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Generalized number-phase lattice encoding
of a bosonic mode for quantum error
correction

Dong-Long Hu1, Weizhou Cai2, Chang-Ling Zou 2,3 & Ze-Liang Xiang 1,4

Bosonic systems offer unique advantages for quantum error correction, as a
single bosonic mode provides a large Hilbert space to redundantly encode
quantum information. However, previous studies have been limited to
exploiting symmetries in the quadrature phase space. Here we introduce a
unified framework for encoding a qubit utilizing the symmetries in the phase
space of number and phase variables of a bosonic mode. The logical code-
words form lattice structures in the number-phase space, resulting in rectan-
gular, oblique, and diamond-shaped lattice codes. Notably, oblique and
diamond codes exhibit a number-phase vortex effect, where number-shift
errors induce discrete phase rotations as syndromes, enabling efficient cor-
rection via phase measurements. These codes show significant performance
advantages over conventional quadrature codes against dephasing noise in
the potential one-way quantum communication applications. Our generalized
number-phase codes open up new possibilities for fault-tolerant quantum
computation and extending the quantum communication range with bosonic
systems.

Quantum error correction (QEC)1,2 is essential for realizing reliable
quantum computation and communication in the presence of una-
voidable environmental noise3–20. While quantum information is
commonly encoded in discrete variables of multiple physical qubits,
single-mode bosonic encodings offer a hardware-efficient alternative
by leveraging the infinite-dimensional Hilbert space of a single oscil-
lator. Moreover, bosonic information carriers play a crucial role in
transferring information over distances, making bosonic encodings
indispensable in quantum communications, and distributed quantum
computation and sensing21. The ability to encode andprotect quantum
information in bosonic modes, such as optical or microwave cavities,
has attracted considerable attention in recent years. Notably, experi-
ments with superconducting systems22 have achieved milestones by
reaching the break-even point in QEC with bosonic codes23–26,
demonstrating their immense potential for fault-tolerant quantum
applications.

Existing bosonic QEC codes can be broadly categorized based on
the symmetries they exploit in the phase space of a bosonicmode. The
Gottesman-Kitaev-Preskill (GKP) codes27, for instance, leverage the
displacement symmetry to correct random displacement errors in the
quadrature variables. On the other hand, codes like the cat and bino-
mial codes utilize the rotational symmetry in phase space28–31, which
corresponds to a certain generalized parity of the photon number
distribution. These codes are designed to tolerate photon loss or gain
errors, while the code distance is determined by the photon-number
parity of the codewords. However, beyond the conventional quad-
rature variables, the photon number and phase can also be treated as
canonical variables for a bosonic mode. The potential symmetries and
encoding schemes in this generalized number-phase (NP) space have
not been fully explored.

In this paper, we propose a unified framework for constructing
bosonic QEC codes, which embody a lattice structure in the NP space,
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encompassing the known cat and binomial codes as rectangular lat-
tices. Remarkably, we uncover oblique and diamond lattice codes that
exhibit a novel NP vortex effect: number-shift errors in these codes
induce discrete phase rotations as error syndromes. This unique fea-
ture enables us to identify and correct errors by measuring only the
phase variable of the bosonic mode. We demonstrate that our gen-
eralized codes, particularly the oblique and diamond lattice codes,
exhibit enhanced performance in the presence of practically relevant
noise channels that inflict both amplitude damping and dephasing.
Furthermore, we propose a hardware-efficient quantum error correc-
tion protocol that is compatible with one-way quantum communica-
tion schemes. Our framework not only unifies the existing bosonic
codes but also paves the way for discovering new codes with desirable
properties. The NP lattice codes introduced here have the potential to
significantly advance fault-tolerant quantum computation and extend
the range of quantum communication32–39.

Results
Generalized number-phase encoding
Inspired by the construction of GKP codes in the quadrature phase
space, we introduce generalized displacement operators in the NP
space. Consider a bosonic mode described by the annihilation and
creation operators â and ây, respectively, n̂= âyâ represents the
excitation-number operator. The NP displacement operator reads

D̂ðnÞ � exp
ilϕ
2

� �
R̂ðϕÞΣ̂l : ð1Þ

Here, R̂ðϕÞ= expðin̂ϕÞ is the phase rotation operator, n = (l,ϕ) is a two-
dimensional vector with the limitation l 2 Z and ϕ 2 R. Σ̂l �P

n∣ni n + l
�

∣ is the Fock ladder shift operator, which connects to the
annihilation operator with the relation â=

ffiffiffiffiffiffiffiffiffiffi
n̂+ 1

p
Σ̂1. Note that Σ̂

y
1 =

^e�iϕ

is the Susskind-Glogower exponential phase operator40, which is well-
known tobenonunitary. Nonetheless, the nonunitarydoesnot prevent
the NP displacement operators from being a set of complete operator
basis, because they satisfy the same commutation relation

D̂ðnÞD̂ðn0Þ= ein ×n0
D̂ðn0ÞD̂ðnÞ, ð2Þ

and the orthogonality relation TrðD̂yðn0ÞD̂ðnÞÞ=2πδ2ðn� n0Þ with the
conventional displacement operators. In this sense, an arbitrary
operator satisfying TrðÊy

EÞ<1 can be expanded by using the NP dis-
placement operator basis,

Ê =
Z

dn
2π

TrðD̂yðnÞÊÞD̂ðnÞ: ð3Þ

That is, a noise operator Ê for bosonic modes can be represented as a
series of NP-displacements D̂ðnÞ with the weight TrðD̂yðnÞÊÞ.

In general, a logical qudit with a finite dimension d can be encoded
in a bosonicmode, which provides an infinite-dimensional Hilbert space
to manage errors, thereby resulting in error-correcting bosonic codes.
Here we focus on the simplest case, encoding a qubit into a bosonic
mode for removing small NP displacements errors D̂ðneÞ. This approach
is referred to as the generalizedNPencodingof abosonicmode,with the
codewords ∣0iL and ∣1iL representing two highly symmetric super-
position states of NP variables. To provide a more intuitive representa-
tionof codewords inNPphase space, recall thatWρðcÞ represents theNP
Wigner functionof thequantumstateρ.Here,c= (n,p) specifies arbitrary
coordinates in two-dimensional NP phase space, subject to the con-
straints n 2 N and p ∈ [0, 2π). The detailed definition of the NPWigner
function can be found in the supplementary Note 1, including Ref. 41.

