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Towards expert-level autonomous carotid
ultrasonography with large-scale learning-
based robotic system
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Carotid ultrasound requires skilled operators due to small vessel dimensions
and high anatomical variability, exacerbating sonographer shortages and
diagnostic inconsistencies. Prior automation attempts, including rule-based
approaches with manual heuristics and reinforcement learning trained in
simulated environments, demonstrate limited generalizability and fail to
complete real-world clinical workflows. Here, we present UltraBot, a fully
learning-based autonomous carotid ultrasound robot, achieving human-
expert-level performance through four innovations: (1) A unified imitation
learning framework for acquiring anatomical knowledge and scanning
operational skills; (2) A large-scale expert demonstration dataset (247,000
samples, 100 x scale-up), enabling embodied foundation models with strong
generalization; (3) A comprehensive scanning protocol ensuring full anato-
mical coverage for biometric measurement and plaque screening; (4) The
clinical-oriented validation showing over 90% success rates, expert-level
accuracy, up to 5.5 x higher reproducibility across diverse unseen popula-
tions. Overall, we show that large-scale deep learning offers a promising
pathway toward autonomous, high-precision ultrasonography in clinical
practice.

Ultrasonography is an integral medical imaging technique in con- However, unlike other medical imaging techniques, ultrasound
temporary medical diagnostics, utilized from the fetal stage'” examination significantly relies on manual operation (Fig. 1a, b).
throughout an individual’s life. It enables health assessments of awide Sonographers require close coordination of eye, hand, and brain for
range of organs'®, including the carotid artery**’, heart®®, liver’®, realtime decision-making to adjust the transducer’s pose, with a
among others. Compared to X-ray imaging, ultrasound boasts several  nontrivial challenge in adapting scanning strategies to individual dif-
predominant advantages: it offers real-time, dynamic visualization of  ferences on a case-by-case basis. This heavy reliance on sonographers’
the organs and tissues in a radiation-free and cost-effective manner, experience diminishes the standardization and accuracy of examina-
offering rich information for clinical diagnostics. tions, leading to high variability in inter-sonographer results'*'?,
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Fig. 1| Comparison of manual, tele-echography, autonomous robotic ultra-
sound examination. a Manual ultrasonography: sonographers conduct ultrasound
scans using a handheld transducer and manually measure biometrics. b Tele-
echography: sonographers operate the transducer on a simulator, and then the
adjustments are executed by a distant robotic arm holding the transducer,

mirroring the sonographer’s actions. They also manually measure biometrics on
the remote control device. ¢ Autonomous robotic ultrasonography: empowered by
the foundation model, the robotic system automatically performs scanning, bio-
metric measurements, and plaque screening, demonstrating significant clinical
potential.

particularly among less experienced sonographers or trainees. More-
over, the complexity of manual operation makes training sono-
graphers a time-intensive endeavor®, contributing to a significant
shortage of these professionals'®*. Additionally, manual operation
requiring close contact with patients can increase the risk of infection
for practitioners during epidemic periods™*°.

On the flip side, medical robots with a high level of autonomy
present a potential solution to mitigate the dependence on sono-
graphers’ experience and availability, thereby enhancing the exam-
ination process. In this paper, we investigate how to develop an expert-
level, fully autonomous robot, which dynamically analyzes the ultra-
sound signals collected from patients, adjusts the probe’s moving
trajectories and poses in real time, and accomplishes scanning and
measuring tasks in real clinician scenarios (Fig. 1c). In particular, we use
carotid artery ultrasonography (Fig. 1a) as a case study, which is a
common, important approach for assessing cardiovascular diseases.
For example, it can be conveniently employed for the effective
detection of stenosis and atherosclerotic plaques”” . These conditions

are notable risk factors for cardiovascular diseases, which have
impacted 422.7 million individuals worldwide, resulting in 17.9 million
fatalities and constituting 31% of the total global deaths in 20152
Currently, most medical ultrasound robotic systems (Fig. 2c)
adopt rule-based decision strategies, depending on a predefined set of
rules to guide the decision-making process* . For example, in work®,
the core scanning carotid trajectory relied on manually pre-defined
paths, meaning all action decisions are predetermined. Meanwhile,
works?** implemented traditional visual servoing for carotid scan-
ning, where action decisions were made based on rule sets derived
from observed image feature changes following each executed
movement. (See supplementary material for details.) However, it is
inherently difficult to define a set of sufficiently generalizable rules
applicable to complex clinical environments, e.g., adapting to the large
variability of each individual’s carotid artery in structure, morphology,
and position. Hence, rule-based strategies are usually suitable only for
a limited range of scenarios, lacking the necessary ability to fulfill all
ultrasound examination tasks or generalize to new individuals. In
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Fig. 2 | Comparison with existing works. a Two main types of ultrasound robotic
systems: rule-based and learning-based. As learning-based methods scale up with
data and model size, they will show superior generalizability compared to rule-
based methods, further possessing the potential to surpass human experts. b Our
philosophy is to embrace the scaling law, involving the large-scale collection of
expert data, training scalable neural networks, and future deployment in real
clinical settings to establish a loop that enables continuous data and model scaling.
¢ We compare our system with existing works across four critical aspects: system
flexibility, data scalability, comprehensiveness of medical examinations, and

clinically-oriented evaluation. +r indicates task difficulty. The “Incomplete” label
denotes scans covering only a partial carotid artery segment (between the internal/
external and common carotid-subclavian junctions), rather than the full vessel. The
abbreviation “CCA” stands for the common carotid artery, with its upper end
marking the bifurcation into internal/external carotid arteries and its lower end
indicating the junction with the subclavian artery. The quantitative error metric
evaluates errors in at least one area: target segmentation or biometric
measurement.

contrast to rule-based methods, researchers have recently begun to
explore harnessing learnable neural networks as the controller of
ultrasound robots?* %, For instance?®, adopted a reinforcement learn-
ing approach for motion planning, but trained on simulated and sim-
plified vascular virtual environments. Nevertheless, control strategies
trained on simplified vascular fail to generalize to real human anato-
mical variations, limiting clinical applicability. Representative thyroid
scanning work®” adopted a hybrid learning-rule strategy, implement-
ing learning-based methods for two degrees of freedom (DoF) while
maintaining rule-based control for the remaining four. This hybrid
strategy remains constrained by the limitations of rule-based methods,
making it inadequate for handling complex anatomical variations like

those in carotid arteries. (See supplementary material for details.)
Learning-based methods, in theory, have the potential of fitting func-
tions with arbitrary complexities and therefore may address the issues
of predefined rules (Fig. 2a). Nevertheless, current learning-based
approaches have mainly been investigated in small-scale, experimental
scenarios, with significant limitations in data, modeling, and validation.
First, their data collection schemes tend to be labor-intensive, less
realistic, and difficult to scale up (e.g., constructing a phantom or
collecting all possible probe positions and poses for each person),
yielding a limited number of learning samples, sometimes with
training-test domain shifts (Fig. 2c, Data Scalability). Second, with the
relatively small-scale training data, the action space is typically defined
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with limited degrees of freedom (e.g., translation or rotation in one
direction) to avoid overfitting and ensure training stability (Fig. 2c,
System Flexibility). Such simplifications often make it difficult for the
system to handle complex situations in real world. Third, validation of
the system is usually conducted only on a few individuals or even
phantom, without considering clinically-oriented validations (Fig. 2c,
Clinically-oriented Evaluation). This is insufficient to fully evaluate its
applicability in clinical scenarios.

In recent years, the rise of large language models and multi-modal
foundation models like GPT-4V* has demonstrated the scaling law of
neural networks®**: previously unobserved abilities can emerge with
growing datasets, increases in model size, and advances in learning
algorithms, such as the capabilities of handling more complex situa-
tions and generalizing to new, unseen samples without additional
training. Inspired by this success, this paper explores the potential of
scaling up a purely learning-based framework in autonomous robotic
ultrasound examination. Through four key contributions—(1) more
flexible modeling formulations, (2) utilization of large-scale real-world
individual data, (3) a more comprehensive examination process, and
(4) validation on a broader population with clinically oriented eva-
luation protocols—we demonstrate the powerful capabilities of a fully
learning-driven ultrasound robot. Our work not only highlights the
system’s promising potential but also charts a viable path to bridge the
gap between theoretical research and real-world clinical adoption.

At its core, our system frames autonomous scanning as an end-to-
end vision-driven navigation task, where the transducer’s movements
are inferred from real-time ultrasound images, under the goal of
obtaining high-quality diagnostic images. Specifically, we integrate
perception and scanning action decision-making within a unified net-
work, optimized through a deep imitation learning strategy®>* that
eliminates the need for handcrafted rules®?** (Fig. 2c, System Flex-
ibility). This network achieves 6-DoF probe pose control through a
unified learning strategy governing all DoFs, resulting in a simplified
yet efficient system architecture compared to prior work”. The 6-DoF
configuration ensures effective handling of the carotid artery’s com-
plex anatomical structures, whereas systems”*® with limited degrees
of freedom struggle to adapt to the demands of comprehensive
ultrasound scanning. In terms of data, our philosophy is to embrace
data scaling law, learning generalizable scanning strategies from
extensive data (Fig. 2c, Data Scalability). Thus, we collected a large-
scale dataset of expert demonstrations of carotid artery scans per-
formed on real individuals, comprising 247,297 pairs of ultrasound
images and corresponding scanning actions, encompassing a wide
range of individual tissue structural variations likely to be encountered
in the real world and corresponding expert adaptation actions. To the
best of our knowledge, this dataset is 100 times larger than those used
in previous works®?¢. Notably, these expert demonstration data
naturally exist in routine medical ultrasound examinations but were
previously unrecorded. Since our data collection process eliminates
the need for complex annotations (unlike prior works*?%), further
scaling the dataset is entirely feasible. By training the neural network
with deep imitation learning on this dataset, the model can acquire
generalizable knowledge and skills for navigation, including anatomi-
cal knowledge, ultrasound image interpretation ability, and transducer
operation skills.

