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Mechanistic origins of temperature scaling in
the early embryonic cell cycle

Jan Rombouts 1,2,5,6, Franco Tavella 3,6, Alexandra Vandervelde1,
Connie Phong4, James E. Ferrell Jr. 4, Qiong Yang 3,6 &
Lendert Gelens 1,6

Temperature strongly influences physiological and ecological processes, par-
ticularly in ectotherms. While complex physiological rates often follow
Arrhenius-like scaling, originally formulated for single reactions, the under-
lying reasons remain unclear. Here, we examine temperature scaling of the
early embryonic cell cycle across six ectothermic species, including Xenopus,
Danio rerio, Caenorhabditis, and Drosophila. We find remarkably consistent
apparent activation energies (75 ± 7 kJ/mol), corresponding to a Q10 of 2.8 at
20°C. Computational modeling shows that both biphasic scaling in key cell
cycle components and mismatches in activation energies across partially rate-
determining enzymes can explain the observed approximate Arrhenius
behavior and its breakdown at temperature extremes. Experimental data from
cycling Xenopus extracts and in vitro assays of individual regulators support
both mechanisms. These findings provide mechanistic insights into the bio-
chemical basis of temperature sensitivity and the failure of biological pro-
cesses at thermal limits.

Living organisms are continually influenced by their environment, and
embryos are particularly sensitive to environmental changes. Even sub-
tle perturbations during critical developmental windows can sig-
nificantly impact embryo viability, as well as embryonic and post-
embryonic performance1. A key aspect of the environment is tempera-
ture: changes in temperature can profoundly influence embryonic
development, influencing the speeds of biochemical reactions and
affecting theoverall physiology, behavior, andfitness of the organism2–6.

Ectotherms, in particular, rely critically on the ambient tempera-
ture as they have minimal ability to generate heat internally. Each
ectothermic species has a specific temperature range associated with
its geographic distribution on the planet7,8. While adult stages of
ectotherms can adopt various physiological and behavioral strategies
tomaintain optimal temperatures, such as taking shelter when it is too
hot6, embryos possess limited mechanisms to cope with

environmental challenges, making them themost vulnerable life stage
to environmental stress9,10. Temperature plays a pivotal role in deter-
mining the fertilization rate of eggs, the growth and survival of
embryos, and in certain cases, even the gender of offspring, as
observed in many turtle species and all crocodiles11. Assessing the
thermal impact on and sensitivity of embryonic development across a
range of temperatures provides essential insights into species’
responses and vulnerability to the challenges posed by global
warming8,9,12. Indeed, the impact of global warming is already evident
in certain sea turtle species, where a diminishing number of male off-
spring is observed13.

But even without this shifting landscape and the challenges of
their changing ecosystems, ectotherms face the daunting challenge of
needing to have their biochemistry function reliably over a wide range
of temperatures. Given that complex metabolic networks, signaling
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systems, and developmental processes may involve dozens of
enzymes, thequestion arises as to howmuchvariation in the individual
enzymes’ temperature scaling can be tolerated before the system fails.

The influenceof temperatureon physiology anddevelopment has
been a subject of study for over a century3,4,14. The relationship
between temperature and the speed of many diverse biological pro-
cesses is often well approximated by the Arrhenius equation15–22. Ori-
ginally formulated for simple, one-step chemical reactions, the
Arrhenius equation describes the rate of a chemical reaction (k) as a
function of the absolute temperature (T):

kðTÞ=Ae�Ea
RT , ð1Þ

where Ea denotes a temperature-independent activation energy, R is
the universal gas constant, and the pre-exponential factor A sets the
maximal reaction rate at high temperatures. While derivable for
elementary chemical reactions from thermodynamic principles, this
equation is considered an empirical law applicable to various
physiological rates16. However, deviations from this Arrhenius
response are consistently observed at higher temperatures18,22–25. The
decline is often attributed to the heat denaturation of some critical
enzyme18,25–27, and the trade-off between increasing reaction rate and
increasing denaturation yields an optimal temperature. Moreover, the
thermal response of processes at the cellular level is influenced not
only by the reactions of enzymes but also by active cellular responses
to temperature changes. For instance, in response to stress, cells may
upregulate heat shock proteins, aiding in protein refolding28. Another
example is found in budding yeast, which can up-regulate the
production of viscogens like trehalose and glycogen to help maintain
normal diffusion kinetics at elevated temperature29.

Recently, the topic of biological temperature scaling has gar-
nered renewed interest, thanks to the ability to obtain accurate, high-
resolution data through time-lapse microscopy. This approach has
provided fresh insights into early development in several model
systems30–33. Overall, these findings reaffirm the utility of the Arrhe-
nius equation as a reliable approximate description of the tempera-
ture scaling of embryonic development. This was particularly clear in
studies of the timing of the first embryonic cell cycle in C. elegans and
C. briggsae, two closely related nematodes. In both species, the
duration of the cell cycle as a function of temperature precisely
agreed with the Arrhenius equation over a broad temperature range,
with some deviation then occurring when the embryos were close to
their maximum tolerated temperatures31. The two nematodes also
were found to have almost identical Arrhenius energies (Ea values),
which raises the possibility that the activation energies of cell cycle
regulators may be evolutionarily constrained to a single standard
value31.

Xenopus laevis extracts and embryos have proven to be powerful
systems for the quantitative analysis of the early embryonic cell cycle.
The cell cycle can be experimentally studied both in vivo and in
extracts, and extracts can be manipulated and observed in ways that
are difficult with intact embryos. In addition, much is already known
about cell cycle biochemistry in this system, providing a rich and
highly quantitative context for further studies. And finally, the
dynamics of the cell cycle can be successfully reproduced with rela-
tively simple mathematical models that can add depth to the under-
standing of experimental findings. Crapse and colleagues have begun
to examine how the Xenopus embryonic cell cycle is affected by tem-
perature, and they have found some striking similarities to the beha-
viors seen in C. elegans and C. briggsae: the cell cycle period obeys the
Arrhenius equation at least approximately, and the measured Ea value
for the cell cycle is similar to those in the two nematodes32.

Here, we have leveraged the Xenopus system to address several
outstanding questions on the principles of biological temperature
scaling. First, we compared the Xenopus laevis temperature scaling to

that in two other ectothermic vertebrate model systems, Xenopus
tropicalis and Danio rerio, and compared the findings to previously
reported data from the invertebrates C. elegans, C. briggsae, and Dro-
sophila melanogaster. Second, we asked how well the temperature
scaling is described by the Arrhenius equation, and based on ordinary
differential equation modeling of the cell cycle, under what circum-
stances would the cell cycle be expected to exhibit Arrhenius scaling,
and underwhat circumstanceswould it be expected to deviate. Finally,
we asked how the different individual phases of the cell cycle varywith
temperature, and found that interphase and mitosis scale differently
and that this difference can be accounted for by the in vitro thermal
properties of key cell cycle regulators. These studies provide insight
into the principles that allow ectotherms to tolerate a range of tem-
peratures, and suggest mechanisms for why the cell cycle oscillator
fails at temperature extremes.

Results
Temperature scaling in the Xenopus laevis embryo
We measured the temperature dependence of the timing of several
early cell cycle events in the developing Xenopus laevis embryo
(Fig. 1A, B), similar to the work of Crapse and colleagues32. Xenopus
laevis eggs were fertilized and imaged in a temperature-controlled
chamber (first described in ref. 34) by time-lapsemicroscopy (Fig. 1A).
We then analyzed the movies (Supplemental Movies 1, 2) to visually
identify various early developmental events (Fig. 1B). First, we scored
the start of the fertilization wave, a ripple in the egg’s cortex that
quickly spreads from the spermentry point across the egg (at time tFW
after fertilization). This wave is due to a trigger wave of elevated
intracellular calcium, and it contributes to the block to polyspermy
and coordinates the start of the cell cycle35. Next, we measured the
start of the first surface contraction wave, which emanates from the
animal pole and travels toward the vegetal pole36,37 (at time tSCW after
fertilization). This wave marks mitotic entry and has been argued to
be caused by the interaction of a spherical wave of Cdk1 activation
originating at the nucleus38–40 with the cortical cytoskeleton41–43.
Finally, we assessed the cleavages that complete each of the first four
cell cycles. The first cleavage begins about 95min after fertilization at
18 °C, and the next several cycles occur every 35min thereafter44–46.
For multicellular embryos, we took the time at which the earliest cell
began to divide to be the cleavage time, but note that within an
embryo, these cell divisions were nearly synchronous. The timing of
all of these events was recorded for about 10 different embryos at
each temperature.