Specifically, the codewords design of such an encoding is based
on Eq. (2), the commutation between two NP displacement operators
results solely in a phase factor ein×n0

. Here, jn×n0j should be

understood as the area of a parallelogram inNP space, with n and n0 as
its defining edges. Notably, the two NP displacement operators D̂ðnxÞ
and D̂ðnzÞ correspond to the logical Pauli operators, satisfying the anti-
commutation relation �X �Z = � �Z �X when the condition

jnx ×nz j=π ð4Þ

is satisfied. Consequently, they should be square to two stabilizers
Ŝx � D̂ð2nxÞ and Ŝz � D̂ð2nz Þ, thus the codewords of generalized NP
codes are defined by the simultaneous +1 eigenstates of the two sta-
bilizers. In other words, the codespaces �Pcode = ∣0i 0h ∣L + ∣1i 1h ∣L of gen-
eralized NP codes have discrete translational invariance in NP
variables, forming as a lattice with the cell area π in NP space.

Since any pair of nx, nz fulfilling Eq. (4) is valid, there are infinite
types of generalizedNPcodes. Fortunately, due to the 2πperiodicity of
the phase variable, any pair of nx, nz satisfying Eq. (4) can be equiva-
lently expressed in a gauge

nx = s,
fπ
s

� �
, nz = 0,

π
s

� �
: ð5Þ

Here s ≥ 1 is a positive integer that defines the rotation symmetry
Ŝz = R̂ð2π=sÞ of codespaces, and ∣f = p/q∣ ∈ [0, 1) is a fractional number
given by two coprime integers p 2 Z and q 2 Z + . The set of para-
meters (s, f) defines the lattice structure of codespaces in NP space,
and theNPWigner function of the codespaces canbedirectly obtained
as (unnormalized)

W�Pcode
ðcÞ=

X1
r =0, t =0

δ2ðrn*
x + tnz +n0Þ, ð6Þ

where n*
x � ðs, � fπ=sÞ, and n0 = νxn

*
x + νznz with νx, νz ∈ [0, 1) serves

as a selectable origin in NP space. Note that the phase coordinates on
the right side of Eq. (6) may exceed the defined range [0, 2π), which is
insignificant and can be returned to the defined range through the 2π
periodicity of the phase variable.

In Fig. 1a–c, we graphically illustrate the codespaces of three
typical generalizedNP codes inNPphase space as examples, where red
and blue circles represent the peaks of the NP Wigner function of
codewords ∣+ iL and ∣�iL, respectively. As expected, the codespaces of
generalized NP codes are lattices in NP phase space, which can be
regarded as the rectangle (R-NP), oblique (O-NP), and diamond NP (D-
NP) codes determined by the shape of the lattice cell. Now, let us
imagine the two-dimensional NP phase space plane rolled along the
phase direction into a cylindrical surface, and the NP lattice codes will
present a novel 3D physical picture, as shown in Fig. 1d, e. The R-NP
codes are a series of circular rings along the number direction with an
equaldistance s. Conversely, NP codeswith f≠0areanNP vortex along
the number direction due to the non-trivial parameter f, leading to a
hybridization of number and phase variables.

Moreover, such a graphical representation of codespaces in NP
phase space can directly give the code distance of the canonical
number variable dN = qs (p ≠ 0) and the canonical phase variable
dϕ = π/s. Thus we can define the correctable error set �E of the gen-
eralized NP codes for exactly satisfying the Knill-Laflamme (KL) con-
ditions μ

�
∣Ê

y
j Êk ∣νiL =Hj, kδμ, ν , whereH is a Hermitianmatrix, and μ and

ν run the logical 0 and 142. If one concentrates to remove the number-
shift errors caused by excitation loss or gain, the correctable error set
can be selected as �E = fD̂ðneÞg with the vector ne in the region

ne 2 ðle,ϕeÞ j � G≤ le ≤ L, jϕej<
π

2dN

� 	
, ð7Þ

where G and L are two positive integer which satisfies G + L = dN − 1.
Particularly, another useful correctable error set with
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ne ∈ {(0, ϕe)∣∣ϕe∣ < dϕ/2} focus on removing the pure rotation errors
caused by quantum dephasing, which sacrifices a portion of the ability
to correct number-shift errors as a cost. The error syndromes for D̂ðneÞ
need to be identified through the measurement of the generalized
number parity k∈ [0, s − 1] and the rotated phase angle �ϕ=mfπ=s +ϕe

of the noisy codespaces, thereby different ne = (le, ϕe) can be
distinguished via the relation le = sm + k and ϕe = �ϕ�mfπ=s with
m∈ [⌊L/s⌋−q+ 1, ⌊L/s⌋], and ⌊ ⋅ ⌋ is thefloor function. The syndromesof
these NP displacement errors for generalized NP codes with different
structures are summarized in Table 1. The experimental realization of
the error syndrome measurement will be discussed in the following.

In experiments, the ideal generalized NP codes introduced above
are unavailable. Therefore, it is necessary to encode a normalized
series {θn} as the amplitude of the Fock basis ∣sni to restrict the code
state energy, where the normalization of θn is ∑n∣θn∣2 = 1. Then, the
qubit states of generalized NP codes can be defined in a logical X basis
by using the Fock states as

∣± iLðs, f , θnÞ= exp � ifπn̂2

2s2

 !X1
n=0

ð± Þnθn ∣sni, ð8Þ

and the qubit states in logical Z basis are ∣μ


L = ð∣+ i+ ð�Þμ∣�iLÞ=

ffiffiffi
2

p
,

where μ = 0, 1 and themean excitation of such code states is restricted
as �ncode = s

P
nnjθnj2. Under encoding of the series {θn}, the generalized

NP codes with finite energy still have the perfect discrete phase rota-
tion invariance, but the discrete translation invariance innxdirection is
approximately satisfied. In comparison to the parameters s and f,
which primarily govern the ability against the excitation loss, the Fock
amplitudeθndictates the capacity to resist thepurephase rotation. For
R-NP codes, {θn} can give the Helovo’s phase uncertainty43Δϕ = ∣∑nθnθn
+1∣−2 − 1 of the codeword ∣± iL. A smaller phase uncertainty indicates
that the rotated codeword can be distinguished better by using the
canonical phase measurement44–47. The positive operator-valued

measure (POVM) element of the canonical phase measurement is
M̂X = ð2πÞ�1P

n,me
iðn�mÞX ∣ni mh ∣, and the associated identity relation isR 2π

0 dXM̂X = Î. Generally, Δϕ is the uncertainty of the codeword in the
direction orthogonal to nx in NP space. On the other hand, since
jPnθnθn+ 1j= jhμLjD̂ðnxÞjμLij that measures the NP-version translation
invariance, it also can be understood as a metric to quantify how close
the code states are to the ideal NP codes. Detailed discussion on the
relation between {θn} and phase uncertainty is included in the
supplementary Note 2.