Building upon our flexible modeling framework and large-scale
data learning approach, our robotic system achieves unprecedented
comprehensiveness in carotid artery scanning, enabling thorough
vascular assessments (Fig. 2¢, Medical Examination Completeness).
Previous efforts”?® were constrained by rule-based strategies, limited
degrees of freedom, and small-scale datasets, making comprehensive
scanning unattainable. More importantly, we achieves a fully autono-
mous workflow integrating scanning, measurement, and plaque
screening, overcoming the limitations of conventional
approaches®**** that focused on isolated steps, thereby establishing

a crucial foundation for developing truly practical end-to-end auton-
omous ultrasound robotic systems.

Finally, our work conducts a clinically-oriented evaluation, while
also scaling up the evaluation population by an order of magnitude
compared to works*2® (Fig. 2¢, Clinically-oriented Evaluation). This
approach enables more accurate and clinically relevant validation,
better reflecting the practical potential of autonomous ultrasound
robots. Concretely, our robotic system achieves over 90% scanning
success rate across a diverse population (Age: 19-70 years old; Body
Mass Index (BMI): 16.5-30.8; Sex: female and male), confirming its
strong generalization performance across anatomical variations,
including successful scanning of patients with plaques. Meanwhile,
existing carotid artery studies™ ¢ suffer from critically limited valida-
tion cohorts (1-3 subjects), fundamentally constraining their ability to
demonstrate robotic systems’ clinical viability Furthermore, we
demonstrate the robotic system’s capability for precise measurement
of key anatomical structures that reflect the health status of carotid
artery, iLe., intima-media thickness and lumen diameter. Hypothesis
testing shows that the robotic system’s biometric measurements align
with expert outcomes, evidenced by a p-value below 0.001. Notably,
we present the validation of a robotic ultrasound system’s reproduci-
bility in biometric measurements, demonstrating superior perfor-
mance across all four reproducibility metrics (with improvements up
to 5.5 times)—marking a significant advancement that overcomes
fundamental limitations of conventional manual scanning techniques.
Moreover, the robotic system demonstrates automated precise plaque
segmentation, achieving promising performance on real patients and
expert-annotated datasets, thereby enabling pathological case detec-
tion capabilities. Overall, our empirical findings demonstrate the
potential of this large-scale learning-based robotic system in clinical
applications, marking a significant turning point in the development of
Al-driven medical ultrasound robotics.

Results

In this section, we initially present an overview of the functionalities
and critical technologies of the autonomous ultrasound robotic sys-
tem. We then conduct a comprehensive evaluation comparing its
performance against experienced sonographers, assessing both result
reproducibility and consistency. The system’s robustness is further
validated across diverse clinical variables including patient age, BMI,
different ultrasound machines, and imaging parameters. Finally, we
provide a validation of the algorithms for each component of the
system using expert-annotated datasets.

Autonomous carotid ultrasound compliant with medical
standards

Clinical ultrasound examination is an intricate and demanding task
that necessitates the meticulous coordination of a professional sono-
grapher’s hand, eye, and brain. In this article, we delve into this highly
challenging issue and design an autonomous ultrasound robotic sys-
tem specifically for clinical carotid artery examinations. The “hand” is
represented by a 7 degrees of freedom (7-DOF) Franka Emika Panda
robotic arm which holds an ultrasound transducer, the “eye” is facili-
tated through an ultrasound imaging system and an external camera,
and the “brain” comprises a series of deep neural networks that
encapsulate expert knowledge. In accordance with professional med-
ical guidelines®***, we categorize the robotic ultrasound examination
into the following stages: scanning (Stages 1-4) and image analysis
(Stage 5). Each stage is tailored to clinical examination requirements,
with the goal of capturing high-quality imaging data, acquiring
essential biometric measurements, and detecting the presence of
plaques to assess carotid artery health (Fig. 3a). Furthermore, upon
obtaining clear longitudinal images of the carotid artery, the ultra-
sound system’s integrated Color Doppler and Pulse Doppler functions
can be immediately activated to assess the subject’s hemodynamic
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high-quality demonstration data (action-image pair) from experts, specifically how
to adjust the transducer to obtain ultrasound images suitable for measurement or
diagnosis. Subsequently, leveraging an imitation learning paradigm, we encapsu-
late experts’ knowledge within deep neural networks to facilitate autonomous
ultrasound scanning. The term “CCA”, “SCA”, “ICE”, and “ECA” refers to the com-
mon carotid artery, subclavian artery, internal carotid artery, and external carotid
artery, respectively.

profile. Live demonstrations can be seen in the Supplementary
Video 1-3. The advantage of designing the robotic process based on
medical rules is that it endows each stage with a clear medical purpose
and significance, while also enhancing the standardization of
ultrasonography.

* Stage 1 - Locate the distal starting point of the common carotid
artery: Starting from the transverse view of the right common
carotid artery, the ultrasound transducer moves up upward along
the neck, keeping the carotid artery in the image, until it identifies
the bifurcation of the internal and external carotid arteries and
then proceeds to the next stage.

* Stage 2.1- Transverse scanning of the common carotid artery: The
ultrasound transducer glides along the right common carotid
artery, keeping it centrally in view, until it reaches the point where
it intersects with the subclavian artery.
Stage 2.2 - Locate the proximal endpoint of the common carotid
artery: The robot moves the ultrasound transducer out-of-plane,
making accurate adjustments to clearly display the junction
between the right common carotid and subclavian arteries, before
advancing to the subsequent stage.
* Stage 3 - Reset the transducer’s posture for the next stage: The
ultrasound transducer primarily executes a “pitch anti-clockwise”
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action until the subclavian artery disappears from the image, then
moves on to the next stage.

Stage 4.1 - Switch from transverse to longitudinal view: The system
adjusts the posture of the transducer until the longitudinal view of
the right common carotid artery is clearly presented in the image.
Stage 4.2 - Longitudinal scanning of the common carotid artery:
Maintaining the longitudinal view, the ultrasound transducer
move towards the bifurcation of the internal and external carotid
arteries.

Stage 4.3 - Termination of the scan: The scan concludes once the
carotid bifurcation is visible in the longitudinal view.

Stage 5 - Image analysis: During scanning, the algorithm auto-
matically calculates biological parameters and detects plaque
presence using stage 4-acquired images. The Color and Pulse
Doppler functions of the ultrasound machine can then be
employed to assess the subject’s hemodynamic status.

A suite of deep learning-based technologies facilitates the
autonomous operations mentioned above. These include the encod-
ing of features in ultrasound images, decision-making for robotic
actions, evaluation of image quality, concentration on specific local
areas, identification of key anatomical points, and detects plaque
presence and outlines contours (Fig. 4a).

Purely learning-based navigation framework: Autonomous
ultrasound scanning is analogous to an autonomous driving task
performed on the human body’s surface. This difficult task requires
generalizable perception, decision-making, and control technologies
to navigate the transducer and conduct a safe, effective, and
autonomous scan. For successful execution, the entire system must
possess the following knowledge and capabilities (Fig. 3d right): (1) A
thorough understanding of the carotid artery’s anatomical structure,
including the pathway of the carotid artery, the structure of bifur-
cations, and corresponding blood vessels, analogous to a “map” in
autonomous driving; (2) The capability to interpret ultrasound ima-
ges and spatial imagination skills, requiring the identification of
structures on ultrasound images and mapping these two-
dimensional structures onto a three-dimensional anatomical frame-
work to locate the current position of the transducer; (3) Proficiency
in operating the transducer, encompassing knowledge of how to
change the probe’s pose to obtain clear imaging and how to apply
appropriate force. As discussed in Sec. 5, most previous works” >
adopt rule-based decision strategies, depending on a predefined set
of rules to guide the decision-making process. Nevertheless, pre-
determined rules often fail to encapsulate the full scope of the
aforementioned knowledge and capabilities with sufficient flexibility,
frequently encountering difficulties in handling complex individual
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differences and exhibiting limited generalizability when applied to
new individuals in clinical settings.

Diverging from prior approaches, we introduce a purely learning-
based navigation framework. Our core concept encompasses two main
aspects: first, integrating perception and decision-making into a uni-
fied network, optimizing it directly based on the final navigation goal;
and second, entirely learning generalizable skills and knowledge from
extensive expert data. To achieve data-driven autonomous scanning,
we build a large-scale carotid artery scanning expert demonstration
dataset, containing 247K pairs of ultrasound images and correspond-
ing scanning actions. Specifically, professionals are guided to execute
scans following the predetermined procedure, recording the expert
maneuvers as 12 discrete actions across six degrees of freedom
(Fig. 3b), with an additional action denoting the conclusion of each
stage. In this dataset, the ultrasound imaging data include variations in
tissue structures across different individuals. Additionally, the map-
ping relationship from ultrasound images to scanning actions impli-
citly contains anatomical knowledge, ultrasound image interpretation
ability, and transducer operation skills. Inspired by recent advance-
ments in imitation learning®**, which is a method well-suited for
modeling complex tasks, we adopt this strategy to embed the required
knowledge into our unified network (Fig. 3d). After optimization based
on the ultimate navigation goal, the action decision network can
autonomously decide the subsequent action based on the current
ultrasound image. Meanwhile, a stage switch network is trained to
identify anatomical landmarks indicating the end of a stage and
instruct the system to proceed to the next stage. Additionally, from
Stage 1 to 4, due to the different tasks at each stage, we trained four
separate networks (Fig. 4b). Please refer to Sec. 5 for implementation
details.