Fertilized embryos reliably progressed through the cell cycle and
divided at temperatures between 10 °C and 28 °C. Just outside this
range (down to 9 °C and up to 29 °C) some cell cycles still occurred,
and these data are included in Fig. 1. We quantified the time intervals
between these developmental events and examined their temperature
dependence (Fig. 1C, D), using a rearranged form of the Arrhenius
equation to relate the duration of a process, Δt = 1/k[T], to absolute
temperature:

lnΔt½T �= ln
1
A
+
Ea

R
1
T
: ð2Þ

Accordingly, we replotted the data as lnΔt versus 1/T (Fig. 1D).
Between 12 °C and 21 °C, the data were well-approximated by Eq. (2),
and from the fitted slopes we extracted apparent activation energies
(Ea) of approximately 60-80 kJ/mol (Fig. 1D and Fig. S1). An exception
was the onset time of the fertilization wave, which showed a lower Ea
(~40 kJ/mol) with a wide confidence interval. These values are con-
sistent with previous reports32 and fall within the typical enzymatic
range of 20–100 kJ/mol47–49. Outside the 12–21 °C range, the durations
deviated from linearity, with unexpectedly long times at both low and
high extremes (Fig. 1D). To assess the robustness of these differences,
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we used a bootstrapping approach to generate probability distribu-
tions of the apparent activation energies (Fig. 1E, Fig S1, S2A and Sup-
plementaryNote 2). Finally, we computed themean squareerror (MSE)
between the data and the Arrhenius fit, both across the full

temperature range (9 °C to 29 °C) and within the linear range (12 °C to
21 °C). As expected, the MSE was substantially higher across the full
range, confirming that the Arrhenius model does not adequately
describe the entire dataset (Fig. S2B).

Fig. 1 | Cell division timing in early Xenopus laevis embryos scales approxi-
mately Arrhenius over a wide range of temperatures. A Xenopus laevis
embryonic development was imaged in a temperature-controlled chamber intro-
duced in ref. 34. The time unit mpf is minutes post-fertilization. B Different early
developmental events were visually identified. SEP denotes the sperm entry point.
Adapted from ref. 100. C Duration of several early developmental periods in

function of temperature in the range [Tmin = 9
� C,Tmax = 29

� C].DAnArrhenius fit is
shown for the values between 12 °C and 21 °C, with the apparent activation energy
indicated. E Bootstrapping provides a probability distribution for the apparent
activation energies. Histograms from 1000 bootstrap samples. The mean and 90%
confidence interval (CI) are also indicated. Source data are provided as a Source
Data file98.
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Diverse ectothermic species yield similar temperature scaling
Next we examined the timing of the early cell cycles in two additional
vertebrate model organisms, the frog X. tropicalis (Supplemental
Movies 3, 4) and the zebrafishD. rerio (Supplemental Movies 5, 6). The
three vertebrates and the two nematodes span a broad range in evo-
lution (Fig. 2A).

The period of the early embryonic cell cycle as a function of
temperature for all five organisms is shown in Fig. 2B. For simplicity,
here we have pooled data for the durations of the early cell cleavages.
In all cases, the early embryonic cell cycle could proceed over a
15–25 °C range of temperatures. In general, the five organisms showed
reasonable agreement with the Arrhenius equation, especially toward
the lower end of their temperature ranges (Fig. 2B). Xenopus laeviswas
something of an outlier in this regard; its Arrhenius plot is bowed
throughout the temperature range (Fig. 2B, blue). The apparent
Arrhenius energies—the slopes of the Arrhenius plots—were quite
similar, ranging between 68 and 83 kJ/mol, or 73 ± 6 kJ/mol (mean ±
std. dev., n = 5).

As might be expected, the nominal ambient environmental tem-
peratures for all five organisms fell within the range found to be
compatible with cell cycle oscillations (Fig. 2C). The temperature ran-
ges for Xenopus tropicalis and Danio rerio were shifted toward higher
temperatures compared to Xenopus laevis, reflecting the fact that the
former two evolved in and live in warmer regions (Fig. 2C, orange and
green vs. blue). A similar shift in the viable temperature range has been
noted for the nematode worms C. elegans and C. briggsae31, replotted
here in red and purple. In all cases, the maximum temperature com-
patible with cycling was closer to the nominal environmental tem-
perature range than the minimum temperature was (Fig. 2C).

For four of the five organisms (C. elegans, C. briggsae,D. rerio, and
X. tropicalis) therewas sufficient upwarddeflection of the temperature
curves toward the high end of the temperature range to define an
optimal growth temperature corresponding to a minimal cell cycle
duration (Fig. 2C). For Xenopus laevis, the fastest cell cycles were found
at the highest temperature compatible with viability (Fig. 2C). In all
cases the optimal temperature was within a few degrees of the

Fig. 2 | Cell cleavage period scales in a similar non-Arrhenius way across dif-
ferent early ectothermic embryos. A We examined the timing of the early cell
cycles in 5 different species: C. elegans and C. briggsae (from ref. 31), D. rerio (this
work), X. tropicalis and X. laevis (this work). The three vertebrates and the two
nematodes span a broad range in evolution. BMedian cleavage period in function
of temperature for the early cell cleavages (all pooled) for the 5 different species.
Optimal fits using a double exponential (DE) function are overlayed. C The in vivo
range of viable early cell cycles in the different species, including their thermal
limits and optimal temperature at which they reach a minimum cell cycle period.
Their corresponding apparent activation energies andQ10 at 20 °C are shown in the

table. Additionally the environmental range is indicated for all five organisms101–104.
D Using the best DE fit, the local Q10 value is plotted in function of temperature.
E Themedian cleavage period in function of temperature forX. laevis is fitted using
different functional forms: single exponential Arrhenius (SE), double exponential
(DE), quadratic exponential (QE) and a power law-exponential (PE) function. F The
goodness of fit (using mean square error, MSE on the logarithms of the periods) of
the alternative functional forms to the experimental data for X. laevis in two dif-
ferent temperature regions: 12–21 °C and 9–29 °C. G. Goodness of fit, similar as in
panel F, but now for all different species over their whole measured temperature
range. Source data are provided as a Source Data file98.
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maximal permissible temperature Tmax (Fig. 2C). The optimal tem-
peratures were generally somewhat higher than the typical environ-
mental temperature ranges (Fig. 2C). This may reflect a trade-off
between maximal speed at higher temperatures and maximal safety
margins in themiddle of the operating temperature range. Note that at
the temperatureoptima, the slopes of theArrhenius plots are zero.The
curves are also shallow at the optima, which means that changes of
several degrees produce little changes in the cell cycle period. The
period can be regarded as temperature-invariant or temperature-
compensated in this regime.

Data are also available for the temperature scaling of various
embryonic processes in Drosophila melanogaster. Extensive data are
available for the timing between the 13th and 14th cleavage32,50, and
these data are replotted in Fig. S3A, B. Like the Xenopus laevis Arrhe-
nius plot, the Drosophila plot is bowed throughout the temperature
range, and, at the cold end of the temperature range, it yielded an
Arrhenius energy of 109 kJ/mol. Note, however, that this cycle differs
from the earlier Drosophila cycles and the other embryonic cycles
examined here, as they have a longer cell cycle due to lengthening of
S-phase approaching the mid-blastula transition (MBT)50,51. Some data
are available for the 11th nuclear cycle (NC11) in the syncytial Droso-
phila embryo (Fig. S3A)33; this cycle is more similar to the other
organisms’ cycles analyzed here. From the published data, we calcu-
lated anArrhenius energyof84 kJ/mol for thedurationofNC11, slightly
higher than the energies calculated for the early embryonic cycles of
the other 5 model organisms. Taken together, the six organisms yiel-
ded an average Arrhenius energy for the early embryonic cell cycles of
75 ± 7 kJ/mol (mean± std. dev.). Although the nominal periods of the
cell cycles varied greatly, from about 5min for C. elegans and C.
briggsae to 25min for X. laevis at room temperature, the temperature
scaling factors for these organisms varied by only about 9%.

The temperature sensitivity of the early embryonic cell cycle can
also be characterized by Q10 values, which capture how reaction rates
change over 10 °C intervals52. While linear Arrhenius fits give a global
Q10 value around 2.8 across diverse organisms (Fig. 2C), local Q10

values (see Supplementary Note 1) reveal important deviations, parti-
cularly at temperature extremes (Fig. 2D). For most species, local Q10

values plateau around 2.8 ± 0.4 at low temperatures and decrease at
higher temperatures. However, in Xenopus laevis, localQ10 values vary
more broadly, ranging from about 1 to 4 across the full temperature
range (Fig. 2D and Fig. S3E).

To better capture the deviations from idealized Arrhenius beha-
vior, we explored three commonly used generalizations of the Arrhe-
nius equation-the double exponential31,53,54, quadratic exponential32,55,
and power law-exponential forms56,57 (see “Methods” for details on the
fitting). All three models provided markedly better fits to the experi-
mental data than the classical Arrhenius relationship, capturing the
nonlinearities in the temperature dependence with high accuracy
(Fig. 2E–G). However, their comparable performancemakes it difficult
to identify a single best functional form based on fitting alone. This
underscores the limitations of descriptive models and points to the
need for mechanistic frameworks to explain the origin of temperature
scaling curves in biological systems.