Though the valid choice of {θn} is endless, here we concentrate a

class of Fock-amplitude that is θn = hn∣α, ri, and ∣α, ri= D̂ðαÞŜðrÞ∣0i is a
pure Gaussian state, and ŜðrÞ= exp½12 ðr*â

2 � rðâyÞ2Þ� is the original
squeezing operator48. Unlike cat codes, NP codes with such a Fock
amplitude allow the KL cost function to be exponentially suppressed
as α2 increases, which is not related to the parameters s and f, that is,
there does not exist a sweet spot like cat codes49. In addition, the
parameters α and r of NP codes can be optimized to obtain a maximal
QEC performance for a given noise channel.

The generalized NP codes defined in Eq. (8) also contain many
well-known bosonic error-correcting codes. For example, the rotation-

Rectangle lattice coding Oblique lattice coding Diamond lattice coding

(a) (b) (c)

(d) (e)

Rctangle lattice coding Oblique/Diamond lattice coding

Fig. 1 | Schematics of three types of generalized NP codes in phase space
defined by canonical number and phase variables. a–c show the generalized NP
codes with rectangle, oblique, and diamond lattice coding. Red and blue circles
represent probability peaks of NP Wigner function of dual logical states ∣+ iL and
∣�iL, respectively. D̂ðnxÞ and D̂ðnz Þ are the logical �X and �Z operations, which are

represented as deep green and orange arrows, respectively. D̂ðneÞ is the NP-shift
error, represented by light green and light blue arrows. (d, e) are schematic dia-
gramsof the generalizedNP codes inNP space,whichdepict the codes rolling along
the phase direction to form a cylindrical surface.

Table 1 | Examples and comparisons of generalized NP codes

Lattice s f = p
q {θn} syndromes

for D̂ðneÞ
Rect. > 1 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�K K

n

� �s
(k, ϕe)

Obl. 1 ≠ 0 hn∣α, ri (0, mfπ + ϕe)

Diam. > 1 1
2

hn∣α, ri ðk, mfπ
s +ϕeÞ

s, f, {θn} are the parameters of generalized NP codes, which are defined in Eq. (8). The first and

second numbers of real array ðk, �ϕÞ represent error syndromes read out by number parity
measurement and phase measurement, respectively.
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symmetric codes31, including the binomial and cat codes, are special
cases of R-NP codes with different Fock amplitudes {θn}. Moreover, the
phase-engineered codehas beenproposed to further improve theQEC
performance of R-NP codes, which actually is a special case of D-NP
codes50. Lastly, although NP codes and GKP codes both admit a lattice
description in the phase space of a bosonic mode, these two codes are
non-trivial with respect to each other. This is because a finite NP dis-
placement (stabilizer) cannot be obtained by superposing finite
quadrature displacements, and vice versa.

From Eq. (8), the mutual conversion of two different NP lattice
structures (s, f1)↔ (s, f2) of generalizedNPcodes canbe achievedby the
interface gate

ÛsðΔf Þ := exp � iΔfπn̂2

2s2

 !
, ð9Þ

and it’s inverse Û
y
s ðΔf Þ, whereΔf = f2 − f1. The interface gate can change

the codespace structure throughmodifying the Pauli X operator D̂ðnxÞ
to be

ÛsðΔf ÞD̂ðnxÞÛ
y
s ðΔf Þ= D̂ nx + 0,

Δfπ
s

� �� �
, ð10Þ

without affecting the Pauli Z operator D̂ðnzÞ. This is based on the
relations ÛsðΔf ÞΣ̂s = D̂ð0,Δfπ=sÞΣ̂sÛsðΔf Þ and ½ÛsðΔf Þ, R̂ðϕÞ�=0. Such a
modification of codespaces can change the codedistance fromdN = sq1
to dN = sq2, while another code distance dϕ remains unchanged. Here,
q1 and q2 are the denominator of fractions f1 and f2, respectively.

Another main use of the interface gate is to act as a bridge
between the R-NP codes (s, 0) and generalized NP codes (s, f), with a
shared code parameter s. Especially, since any phase rotation for
generalized NP codes commutes with the interface gate, it can be
effectively readout via the canonical phase measurement once the
generalized NP codes are interfaced into R-NP codes to minimize the
canonical phase uncertainty of the codeword ∣± iL. This is because the
probability distribution of the codeword ∣± iL is localized in the
direction orthogonal to nx in NP space, as shown in the Fig. 1, and only
R-NP codes satisfy the orthogonality between nx and the canonical
phase axis. This method is a foundation to readout the error syn-
dromes characterized by phase rotation for the QEC of generalized NP
codes we will propose next. For simplicity, we use the notation Ûf :

= Ûsðf Þ and Û
y
f to indicate the codespaces transformation (s, 0) → (s, f)

and (s, f) → (s, 0), respectively. The graphical representation of the
interface between generalized NP codes and R-NP codes can be found
in the supplementary Note 3.

Implementation of generalized NP codes
To illustrate generalized NP codes with the familiar quadrature
representation, the following discussion will return from the NP
representation to the continuous variables representation, and the
traditional X-P Wigner functions of the logical state ∣+ iL for general-
ized NP codes are shown in Fig. 2. Sincenx direction of the logical state
∣+ iL of O-NP and D-NP codes are not orthogonal to the canonical
phase, their quadrature representation is non-local in the canonical
phase, in contrast to the R-NP codes.

The quantum error correction using rotation-symmetric (R-NP)
codes, such as binomial codes and cat codes, has been extensively
investigated in both theory and experiment. However, how to realize
quantum error correction using O-NP and D-NP codes, as shown in
Fig. 2b, c, respectively, has rarely been studied50. Here, we propose a
standard method to remove an NP displacement error D̂ðneÞ by using
the number-phase vortex effect of the O-NP codes.

As shown in Fig. 1e, the number-phase vortex effect of generalized
NP codes (s, f) can be described as

Σ̂l ∣ψ


L = exp � if l2π

2s

� �
R̂ � lfπ

s2

� �
∣ ~ψl



L: ð11Þ

Here, ∣ψ


L =a∣0iL + b∣1iL is an arbitrary logical qubit state, and ∣ ~ψl



L

(unnormalized) is the number-shifted qubit state with the Fock-basis
replacement ∣sni ! ∣sn� l



. Due to the NP vortex effect, every

number-shift error of logical qubit state will lead to a discrete phase
rotationwith an angle fπ/s2. In otherwords, this discrete phase rotation
becomes syndromes of number-shift errors when the rotated code
words can be correctly distinguished. Note that the syndromes formed
by rotated codewords generally have a small non-zero overlap, which
is different from the exactly orthogonal number parity. Nonetheless,
such an overlap will tend to vanish as long as the phase uncertainty of
codewords becomes small enough.