Interpretable autonomous biometric measurement: After con-
ducting a scan of the carotid artery, sonographers usually measure the
lumen diameter and intima-media thickness on the longitudinal sec-
tion images of the carotid artery (Fig. 3¢). These two parameters are
instrumental in evaluating the health status of the carotid artery,
providing insights into potential risks associated with cardiovascular
diseases. The typical procedure involves sonographers selecting ima-
ges that clearly depict vascular wall structures. They then zoom into a
localized area for measurement, manually operating the device’s cur-
sor to measure from point to point. In this paper, we present an
automated measurement process designed to emulate expert beha-
vior. To ensure that sonographers can ascertain the acceptability of the
final results, we incorporate interpretable strategies in the final image
analysis stage (Fig. 3a stage-5 and Fig. 4c). Interpretability***° is of
paramount importance in modern medical settings, as sonographers
need to confirm the final outcomes. Furthermore, aiding sonographers
in quickly and accurately comprehending and assessing the results is a
pivotal step towards enhancing the overall efficacy of medical pro-
cesses. Specifically, we predict three groups of keypoints, uniformly
distributed along the X-axis, on the localized image. These points
correspond to the upper intima (near wall), lower intima (far wall), and
lower media (far wall) of the artery wall, respectively. With these points
identified, we calculate the distances between corresponding points,
adjusting for the artery’s slope, to derive the final measurements.
Interpretability is inherently embedded in this modeling approach, as
sonographers can assess the credibility of the final output based on the
visualized positions of key points. Please refer to Sec. 5 for imple-
mentation details.

Precise autonomous plaque segmentation: Carotid plaque
represents one of the most prevalent pathological changes in the
carotid artery system, serving as a well-established biomarker for
elevated cardiovascular risk. Early identification and characterization
of these atherosclerotic lesions through advanced imaging techni-
ques enables timely intervention, which may effectively halt disease
progression and prevent subsequent vascular complications. To

address this, we propose an innovative plaque segmentation algo-
rithm based on a vessel region-focused mechanism to identify pla-
ques in the longitudinal view (Fig. 3a stage-5 and Fig. 4d). The core
idea is to prioritize vascular regions to reduce background inter-
ference, since plaques typically exist within blood vessels. Specifi-
cally, we train a Faster R-CNN detector*' to accurately locate vascular
regions, whose features are then used to modulate the encoder’s
multi-scale features. This approach enables the model to concentrate
more effectively on vascular characteristics while suppressing irre-
levant background information. Simultaneously, we develop a multi-
scale feature fusion module that effectively combines high-level
semantic information with low-level contour details. The high-level
features provide rich contextual understanding, while the low-level
features retain fine spatial details. This fusion strategy ensures that
both semantic and structural information are leveraged synergisti-
cally to improve overall segmentation quality. Finally, the decoder
integrates both modulated vessel features and fused multi-scale
features for precise plaque region prediction. Please refer to Sec. 5
for implementation details.

System-level clinical evaluation on human subjects

Equipped with the aforementioned key components, the autonomous
system is capable of executing the automated process of carotid artery
ultrasound examination, thereby providing crucial biometric data.
During our study, we recruited 122 volunteers, comprising 81 indivi-
duals (61 males and 20 females) for the training and validation set, and
41 (26 males and 15 females) for the test set. We explained the full
process to all participants, and each signed an informed consent form
(including their understanding of publishing information in the jour-
nal). We built a large-scale dataset for learning intelligent scanning
strategies, comprising 247,297 pairs of ultrasound images and corre-
sponding expert operational data collected from 81 volunteers. After
training, in order to ascertain the performance of this system in real
clinical environments, we organized 41 previously unseen volunteers
to undergo autonomous carotid ultrasound examinations. It is note-
worthy that the data from these 41 volunteers were not included in the
training set. This is an important setting for evaluating the real-world
generalizability of our system, ie., in real clinical settings, ultrasound
examinations are always performed on individuals not previously
encountered. In this test population, the oldest participant was 70
years old, with 7 subjects over 60 (6 subjects exhibiting plaques), 7
aged between 45 and 60, and the remaining under 45. For detailed
patients’ pathological information, please refer to Supplementary
Table 1. Moreover, these 41 volunteers display a wide range of physi-
ques. Their heights vary between 1.55 to 1.90 meters (mean=1.72,
sd=0.09), weights range from 46.0 to 100.0 kilograms (mean=65.0,
sd=12.1), and BMI spans from 16.5 to 30.8 (mean=22.1, sd=3.2), with
12 subjects BMI < 20 and 13 subjects BMI>24. These variations in body
size, which contribute to anatomical differences, invariably escalate
the scanning complexity. During the validation experiments, a subset
of volunteers (n=21) underwent three scans and measurements carried
out by the autonomous system, in addition to one scan and mea-
surement performed by each of the three sonographers. The results of
these measurements, obtained from both groups, were subsequently
compared and analyzed. The analysis extensively verified the autono-
mous system, evaluating it on the grounds of reproducibility, con-
sistency, generalizability, efficiency, and comfort. Additionally, 15
older volunteers participated in age-robustness testing of the scanning
algorithm, while 5 younger volunteers were included to validate the
algorithm’s robustness to imaging parameters and ultrasound
machine variations. It's worth mentioning that, to the best of our
knowledge, our investigation is pioneering in conducting a compre-
hensive assessment of the system, focusing on its practical medical
value, which underscores the potential of such systems to evolve into
real clinical applications. Contrarily, previous studies”*****¢ have
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mainly evaluated such systems from a technical standpoint, only
emphasizing aspects like operational precision and success rate.

Autonomous system possesses superior result reproducibility:
Ultrasound examinations, heavily reliant on manual experience and
operation, often yield significant variations in measurement results
among different sonographers in practice. Severe variations can lead
to incorrect diagnostic outcomes, making reproducibility a crucial
metric for autonomous ultrasound systems. To assess the system'’s
reproducibility, we compare the results of multiple measurements of
carotid artery lumen diameter (CALD), and carotid intima-media
thickness (CIMT) by the autonomous system on the same individual
with those performed by different ultrasound sonographers on the
same person. The comparison is drawn across four metrics, following
the work cited*’*¥, namely, spearman’s correlation coefficient (SCC),
intra-class correlation coefficient (ICC), coefficient of variation (CV),
and mean absolute difference (MAD) (Fig. 5b). A larger value in the first
two metrics signifies better reproducibility, while a smaller value in the
last two metrics is preferable. As depicted in Fig. 5b, the autonomous
system surpasses the sonographer in all four indicators, for both CIMT
and CALD. Specifically, for CIMT, there is a notable improvement
where the autonomous system amplifies the Spearman’s correlation
coefficient by 5.5 times and reduces the coefficient of variation and
mean absolute difference by 2.4 and 2.8 times, respectively. For CALD,
the autonomous system reduces the coefficient of variation and the
mean absolute difference by 3.1 and 2.3 times, respectively. This is
noteworthy as measuring CIMT presents a greater challenge due to the
necessity for a more precise identification of the intima-media
boundary.

High consistency between autonomous and manual biometric
measurements: The accuracy of an autonomous system’s biometric
measurement (CALD and CIMT) is a critical factor when evaluating its
potential deployment in real-world clinical settings. To verify this, we
conduct an equivalence test"’ to compare the robotic system’s results
with professional songraphers’ measurements. This two-sample
equivalence test aims to determine whether the means of both
populations can be considered statistically equivalent. Here, “equiva-
lence” means the difference between the two group means falls within
a predefined acceptable range, known as the equivalence margin. For
CALD, we used the standard deviation among measurements taken by
three senior sonographers. Since ultrasound measurements lack an
absolute ground truth, the standard deviation among expert mea-
surements reflects an acceptable range of variability. For CIMT, we set
the equivalence margin at 0.1 mm, which corresponds to the smallest
measurable unit typically achievable by ultrasound devices, (e.g.,
General Electric, Vivid E7). In other words, if there is a discrepancy
between the measurements of two sonographers, the smallest possible
difference would be 0.1 mm, making this a reasonable tolerance
threshold.

Specifically, we employ a two one-sided t-test (TOST) approach*’
to comprehensively validate consistency across three key dimensions:
system-level consistency, measurement consistency, and image qual-
ity consistency (Fig. 5a). For system-level consistency testing, one set
of data (CALD and CIMT) is obtained through robotic autonomous
scanning and measurement, while the other set is manually scanned
and measured by three senior sonographers on the same group of
subjects. Using the expert-obtained measurement data, we derived the
inter-observer standard deviation of CALD measurements (0.418 mm)
to establish the equivalence margin. Subsequently, we conducted the
two one-sided test (TOST) procedure for formal equivalence testing, If
both one-sided p-values were below 0.05, the two datasets were con-
sidered statistically equivalent. As shown in Fig. 5a, both one-sided
p-values were below 0.05, demonstrating statistical equivalence
between the robotic system results and sonographer-acquired mea-
surements. For measurement consistency testing, On the same sub-
jects, we had sonographers select one image from the robotic scans for

manual measurement, while simultaneously applying the our deep
learning measurement algorithm to the same image, thereby obtaining
two sets of biometric data. To assess measurement consistency, on the
same subjects, sonographers select one image from the robotic scans
for manual measurement while our deep learning algorithm simulta-
neously processes the same image, generating two comparable sets of
biometric data from each subject. Then, we employ a TOST for
equivalence testing, with predefined equivalence margins of 0.308
mm for CALD and 0.1 mm for CIMT. The results again demonstrate that
the measurements from the our deep learning algorithm were highly
consistent with those of the sonographers. For image consistency
evaluation within the same subject cohort, we compare two sets of
data: robotic system-acquired images versus sonographer-acquired
images, with all measurements performed by sonographers. Following
the same analytical methodology, we perform equivalence testing
using the TOST, applying equivalence margins of 0.418 mm for CALD
and 0.1 mm for CIMT. The results clearly indicate that the image quality
obtained through robotic acquisition meets clinical measurement
requirements Furthermore, we employ the Bland-Altman method to
assess system-level consistency (Fig. 5e). The results show that the
differences between the autonomous system and sonographer mea-
surements consistently fall within the 95% confidence interval,
demonstrating good consistency. Given that the quality of ultrasound
images serves as the baseline for accurate measurements, the afore-
mentioned results also validate the system’s ability to deliver high-
quality imaging outcomes.