A simple oscillator model accounts for deviations from Arrhe-
nius scaling
We next took a computational approach to the question of why cell
cycle periods at least approximately obey the Arrhenius equation, and
why they sometimes deviate from Arrhenius scaling. We used a dif-
ferential equation model of the embryonic cell cycle oscillator to
investigate how the period would be expected to vary with tempera-
ture, given either single or double exponential equations for the
individual enzymes’ temperature scaling. This allowed us to examine
how systems-level properties of the cell cycle oscillator circuit, rather
than just variations from the Arrhenius relationship in the behaviors of

individual enzymes, might be expected to affect the temperature
scaling of the oscillations.

The cell cycle regulatory network consists of many complex
interactions involving dozens of species, which makes it extremely
challenging to construct a complete mathematical model, let alone
study and interpret the influence of temperature on the cell cycle. The
early embryonic cell cycle of insects, worms, amphibians, and fish is,
however, much simpler: the cycle consists of a rapidly alternating
sequence of synthesis (S) phase and mitotic (M) phase, without
checkpoints and without G1 and G2 gap phases. Transcription is neg-
ligible at this point in embryogenesis, and the number of protein
species involved is smaller than in the somatic cell cycle. As a result,
simpler mathematical models can be constructed. This greatly sim-
plifies the analysis of temperature scaling.

At the heart of the early embryonic cell cycle lies the protein
complex cyclin B - Cdk1, consisting of the protein cyclin B and the
cyclin-dependent-kinase Cdk1 (Fig. 3A), plus a phospho-epitope-
binding subunit, Suc1/Cks, that is not separately considered here.
When this protein kinase complex is enzymatically active, it phos-
phorylates hundreds of other proteins, bringing about the entry of the
cell into mitosis58,59. The oscillations in Cdk1 activity result from three
interlinked processes: (1) cyclin B synthesis, which dominates in
interphase and causes Cdk1 activity to gradually rise; (2) the flipping of
a bistable switch, due in this model to the Cdk1-Cdc25 positive feed-
back loop and the Cdk1-Wee1 double negative feedback loop, which
results in anabrupt rise inCdk1 activity; and (3) cyclin Bdegradationby
the anaphase-promoting complex/cyclosome APC/C and the protea-
some,which dominates duringM-phase and causesCdk1 activity to fall
(Fig. 3B)60–62. This type of oscillator, consisting of a rapid bistable
switch plus a negative feedback loop, is referred to as a relaxation
oscillator63–65. Relaxation oscillators are common in biology, and all
relaxation oscillators share similar qualitative behavior, irrespective of
the exact molecular details: there is a slow ramp up in activity, which
then triggers an abrupt burst in activity through the positive feedback
loop(s), and finally, the negative feedback restores the system back to
its low activity state. These three distinct phases can be distinguished
in experimental data on the activity of Cdk1 as a function of time in the
early embryonic cell cycle (Fig. 3C; see also below).

We described the changes in cyclin concentration and Cdk1
activity with a model consisting of two ordinary differential equations
(ODEs)66:

dcyc ½t�
dt

= ks � kdAPCa½t� cyc ½t�,

ϵ
dcdk1a½t�

dt
= kaCdc25a½t�ð cyc ½t� � cdk1a½t�Þ � kiWee1a½t�cdk1a½t�:

ð3Þ

The first equation describes how cyclin B (cyc) is synthesized
throughout the cell cycle at a rate ks (nM/min) and how it is degraded
at a rate kd (1/min) by the proteasome after ubiquitination by active
APC/C (APCa[t]). The second equation describes the conversion of
cyclin B-Cdk1 complexes between an inactive form and an active form
by Cdc25 (Cdc25a[t]) and Wee1 (Wee1a[t]). For simplicity, we do not
directly include degradation of the bound-form of cyclin B (see Sup-
plementary Note 3.A). If we assume that the Cdk1-mediated phos-
phorylation reactions that regulate APC/C, Wee1, and Cdc25 are
essentially instantaneous, we can eliminate three of the time-
dependent variables from the right-hand side of the ODEs:

dcyc ½t�
dt

= ks � kdd½cdk1a� cyc ½t�,

ϵ
dcdk1a½t�

dt
= kaa½cdk1a�ð cyc ½t� � cdk1a½t�Þ � kii½cdk1a�cdk1a½t�:

ð4Þ

The terms d[cdk1a], a[cdk1a], and i[cdk1a] are assumed to be Hill
functions of the instantaneous values of cdk1a, and were
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parameterized based on experimental measurements of steady-state
responses in Xenopus laevis extracts66–68. We thus have two ODEs in
two time-dependent variables, cyc[t] and cdk1a[t], and five parameters
that define the speeds of cyclin synthesis (ks), cyclin degradation (kd),
Cdk1 activation by Cdc25 (ka), and Cdk1 inactivation by Wee1 (ki), as
well as the relative time scales of cyclin synthesis and degradation
versus Cdk1 activation and inactivation (ϵ). Even though this simplified
model omits Greatwall/PP2A-B55 regulation and a number of other
interesting aspects of Xenopus cell cycle regulation62,65,69–72, it never-
theless captures the dynamics of Cdk1 activation and inactivation well
and has been used to successfully describe various aspects of cell cycle
oscillations34,66,73. For this reason, it seemed like a good starting point
for understanding how the output of the cell cycle oscillator circuit
would be expected to scale with temperature.

Using experimentally motivated parameters66, the model (Eq. (4))
reproduced cell cycle oscillations with a realistic period of approxi-
mately 30min (Fig. 3C). These oscillations manifested as a closed tra-
jectory, a limit cycle, in the (cyc, cdk1a) phase plane (Fig. 3B, red),
which orbits around an unstable steady state (Fig. 3B, USS) at the
intersection of the system’s two nullclines (Fig. 3B). When the time
scale forCdk1 activation/inactivation is fast relative to the time scale of
cyclin synthesis and degradation (ϵ≪ 1), typical relaxation oscillations
occur: in interphase, the orbit slowly creeps up the low Cdk1 activity
portion of the S-shaped nullcline (Fig. 3B, denoted 1), then abruptly
jumps up to the high Cdk1 activity portion of the same nullcline
(Fig. 3B, denoted 2), crawls down the nullcline due to active APC/C
(Fig. 3B, denoted 3), and abruptly falls back down to the lower portion
of the nullcline to begin the cycle again. The result is sawtooth-shaped

Fig. 3 | A simple relaxation oscillator model for the early embryonic cell cycle
can reproduce the observed non-Arrhenius scaling. A Sketch of key reactions in
the early cell cycle regulatory network.B,CPhaseplane representation (B) and time
series (C) of cell cycle oscillations in Eq. 4. D Scenarios showing how different
temperature scaling of cell cycle regulatory processes can lead to Arrhenius scaling
and/or thermal limits in the scaling of the cell cycle period. E Best fits of models

presented in panel (D) to the measured data for the early cell cycle duration for X.
laevis, X. tropicalis and D. rerio shown in Fig. 2. For case 3, the apparent activation
energies for ks and kd need to be different to fit the data well. For Case 4, we
introduced a biphasic response in cyclin B synthesis (ks). For parameter values and
more details about themodel, see SupplementaryNote 3. Source data are provided
as a Source Data file96.
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oscillations in cyclin B levels and periodic bursts of Cdk1 activity that
resemble experimentally measured Cdk1 activities (Fig. 3C).

Next we examined how making the model’s parameters
temperature-dependent affected the persistence and period of the
oscillations over a range of temperatures. We started by assuming
Arrhenius scaling for the four key rates in the oscillatormodel: ks, kd, ka,
and ki. As expected, when all of the apparent activation energies were
assumed to be equal, the oscillation period obeyed the Arrhenius
equationwith the same activation energy (Case 1 in Fig. 3D). Similarly, if
the activation energies for cyclin synthesis and degradation were
assumed to be equal, and the energies for Cdk1 activation and inacti-
vationwere assumed to bedifferent from those but equal to eachother,
the period also scaled in an Arrhenius fashion (Case 2 in Fig. 3D), with Ea
equal to that of cyclin synthesis and degradation. This Arrhenius scaling
arises out of three properties of the model: (1) the cyclin nullcline’s
position depends solely on the ratio ks/kd, and these two parameters
were assumed to scale identically with temperature; (2) the location of
the S-shapedCdk1 nullcline dependsupon the ratio ka/ki, which likewise
was assumed to scale identicallywith temperature; and (3) as long as ϵ is
very small, the cell cycle period is determined only by the rates of cyclin
synthesis and degradation, which scale identically with temperature.