Especially, let us consider the QEC only based on the NP vortex
effect of O-NP codes (s = 1), whose codeword ∣± iL only has a trivial
rotation symmetry Ŝz = e

i2πn̂. Therefore, the identification of number-
shift errors through the number-parity measurement is unavailable.
Here we introduce the recovery implementation for noisy O-NP codes
based on the one-step teleportation31,51–53:

where the irrelevant parameters s = 1 and θ are omitted, andne = (le,ϕe)
is an arbitrary vector in the region Eq. (7). �X , �Z , �H are logical Pauli X
gate, Pauli Z gate, and Hadamard gate, respectively. The quantum gate

�CZ ðs1, s2Þ := exp �i
π

s1s2
n̂1 � n̂2

� �
ð13Þ

is the controlled-phase gate of two NP codes described by the
parameters (s1, f1) and (s2, f2), respectively.

When a noise-free ancillamode is initialized at the dual basis ∣+ iL,
the �CZ gate can entangle the data mode and the ancilla mode via the
mechanism �CZ ∣s1m


� ∣s2n


= ð�1Þmn∣s1m


� ∣s2n


, where the negative

sign is present only when integersm and n are both odd. Due to theNP
vortex effect, unknownnumber shiftswill lead to the rotation R̂ð�lefπÞ
of the codespaces, forming as different error subspaces, and the phase
difference between two adjacent error subspaces is π/dN, thereby the
pure phase rotation error with ∣ϕe∣ < π/(2dN) can be treated as a dis-
tinguishable disturbance.

Further, a canonical phase measurement M̂X is performed on the
data mode to identify the rotated dual basis R̂ð�lefπÞ∣± iL, which not
only gives the error syndromes of the number-shifts le, but also

6

-6

0

-6 0 6

(a)

-6 0 6

(b) (c)

-6 0 6

0.3

-0.2

0

Rectangle Oblique Diamond

Fig. 2 | TheX-PWigner function of the logical state ∣+ iL of three generalized NP
codes with the same mean excitation

--
ncode =6. a The binomial code

[s = 4; f = 0; K = 3]. b The O-NP code [s = 1; f = 1/4; r = 0]. c The D-NP code
[s = 2; f = 1/2; r = 0]. Here, the parameters of these logical states are defined in Table 1,
and the dual logical state ∣�iL can be obtained via an additional phase rotation R̂ðπ=sÞ.
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indicates the projection into ∣+ iL or ∣�iL and simultaneously teleports
the quantum state from the data mode to the noise-free ancilla mode
with additional logical operations �X

i�Z
le �H. Here i =0, 1 refers to the dual

basis “+”,"-”, respectively. This teleportation is successful when the
rotated dual basis of the data mode can be correctly distinguished
from the presence of noise. Note that the noisy qubit state D̂ðneÞ∣ψ



L

requires to be converted into the R-NP structure via the interface Û
y
f to

obtain the minimal canonical phase uncertainty of the dual basis ∣± iL
before the canonical phase measurement.

Due to the code distance of phase variable dϕ = π, the identifiable
number-shift error le is up toq − 1 andphase rotation error ∣ϕe∣ <π/(2q).
Such a QEC ability is similar to the R-NP codes with the code distance
dN = s > 1. However, instead of the R-NP codes that use the variation of
number parity to identify the number-shift error, the NP vortex effect
is an independent quantum resource for correcting the number-shift
errors with the syndromes of discrete phase rotation.

We then discuss the QEC implementation of the generalized NP
codes with non-trivial parameters s and f, which only requires adding a
modular number-parity measurement before the teleportation circuit
Eq. (12). The modular number-parity measurement is based on the
mechanism �C

2
Z ∣sn� k


� ∣αi= ∣sn� k

� ∣αe�i2πk=s



, where �C

2
Z is the

doubled phase-controlled gate and k = ðle mod sÞ represents the
detectable number-parity.The circuit representation of modular
number-parity measurement is:

The k < s number shift of the data mode will cause a phase rotation with
the angle 2πk/s of the coherent state stored in the ancilla mode. This
phase rotation can be captured by a canonical phasemeasurement. The
measurement result of the ancilla mode, associated with the measure-
ment operator ∣αe�i2πk=s



αe�i2πk=s
�

∣, corresponds to the application of
the projective operator P̂s, k =

P1
n= 1∣ns � k



ns � k
�

∣ on the data mode.
The modular number-parity measurement can be exact in principle
because the phase uncertainty of the coherent state can arbitrarily tend
to be vanished as long as the amplitude α is large enough.

The standard QEC implementation circuit of generalized NP
codes is illustrated in Fig. 3e, f. Based on the outcomes X = (X1, X2) of

themodular number-paritymeasurement and the phasemeasurement
in teleportation, we can recover the noisy qubit states N ðρÞ after a
recovery operation

R̂X = �H�Z
m �X

i�Z
k
s : ð15Þ

Here the integer k∈ [0, s − 1] is given by the outcomeX1 = − 2πk/s, while
the integer i and m are obtained from the outcome
X2 −ϕk,s = (π/s)i −mfπ/s +ϕe. The global phaseϕk,s = − fkπ/s2 is fixed by
the previous number-parity measurement, and ∣ϕe∣ < π/(2dN) is the
correctable phase rotation noise. Due to the code distance dϕ = π/s of
thegeneralizedNPcodes, thedetectable integerm∈ [⌊L/s⌋−q+1,⌊L/s⌋]
and kdetermine the amplitudeof thenumber shift le=ms+ k. Note that
the recovery operation involves fractional order of logical �Z gate,
whose implementation can be easily achieved via a simple phase
rotation operation �Z

k
s = R̂ðiπk=s2Þ.

QEC performance of generalized NP codes
Based on the above implementation, we investigate the QEC perfor-
mance of the generalized NP codes by considering a noise channel
N ðρ̂Þ that is the solution of the master equation

∂ρ̂ðtÞ
∂t

= γL½â�ρ̂ðtÞ+ κL½n̂�ρ̂ðtÞ, ð16Þ

with an integral time t, and L½Â� ^ρðtÞ= Â ^ρðtÞÂy � 1=2ρðtÞÂy
Â�

1=2Â
y
ÂρðtÞ. Such an error model can describe the energy decay and

quantumdephasing of a bosonicfield stored in a cavity or transmitting
in awaveguide. For the integral time t small, the physical single-photon
loss and dephasing operator can be described in terms of NP
displacement operators as

ffiffiffiffiffi
γt

p
âe�

γt
2 n̂ �

Z π

�π
dϕ

ffiffiffiffiffi
γt

p
exp iϕ

2

� �
4
ffiffiffiffi
π

p ðγt=2 + iϕÞ3=2
D̂ð1,ϕÞ, ð17Þ

ffiffiffiffiffi
κt

p
n̂ � 1

2i
½D̂ð0,

ffiffiffiffiffi
κt

p
Þ� D̂ð0, �

ffiffiffiffiffi
κt

p
Þ�: ð18Þ

The left side of Eq. (17) is actually the first-order Kraus operator of pure-
loss channel (i.e., Eq. (16) with κ = 0)36,49. Note that the modulus of the