Autonomous system exhibits good generalizability: In routine
ultrasound examinations, sonographers frequently encounter new
patients, each with unique anatomical variations. Notably, key vascular
parameters such as carotid artery length, trajectory, and bifurcation
location exhibit significant inter-individual variability. Furthermore,
elderly individuals often present with atherosclerotic plaques that vary
in size and spatial distribution. These inherent variations pose sub-
stantial challenges to autonomous ultrasound systems, demanding
robust generalization capabilities. To evaluate the system’s general-
ization capability, we recruited a cohort of 41 previously unexamined
volunteers and assessed the success rate of autonomous scanning. The
participant pool demonstrats substantial demographic and physiolo-
gical diversity, including 7 subjects over 60 years old (maximum age
70), 6 patients with detectable atherosclerotic plaques, and 14 indivi-
duals above 45 years, as well as both underweight (minimal BMI 16.5)
and obese (maximal BMI 30.8) cases. This heterogeneous population
with its wide spectrum of anatomical variations provides a rigorous
test for assessing the system’s generalization performance. As shown
in Fig. 5c, each participant underwent a maximum of three trial runs,
with success rates exceeding 90.2% at all stages and reaching an
average stage success rate of 95.8%. For failure cases, please refer to
Supplementary Fig. 1 and the corresponding explanation in supple-
mentary. Moreover, as shown in Fig. 5d, our system demonstrates
robust generalization capabilities across elderly populations, suc-
cessfully completing scans even for individuals with existing plaques
while maintaining clear visualization of the lesions. We provide three
scanning videos (Supplementary Video 1-3) demonstrating successful
examinations in elderly subjects with plaques. Furthermore, despite
the known challenges that varying fat distributions pose for ultrasound
imaging, our model maintains high success rates across both under-
weight and overweight BMI groups (ranging from 16.5 to 30.8), further
validating its superior generalization performance across diverse
anatomical variations. Given that the expert scanning demonstration
data (training data) was collected solely from 81 distinct individuals,
this success rate is indeed promising, highlighting the potential of
imitation learning in autonomous ultrasound scanning tasks. In the
future, in accordance with scaling laws, we anticipate continued
improvement in scanning success rates as more training data becomes
available.
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Fig. 5 | Autonomous system evaluation results on unseen human subjects.

a Hypotbhesis test of results consistency between of autonomous system and
sonographers. b Testing the reproducibility of measurements of the CIMT (first
row) and CALD (second row) between the robot system and sonographers, eval-
uated by the SCC, ICC, CV, and MAD. ¢ Success rate of the robot system on
volunteers. d Robustness of the robotic system across variations in age, BMI,
machine type, and imaging parameters. e Bland-Altman plot assessing the

consistency between lumen diameter and intima-media thickness measurements
from the robot system and sonographers. f Comparison of the total time taken for
scanning and measurement by the robot system and sonographers, as well as a
comparison of just the measurement time. g Volunteers' subjective comfort per-
ceptions under the operation of the robot system and sonographers. h Contact
force in the Z-axis (up and down) direction between the transducer and the human
neck during the scanning process.
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Beyond the challenges posed by individual structural variations,
sonographers also adjust imaging parameters on the ultrasound
device based on case-specific conditions in clinical practice. We
recruited five hold-out volunteers and systematically varied two key
parameters, Gain (G) and Dynamic Range (DR), to evaluate the model’s
effectiveness. Regarding the effects of G and DR on imaging, please
refer to Supplementary Fig. 2. As shown in Fig. 5d, despite changes in
imaging parameters, the model still demonstrates high robustness and
good success rate. This indicates that the model has learned semantic
features from the large-scale data, specifically the characteristics of the
carotid artery, rather than overfitting to low-level features such as
image texture.

Furthermore, the clinical environment presents the additional
challenge of adapting to diverse ultrasound devices. Specifically, we
validate our model’s scanning capability on an EQTouch ultrasound
device (manufactured by Hisky Medical, Wuxi, China) using a linear
probe (L15-4, Hisky). We conduct the experiments on the same five
participants as those in the imaging parameter robustness study. As
shown in Fig. 5d, our deep learning model made accurate scanning
decisions and achieved a high success rate on the new machine.
Although Supplementary Fig. 3 demonstrates low-level imaging dif-
ferences between ultrasound devices, our model exhibits robust per-
formance, indicating that its decision-making relies not on low-level
image features but rather on semantic-level ones, thereby demon-
strating strong generalization capability.

Existing studies®?® have reported scanning success rates for few
operational stages, we comprehensively present these comparative
metrics in Supplementary Table 3 for intuitive evaluation. Notably,
these prior works were exclusively validated on extremely limited
cohorts (1/3/1 subjects respectively), meaning their evaluations were
performed under oversimplified experimental conditions with mini-
mal population diversity. Such constrained validation frameworks
cannot sufficiently demonstrate the real-world generalization cap-
abilities of their methodologies.

Autonomous system’s efficiency is superior in measurement and
comparable in total time: The efficiency of the robotic ultrasound
system significantly influences its practical utility. Firstly, as seen in
Fig. 5f, the autonomous system’s measurement speed substantially
exceeds that of sonographers. The most notable reduction in mea-
surement time occurs when the autonomous system decreases the
time required by a factor of 64. On average, the autonomous system
enhances efficiency by a notable factor of 14. The longer duration
taken by sonographers is attributed to the extensive manual opera-
tions they undertake, such as selecting high-quality images for mea-
surement, magnifying specific areas, and annotating anatomical
landmarks. Secondly, we analyze the total time required for both
scanning and measurement by the autonomous system and sono-
grapher. The data reveal that the mean total time between the
autonomous system and the sonographer does not significantly differ.
Although the autonomous system lags slightly behind the sono-
grapher in terms of total time, the continuous operation of the
autonomous system, without the need for breaks, coupled with
extended working hours, and its capability for rapid and large-scale
replication, predicts a higher efficiency ceiling in clinical scenarios
compared to sonographers. Furthermore, the autonomous system
demonstrates superior stability in terms of time efficiency.

Subjective and objective comfort assessment of autonomous
scanning: Due to the lack of exoskeletal protection in the neck area,
along with the crucial function of the carotid arteries in delivering
blood to the brain, exerting excessive pressure along the Z-axis (up and
down) of the probe during scanning can lead to significant discomfort
for the patient, for instance, reduced blood supply to the brain. Upon
completion of both autonomous ultrasound scanning and sono-
grapher scanning, participants were invited to rate their comfort on a
scale of O to 10, where O indicates extreme discomfort, and 10

represents utmost comfort. As depicted in Fig. 5g, eight individuals
found the comfort level of the autonomous system to be superior to
that of the sonographer, whereas seven individuals felt the autono-
mous system was less comfortable. Overall, the autonomous system
received a higher average comfort rating compared to the sono-
graphers. Objectively, using the built-in joint torque sensors and end-
effector force estimation application program interface (API) of the
Franka robotic arm, we recorded the contact force along the Z-axis.
Fig. 5Sh presents the average force applied by the robotic arm on all
participants at various stages. It’s observable that the force maintained
a comfortable range throughout the entire process. Thus, from both
subjective and objective perspectives, the autonomous system show-
cases satisfactory safety and comfort levels. Technically, we imple-
mented a variable impedance control algorithm to properly balance
contact force and control precision, thereby successfully executing
tasks while ensuring safety. Please refer to Sec. 5 for more details.
End-to-end autonomous carotid ultrasound process visualization:
To offer readers an intuitive grasp of the full process of autonomous
examination, we illustrate the scanning, measuring, and segmentation
process of an unseen test subject with plaque in Fig. 6. The figure
clearly shows the carotid artery remaining consistently visible in
the ultrasound images throughout the entire process. In the transverse
view, the carotid artery stays centrally positioned, thanks to
the model’s real-time transducer adjustment. In the longitudinal view,
the intimal layer is clearly visualized, demonstrating proper alignment
of the ultrasound transducer with the artery’s maximal longitudinal
cross-section. This optimal orientation provides high-quality images
for CALD and CIMT measurements, while also enabling clear visuali-
zation of plaques with well-defined borders. Following the acquisition
of high-quality ultrasound images, we perform biometric measure-
ments and plaque segmentation to objectively analyze carotid artery
anatomy and pathology (Fig. 6b). Using the ultrasound system’s
intrinsic Color and Pulse Doppler functions, we can further obtain
hemodynamic information (Fig. 6b right). The integrated analysis
revealed: (1) plaques are present on both the anterior (12.4 mm x 3.6
mm) and posterior (9.7 mm x 1.7 mm) walls of the carotid sinus, with a
normal CIMT of 0.60 mm elsewhere, and (2) Doppler ultrasound
demonstrating a blood flow filling defect, while flow direction, velo-
cities, and resistive index remained within normal ranges (Fig. 6c). In
Fig. 6d, we show four representative plaque segmentation results and
report the plaque condition in Supplementary Table 2. We further
provide the corresponding Color and Pulse Doppler imaging of these
four representative cases in Supplementary Fig. 4. Moreover, three
end-to-end examination demonstrations on previously unseen indivi-
duals with plaque are available in the Supplementary Videos 1-3.