However, if the four kinetic parameters were not constrained to
scale identically (Case 1) or pair-wise identically (Case 2) with tem-
perature, the results were more like what is seen experimentally. This
is shown as Fig. 3D, Case 3. The Arrhenius plot was bowed concave up,
instead of being straight, and oscillations ceased if the temperature
was too high or too low. The cessation of oscillations can be ratio-
nalized from the positions of the nullclines in the phase plane. If the Ea
value for cyclin synthesis is smaller than that for cyclin degradation,
the ratio ks/kd decreases as temperature rises. With increasing tem-
perature, the cyclin nullcline shifts down until it no longer intersects
the middle portion of the S-shaped Cdk1 nullcline. At this point, the
steady state becomes stable and oscillations cease, leaving the system
in an interphase-like steady state with low Cdk1 activity (Fig. S4A).
Conversely, if cyclin synthesis scales more strongly with temperature
than degradation does, the cyclin nullcline shifts upward, leading to a
stable M-phase-like steady state with high Cdk1 activity (Fig. S4C).
Thus, if the temperature scaling of cyclin synthesis and degradation
differ, at extremes of the temperature range, the oscillator will fail,
and in between the extremes, the cell cycle period would be expected
to deviate from the Arrhenius relationship. This could provide an
explanation for the temperature scaling observed experimen-
tally (Fig. 1).

An alternative assumption could also explain the experimental
results. As shown in Fig. 3D, Case 4, if at least one process shows a
biphasic dependence of rate on temperature, perhaps due to enzyme
denaturation at high temperatures, the result will be a bowed Arrhe-
nius plot and a high temperature limit to oscillations. As an example,
here we have assumed a biphasic dependence of cyclin synthesis on
temperature. Thus, in principle, it seemed like either variation in the
individual enzymes’ Arrhenius energies (Case 3), or denaturation at
high temperatures (Case 4), or both, could account for the observed
temperature scaling of the early embryonic cell cycle.

To test this hypothesis further, we asked how well model Cases 3
and 4 could replicate the observed cell cycle duration scaling in early
frog and zebrafish embryos. We adjusted the apparent activation
energies of cyclin synthesis and degradation, and, for simplicity, kept
the Ea values for Cdk1 activation and inactivation constant. Through
minimizing the error between simulations and data across the oscil-
lation range, employing the mean sum of squares on logarithms of
periods, we obtained optimal fits. Figure 3E displays these fits across
various model scenarios introduced in Fig. 3D. Although perfect
Arrhenius scaling (Cases 1 and 2) didnot alignwellwith the data,model
Cases 3 and 4 approximated the measured data well. Notably, the
experimental data could be accounted for by assuming that cyclin

synthesis scaled either more strongly or more weakly with tempera-
ture than did cyclin degradation.

To further reinforce these findings, we conducted an exhaustive
parameter scan over the activation energies of all four key rates in the
oscillator model using a fitting algorithm. We employed the approx-
imate Bayesian computation method74, implemented in Python using
pyABC75, for sequential Monte Carlo sampling of parameter sets, gra-
dually improving fits to the data (for details, see Supplementary
Note 3.D and Fig. S5). This broader analysis underscored that optimal
fits occurred when there was a distinct difference in apparent activa-
tion energies between cyclin synthesis and degradation, while the
activation energies of Cdk1 activation and inactivation remained
similar (Fig. S5). Moreover, the quantification of fitting errors revealed
that it is most probable that the experimental data is due to cyclin
synthesis being more sensitive to temperature changes than cyclin
degradation (Ea(ks) > Ea(kd)).

Next, we asked whether the results obtained were specific to the
two-ODE cell cycle model. To explore this, we turned to a structurally
distinct model: a five-ODE, mass-action-based system that includes
interactions among Cdk1, Greatwall, and PP2A-elements that collec-
tively form a mitotic switch as well62,65,76. In contrast to the two-ODE
model, which featured a bistable switch between Cdk1 and Cyclin B
and included feedback through Cdc25 and Wee1, this model imple-
ments a bistable switch between APC/C and Cdk1, and thus omits the
Cdc25/Wee1-mediated feedback loops entirely. It also differs in its use
of strictly mass-action kinetics, avoiding the highly nonlinear Hill
functions of the two-ODE model, and in its dimensionality, expanding
from two to five ODEs. Despite these structural differences, both
models share key features: cyclin synthesis and Cdk1-activated
degradation, the presence of a bistable switch, and a separation of
timescales enabling relaxation oscillations. The five-ODE model could
be parameterized to yield realistic cell cycle oscillations77 (Fig. S6B and
Supplementary Note 3.B). Due to the model’s increased complexity—
ten kinetic parameters—we relied exclusively on the ABC algorithm for
parameter inference. This approach produced satisfactory fits (Fig.
S6E), and analysis revealed that highly correlated activation energy
pairs typically corresponded to antagonistic reaction rates (Fig. S6F, G
and Supplementary Note 3.B). These results again show that well-
fitting parameter sets tend to exhibit similar activation energies for
faster reactions. Moreover, they support the idea that thermal limits
can arise from imbalances in the apparent activation energies of cyclin
synthesis anddegradation, reinforcing the conclusions drawn from the
two-ODE model.

In summary, computationalmodeling revealed that thermal limits
and non-Arrhenius scaling like those seen in early embryos can arise
from (at least) two different mechanisms. Firstly, in cases where all
rates follow Arrhenius-like scaling but possess varying activation
energies, an imbalance emerges, culminating in a thermal limit and a
bowed Arrhenius plot. We can call this behavior ‘emergent’, since the
limit and the bowing are not inherent to any individual reaction but
arise collectively. Secondly, thermal limits can arise if one or more
underlying reactions exhibit a thermal optimum and deviate from
Arrhenius scaling. Here, the system’s behavior is predominantly dic-
tated by the dynamics of the particular biphasic component(s).

The durations of interphase and M-phase scale differently with
temperature
To test whether the emergent imbalance model (Fig. 3C, Case 3) con-
tributes to the temperature scaling of the Xenopus laevis embryo, we
set out to determine how the durations of interphase and M-phase
individually scaled with temperature. Both phases contribute to the
overall duration of the cell cycle, and the durations of the two phases
are largely determined by different processes, cyclin synthesis for the
former and cyclin degradation for the latter. Due to the opacity of the
Xenopus embryo, it is difficult to assess these cell cycle phases by
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in vivo microscopy. We therefore turned to cycling Xenopus egg
extracts, which are transparent and highly amenable to microscopy.

Cycling extracts were prepared and supplemented with a Cdk1
FRET sensor, whose emission increases upon Cdk1 activation and/or
inactivationof opposingphosphatase(s)78. Unlike theoriginal PBD (polo-
box domain)-based sensor used in human cells79 and Drosophila
embryos80, this redesigned WW-based sensor uses a Cdc25C substrate
motif,WWphospho-binding domain, and EV linker to enhance signal-to-

noise performance in Xenopus extracts78. The extracts were then
encapsulated in oil droplets, as previously described81,82 (Fig. 4A). The
encapsulated extract droplets were then loaded into Teflon-coated
imaging chambers, which were immersed in mineral oil and placed on a
microscope stage equipped with a custom Peltier element-based heat-
ing/cooling device, similar to a setup tailored for embryos44. The FRET
sensor enabled real-time visualization of oscillations in Cdk1 activity in
hundreds of droplets situated at different positions within the

Fig. 4 | The durations of interphase and M-phase scale differently and non-
Arrhenius with temperature in cycling frog egg extracts. A Sketch of the setup
to encapsulate cycling frog egg extracts in droplets surrounded by oil, including
pictures of the customized device to control temperature of extract droplets with
snapshots of measured FRET ratios in an example droplet. B Representative time
series ofmeasured FRET ratios at different temperatures.CAnalysis of the duration

of the total cell cycle (blue), the rising phase (orange), and the falling phase (green)
in function of temperature.DMedian per temperature bin (rounded to integers) of
the data shown in panel (C). Optimal fits using a double exponential function are
overlayed.E LocalQ10-value as a function of temperature, calculated from the fitted
double exponential function. Source data are provided as a Source Data file96,98.
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temperature gradient (Fig. 4A and Supplemental Movie 7). As shown in
Fig. 3C (top), Cdk1 activity first rose slowly (phase 1), then spiked to high
levels (phase 2), then fell to low levels to allow a new cycle to begin
(phase 3). The three phases of the Cdk1 activity cycle correspondwell to
the phases seen by direct biochemical assays of Cdk1 activities in cycling
extracts62,83,84, and to the phases of Cdk1 activation and inactivation seen
in the computational models (Fig. 3C, bottom). The cell cycle was found
to proceed most rapidly at temperatures of around 25 °C, and to slow
down at both colder and warmer temperatures (Fig. 4B, C). One unan-
ticipated finding was that the cell cycle proceeded fairly normally at
temperatures as high as 32 °C, even though in intact embryos, tem-
peratures above 28 °C typically killed the embryos and halted the cell
cycle. This allowed us to probe awider range of temperatures in extracts
thanwaspossible in vivo. Theperiodof theextracts’ cell cycles increased
over time, consistent with previous findings39,78,81,85. In addition, the
overall response of the cell cycle to temperature was consistent across
different biological samples and experimental days (Fig. S7). We con-
finedour analysis to cycles 2–4, characterizing thedurationof eachcycle
in individual droplets (Fig. S8A–C) and after pooling (Fig. 4C, D). Similar
trends could be seen in both the individual and pooled data (Fig. 4C, D).
Alternatively, we analyzed all cell cycles that occurred during the first
300min rather than the first three cycles. This procedure yielded
essentially identical results (Fig. S8D).