（a） （b） （c） （d）

（e） （f）

Fig. 3 | Circuit representation of the standard QEC procedure of generalized
NP codes. (a–d) are the Wigner functions of noisy NP codes in different error
correction stages. Here, we choose the logical state ∣+ iL of a D-NP code
½s = 2; f = 1=2; r = � 0:1; �ncode = 9� as an example. The noisy state N ðρ̂Þ [(a)] has an
overlap ~ 0.37 with the ideal logical state, which is obtained by the evolution in the
error model Eq. (16) with γt = 0.1 and κt = 0.01; (b) is obtained with the single-
photon loss event of code state is identified by the number parity measurement.

The Wigner function (c) is obtained after performing the interface gates Û
y
f , which

is back to the R-NP structure, and the shallower peaks are present due to the NP
vortex effect. The state (d), corrected via a perfect QEC cycle, has an overlap ~ 0.97
with the ideal logical state. (e) and (f) are the circuit representations of themodular
number-parity measurement and the teleportation-based QEC, defined in Eqs. (12)
and (14), respectively. The double lines indicate the transmission of classical
measurement outcomes for the recovery feedback.
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superposition coefficient on the right side of Eq. (17) is related to a
Lorentzian function with a linewidth γt. If the square root term

ffiffiffiffiffi
γt

p
is

retained while the higher-order term γt is ignored, an unphysical
representation of single-photon loss can be obtained, where the
expansion coefficient diverges when ϕ = 0. The error rates must satisfy
γt, κt ≪ 1 to guarantee sufficiently small NP displacements of the
codewords, thereby ensuring effectiveQEC.Additionally, the analogous
representation for the single-photon gain operator can be straightfor-
wardly obtained as the complex conjugation of the single-photon loss.

The noisy code states then need to be sent to the QEC circuit to
remove the noise and recover the logical information. As an example,
we illustrate the QEC of a noisy D-NP code to demonstrate how the
error correction works, as shown in Fig. 3. After the recovery process,
the QEC performance of the generalized NP codes can be qualified by
the channel fidelity54

F =
1
4

X
X, j

jTrðR̂XN̂jÞj2, ð19Þ

where N̂j is the Kraus operator of the noise channelN , and the Kraus-
operator decomposition of the noise channel N is given in the
supplementary Note 4.

In principle, the generalized NP codes with the same code dis-
tance dN = sq should perform similarly when the phase uncertainty is
small enough. It indicates the mean excitation of codes �ncode is large,
and thus the bit-flip error is dominant. However, the performance of
NP codes will become different when the phase-flip error is non-
negligible with the small �ncode. This performance difference comes
from both the different NP lattice structures and the Fock-amplitude
series {θn}.

To compare the performanceofNP codeswith different NP lattice
structures, we numerically evaluate the QEC channel infidelity as a
function of the mean code excitation �ncode, shown in Fig. 4a. As an
example, here we focus on the binomial code, the O-NP code, and the
D-NP code, whose Fock amplitudes are both selected as ∣θn



= hn∣α, ri.

Among cat and binomial codes, we selected binomial codes as the

representative R-NP codes because previous research data in
Refs. 31,49 indicate that binomial codes exhibit better QEC perfor-
mance than cat codes under the same conditions. TheseNP codes have
the same code distance dN = 4, and the squeezed parameter r of the
O-NP and D-NP codes is optimized to minimize the channel infidelity.
The numerical results show that the binomial codes and the O-NP
codes have a similar performance, while the D-NP code has an out-
standing performance when the mean code excitation �ncode is small.
This phenomenon indicates that correcting number-shift errors using
only the number degree (R-NP codes) or the phase degree (O-NP
codes) has similar QEC performance; however, correcting number-
shift errors using a hybrid number-phase degree can enhance QEC
performance.

As expected, the three types of NP codes have similar perfor-
mancewhen �ncode is large enough, as shown in Fig. 4a. In such a region,
the phase-flip error is negligible, and the dominant bit-flip rate can be
estimated as

1� ~F γ �
X
l = 1

2 �ncodeΓ

 �ldN e��ncodeΓ

ðldNÞ!
: ð20Þ

This can be derived from the QEC matrix M which is defined as
M ½jμ�, ½kν� = μ

�
∣N̂

y
j N̂k ∣νi. It is based on the near-optimal performance55 of

NP codes, and the detailed process can be found in the supplementary
Note 5. For a given excitation-loss rate Γ = 1 − e−γt, the dominant bit-flip
error rate can be suppressed by increasing the code distance dN.

On the other hand, the ability of NP codes against pure-dephasing
entirely depends on the Fock amplitude θn. Though the analytical
infidelity expression caused by pure dephasing for different NP codes
is not trivial, they have similar performance when the phase uncer-
tainty is very small. We can find an approximate lower bound of the
QECperformanceofNP codes against thepure-dephasingnoise,which
is obtained from the ideal NP codes, as

1� F κ

 �

min � 8πs2κt

 �1

2

π2 exp � π2

8s2κt

� �
: ð21Þ

Here, the lower bound is dominant by a factor e�
π2

8s2κt , and the
remainder is an effective approximation when the dephasing rate
κt ≪ 1. Though the lower bound unfortunately does not exist a simply
exact expression, it already shows the key physicalmechanism that the
pure dephasing rate κt will be enhanced by the parameter s with a
quadratic scaling. This indicates that the presence of pure dephasing
prevents NP codes from working with an excessively large s. Under
such a condition, phase-flip errors become the dominant error
mechanism, thereby compromising theQECperformanceofNP codes.

One-way quantum communication
The generalized NP codes, especially the well-known R-NP codes, have
been experimentally demonstrated to have many applications. For
example, the cat codes with QEC can extend the lifetime of a qubit23,
and the binomial codes with QEC can protect the entanglement
between two qubits26.