Subsystem-level evaluation on expert-annotated datasets

In the context mentioned above, the robotic ultrasound system,
comprised of a series of deep neural networks, showcases promising
potential for clinical applications. In the subsequent section, for a
more comprehensive understanding of each subsystem’s perfor-
mance, we will delve into analyzing their respective functionalities and
effectiveness on the test set.

Intelligent action decision based on imitation learning: As intro-
duced earlier in Sec. 5, we collect expert demonstration data and
employ an imitation learning strategy to model the decision-making
process of sonographers, translating ultrasound images into adjust-
ment actions. Initially, we implement an imitation learning strategy
based on deep learning foundational models, namely, ResNet-50°° and
DenseNet-121°". Both models yield comparable performance as depic-
ted in Fig. 7a, which illustrates the evaluation of these models on our
dataset. Given their equivalent performance, a ResNet-based imple-
mentation is employed in all subsequent experiments. Following this,
we explore the improvements that deep learning contributes to imi-
tation learning by comparing the ResNet-based implementation with a
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1. Plaque: Present on both the anterior (12.4mm x 3.6mm) and posterior (9.7mm x 1.7mm)
walls of the carotid sinus. Normal CIMT elsewhere(0.60mm).

2. Flow: Filling defect is noted, flow direction remains normal.

3. Velocities: PSV (54.67 cm/s), EDV (12.03 cm/s), and RI (0.78) are within normal range.

Summary: Findings highly suggest atherosclerotic without hemodynamic compromise.

Fig. 6 | Autonomous end-to-end carotid artery ultrasound examination process
visualization. a Scanning process in a 65-year-old patient with plaque, yielding
high-quality transverse and longitudinal views with clear plaque visibility. b Image
analysis of acquired scans, including biometric measurements, plaque segmenta-
tion, and color/pulse Doppler. ¢ Representative report summarizing scanning and

analysis results. d Representative plaque segmentation results of patients. The
terms “CCA”, “ICE”, “ECA”, “PMH”, “PSV”, “EDV”, “RI” refer to the common carotid
artery, internal carotid artery, external carotid artery, past medical history, peak
systolic velocity, end diastolic velocity, and resistive factor, respectively.

non-deep learning method, specifically k-Nearest Neighbors (k-NN).
The comparison results in a 10.9% decrease in average accuracy when
utilizing the k-NN approach, thereby demonstrating that deep learning
significantly enhances the performance of the action decision algo-
rithm. A closer examination reveals that in the two main phases, Stage

2 (transverse scanning of the CCA) and Stage 4 (longitudinal scanning
of the CCA), which entail the most complex action decisions, the deep
learning approach markedly outperforms k-NN with improvements of
18.9% and 18.2%, respectively. Conversely, in the simpler Stage 3, which
encompasses only two action decisions, the deep learning approach
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Fig. 7 | Intelligent action decision and interpretable biometric measurement longitudinal section images. e Precision-Recall curve of the model in detecting the

with deep neural networks. a Comparison of performance between deep learning  local region that can be used to measure the arterial structural parameters. f Our
and non-deep learning method (k-nearest neighbors) in scanning action decision, interpretable biometric measurement solution compared with two other non-

as well as between instant and delayed decision-making. b Performance trends in  interpretable baseline models. The t-test was used to check whether the mean error
action decision, biometric measurement, and plaque segmentation as training data  of our method’s results is significantly smaller than that of Baseline 2. The models
scales up. ¢ Comparison of the ROC curves for the models of stage transition, action ~ were evaluated on 1076 annotated images. This boxplot displays standard ele-
decision, and their combined decision-making in accurately identifying the ana- ments: the box represents the interquartile range (IQR), the central line marks the
tomical structures at the termination positions of each stage. d Performance of the ~ median, and the whiskers extend to 1.5 x IQR.

model that predicts whether visible arterial wall and intimal structures exist in the

exhibits slightly weaker performance compared to k-NN. This pattern the criticality of immediate decision-making in the realm of ultra-
suggests that deep learning methods are more proficient at navigating  sound scanning.
in more complex action decision spaces. In addition to performing a sequence of actions, a pivotal aspect
One distinctive aspect of ultrasound scanning is the necessity in the successful execution of autonomous ultrasound scanning is
for instantaneous decision-making, which calls for immediate action  pinpointing the termination point for each stage. This primarily entails
decisions in response to changes in imaging. To delve deeperinto the accurately identifying the anatomical structures depicted in the
effects of delays in action decision-making, we envisage a scenario  ultrasound images. To accomplish this identification, we employ two
where a decision is repeated twice consecutively. Specifically, the distinct models, namely, the decision model and the stage transition
delayed decision-making paradigm executes the action decision a, model. The decision model integrates the “stage transition" as a
output at time ¢ twice. Contrarily, our methodology entails makinga decision action, training it concurrently with the other 12 actions.
instant action decision promptly after a single action decision is Meanwhile, the stage transition model serves as a binary classifier,
carried out and there’s a subsequent change in the image. In other trained separately to ascertain whether transitioning to the sub-
words, our method outputs and executes an action decision a, at sequent stage is warranted. In Fig. 7c, we showcase the Receiver
time ¢. After execution, based on the image at time ¢ + 1, it further  Operating Characteristic (ROC) curves corresponding to each model,
outputs and executes a..;. As illustrated in Fig. 7a, there’s an absolute  in addition to the outcomes stemming from their collective decision-
reduction of 1.9 percentage points (83.2% vs. 81.3%) in average per- making process (joint model). Our strategy for joint decision-making is
formance when action decision delays occur. Notably, at the most  structured such that the progression to the next stage is initiated when
intricate phase, stage-4, the delayed decision-making strategy sig- either one of the two models opts for stage transition. As illustrated by
nificantly impacts the algorithm’s efficacy, resulting in an absolute the figures, the joint model attains superior or at the very least, com-
reduction of 5.4 percentage points (82.0% vs. 76.6%). This highlights  parable performance at each stage. To boost the robustness of
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identification, we have elected to adopt the joint model as our final
implementation.

A core principle of our work is embracing the data scaling law,
learning generalizable scanning strategies from extensive expert
demonstration data. Thus, we further validate how data scaling
improves the model’s action decision accuracy. Specifically, we extract
10% and 25% subsets from the complete dataset and trained individual
models for each subsample. As shown in Fig. 7b, our results indicate a
general upward trend in action prediction accuracy as the dataset
expands with more training data. A similar trend has also been
observed in biometric measurement and plaque segmentation tasks.
This suggests that further data scaling could continue to enhance
system performance beyond what is currently presented in our
manuscript, reinforcing its potential for reliable deployment.

Interpretable biometric measurement: Biometric measurement is
another key component, which includes image quality assessment,
localized measurement area focusing, and anatomical keypoint
detection. Interpretability is a crucial consideration in clinical medi-
cine, as clinicians need to understand and evaluate the correctness of
algorithmic outputs. Therefore, we adopt an interpretable approach
for predicting CALD and CIMT by regressing points that represent the
boundaries of the artery structure. These points can be visualized to
allow professionals to easily assess the correctness of the structure
(Fig. 8f), and the final biometric measurements are calculated based on
these points. Therefore, interpretability is inherently included in this
modeling approach. We attempt to compare our approach with non-
interpretable methods (Baseline 1/2) in Fig. 7f. Both Baseline 1/2
directly regress the values of CALD and CIMT from the image. The
difference lies in their inputs: Baseline 1 takes the complete ultrasound
image as input, while Baseline 2 uses a localized region containing clear
intimal structures as input (See Supplementary Fig. 5 for visual refer-
ence). Compared to our method, the outputs of Baseline 1/2 lack
interpretability, making it difficult to assess the correctness of their
results in practical applications. As shown in Fig. 7f, it is evident that
the interpretable approach outperforms the non-interpretable one.
Moreover, the t-test yields a p-value less than 0.001, indicating that the
error of the interpretable approach is significantly smaller than that of
the non-interpretable one. Additionally, sonographers often zoom in
on local regions for more precise measurements during manual pro-
cedures. Therefore, we also compare the effects of global versus local
regression (Fig. 7f, Baseline 1 vs. Baseline 2). The results indicate that
local regression is beneficial for performance.

The performance of the image quality assessment model is pre-
sented in Fig. 7d. It can be seen that the model possesses a high recall
rate, accurately identifying images with clear intimal structures
(Fig. 8d). The performance of the localized measurement area focus
model is shown in Fig. 7e. The model demonstrates a high average
precision (AP) value, accurately detecting measurable areas (Fig. 8e).

Precise plaque segmentation: Carotid artery plaque is one of the
most common vascular diseases and a significant risk factor for car-
diovascular health. To enable more accurate plaque detection and
patient health assessment, we develop an innovative plaque segmen-
tation algorithm. As demonstrated in Fig. 8a, comparative evaluations
against state-of-the-art methods*** reveal our algorithm’s superior
performance across all four key metrics (Dice, loU, Recall, and HD95),
while maintaining competitive results in precision. This balanced
performance profile suggests our model effectively minimizes false
positives while maintaining high detection rates, making it particularly
suitable for clinical applications where both accurate plaque identifi-
cation and reliable negative predictions are equally crucial. Moreover,
the vessel region focusing module achieves precise vascular localiza-
tion, resulting in high AP values (Fig. 8b, c). By incorporating a vessel
region focusing mechanism, this algorithm significantly improves
segmentation accuracy. Experimental results demonstrate that inte-
grating this module leads to a notable performance improvement, with

a 2.94% increase in the Dice coefficient (Fig. 8a). Furthermore, our
visual comparisons with state-of-the-art methods***** demonstrate
superior segmentation performance, as shown in Fig. 8c. While com-
peting methods exhibit significant segmentation errors including both
under-segmentation (missing plaque regions) and over-segmentation
(including non-plaque areas), our approach achieves precise plaque
delineation with well-defined boundaries, providing more reliable
support for clinical diagnosis and quantitative assessment. Despite
achieving promising performance, our segmentation model adheres
to the scaling law, as illustrated in Fig. 7b. Notably, the model’s per-
formance exhibits no signs of saturation with increasing data volume,
suggesting that further improvements can be attained by scaling up
the dataset.