We analyzed time series data from hundreds of droplets at tem-
peratures from 16 °C to 32 °C, and plotted the temperature depen-
dence of the cell cycle durations as well as the durations of the rising
and falling phases, which correspond approximately to interphase-
through-metaphase andmetaphase-through-mitotic exit, respectively.
This analysis showed that both the total cell cycle duration and the
duration of the rising phase exhibited a U-shaped dependence upon
temperature. These durations decreased steeply as the temperature
rose from 16 °C to 20 °C, then plateaued, and then increased steeply at
temperatures above 30 °C (Fig. 4C, D). In contrast, the duration of the
falling phase decreased with temperature and then plateaued begin-
ning at about 20 °C, but did not slow down to a measurable extent at
higher temperatures. These trends can be seen both from the raw data
(Fig. 4C) and from binned, averaged data (Fig. 4D). Thus, the rising
phase, whoseduration ismainly due to the rate of cyclin synthesis, and
the falling phase, whose duration is mainly due to APC/C activity, are
differently affected by temperature. Interestingly, while the durations
of transitioning into andout ofMphase increased at low temperatures,
the duration of mitotic exit remained constant at high temperature
(Fig. S9). Conversely, at high temperatures, the duration of mitotic
entry substantially increased.

Double exponential curves, which assume a biphasic dependence
of enzyme activity upon temperature, accounted for the shapes of the
Arrhenius plots (Fig. 4D).We computed localQ10 values from the fitted
curves, which revealed significant changes with temperature (Fig. 4E).
Generally, theQ10 for total cell cycle durationwas close to that of rising
phase duration (Fig. 4E), underscoring the fact that interphase con-
stitutes a majority of the cell cycle (Fig. 4B).

Cyclin synthesis and degradation respond differently to
temperature
We next asked howwell the 2-ODE computational model could account
for how the Cdk1 activity cycle varied with temperature in cycling
extracts, and whether the scaling of the activation energies for key
regulatory processes (ks, kd, ϵ) could be inferred. We utilized the tem-
perature dependence of themeasured durations of the rising and falling
phases of the Cdk1 time series (Fig. 4D) to optimize our computational
model. Employing the approximate Bayesian computation method
(details inSupplementaryNote 3.DandFigs. S10, S11),we soughtoptimal
values that described the scaling curves for cyclin synthesis rate (ks),
cyclin degradation rate (kd), and time scale separation (ϵ), which relates
to Cdk1 activation (a) and inactivation (i). The temperature dependence

of eachof these parameters is describedby a double-exponential scaling
curve (for details, see Supplementary Note 3.D). Leveraging sequential
Monte Carlo sampling, the method gradually improved fits to the data.
Rather than a single optimal value, the method produces a distribution
of well-fitting parameters (gray lines in Fig. 5A, with the optimal fit
highlighted in color). The temperature dependence of the fitted model
parameters (Fig. 5B) revealed significant temperature-induced changes
in cyclin synthesis rate (ks) and time scale separation (ϵ), up to five-fold
across the temperature range, whereas changes in the cyclin degrada-
tion rate (kd)weremuch smaller (seeFigs. S10, S11 for thedistributionsof
the parameters yielding good fits). Additionally, the temperature
dependence of kd was well described by a single Arrhenius equation,
while ks and ϵ required a double exponential function for accurate
description. Figs. S10, S11 further demonstrate that the model success-
fully captures the observed changes in oscillation dynamics as long as
the cyclin synthesis rate is more temperature-sensitive than the degra-
dation rate. Thismeans that the fitted values of these activation energies
are not tightly constrained by the data. Specifically, the model remains
consistent with the data as long as the cyclin synthesis rate increases
more steeply with temperature than the degradation rate. This is sup-
ported by simulation results and by the ABC-inferred parameter dis-
tributions (Figs. S10, S11), which show that the apparent activation
energy for synthesis, Ea(ks), is centered around 113 kJ/mol. In contrast,
Ea(kd) for degradation is very broadly distributed, and although the peak
is at around 12 kJ/mol, themean is closer to 49 kJ/mol. This suggests that
a range of degradation temperature sensitivities is compatible with the
data, provided synthesis remains more sensitive.

The three phases of the Cdk1 activity cycle correspond well to the
phases seen by direct biochemical assays61,62,84, and they represent the
accumulationof lowactivity cyclin-Cdk1 complexes (phase 1), followed
by the activation of Cdc25 and the inactivation of Wee1 and PP2A-B55
(phase 2), and finally the APC/C-Cdc20-mediated degradation of cyclin
and re-activation of PP2A-B55 (phase 3). During the first phase, both
cyclin levels and Cdk1 activity increase approximately linearly over
time61,62 (Fig. 5B, C). Toobtain an independent estimateof how ks varies
with temperature, we computed the slope of the interphase segment
of the Cdk1 FRET time series (Fig. 5C, dashed line; Supplementary
Note 4, Fig. S12). These empirical slopes revealed scaling trends con-
sistent with those obtained from model fitting via the ABC algorithm
(Fig. 5B, overlaid black dots), reinforcing the robustness of the inferred
biphasic temperature dependence. While the Cdk1 FRET signal pri-
marily reflects cyclin accumulation, it could in principle also be influ-
enced by other regulatory processes, such as phosphatase inactivation
or post-translational modifications that modulate Cdk1 activity inde-
pendently of cyclin levels. Therefore, fitting the slope of the FRET
signal does not necessarily isolate cyclin synthesis alone. Nonetheless,
the strong agreement between the model’s predictions and the slope-
based estimates suggests that the FRET signal serves as a useful proxy
for cyclin synthesis over this regime. This interpretation is further
supported by previous studies showing that cyclin synthesis is the
primary driver of Cdk1 activation during interphase. Pomerening et al.
demonstrated that both cyclin levels and Cdk1 activity rise approxi-
mately linearly with time throughout interphase61, consistent with a
model in which increasing concentrations of phosphorylated, pre-
activated cyclin-Cdk1 complexes underlie the gradual activation of the
oscillator. Moreover, other key regulators of Cdk1, including Cdc25C
and Wee1, exhibit minimal changes in their abundance or phosphor-
ylation state during interphase and only transition into their mitotic
forms immediately before mitotic entry (see Fig. 7 in62).

As afinal checkofourfittingprocedure, we computed the average
shape of the Cdk1 time series experimentally (from the FRET signal,
Fig. S13, Supplementary Note 5), and compared it to the model’s pre-
dicted time series, given the fitted scaling (Fig. 5B). The simulated time
series closely recapitulated the experimental oscillations (Fig. 5C). The
optimization was done only on durations. Thus, the match between

Article https://doi.org/10.1038/s41467-025-62918-0

Nature Communications |         (2025) 16:8045 9

www.nature.com/naturecommunications


simulated and experimentally observed waveforms provides another
argument that the fitted scaling curves for the rates explain the scaling
observed in the droplets.

In summary, the comparison of apparent activation energies
highlights the greater temperature sensitivity of cyclin synthesis rate
compared to cyclin degradation rate. This sensitivity aligns with sce-
narios predicted to yield non-Arrhenius scaling across a wide tem-
perature range (Fig. 3D, Case 3). Furthermore, experimental findings
indicate that cyclin synthesis rates decreased at elevated

temperatures, corroborating another scenario leading to non-
Arrhenius scaling (Fig. 3D, Case 4). Our analysis indicates that both
mechanisms contribute to the non-Arrhenius scaling properties of the
early embryonic cell cycle oscillator.