The generalized NP codes with repetitive QEC are also promising
to execute long-distance quantum communication based on the
quantum repeaters (QRs)32–35,37–39. One round QEC should correct the
transmission loss 1� e�~L0 and the the fiber coupling loss ϵ, where
~L0 = L=Latt is the dimensionless repeater spacing, and Latt = 20km for
optical fiber56. In addition, the energy attenuation in nonlinear optical
fibers with Kerr medium can lead to pure phase rotation errors of the
quantum states, which are usually ignored by previous studies36,56. In
the QEC process shown in Fig. 3, the imperfect quantum gates and
measurements also result in dephasing errors57,58. Given that the
commutation of all dephasing errors with both the interface gate and
the controlled-phase gate, these errors can be theoretically treated as
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Fig. 4 | QEC performance comparison of the different generalized NP codes.
a Optimized channel infidelity as the function of the mean excitation �ncode of
generalized NP codes which have the same code distance dN = 4. Here, we choose
the error rate γt = 0.5% and κt = 0.1%. The dotted orange line corresponds to the
data obtained from Eq. (20), and the break-even line is estimated using Fock states
∣0i and ∣1i for coding. b Optimized SKRPM of generalized NP codes with the fiber
coupling loss rate ϵ = 1% and the dephasing error rate Γϕ =0.1Γ. Here, the y-axis label
is the generation rate of securebits permode. t0 is the gate operation time taken for
QEC, and 1/t0 is the raw key generation rate82.
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occurring before the ideal QEC process. Therefore, the excitation-loss
and dephasing errors can be collectively modeled by the Eq. (16), and
the excitation-loss rate of one instanceQEC is Γ= 1� e�~L0 + ϵ, while the
secondary dephasing error rate is modeled as Γϕ = hΓ with h < 1.

For the communication distance as far as possible, the NP codes
should be optimized to minimize the error accumulation rate

τðs, f , θ, Γ, ΓϕÞ=
1� F
~L0

: ð22Þ

We quantify the QR performance of three types of NP codes by con-
sidering the quantum key distribution. In Fig. 4b, we compare the
optimized secure key rate permode (SKRPM) of threeNP codes, where
the fiber coupling loss ϵ = 1%, and the dephasing error rate is selected
as Γϕ = 0.1Γ. The three types of NP codes yield an SKRPM > 0.01 for a
near-thousand-kilometer quantum communication. As expected, the
binomial codes and the O-NP codes have similar performance for
quantum communication, while the D-NP codes have an outstanding
performance. The slight advantage of O-NP codes over binomial codes
arises from their superior tolerance to pure rotation errors when the
code distance dϕ =π/sof the binomial code is small enough.Moreover,
we also simulate their QRs performance with Γϕ = 0.05Γ, where the
communication distance is significantly extended as the dephasing
error rate Γϕ is further suppressed, and the behavior of performance
remains unchanged. The detailed numerical results are summarized in
supplementary Table 1, which contains the Refs. 59,60.

Experimental feasibility and limitations
The simulated QEC performance of generalized NP codes presented
above assumes an ideal, error-free cycle, demonstrating their theore-
tical potential for practical applications. For experimental imple-
mentation, superconducting quantum circuits currently represent the
most viable platform due to their advanced control capabilities and
scalability. Here, we provide a comprehensive analysis of the experi-
mental requirements andpractical limitations for realizing these codes
in state-of-the-art superconducting quantum circuit systems.

In experiments, the encoded bosonic mode is usually stored in a
high-quality microwave cavity with a lifetime T1 ~ 1ms61, and a coupled
two-level ancilla transmon with T1 ~ 0.1ms is introduced to manipulate
the bosonic mode25. In our case, the teleportation-based QEC protocol
for generalized NP codes requires the operations set

fPsð∣+ iÞ, �H, �Z ðβÞ, Ûf , �CZ , M̂X g ð23Þ

on bosonic modes. Here �Z ðβÞ=diagð1, eiβÞ represents the arbitrary
rotation of generalized NP codes (s, f) around the Z-axis in the logical
level, which includes the phase gates �S=diagð1, iÞ and �T =diagð1, eiπ=4Þ.
The combination of �Z ðβÞ and Hadamard gate �H can realize universal
rotation on a single logical qubit. In addition, Psð∣+ iÞ denote the
preparation for the logical state ∣+ iLðs, 0Þ of R-NP codes, then the
corresponding logical state ∣+ iLðs, f Þ of generalized NP codes can be
obtained via the interface gate ∣+ iLðs, f Þ= Ûf ∣+ iLðs, 0Þ.

Among these required operations, the crucial challenge is the
experimental implementation of destructive canonical phase mea-
surement M̂X , which is used to identify error syndromes and teleport
the quantum state. A related experiment has been demonstrated for a
qubit encoded by Fock states ∣0i and ∣1i in superconducting quantum
circuits47. However, the discrimination for rotated codewords of NP
codes still needs to extend this experiment beyond the single-photon
regime. In the absence of implementing a canonical phase measure-
ment, heterodyne detection is a convenient method to readout the
phase of an unknown signal with lower precision. The heterodyne is
the well-know Gaussian POVMs with element ÊðαÞ=π�1∣αi αh ∣, which
projects the bosonic mode onto a coherent state ∣αi and the phase is
estimated as ArgðαÞ, while the number information ∣α∣ is wasted. In

addition, a more practical limitation is the finite readout efficiency of
microwave cavities47,62,63. A detailed discussion of the reduced QEC
performance in R-NP codes resulting from imperfect phase measure-
ments is presented in Ref. 64.

The abovephasemeasurements are independent of the encoding,
offering generality for NP codes with different {θn}. When the mean
code excitation �ncode is large enough, the intrinsic canonical phase
uncertainty of the codeword ∣± iLðs, 0Þ will tend to vanish, thereby the
rotated codewords can be effectively discriminated via the canonical
phase measurement or heterodyne detection. However, in the low-
excitation regime, the intrinsic canonical phase uncertainty of the
codewords will limit the phase measurement accuracy, even if the
phase measurement is perfect. These mechanisms are intuitively
reflected in the variation of QEC performance and KL cost function for
NP codes with �ncode, as shown in Fig. 4a and in Supplementary Fig. 2,
respectively.

On the other hand, a technology proposed by our previous work65

can serve as an alternative phase measurement for specific NP codes
with θn = hn∣α, ri. The noisy NP codes with such a Fock-amplitude θn
behave as a mixture of rotated coherent-like states due to the NP
vortex effect, following the interface gate operation, as shown in
Fig. 3(c). Coincidentally, this technology has achieved the unambig-
uous discrimination of up to six coherent states (∣α∣≤2) uniformly
distributed on a phase circle, corresponding to the required phase
measurement for NP codes with dN = 3. It is a potential way to unam-
biguously identify error subspaces formed by rotated coherent-like
states with a low excitation, and the measurement time is
around log2ð2dNÞμs.