Discussion

In today’s healthcare landscape, ultrasound examination stands as one
of the most in-demand medical imaging modalities, thanks to its real-
time, rapid, and radiation-free features. However, due to its heavy
reliance on manual operation, there are issues of non-standardization,
inaccuracy, and a marked shortage of qualified professionals®’*%. These
issues are particularly prominent in developing countries®®, leading to
delays in accessing ultrasound examinations and a potential risk of
misdiagnosis or missed diagnosis due to low-quality scans. Compared
to traditional solutions such as training additional sonographers,
developing Al-driven robotic ultrasound systems offers a more pro-
mising approach to addressing these global challenges. In recent years,
large language models like GPT?’ have demonstrated the scaling law of
neural networks®**; as datasets grow, models expand, and learning
algorithms advance, new abilities emerge that enable handling com-
plex situations and generalizing to novel samples in “zero-shot” with-
out further training. Inspired by this success, this paper makes the first
attempt to demonstrate the great potential of a purely learning-driven
autonomous ultrasound robotic system, utilizing large-scale real
individual data, more flexible modeling formulations, clinically orien-
ted evaluations, and testing on a large unseen population. Based on the
tests conducted on a large, previously unseen population, our robotic
system delivers precise biometric results with excellent reproducibility
and promising generalizability. Overall, this work provides a proof of
concept for developing a learning-based fully autonomous ultrasound
robot intended for clinical use.

Future research could probably focus on constructing a unified
multimodal perception and decision-making network to further
enhance the robotic system’s ability to handle complex situations.
Multimodal input data can provide a more substantial basis for deci-
sion-making, improving the robustness of the system’s decisions.
Additionally, exploring how to integrate the vast amount of existing
ultrasound report data to enhance the capabilities of the robotic sys-
tem is a potential direction. Multimodal pre-training methods like
CLIP* have shown that unsupervised training with large volumes of
existing paired visual-language data can achieve remarkable general-
izability. By utilizing ultrasound reports, the discrepancies in visual
appearances of anatomical structures with the same semantics can be
aligned through the bridge of language, further enhancing the sys-
tem'’s robustness. Lastly, validation on large-scale populations is both
time-consuming and labor-intensive, and differences in the popula-
tions used for validation across various studies make it difficult to
measure technological progress. Thus, researching how to develop a
public offline validation tool is worthwhile, as it could potentially
accelerate the development of the entire field.

This work is a starting point for intelligent and highly autonomous
ultrasound medical robots. In the future, we anticipate ultrasound
robots will advance to provide extensive coverage across all organs, be
suitable for people of all ages, and seamlessly combine diagnostic and
therapeutic functions. We envision a day when ultrasound robots will
be capable of performing autonomous full-body scans on patients
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Fig. 8 | Precise plaque segmentation with deep neural networks and visuali-
zations. a Comparisons with the existing segmentation models on the test set (best
result in bold). b Precision-Recall curve for vascular region detection to guide
plaque segmentation. (c) Visual comparison of plaque prediction results between

CALD=5.39 mm
CIMT=0.50 mm

CALD=5.70 mm
CIMT=0.37 mm

CALD=6.72 mm
CIMT=0.45 mm

our method and other approaches. d-f The visualization results are used to
determine the presence of clear structures, localize the measurement position, and
predict the final anatomical keypoint, respectively.

ranging from fetuses to the elderly, swiftly providing physiological
parameters and even potential diagnostic conclusions. If adverse tis-
sue is detected during the scanning process, the ultrasound robot
could potentially also perform rapid, automated ultrasound-guided
biopsies®® and ablation® procedures to eradicate malignant cells at the

site of the lesion. With such highly intelligent ultrasound robots
assisting physicians, there will be a significant reduction in repetitive
tasks for doctors, an increase in diagnostic and therapeutic efficiency,
and an opportunity for physicians to focus their efforts on solving
more complex problems. Intelligent robots can also elevate the
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diagnostic and treatment capabilities of primary healthcare facilities,
thereby enabling more patients to benefit from high-quality medical
services. Finally, while the vision outlined above is promising, it
requires the collective efforts of researchers in the field of intelligent
ultrasound robotics worldwide. We hope our work will ignite their
enthusiasm and provide valuable insights for their future work,
thereby hastening the fulfillment of this vision.

Methods

In this section, we introduce our deep learning framework for auton-
omous ultrasound scanning, biometric measurement, and plaque
segmentation, including dataset specifications, training implementa-
tion details, as well as the robotic system configuration and the control
algorithm. To ensure compliance with ethical standards, all human
participant studies were conducted under approval from Tsinghua
University’s Medical Ethics Committee (THUO01-20230175). We
obtained written informed consent from all participants after fully
explaining the study procedures, including their understanding that
journal publication would include their anonymized data that includes
indirect identifiers. Also, the authors affirm that human research par-
ticipants provided written informed consent, for publication of the
images in Figs. 3, 6, and Supplementary Video 1-3.

Deep learning for autonomous scanning

Introduction and problem statement. To reliably collect ultrasound
images with high diagnostic value for patients, we draw inspiration
from professional sonographers, emulating their policies with our
automatic scanning robot. Specifically, the robot aims to capture a
transverse view of the upper carotid bifurcation, scanning downward
to the lower junction between the common carotid and the subclavian
artery. Similarly, the robot is also tasked with scanning the subject in a
longitudinal view from the lower junction between the common car-
otid and the subclavian artery, up to the upper carotid bifurcation.
During the scanning process, it is advisable to center on the carotid
artery to garner as much information as possible. By adhering to these
guidelines, the images obtained can be utilized to make an accurate
diagnosis.

Data collection and annotation. We recruited 81 volunteers (60
males and 21 females) aged between 18 and 36 years for the collection
of expert demonstration data. All data collection sessions were con-
ducted by four qualified sonographers with over 5 years of experience
under the supervision of a senior sonographer (15+ years of experi-
ence). The data were collected using a General Electric (GE) Vivid E7
ultrasound device equipped with a 9L probe. Sonographers were
tasked with performing carotid ultrasound examinations using a series
of predetermined keystrokes. The “keystroke actions” refer to a unit-
length robot movement in the scanner base coordinate system,
totaling 12 (translation and rotation in 3 dimensions) plus 1 (stop
action) discrete action space. Since, during data collection, we need to
perform one of these actions at each time step, we use a keyboard to
conveniently execute these precise actions. Specific keys are pro-
grammed and mapped to control a unit movement along one of the 6
degrees of freedom or to stop the scan at a given stage. With every
keystroke action, the preceding thirty frames were captured at a rate of
30 FPS before actuating the robot. This process encompassed the
recording of both the ultrasound images and their corresponding
keystrokes. The sonographers also interacted with the volunteers to
ensure their safety and comfort.

To enhance system robustness, multiple initial positions were
utilized for imaging the same volunteer. Each volunteer underwent
three imaging trajectories following the protocol elaborated in the
preceding section. Although volunteers were instructed to remain still
during the procedure, minor movements were allowed to account for
real-world conditions and to collect data useful for recovery to the
optimal view. The comfort level of each participant was continually

monitored, underlining a patient-centric approach. This process
thoroughly considered the volunteers’ comfort, aiding in the for-
mulation of a comfort-optimized imitation policy. During the process,
we also collected expert demonstration data from recovering from
poor postures, thereby enhancing the robustness of the model. Finally,
we collected 243 trajectory data associated with 247,297 images paired
with expert adjustment actions. 76 subjects were grouped into the
training set with 231,373 images/action pairs, and 5 subjects were
allocated to the test sets with 15,924 images/action pairs. To account
for clinical scenarios where multiple actions could be considered valid
expert decisions, we implemented a re-annotation protocol under a
senior sonographer supervision (15+ years experience). The sono-
grapher was asked to provide up to two additional expert actions for
selected validation set images, beyond the single action recorded
during actual scanning. This approach recognizes that - similar to how
a self-driving car might validly turn either left or right to avoid an
obstacle - multiple navigation choices can be clinically appropriate
when scanning the carotid artery. While real-world scanning requires
choosing a single action, our offline evaluation benefits from con-
sidering these clinically equivalent alternatives, leading to more robust
performance assessment that better reflects real clinical decision-
making.

Method. To boost the robustness of the scanning policy, two
distinct networks are employed for different operational phases. The
initial policy, denoted as mscanning(alo, 6), where a represents the dis-
cretized robot action, is responsible for outputting the probabilities
associated with predefined actions given the observation o. The pre-
defined action space A is illustrated in Fig. 3b. The subsequent
policy, Myansition(@uransition|0, @), takes the ultrasound observation o
and outputs Qiransition, Which is the probability of transitioning to
the subsequent task upon spotting the area of interest. Upon con-
firmation to transition to the next task, given by
max(”transition (atransition o, d))r ptransition(”scanning(alor 9))) 20.5, where
Puransition Picks the probability of transitioning from the action policy,
the robot ceases its current operation and moves on to the next stage.