In vitro assays confirm the imbalance in cyclin synthesis and
degradation scaling
To further test the inference that cyclin synthesis and degradation scale
differently at the lowendof the temperature range,we carriedoutdirect

Fig. 5 | Non-Arrhenius scaling asa result of biphasic cyclin synthesis rate and an
imbalance in the temperature scaling of cyclin synthesis and degradation.
AUsing the ABC algorithm, weminimize themean square error (MSE) between the
measured and simulated (using the two-ODEmodel) durations of rising phase and
falling phase. Themeasurements are shownwith the dots. Each gray line shows the
result of one parameter set from the outcome of the ABC algorithm (darker gray
means larger weight). The colored line shows the best fit (curve resulting from
parameter set with the smallest MSE). B Optimal temperature scaling of para-
meters, i.e., the cyclin synthesis rate, the cyclin degradation rate, and the time scale

separation, resulting from the ABC algorithm as shown in (A). The black dots
correspond to the cyclin synthesis rate ks (nM/min) directly estimated from the
FRET ratio time series (Fig. S12 and Supplementary Note 4). C Blue line: averaged
time series of Cdk1 activity (measured FRET ratio) at three different temperatures
(T = 17 °C, T = 25 °C, T = 31 °C). See Fig. S13 and Supplementary Note 5 for the
method to compute the average waveform. Orange line: time series of the com-
putationalmodel, computedusing the optimal parameter scaling shown in PanelB.
Source data are provided as a Source Data file96,98.
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measurements of the two processes in X. laevis frog egg extracts86

(Fig. 6A, B). The synthesis of one mitotic cyclin, cyclin B2, in cycling
extracts was monitored by quantitative Western blotting, using the
cyclin B2 levels present in CSF extracts as a normalization standard
(Fig. S14). APC/C activity was gauged by introducing securin-CFP, trans-
lated in wheat germ extracts, as a fluorescent reporter of APC/C activity
intoCSFextracts, thendriving the extractsoutofCSFarrestwith calcium
plus cycloheximide and intomitotic arrest with non-degradable cyclin B
(Fig. S15). Experimental protocols are detailed in Supplementary Note 6.
These measurements were conducted across temperatures ranging
from 16 °C to 26 °C and did not extend into the high temperature range
where the rate of cyclin synthesis as inferred in Fig. 5B began to drop.
These rate data were consistent with the Arrhenius equation (Fig. 6B,
green line), and cyclin synthesis wasmore sensitive to temperature than
cyclin degradation, with fitted apparent Arrhenius energies of 87 and 51
kJ/mol, respectively. Bootstrapping supported the statistical significance
of this difference (Fig. 6C). This provides direct support for the
hypothesis that thedifferent scalingof opposingenzymes contributes to
the non-Arrhenius character of the cell cycle period.

We also measured the temperature dependence of two other key
cell cycle regulators, cyclin B-Cdk1 and PP2A-B55 (Figs. S16, S17). These

opposing enzymes are critical for the phosphorylation and depho-
sphorylation of many cell cycle proteins, and their activities would be
expected to contribute to the dynamics of mitotic entry and mitotic
exit. Figure 6 suggests minor variations in their temperature sensitiv-
ity, with apparent Arrhenius energies of 46 and 56 kJ/mol, compatible
with robust functioning of the cell cycle oscillator over its nominal
temperature range.

Decreasing the cyclin synthesis rate decreases the viable
temperature range
Our analysis suggests that the failure of the Xenopus embryonic cell
cycle oscillator at temperature extremes is governed by two distinct
mechanisms. At high temperatures, oscillations break down due to the
biphasic temperature dependence of cyclin B synthesis: the synthesis
rate declines with increasing temperature and eventually becomes
insufficient to sustain oscillations in the face of baseline degradation.
At low temperatures, failure arises from an imbalance in Arrhenius
scaling. Specifically, the higher activation energy of synthesis relative
to degradation causes the synthesis rate to become too low to coun-
teract degradation. Thus, the temperature range over which the
oscillator functions is determined by the temperature-dependent

Fig. 6 | Frog egg extract measurements reveal temperature dependence of cell
cycle regulators. A Examples for how the rates for Cyclin B synthesis, APC/C
activity, Cdk1 activity, and PP2A activity were fitted from time series of different
biochemical assays using frog egg extracts at constant temperatures (here for
T = 24 °C), see SupplementaryNote 6.BThe assays were repeated for temperatures
in the interval 16−26 °C, and (apparent) activation energies were extracted. Blue

dots represent data of individual fitted time series, while the orange dots are the
medians per temperature. C Probability distribution of fitted (apparent) activation
energies using bootstrapping with 90% confidence intervals (see Supplementary
Note 2 for details on the bootstrap procedure). Source data are provided as a
Source Data file96,98.
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interplay of these two opposing processes, both essential for cell cycle
progression.

This reasoning predicts that modulating the overall cyclin synth-
esis rate should systematically alter the temperature range over which
the oscillator can operate. To test this, we used our 2-ODEmodel of the
cell cycle oscillator using a parameter set obtained from the ABC
method (one of the gray lines in Fig. 5B). We then systematically varied
the synthesis rate at a reference temperature while preserving its
temperature dependence. At the same time we allowed the degrada-
tion rate to be scaled similarly, but to a lesser extent. In Fig. 7A, we
show one representative example (see more simulation details in
Fig. S18). The resulting temperature-period curves were U-shaped and
shifted in a consistent, and perhaps non-intuitive, way: increasing the
synthesis rate led to faster oscillations and broader temperature ran-
ges, while decreasing it caused both upper and lower temperature
bounds to move inward. At high synthesis rates, oscillations failed,
starting at intermediate temperatures.

We next tested this prediction experimentally by titrating cyclin B
morpholino antisense oligonucleotides (0, 4, or 6μM) into encapsu-
lated extracts subjected to a temperature gradient (see Materials and
“Methods”). These morpholinos inhibit cyclin B translation by binding
to its mRNA. As predicted, increasing morpholino concentrations

resulted in longer minimum cycle periods and a narrower viable tem-
perature range (Fig. 7A), consistent with the model. A quantitative
discrepancy remained, with experimental oscillations persisting at
more extreme temperatures than predicted. This could reflect addi-
tional regulatory layers that are not captured in our minimal model,
beyond cyclin synthesis/degradation and Cdk1 (in)activation. More-
over, the cell cycle oscillator in extracts is also gradually slowing down
over time (see Fig. 4B), which could also explain the discrepancy
between the experiments and the idealized, time-invariant simulations.

We then asked whether the samemodel, tuned to cycling extract
data, could recapitulate the cell division timing in early X. laevis
embryos (Fig. 7B). While the general shape was similar, oscillations in
embryos were systematically faster than in extracts. This could be due
to cytoplasmic dilution during extract preparation—though such
effects are modest at moderate dilutions87—or the absence of nuclear
andmembrane components. Theperioddifferences between embryos
and extracts were also similar to variations among extracts from dif-
ferent biological replicates (Fig. S7). We therefore rescaled the cyclin
synthesis by a factor of 1.6 and the degradation rates by 0.7 to match
the cycle duration at 25 °C. Remarkably, this single-point scaling
allowed themodel to capture the embryo temperature response curve
with reasonable accuracy across a broader temperature range than

Fig. 7 | Decreasing the cyclin synthesis rate decreases the viable
temperature range. A Influence of changing the basal cyclin synthesis rate by a
factor up to 5 on the shape of the temperature response curves. The degradation
rate is scaled up to a factor of 3. The two left panels show simulations of the 2-ODE
model of the cell cycle oscillator using a parameter set obtained from the ABC
method (one of the gray lines in Fig. 5B), plotting the temperature-dependence of
the cyclin synthesis rate and the corresponding cell cycle period. The right panel
shows the cell cycle duration as a function of temperature obtained from

encapsulated extractswith 0, 4, or 6μMmorpholino (MO)oligonucleotides against
isoforms of Xenopus cyclin B1/B2mRNA species, thus lowering the cyclin synthesis
rate. B Different scenarios in temperature dependence of cyclin synthesis and
degradation lead to different non-Arrhenius scaling of cell cycle oscillations. While
a biphasic cyclin synthesis rate leads to a double exponential response curve, the
imbalance in activation energies introduces a curved non-Arrhenius response at
lower temperatures, which is critical for reproducing the experimental data mea-
sured in frog egg extract. Source data are provided as a Source Data file98.
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would be achieved by simply scaling the extract response curve.
(Fig. 7B, bottom left). The embryo data did deviate at lower tempera-
tures, suggesting additional embryo-specific dynamics not captured
by our simple model.

Finally, we askedwhether eithermechanism, biphasic synthesis or
an imbalance in Arrhenius scaling exponents, could alone account for
the observed temperature dependence. Using our calibrated model,
we isolated each effect and found that both independently produce
non-Arrhenius temperature scaling (Fig. 7B, middle-right). However,
neither mechanism alone reproduced the fine structure of the
experimental curves, indicating that both are required to explain the
wide temperature adaptability of the embryonic cell cycle oscillator. In
particular, a biphasic cyclin synthesis rate leads to a double expo-
nential response curve, capturing deviations at high temperatures, but
still appears Arrhenius-like at low temperatures. Especially for the
extract data, such a model fails to capture the strong low-temperature
deviations. In contrast, the imbalance in activation energies introduces
a curved non-Arrhenius response across all temperatures, yet it fails to
capture the sharp increase in period at high temperatures.