Additionally, a key step in implementing generalized NP codes is
the state preparation of logical states ∣+ iLðs, 0Þ forR-NP codes. It is not
a trivial task toprepare such a statewith a large Fock space interval s. In
circuit QED, a universal method for preparing an arbitrary state of a
target cavity mode is available in principle. It involves the strong dis-
persive interaction between the cavity mode and an ancilla transmon,
combinedwith quadrature displacement operations performedon the
cavity mode66–69. In experiments, this method performs well for pre-
paring high-fidelity logical states with several photons in ~ 1μs23,25.
However, preparing logical states with good phase distinguishability
for high-orderR-NP codes remains challenging via thismethod, as such
states typically contain tens of photons. This arises because the pro-
cess involves long operation times and complex controls, where the
photon decay of the short-lifetime ancilla transmon introduces more
noise, leading to errors in the state preparation.

The transformation from the R-NP codes (s, 0) to generalized NP
codes (s, f) is based on the interface gate, as shown in Eq. (9), which is
also frequently used in teleportation-based QEC. Its implementation
requires controlled self-Kerr interaction H =Kn̂=2 for the data mode.
This technology has been achieved in a Kerr-tunable superconducting
resonator70, where the self-Kerr interaction strength K/2π can be
adjusted from − 5 MHz to 6 MHz, and the special logical state
∣+ iLð1, f Þ= Ûf ∣αi of the O-NP code (with f = 1/2, 1/3, 1/4 and �ncode = 2) is
prepared within a gate time of ~ 0.1μs. However, this experimental
work was conducted in the strong dissipation regime (γ=Kmax � 0:1).
Therefore, the realization of interface gates still requires the extension
of the data mode lifetime to ensure that noise caused by photon loss
during operations is negligible (γ=Kmax≪1). In a recent experiment71, a
comparable superconducting resonator device achieved a lifetime of
T1 ~ 40μs, presenting a promising platform to implement the feasible
interface gate with an estimated γ=Kmax ratio of ~ 2.5 × 10−3.

In Fig. 3, we present a QEC scheme only using bosonic modes,
which is expected to perform QEC under bosonic-level noise and is
promising for realizing fault-tolerant quantum computation based on
bosonic modes. However, such a scheme requires entangling gates
implemented by cross-Kerr interaction between two bosonic modes,
which is typically weak (Kc/2π ~ 10 kHz) for two cavities in the current
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experiments. Therefore, Fig. 3 represents a long-term goal to realize
QEC with all bosonic elements. For the current experimental con-
siderations,we introduce a generalmethod to conditionally implement
universal logical rotation of an NP code, and the logical entangling �CZ

gate of any two NP codes stored in different cavities. It is based on a
gadget that a generalizedNP code (s, f) stored in a datamode entangles
an ancilla transmon prepared in ∣+ iq = ð∣ei+ ∣g


Þ= ffiffiffi
2

p
through the gate

�CqðsÞ := exp �i
π
s
n̂� ∣ei eh ∣

� �
, ð24Þ

where ∣ei and ∣g


denote the excited state and the ground state of the

ancilla transmon, respectively. This gate serves the same role as the
controlled phase gate �CZ ðs, 1Þ between two NP codes (s, f) and (1, 0)
described by Eq. (13), and here the transmon replaces the trivial NP
code (1, 0) with codewords are Fock state ∣0i and ∣1i. In contrast to the
direct cross-Kerr interaction between two cavities, the dispersive
interaction χn̂1 � ∣ei eh ∣ between a cavity and a transmon is more
natural and strong (χ/2π ~ 4 MHz)25.

By using the gadget that the NP code (s, f) entangles the ancilla
transmon through the gate �Cq, one can conditionally realize the logical
rotation �Z ðβÞ through the teleportation circuit

Here X̂ qðβ=2Þ : = expð�iβσ̂x=2Þ is the single-qubit rotation of the
transmon and σ̂x = ∣g



eh ∣+ ∣ei g

�
∣. After measuring ∣ei and ∣g



basis of

the transmon via M̂q, the logical rotation �Z ðβÞ can be conditionally
applied for the dada mode. Here an additional logical rotation
�Z ðCπÞ= �Z

C
with C = 0 or C = 1 arises depending on the measurement

outcome: ∣g


or ∣ei, respectively. The gate operation time of �Z ðβÞ is

limited by the implementation of �Cq, which can be estimated as
1/χ ~ 0.1μs.

To achieve the universal logical rotation of the generalized NP
codes (s, f), it is necessary to implement the logical Hadamard gate.
This task can be conditionally realized through the cascaded tele-
portation circuit

Here �Hq is the Hadamard gate of the transmon qubit. This circuit can
be interpreted as follows: the measurement for basis ∣± iq conducted
on the middle rail effectively induces a controlled-phase gate �CZ

between the top and bottom rails. Although this method induces a
conditional logical Pauli operation �Z

i
(not shown) on the bottom rail,

where i = 0, 1 corresponds to themeasurement outcome “ + ” and “ − ”,
respectively, it represents a more practical approach to realizing the
entangling �CZ gate than directly manipulating the cross-Kerr interac-
tion between two cavities. This controlled-phase gate protocol is also
limited by two successive gates of �Cq, resulting in an estimated gate
time ~ 0.2μs.

Then, the logical Hadamard gate �H can be conditionally imple-
mented via identifying the basis ∣± iL of the bottom rail via the phase
measurement. This scheme is equivalent to Eq. (12) in the absence of
noise. A logical operation �X

j
is present after the Hadamard gate,

wherej = 0, 1 corresponds to the measurement outcome “ + ” and “ − ”,
respectively. The operation time of this gate protocol is constrainedby
the phase measurement, which takes approximately 2 ~ 4μs for cor-
responding code distance dN = 2 ~ 10 using unambiguous state dis-
crimination technology65 or even less for heterodyne detection.

We summarize the experimental reference durations T for these
required operations in Table 2. Compared to the lifetimes of the cavity
modes and ancilla transmon, these operations are sufficiently fast to
render the implementation of generalized NP codes with current
technology entirely feasible. Notably, we construct the universal logi-
cal rotation for a generalized NP code and the logical controlled-phase
gate between two generalized NP codes, both based on quantum tel-
eportation. Such a scheme inevitably introduces conditionally addi-
tional Pauli operations. A straightforward solution is to apply
corresponding recovery feedback to remove these additional logical
Pauli operations based on measurement outcomes, where the logical
Pauli Z of NP codes (s, f) can be easily implemented via the phase
rotation R̂ðπ=sÞ, while the logical Pauli X operation D̂ðnxÞ of NP codes
(s, f) involves multi-photon transitions between Fock states, rendering
it difficult to directly realize on bosonic modes.

A more practical approach was proposed in Ref. 31, where fault-
tolerant quantum computation using R-NP codes is comprehensively
considered. It suggests that rather than explicitly correcting the
additional Pauli operations via complex procedures during
teleportation-based QEC and quantum computation with magic state
injection P∣Ti and P∣Si, these operations can be marked by each mea-
surement outcome and tracked in software.