The inputs to these policy networks, as illustrated in Fig. 4b,
comprise pre-processed ultrasound images. Initially, the images are
cropped to focus exclusively on the ultrasound area and are resized to
dimensions of 3 - 224 - 224. It should be noted that the grayscale
ultrasound images are expanded into three channels primarily to
inherit the models pre-trained on ImageNet, following the practices
outlined in references®>®. Subsequently, these images are processed
using a Convolutional Neural Network (CNN)—specifically, the ResNet-
50 architecture®®, which consists of convolutional blocks with residual
connections, followed by average pooling and a fully connected layer.
The output dimensions are two for Myansition and thirteen for Mscanning,
with a softmax activation function employed to generate action
probabilities. It's noteworthy that our method is not exclusive to
ResNet and it could be implemented using various networks™.

We trained these networks using imitation learning by maximizing
the log-probability of the collected ultrasound image o, along with its
corresponding action a, and checking if it’s the transition action
Qransition = Liransition(@). Here, a € A and @yansition € [0, 1] indicate
whether to transition to the next stage or not. The overall objective is
expressed as:

maxo, (pEo, a~Dipgin IOg "scanning(alo' 0) + IOg M ransition (ltransition (Cl)|0, ¢)] .

@

Implementation. Each policy network is trained using a batch
size of 256, a learning rate of 0.0001, weight decay of 0.0001, and 10
epochs. The networks are initialized with weights pretrained on
ImageNet, and the ultrasound image input is also normalized by
ImageNet statistics. The loss function applied to both policies is
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cross-entropy, formulated as —Z’C‘ilyo’alog(no,a), where y is the
binary indicator verifying whether class label a is the correct classi-
fication for observation o, and m is the predicted probability that
observation o corresponds to action a. Both policy networks are
trained end-to-end using the Adam optimizer, and employ Dis-
tributed Data Parallel (DDP) as implemented by the PyTorch deep
learning library.

Deep learning for biometric measurement

Introduction and problem statement. During the diagnostic assessment
of carotid artery ultrasound images, sonographers typically concentrate
on specific arterial structures. These structures include the boundary
between the upper intimal layer and the lumen (intima-up), the
boundary between the lower intimal layer (intima-down) and the lumen
in carotid ultrasound images, and the boundary between the lower
intimal layer and the outer medial layer (media). Specifically, the carotid
artery lumen diameter (CALD) is the distance between intima-up and
intima-down, while the carotid intima-media thickness (CIMT) is the
distance between intima-down and media. These two biometrics are
extremely valuable for diagnosing cardiovascular diseases. Our objec-
tive is to develop a system capable of automatically calculating CALD
and CIMT values based on patients’ carotid artery ultrasound images
during the autonomous scanning process. Accurate measurement of
these biometrics necessitates clear membrane structures within the
carotid artery images. However, many ultrasound images in practice are
indistinct, posing a challenge to discerning the membrane structures.
Consequently, we break down the problem into two stages. The first
stage aims to ascertain the presence and location of clear internal
membrane structures of the carotid artery in images. If a clear internal
membrane structure is detected, the second stage is utilized to calcu-
late CALD and CIMT values. Subsequently, these predicted biometrics
assist sonographers in making appropriate diagnostic assessments.

Data collection and annotation. Our dataset for biometric mea-
surement is separated into two segments for the training of Stage 1 and
Stage 2 models, respectively. Moreover, every image within the dataset
is annotated by three expert sonographers.

Stage 1 Data: Inspired by the diagnostic practices of sonographers,
who typically focus their assessment on particular localized regions in
ultrasound images where clear internal membrane structures are dis-
cernible, we adjust our data annotation process accordingly. For images
showcasing clear internal membrane structures, we delineate regions
that exhibit prominent structures of intima-up, intima-down, and
media. Following this, we document the coordinates of the top-left and
bottom-right points of the bounding box that envelops these features.
Conversely, for images devoid of distinct internal membrane structures,
the bounding box annotation is omitted. Our Stage 1 dataset encom-
passes a total of 12,194 images from 76 volunteers. These volunteers are
the same individuals used to train the autonomous scanning model. Out
of these, 4,957 images display clear internal membrane structures while
7,237 do not. The 76 volunteers are segregated into training and test
sets with a 4:1 ratio, ensuring no overlap of individuals across both sets.

Stage 2 Data: We notice that prior to measuring the values of
CALD and CIMT, sonographers initially determine the positions of
intima-up, intima-down, and media in the images by marking points.
Motivated by this procedure, we employ the data annotation tech-
nique from APRIL*, where five equally spaced points are positioned
along the x axis at normalized coordinates [0, 0.25, 0.5, 0.75, 1.0],
and their y coordinates are manually labeled in alignment with the
position of the membranes. In other words, each image has a total of
15 key-points labeled. By choosing to predict anatomical boundaries
over direct metric values, the interpretability of the model’s predic-
tion is augmented. This strategy enables sonographers to visually
evaluate the accuracy of the model’s predictions during the diag-
nostic phase, thereby facilitating informed decisions regarding the
acceptance or dismissal of the model’s results. Our dataset for

training the Stage-2 model consists of 4,957 images. These images
are allocated into training and test sets based on individual subjects
at a 4:1 ratio, with a guarantee that unique individuals are not
included in both sets.

Method. Stage 1: A convolution network f; is employed to extract
features z € R of a batch of images x, € R**¢%* for multi-task
learning. The features are then fed into two distinct heads. The first
head (h¢;s) performs binary classification to determine the presence of
internal membrane structures. Specifically, for a batch of N images, it
predicts ¥, = (Vs },_ 02N each y, indicates a predicted quality score
between O and 1 of an image in the batch. The second head (hyeg)
predicts y. = {yq};e L2 eachy,, is a 4-dimensional vector, indicat-
ing the coordinates of the bounding box’s top-left and bottom-right
points for an image in the batch.

z=f (X))
ys =hg(2) 2
yc = hreg(z)

During training, the backbone and the two heads are optimized
jointly through binary cross entropy (BCE) loss, mean square error
(MSE) loss and complete intersection over union (Complete-loU)
loss. Note that the the BCE loss is calculated on all images while the
MSE loss and the Complete-loU loss are only calculated on images
which are labelled with clear internal membrane structures. The
three losses are:

N
[cls == Zys,- : IOg@sl) +d _ysi) ’ IOg(l _js,-)r
i=1

N 2

lieg= Zys,- : ‘ Ye, = Yo || - ©)
i=1
N ~

hou=_¥s, - (1=10U(¥e, ¥, ) )-
i=1

The overall loss is a weighted sum of these three parts:
le =lgs+ Ay - [reg +A; - Lgy- 4)

Stage 2: Inspired by previous works®*, we formulate the task of
keypoint prediction as an offset prediction problem. Instead of
directly regressing the coordinates, we first compute the mean posi-
tions of each keypoint in the training set as reference points (anchor
points), and then predict the offsets to these points, as illustrated in
Supplementary Fig. 6. The positional information of these reference
points serves as prior knowledge, providing the model with approx-
imate location cues for each keypoint, which has the potential to
improve prediction accuracy. For simplicity, we denote the annotated
key-points’ y coordinate of the i-th image in a batch of N images as a;,

b; c; where a’:{a!'f}jeu,...,sf b’:{bfi}jg(l,,..,sf c’:{c!'f}je(l, .5 TespeC

tively corresponding to the annotated 5 points on intima of near wall,
intima of far wall and media of far wall. Before training, we firstly

calculate the mean positions a,-={a,~j}jE(L__’5}, b,~={b,-j}je“’_w5)

5 for each of the point in the training dataset. Then the

C; = {Eij].

Jell, ..,
stage 2 models predicts offsets for each point relative to the corre-
sponding mean positions:

6? = fgz (xsZ ) 611') = fsz (XSZ ) 6‘? - ng (xsz » ®

where X, represents the local region detected in Stage 1 that contains
clear intima-media structures, with its spatial coordinates determined
by ¥.. Since the x coordinates are fixed during annotation, only the y
coordinates need to be predicted. The actual y coordinates are then
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computed from the predicted offsets through a = a + 6 b b + 6b
Ej C, * 6C The stage 2 models are optimized usmg the Mean Squared
Error (MSE) loss function:

N 5 ., ~ 3 -
- 2; {(“i,- = @)" by —by) +(c; — )" (6)

Subsequently, the value of CALD and CIMT can be calculated
through the predicted points. Taking CALD as an example, to account
for potential non-horizontal positioning of intima-down and intima-
up, we fit two lines respectively for these two set of points using the
least squares method. Then, the average slope k of the two lines are
obtained and final CALD value can be calculated by
dCALD Zj 1(a —b; ) cos(arctan(k)). The CIMT can be calculated
S|m|IarIy

Implementation. For training, distinct models are trained for both
Stage 1 and Stage 2. In the first stage of training, the ResNet-50 archi-
tecture (fsl) is employed, and the model is trained with a batch size of
256. The initial learning rate is set at 0.001, with a cosine learning rate
scheduler applied. The model is trained over 50 epochs, utilizing a
weight decay of 0.00001 while conducting 5-fold training. Images are
resized to 256 - 256 dimensions and normalized using ImageNet sta-
tistics. In our experiment, we set A; to 1.0 and A, to 8.0.

For the second stage of training, the ResNet-50 architecture (f; ) is
also employed, and the model is trained with a batch size of 128. The
learning rate for this stage is set at 0.0001, following a cosine learning
rate scheduler. The model is trained over 100 epochs, with a weight
decay set at 0.00001. Images are resized to 256 - 256 dimensions and
normalized using a mean of 0.193 and a standard deviation of 0.224.

During the autonomous scanning procedure, the system captures
real-time ultrasound images of the carotid artery. The first stage model
is deployed to evaluate the presence and location of internal mem-
brane structures within the acquired image. Upon identification of
such structures, the image is cropped using the predicted bounding
box coordinates. This cropped image is then supplied to the second
stage model for key-point prediction and subsequent biometric
calculations.