Taken together, these findings support our model, which attri-
butes the non-Arrhenius scaling properties of the early embryonic cell
cycle oscillator to two concurrent mechanisms. At low temperatures,
the scaling is primarily driven by an imbalance between opposing
cyclin synthesis and degradation rates. In contrast, at high tempera-
tures, the biphasic nature of cyclin synthesis plays a critical role in
capturing the upward curvature of the oscillation period.

Discussion
Previous work suggested that the early embryonic cell cycle scales
similarly with temperature in several organisms30–33. Here we have
extended these measurements to Xenopus tropicalis and Danio rerio,
and have supplemented previous work on Xenopus laevis with addi-
tional types of measurements. We found that although the periods of
the cell cycle at the organisms’ nominal temperatures vary from about
5min for C. elegans and C. briggsae to about 25min for X. laevis, the
temperature scaling of the periods is quite similar. The apparent
Arrhenius energies averaged 75 ± 7 kJ/mol (mean± std. dev.,n = 6), and
the average Q10 value at 20 °C was 2.8 ± 0.2 (mean± std. dev., n = 6)
(Figs. 1, 2). In all cases the periods deviated from the Arrhenius rela-
tionship at high temperatures, and for X. laevis, the Arrhenius plots
were non-linear throughout the range of permissible temperatures.

In some ways it is perhaps not surprising that the temperature
scaling data could be approximated reasonably well by the Arrhenius
equation. Crapse et al.32 have shown computationally that chaining
together a sequence of chemical reactions results in only minor
deviations from ideal Arrhenius scaling if one assumes that the indi-
vidual enzymes’ activation energies do not differ greatly. Experiments
have shown that Min protein oscillations, crucial for bacterial cell
division, also display Arrhenius-like scaling behaviors88. The classic
chemical oscillator, the Belousov-Zhabotinsky reaction, approximately
obeys the Arrhenius equation89–91, and in general, many biological
processes at least approximately conform to theArrhenius equation or
one of the proposed modified versions of the Arrhenius equation15–22.

These observations notwithstanding, it was not obvious to us why
a complex oscillator circuit, with non-linearities and feedback loops,
should yield even approximately Arrhenius temperature scaling, and
what the origins of the experimentally observed deviations from
Arrhenius scaling might be. Through modeling studies, we identified
two plausible mechanisms for the observed non-Arrhenius behavior:
an emergent mechanism resulting from differences in the Arrhenius
energies of opposing enzymes in the network (Fig. 3D, Case 3), and a
biphasic temperature dependence for one or more of the critical
individual enzymes (Fig. 3D, Case 4). A priori, either or both of these
mechanisms could pertain.

Experimental observations combinedwithmodel-based inference
suggest that a key step in the oscillator circuit — the synthesis of the
mitotic cyclin protein — exhibits a strongly biphasic dependence on
temperature. While intact Xenopus embryos do not survive above
29 °C, cell-free cycling extracts can continue oscillating at tempera-
tures exceeding 30 °C. Above approximately 30 °C, the rate of cyclin
synthesis (as inferred from the Cdk1 activity sensor) and the rate of
progression through interphase clearly decrease with increasing tem-
perature, whereas at lower temperatures they increase with increasing
temperature (Fig. 4). Our hypothesis is that above some maximum
permissible temperature, the imbalance between the cyclin synthesis
and degradation rates causes the oscillator to fail and the cell cycle to
arrest.

Cyclin synthesis and degradation also scaled differently with
temperature at the low end of the permissible temperature range. This
was inferred from fitting the parameters of the two-ODE model to the
experimental data (Fig. 5), and then was directly shown by in vitro
assays of cyclin synthesis and degradation (Fig. 6). This means that
below a critical temperature, cyclin synthesis and degradation should
again be out of balance, causing oscillations to cease.

To further test this hypothesis, extracts were treated with a mix-
ture of fourmorpholino oligonucleotides, two for cyclin B1 and two for
cyclin B2, to inhibit cyclin translation enough to slow but not block the
cell cycle at normal temperatures (see Materials and Methods). We
asked whether this decreased the maximum permissible temperature,
raised the minimum permissible temperature, or both. We found that
both temperature limits were similarly affected, and the operating
range of the cell cycle oscillator was narrowed, as predicted by our
simple two ODE model (Fig. 7). This finding is consistent with the
hypothesis that both operating limits are determined by the balance
between cyclin synthesis and degradation.

One question then is, why did evolution not arrive at a system
where cyclin synthesis and degradation did not go out of balance, at
high and low temperatures? We suspect that there are trade-offs
between competing performance goals for the oscillator and its
components. Perhaps the molecular flexibility required to make pro-
tein synthesis run as fast as possible at the temperatures typically
experienced by an ectotherm render the ribosomes vulnerable to
unfolding at slightly higher temperatures. Likewise, cyclin synthesis
and degradationmight work best at normal temperatures even if their
temperature scaling does not perfectly match the overall system’s
activation energy, suggesting that the observed Ea reflects a trade-off
between fast reaction rates and ideal scaling.

While our study focuses on early embryonic systems that are
largely transcriptionally silent, recent work in yeast92 has shown that
temperature-induced changes in gene expression can drive fate deci-
sions, and synthetic bacterial circuits have been engineered to achieve
temperature compensation through specific protein modifications93.
These findings highlight complementary mechanisms of thermal
adaptation, from network-level emergent scaling, as we demonstrate
here, to dedicated molecular adaptations. Furthermore, synthetic
gene circuit evolution studies94 offer promising opportunities to
explore how temperature robustness can arise in engineered systems,
providing a future experimental platform to test and extend the
principles uncovered here.

One final question is how the behaviors seen here compare to
those of the same circuit in endotherms, organisms that have at great
metabolic cost freed their biochemistry from needing to function
reliably over such wide temperature ranges. Although the four enzy-
matic processes individually assessed here (cyclin synthesis, cyclin
degradation, Cdk1 activity, and PP2A-B55 activity) differed in their
temperature scaling, they did not differ by that much; their Ea values
averaged to 60 kJ/mol with a standard deviation of 16 kJ/mol or 27%. It
seems plausible that endothermy might allow enzymes with a wider
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range of activation energies to be used than would be possible in
ectotherms.

Methods
Animal care
For the embryo experiments, the Ethical Committee for Animal
Experimentation KU Leuven approved the frog handling, including the
injections and the egg collection, under Project 107-2021. All frog
colonies were housed in recirculating systems with temperature and
water quality regularly monitored. For the extract experiments, all
experiments and animal procedures were conducted in compliance
with ethical regulations and the description in the Institutional Animal
Care and Use Committee (IACUC) approved protocol (PRO00011571)
at the University of Michigan-Ann Arbor.

Xenopus egg extract
Cell-free cycling extracts and CSF extracts were made from Xenopus
laevis eggs following a published protocol from Murray83. For cycling
extracts, this protocol was adapted as in81. Extracts for Fig. 3B–G and
Fig. 4 were then supplemented with 1μM Cdk1-FRET sensor, as
described in Maryu and Yang78, and also with 1X energy mix (7.5mM
Creatine phosphate, 5mM ATP, 1mM EGTA, 10mM MgCl2). Work
from the Yang labdemonstrated that an intermediate range of dilution
of the extracts can improve the number of cycles, with the best activity
at around 30% dilution87. As a result, for the data described here, the
dilution was kept constant at 30% with extract buffer (100mM KCl,
0.1mM CaCl2, 1mM MgCl2, 10mM potassium HEPES, 50 nM sucrose,
pH 7.8). Extracts for the biochemical assays in Fig. 4A were undiluted.

The extract was encapsulated via a water-in-oil emulsion using a
microfluidic device. The fabrication of the device and droplet gen-
eration followed a previously published protocol95. Briefly, cycling
extract (water phase) was mixed with 2% 008-FluoroSurfactant in
HFE7500 (Ran Biotechnologies, Inc.) (oil phase) inside a microfluidic
device driven by an Elveflow OB1 multi-channel flow controller (Elve-
flow). Air pressure was 2 psi for both the extract and oil channels. After
droplets were generated, they were loaded into VitroComhollow glass
tubes with a height of 100 μm (VitroCom, 5012) pre-coated with tri-
chloro (1H,1H,2H,2H-perfluorooctyl) silane, and then immersed in a
glass-bottom dish (WillCo Wells) filled with heavy mineral oil (Macron
Fine Chemicals) to prevent evaporation.

Temperature gradient generation
A custom plastic microscope stage was fabricated to fit two aluminum
plates on each side of the imaging dish. Each aluminum plate was
attached to a TEC1-12706 40*40MM12V 60WHeatsink Thermoelectric
Cooler Cooling Peltier Plate (HiLetGo) using thermal conductive glue
(G109, GENNEL). The plate designated for temperatures above room
temperature had an additional heatsink (40mmx40mmx20mm,
black aluminum, B07ZNX839V, Easycargo) and a cooling fan to
improve performance. Theplate designated for cold temperatures had
an additional liquid cooling system (Hydro Series 120mm, CORSAIR)
attached with thermal conductive glue.

