS, ξ, η >0). For the largest κ, LCs are present. Along the tran-
sition boundary, the temporal dynamics feature long-lasting Bloch solitons where
energy bounces back and forth in the frequency space cavity. cRepresentative time
traces of the power in the outcoupledfield soutðtÞ=

P
nsn, outðtÞe�iωnt corresponding

to the phases in (b). Simulation parameters used in (a) areQ0= 1.1 × 107, κ = 2π ⋅ 100
MHz, β0= 10

−4 J−1/2. The pump power is 1 kW and the comb length is 2N + 1 = 21.
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Methods
Hamiltonian description of multimode nonlinear system
The non-interacting multimode driven-dissipative Hamiltonian
describing our system is the sum of the bare Hamiltonians for each
mode and reads67:

H0=ℏ = i
ffiffiffiffiffiffi
2γ

p
s0ðây

0 � â0Þ+
X
n

ωn � iðγ +μÞ� �
ây
nân

+ ωT � iðγT +μT Þ
� �

ây
T âT ,

ð5Þ

where ân is the annihilation operator for the comb mode at angular
frequency ωn and âT is the annihilation operator for the idler bath
mode at frequency ωT. This Hamiltonian is non-Hermitian due to on-
site loss (γ for outcoupling loss and μ for intrinsic loss) that emerges
from the coupling of each frequency mode to the environment. Here,
we only consider themode atω0 to be externally pumped (s0 ≠0). The
nonlinear interaction between the frequency modes is described by a
Hermitian Hamiltonian68

HNL = iβ
X
n

ây
T â

y
nân�1 + h:c:, ð6Þ

where h.c. denotes the Hermitian conjugate, and, as noted in the main
text, we drop the frequency dependence of β for simplicity in the
mathematical expressions. We now add amplitude modulation at the
frequency ωmod =ωT to this system, generating an anti-Hermitian
Hamiltonian69

HA = iκ
X
n

ây
nân�1 � h:c:: ð7Þ

We consider the caseωmod≪ωT in the Supplementary Information (SI),
demonstrating a completely distinct regime of operation. Here, the
composite HamiltonianH=H0 +HNL +HA is non-Hermitian and, from
it, we can derive Heisenberg equations of motion in the mean field for
the annihilation operators ân, âT , as quoted in the main text:

_aT =β
X
k

a*
kak�1 � ðγT +μT ÞaT

_an = � ðβ*aT +C
* � κ*Þan+ 1 + ðβa*

T +C + κÞan�1 � ðγn +μnÞan +
ffiffiffiffiffiffiffiffi
2γn

p
sn:

ð8Þ

where sn≠0 = 0. Here, we include for completeness the Hermitian
coupling C that can be achieved through phase modulation, though,
for examples in the main text, C =0. An example of asymmetric comb
generation using amplitude and phase modulation is provided in
the Supplementary Information.

Two-level model with onsite gain and loss
In this section, we show how the non-Hermitian coupling in the mul-
timodenonlinear systemmanifests asgain and loss.Considering a two-
mode basis for neighboring modes {an, an+1}, we can write the unit cell
Hamiltonian as

H=
ω0 � iγ κ +βaT

κ � βaT ω0 � iγ

� �

= ðω0 � iγÞI+ 0 κ +βaT

κ � βaT 0

� �
:

ð9Þ

One can think of this Hamiltonian as the one-photon transition matrix
in the synthetic frequency dimension. Denote the basis in which this
Hamiltonian is written f∣0i, ∣1ig such that ∣0i � ay

n∣vaci, ∣1i � ay
n+ 1∣vaci,

where ∣vaci denotes the (multimode) vacuum state. The matrix
elements of H can be derived as mh ∣H∣ni, with H the composite
Hamiltonian written above.

Performing a change of basis ∣0i, ∣1i ! ∣0i± i∣1iffiffi
2

p , we find the inter-
action Hamiltonian now reads

H0
int =

�iβaT iκ

�iκ iβaT

� �
, ð10Þ

so that the nonlinearity nowmanifests as on-site gain and loss, and the
amplitude modulation acts as a Hermitian coupling.

Asymmetry parameter for non-reciprocal frequency conversion
To quantify the asymmetry in the redshifted and blueshifted branches
of the comb around the pump mode ω0, we will assume a long fre-
quency comb with negligible boundary effects (see Supplementary
Information for boundary-related effects and further details on the
following method). In this case, we can solve the rate equations in
steady state using an ansatz an+1 ∝ r1an, a−n+1 ∝ r2a−n, respectively, for
the redshifted and blueshifted branches (n >0 here). This ansatz is
physically motivated by the non-Hermitian analog of Bloch bands
(where in the Hermitian case r1 = r2 = eik with k the wavenumber). Both
r1, r2 must satisfy the steady state condition

κ � βaT

� �
r + κ +βaT

� �
r�1 � γ =0, ð11Þ

where aT denotes the steady state THz mode amplitude. From the
solutions of this equation (see Supplementary Information), we can
calculate the asymmetry parameter ξ used in the main text. Graphi-
cally, in a logarithmic plot of modal energy, ξ represents a normalized
ratio of the sum of the slopes of the redshifted (2∣r1∣) and blueshifted
(2∣r2∣) branches. When amplitudemodulation is absent and dissipation
exceeds the nonlinear rate (κ =0, γ≫ ∣βaT∣), a symmetric comb with
ξ =0 is generated. When the strength of amplitude modulation
approaches the nonlinear rate, κ ~ βaT, reciprocity is broken in the
upconversion and downconversion processes, biasing energy flow
towards redshifted modes and creating an asymmetric comb with
ξ ≠0. We confirmed the validity of ξ as a figure of merit for asymmetry
by numerically performing exponential fits to the modal energy dis-
tributions (see Supplementary Information for details).

Data availability
All data supporting this work are availablewithin themanuscript or the
Supplementary Information.

Code availability
Simulation code is made publicly available at https://github.com/
sahil271828/nrfc/tree/main.
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