Lastly, due to thephoton loss of the ancilla transmon, the required
operations for bosonic modes may be faulty. Therefore, we simulate
the noisy QEC cycle shown in Fig. 3 with experimental limitations. It
demonstrates that the transmon dissipation during the gate opera-
tions introduces uncorrectable logical errors, thereby limiting the QEC
performance of generalized NP codes. However, the main physical
mechanism (number-phase vortex effect) of these codes is not sig-
nificantly affected by imperfect gate operations. The detailed simula-
tion results can be found in the supplementary Note 7. In a short-term
consideration, the photon loss of an ancilla transmon can already be
suppressed to the second order by replacing the employed excited
state ∣ei with a higher excited state ∣f



of a three-level transmon72.

Furthermore, the fundamental solution for these operational imper-
fections would require the development of fault-tolerant operations
for these codes, which is a challenging but crucial long-termobjective.
Nonetheless, there are several theoretical frameworks that can be
extended to achieve fault-tolerance for generalized NP codes31,73,74.

The QEC of a generalized NP code is based on the one-step tele-
portation, as shown in Eq. (12). Notably, the teleportation between two
physical qubits can be extended to achieve fault-tolerance for biased
noise by encoding the physical qubits into repetition codes, as pro-
posed in Ref. 73. For generalized NP codes, after partial number-shift
errors are strictly identified by the non-destructive number-parity
measurement, the remaining errors are all phase rotation errors that

Table 2 | ReferencedurationsT for requiredQECoperations in
superconducting circuit experiments

Operation Psð∣+ iÞ --
H

--
ZðβÞ Ûf

--
CZ M̂X

T(~ μs) 1 2–4 0.1 0.1 0.2 2 ~ 4

Ref. 23 (26) (25) 70 (26) 65

Theseoperations are, in order from left to right, state preparationPsð∣+ iÞ, logical Hadamardgate
�H, arbitrary logical �Z rotation �ZðβÞ, interfacegate Ûf , logical controlled-phasegate �CZ , andphase

measurement M̂X .
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are similar to biased noise. Therefore, a natural ideal is to extend the
teleportation between two individual generalized NP codes to fault-
tolerant teleportation between two repetition codes encoded by
condensed generalized NP codes. For R-NP codes, this method for
achieving fault-tolerance has been comprehensively discussed
in Ref. 31.

Another promising scheme for implementing fault-tolerant
operations on single-mode bosonic codes with discrete-variable
ancillae is based on the path-independent quantum control 74. Com-
pared with the previous scheme dedicated to NP codes, this scheme
has stronger universality and lower resource consumption, maintain-
ing the hardware efficiency of single-mode bosonic quantum codes.

Discussion
So far, we have introduced the definition, error correction, and
applications of the generalized NP encoding of a bosonic mode. Here,
we discuss and compare their respective advantages in experiments.

Among the three types of generalized NP codes, the state pre-
paration of O-NP codes is the simplest when the feasible interface gate
Ûf is available. The preparation of code states (∣± iLð1, f Þ= Ûf ∣±α, ri)
and modulation of the code distance (dN) for O-NP codes solely
necessitate the application of a unitary operator Ûf on displaced
squeezed states. While the state preparation of generalized NP codes
(s, f) with a large Fork states interval s is usually difficult, which involves
multi-photon transition. Another feature of the O-NP codes is the
convenient implementation of approximate logical Pauli X operation
�X � Ûf D̂½iπ=ð2αÞ�Û

y
f with the gate infidelity/ expð�2α2Þ. This is based

on the commutation relations between quadrature displacement
operators, and the similar gate protocol for two-leg cat codes is pro-
posed in Ref. 28. In addition, the logical Pauli Z operation can be easily
realized by a phase rotation R̂ðπ=sÞ for all generalized NP codes (s, f).

Based on above features of O-NP codes, they can be easily
implemented in optical systems. The interface gatemay be realized by
propagating a light field in a Kerr nonlinearity medium, and the gen-
eration of optical cat states have been widely studied in
experiments75–79. Moreover, the most challenging aspect of realizing
the one-step-teleportation QEC scheme [Eq. (12)] for O-NP codes is the
correct identification of rotated codewords following the interface
gate operation, analogous to the scenario depicted in Fig. 3c. In
essence, this task constitutes a phase estimation problem for rotated
coherent states, and the required phase measurement is also fast-
growing in experiments47,65,80,81. Consequently, large-sized O-NP
encoding of an optical mode is very suitable for executing long-
distance quantum communication and interconnection.

On the other hand, the R-NP codes with non-trivial rotation sym-
metry, such as the cat codes and binomial codes, may suitably imple-
ment fault-tolerant quantum computation by encoding themicrowave
field stored in a superconducting cavity. The code state preparation
and universal control for these codes can be achieved bymanipulating
the microwave cavity with a coupled discrete-variable ancillae. This
allows for the strict identification of error syndromes in these codes,
followed by the restoration of quantum information. The relevant
experimental demonstration and theoretical proposal had a flourish-
ing development in past decades. Moreover, the QEC performance of
R-NP codes may be further improved by performing an additional
unitary Ûf = 1=2 on the code states, namely, encoding to be the D-NP
codes. The truth that the D-NP codes have higher performance than
R-NP and O-NP codes is analogous to which the hexagonal GKP codes
have higher performance than squareGKP codes. Based on the relative
advantages of generalized NP codes in experiments, the faithful
quantum computer and the long-distance quantum communication in
a quantum network may be achieved using hybrid generalized NP
encoding of bosonic modes.

In summary, we construct a novel framework of bosonic encod-
ing, which defines the logical states via discrete number-phase

translation symmetry. It is designed to against the number-phase shift
error of a bosonic mode, which involves the energy decay and the
quantum dephasing. The framework contains many well-known
bosonic codes, such as cat codes and binomial codes, and it also
guides us to find the O-NP codes and D-NP codes, which can be ima-
gined as number-phase vortex in NP space. Crucially, such a number-
phase vortex effect is an independent quantum resource, which paves
a new way to correct the number-shift errors using phase degrees.
Moreover, the O-NP codes are easily generated and implemented QEC
for optical modes, which may allow it to suitably implement long-
distance quantumcommunication in a hybrid quantumnetworkor any
application scenarios required to resist the NP-shifts noise in a bosonic
mode. We believe that the framework can inspire the experiments and
guide more discoveries of error-correcting codes.

Data availability
All data generated or analyzed during this study are available within
the paper and its Supplementary Information. Further source data will
be made available on reasonable request.

Code availability
The code used to solve the equations presented in the Supplementary
Information will be made available on reasonable request.
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