Deep learning for plaque segmentation

Introduction and problem statement. Carotid atherosclerotic plaques
are a major risk factor for ischemic stroke and other related diseases.
Accurate segmentation of plaques in medical images is of great
importance for the diagnosis of carotid artery conditions. However,
the inherent low contrast of ultrasound images, the presence of noise,
and the high heterogeneity of plaque morphology pose significant
challenges to precise segmentation. Clinical observations show that
plaques often form between the intima and media layers of the carotid
artery wall. When analyzing ultrasound images, clinicians typically
locate the vessel wall first, then identify abnormal protrusions along its
boundary. Inspired by this diagnostic process, we propose a dual-
branch, multi-scale segmentation network with explicit vascular spatial
priors, as illustrated in Fig. 4d. The framework introduces a vessel
region localization stage, where a detection model is trained to capture
spatial cues of the vessel region. These spatial priors are then
embedded into the segmentation model to guide learning, helping the
model focus on plausible plaque areas and suppress irrelevant
background noise.

Data collection and annotation. The dataset used for plaque seg-
mentation experiments, adopted from the MBFF-Net* study, consists
of 430 carotid ultrasound images collected from different patients.
These images were acquired using two ultrasound systems: the Philips
1U22 with an L9-3 probe and the GE Logiq E9 with a 9L probe, both
operating at a center frequency of 9 MHz. Each image is accompanied
by a manually annotated plaque mask, and we further labeled
bounding boxes to delineate vascular regions. Before being input into

the model, all images are resized to 256 - 256 pixels. Among the
dataset, 330 images are used for training and 100 images for testing.

Method. Given an input ultrasound image 1€ R**", we use
ResNeXt®® to extract multi-scale  hierarchical features
{d;)f_,,d; e RG%""i The hierarchical features are then processed
through two parallel branches: a vessel region-focused branch and a
multi-scale feature integration branch. Please refer to Supplementary
Fig. 7 for more intuitive understanding of the network architecture.

Branch 1: Since plaques typically grow along the arterial wall, we
incorporate vascular wall location priors into the model to reduce
interference from irrelevant regions. Specifically, we trained a Faster
R-CNN*' model to detect the vascular region in the input image, pro-
ducing bounding box coordinates (Xmin, YminsXmaxYmax). We then
generate a masked input image Z by setting pixels outside the
bounding box to zero:

|
z., ={ s

Then, Z is encoded by convolutional layers and fed into the spatial
feature transform®” module, which undergoes affine transformation to
generate the modulation parameters y; € R!, 8; ¢ R, and finally out-
puts the modulation features {e}}?:1

ifxmm <X <xmax ar"dymin <y Symax'

else. @

=(y;+Dd; +B;. 8

Branch 2: Meanwhile, the multi-scale features {d,};., are con-
catenated along the channel dimension and then passed through a
fusion layer to generate the global contextual feature g. Subsequently,
g is concatenated with each multi-scale feature d;, and the combined
features are processed through convolutional and activation layers to
produce the second branch output features {ez}

For each hierarchical level i € {1, 2, 3, 4}, the output features e} and
e? from both branches are fused. The combined features are then
processed through multi-layer convolutions and upsampling opera-
tions to generate the final prediction result p;. The final generated
output p; maintains the same spatial size as the original input image,
i.e., 256 - 256. Subsequently, the binary cross-entropy loss £; is com-
puted between each hierarchical prediction p; and the ground-truth
segmentation mask Sg:

1
Li=—3> [Se(x,) log 0(pi(x, 7)) + (1 = Sgi(x, ) log(1 — a(py(x, y))],
Xy
)

where the o( - ) represents the sigmoid activation function. Finally, the
total loss is obtained by summing the individual losses across all
hierarchical levels: L, = Z}‘ZIL,». During model inference, the average
of predictions {p;}{_, from all hierarchical levels is computed as the
final prediction result:

4

Sﬁnal =0 (i ,Z; pi> (10)

Implementation. The training process of the network comprises
two stages. In the first stage, a pretrained Faster R-CNN model with a
ResNet-50-FPN backbone is fine-tuned for the vessel wall detection
task. In the second stage, both the original images and their corre-
sponding vessel wall detection results are used as inputs to train the
segmentation model. Identical training parameters are applied to both
stages: a batch size of 2, initial learning rate of 0.005, SGD optimizer
with momentum 0.9, weight decay of 0.0005, and a total of 100
training epochs. All experiments are conducted on a single
RTX3090 GPU.
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Robotic system configuration

The robotic ultrasound system consists of a 7-degree-of-freedom
collaborative robotic arm (Franka Emika Panda) with a General
Electric (GE) Vivid E7 ultrasound device equipped with a 9L probe.
The probe is rigidly attached to the robotic arm’s end effector,
enabling precise control of the probe’s position and orientation.
Before scanning, we apply an adequate amount of ultrasound gel
evenly on the probe surface to ensure optimal acoustic coupling
between the probe and the subject’s skin, which is essential for high-
quality ultrasound imaging. The ultrasound imaging parameters,
including gain and dynamic range, are preset to 6 and 72, respec-
tively, providing clear and consistent image quality. The method of
guiding the probe from its initial position to contact the human neck
using an external depth camera has been well-established in our
previous works®®. Readers may refer to existing literature®® for
technical details. During scanning, since GE does not provide direct
software access to the imaging data, we use a high-performance
video capture card (Acasis, Shenzhen, China) to record the ultra-
sound monitor’s display. The captured video stream is then pro-
cessed by extracting the region containing the ultrasound image,
which is subsequently fed into the neural network for analysis.

Robot control algorithm
Cartesian impedance control® is employed during ultrasound scan-
ning to execute motion commands. This control strategy ensures
compliant and stable interaction between the robotic arm and the
subject’s body, enabling precise probe positioning while maintaining
safe contact forces. Specifically, the controller we utilize is a stream-
lined version of the traditional Cartesian impedance control:
=) (KX~ DX)+(-J7)" ) (-K,q - D, @ +Cq+g, (1)
where X =x — X, € R® represents the pose (position and orientation)
error of the probe in Cartesian space, the subscript d for desired, x
signifies the velocity of pose. The vectors q,q, q € R” correspond to
the joint angle, joint velocity and joint error. The Jacobian matrix J €
R®*7 maps from joint space to Cartesian space, and the superscript *
indicates the pseudo-inverse. The stiffness matrices K and K,
correspond to the Cartesian space and null space, respectively, while
the damping matrices D and D,, are set to ensure critical damping. The
terms Cq and g account for Coriolis and gravitational forces,
respectively.
When we substitute (11) into the dynamics model of the robot
Mq+Cq+g=T+T,, 12)
where M € R7*7 denotes the mass matrix, and 7, 7., € R’ represent
the control torque and the external torque, respectively, we have the
close-loop dynamics
M@ +)7 (KX +DX)+ (1= )" (K, G+ D, @) = Teye. (13)
To derive the dynamics of the probe, we left-multiply (13) by the
Jacobian J. Utilizing the null-space projection property JA -J7J7) = 0,
we obtain:
IM@ +J)7 (KX +DX) =)y 14)
During quasi-static motion, including the equilibrium state during
probe-neck contact, we have q=0, x=0. Therefore,

~ -1
Kx=(") JTeq=)""Tex =Fex s

where F.,, is the contact force between the probe and the patient’s
neck. Equation (15) reveals that the contact force increases

proportionally and thus unboundedly with the pose error, posing a
safety risk in practical implementation.

To address this safety concern, we introduce a modification
where the stiffness matrix K becomes error-dependent. We
established a safe threshold for the contact force, denoted by
Fore = Foxt-fexa - 1fexsl - If the contact force exceeds this thresh-
old, the stiffness matrix K is adjusted to maintain the contact force
within a safe range, as defined by:

k= Ifnormalr iffext <fext
fext/fcr iffext 2fext

where k and x represent the corresponding elements of the stiffness
matrix and the pose error vector, respectively.

Additionally, regarding safe human-robot interaction scenarios—
such as a human attempting to push away a robotic arm or accidental
collisions between the robot and other humans—our team has con-
ducted detailed studies in the prior work®®. This works proposed a
safety interaction framework to address these cases. As this falls out-
side the scope of the current paper, readers may refer to®® for further
details.

6)

Statistics and reproducibility

No statistical method was used to predetermine sample size. To vali-
date the performance of our robotic system, we recruited 41 volun-
teers with diverse demographic characteristics. In this test cohort, the
oldest participant was 70 years old, including 7 subjects over 60 (6 of
whom exhibited plaques), 7 aged between 45-60, and the remaining
under 45. The volunteers exhibited a broad spectrum of physiques:
heights ranged from 1.55 to 1.90 m (mean + SD = 1.72 + 0.09 m),
weights varied between 46.0-100.0 kg (65.0 + 12.1 kg), and BMI span-
ned 16.5-30.8 (22.1 + 3.2), with 12 subjects having BMI <20 and 13 sub-
jects BMI>24. This population diversity ensures robust evaluation of
the system’s real-world performance and enhances the reproducibility
of our findings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

To ensure compliance with participant agreements and prevent com-
mercial misuse, all datasets are available under controlled access. All
data requests must include: (1) institutional affiliation details, (2) a
research purpose statement, and (3) a signed data use agreement. An
independent review panel will consider and approve requests for
verified academic research purposes. For data inquiries, please contact
the lead author (Haojun Jiang; jhj20@mails.tsinghua.edu.cn). All such
requests will be processed within two weeks. Source data are provided
with this paper.

Code availability
The code for this project is available on GitHub repository: https://
github.com/LeapLabTHU/UltraBot.
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