Peltier devices were controlled via two CN79000 1/32 DIN dual-
zone temperature controllers (Omega). In all experiments, the target
temperature was set to 65 °C and 1 °C for the hot and cold plates,
respectively. With both plates on, it was always the case that the hot
plate reached its target temperature and stayed constant within
5–10min, and the cold plate stayed stable at 10 °C.

The imaging dish was attached to the aluminum plates with
Thermal adhesive tape 2-5-8810 (DigiKey) to ensure proper thermal
conduction. Temperature was logged via 4 K-Bead-Type thermo-
couples placed on the imaging dish touching the bottom surface. Data
was acquired using a 4-channel SD Card Logger 88598 AZ EB (AZ
Instruments). Room temperature was also captured using the same
method via a thermocouple attached to the microscope stage.

Western blotting
Cycling extracts were prepared according to the method by Murray
et al.83, except that eggswere activatedwith calcium ionophoreA23187
(5μl of a 10mg/ml stockof A23187 in 100ml0.2xMMR) rathgrher than
with electric shock. After preparing the extracts, they were distributed
to several eppendorf tubes and brought to a specified temperature
between 16 and 26 °C within 20min. 2μl samples were taken every
4min (every 8min at 16 °C) and immediately frozenondry ice. To each
2 μl aliquot, 48μl of SDS sample buffer supplemented with DTT was
added, and the samples were boiled during 10min at 95 °C. 12μl of the
cycling extract samples and 4μl of the reference samples (CSF extract
prepared according to the method by Murray et al.83, were run on 10%
Criterion TGX Precast protein gels and transferred to a PVDF mem-
brane using the Bio-Rad Trans-blot Turbo system. After blocking in
milk (4%w/v in TBST), the blotswere incubatedwith a 1/500dilution of
anti-cyclinB2 antibody (X121.10, SantaCruz) overnight at 4 °C followed
by a 1/10.000 dilution of anti-mouse IgG HRP-linked whole secondary
antibody (GE Healthcare NA931), during 1 hour at room temperature.
Finally, the blots were developed using Supersignal West Femto che-
miluminescent substrate. The images of the blots can be found on the
Zenodo repository96.

H1 kinase activity assay
H1 kinase assayswereperformed following the protocol described in86.
Briefly, 2μL of frozen extract was diluted in 98μL of EB buffer (80mM
β-glycerophosphate, 20mM EGTA, 15mM MgCl, pH 7.4). Ten micro-
liters of this diluted extract were then combinedwith 10μL of reaction
buffer containing: 20mM HEPES (pH 7.5), 5mM EGTA, 10mM MgCl,
200mM ATP, 10μg histone H1 (Millipore, #14-155), 20μM PKA inhi-
bitor IV (Santa Cruz Biotechnology, #sc-3010), and 2.5μCi [γ−32P]-ATP.
Reactions were immediately incubated for 3min at 20 °C. Reactions
were stopped by adding 20μL of 3 × SDS-PAGE loading dye. Five
microliters of each sample were loaded onto a 10% Criterion Tris-HCl
precast gel (Bio-Rad, #3450011), separated by electrophoresis, trans-
ferred to a PVDF membrane, and dried. Radiolabeled histone H1 was
visualized using a BAS Storage Phosphor screen (GE Healthcare) and
imaged on a Typhoon 8600 Phosphorimager (Molecular Devices).

APC/C activity assay
APC/C activity assays were performed as described previously66.
Briefly, securin-CFP was synthesized by in vitro translation using the
TNT SP6High-YieldWheatGermProtein Expression System (Promega,
Cat. No. L3261). For each reaction, 3–4μL of translated securin-CFP
was added to 50–80μL of Xenopus egg extract. The mixture was
divided into 20μL aliquots and transferred to a black 384-well plate
(Greiner, Cat. No. 781076). Fluorescence of securin-CFPwasmonitored
in real time using a FlexStation II plate reader (Molecular Devices).
Degradation rates were calculated by normalizing fluorescence values
to the starting intensity and background controls, followed by fitting a
single exponential decay curve. All measurements were performed in
duplicate or triplicate.

PP2A-B55 activity assay
PP2A-B55 activity assays were performed as previously described97

with slight modifications. In brief, maltose-binding protein fused to
amino acids 38 to 62 of Xenopus laevis Cdc20L (Fizzy) was recombi-
nantly expressed in E. coli and affinity-purified using amylose resin.
Without elution, about 1 mg of protein was phosphorylated in 200μL
kinase reactionbuffer (20mMHEPESpH7.7, 10mMMgCl2, 15mMKCl,
1mM EGTA, 5mMNaF, 20mM β-glycerophosphate, 10μMATP, 2.5μg
cyclinA2/CDK2 (Sigma, C0495), 60μCi [γ−32P]-ATP) overnight at 37 °C.
The resin was extensively washed, and the labeled substrate eluted
with elution buffer (20mM Tris-HCl pH 7.5, 150mM NaCl, 10mM
maltose). The substrate was concentrated and stored at −20 °C until
use. For measuring PP2A-B55 activity, 1μL of substrate (> 15,000 cpm)
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was added to 5μL of extract and incubated for 12min at 20 °C (3min
for the time course measurements). The reaction was stopped by
adding 20μL 10% ice-cold TCA and stored on ice until further pro-
cessing. Samples were spun for 10min at 14,000 g, and 20μL of the
supernatant was transferred to a fresh tube. Thirty microliters of 5%
ammonium molybdate in 0.5M sulfuric acid was added and mixed.
Fifty microliters of water-saturated heptane/butanol was added and
the solution vortexed for 30 s. The solution was spun for 10min at
14,000 g, and 30μL of the organic upper phase was used for the
detection of the inorganic phosphate using a scintillation counter.

Time-lapse fluorescence microscopy
For Figs. 4, 5, 7, imaging was carried out on an inverted Olympus IX83
fluorescencemicroscopewith a 4 × air objective, a light-emitting diode
fluorescence light source, a motorized x-y stage, and a digital com-
plementary metal-oxide-semiconductor camera (C13440-20CU,
Hamamatsu). The open-source software μManager v1.4.23 was used to
control the automated imaging acquisition. Bright-field and multiple
fluorescence images of CFP, FRET, and YFP were recorded at a fre-
quency of one cycle every 3 to 7min for 40 to 50 h for each sample.

Image processing and analysis methods
Grids of images were captured and subsequently stitched together
using ImageJ’s Grid/Pairwise Stitching plug-in, in conjunction with
additional pipeline code written in Fiji/Java. Bright-field images from
the first framewere used to generate stitching parameters, whichwere
fed to ImageJ to stitch each channel at each frame consecutively. The
FRET ratio was calculated as in Maryu and Yang78.

For Figs. 4, 5, 7, custom scripts inMATLAB 2020a and ImageJ were
written to perform image processing. Briefly, each microscope posi-
tion was processed by manually selecting the region containing the
tube of interest and then algorithmically cropping and resizing that
region in all channels. Then, bright-field images were used for indivi-
dual droplet segmentation and tracking using Trackmate 7.12.1. Only
individual droplets whose radius was smaller than 100μm and track
started within the first 60min of the experiment were selected for
further analysis. FRET ratio intensity peaks and troughswere first auto-
selected and then manually checked and corrected using custom
Python scripts. Rising and falling periods were calculated from this
data. All code is available at ref. 98. The tracking data can be found on
the Zenodo repository96.

Morpholino oligonucleotides
A combination of four morpholino antisense oligonucleotides (Gene
Tools, LLC) at equal concentrations was designed, and their sequences
are as follows:

• Morpholino anti-Xenopus-CyclinB1 (ccnb1_a): ACATTTTCCCAAA
ACCGACAACTGG

• Morpholino anti-Xenopus-CyclinB1 (ccnb1_b): ACATTTTCTCAAG
CGCAAACCTGCA

• Morpholino anti-Xenopus-CyclinB2 (ccnb2_l): AATTGCAGCCCGA
CGAGTAGCCAT

• Morpholino anti-Xenopus-CyclinB2 (ccnb2_s): CGACGAGTAGCCA
TCTCCGGTAAAA

We applied a total concentration of 0, 4, or 6μM of the mor-
pholino cocktail to the cycling Xenopus extracts to suppress the
endogenous translation of cyclin B1/B2. These concentrations were
chosen within a dynamic range that could inhibit cyclin translation but
should not terminate the cell cycle at normal temperatures, based on
microfluidic channel tuning experiments99.

Fitting of scaling laws
For the fitting of Arrhenius and other functional forms, we always
binned the data per integer temperature value and then took the

median per temperature. This results in a dataset with one rate/dura-
tion per temperature, which is the basis for the fits.

For fitting the Arrhenius equation, we use linear regression on the
logarithm of the duration Δt and 1/T where T is the absolute
temperature.

We also fitted a Double Exponential (DE) function, which contains
two exponential functions and four free parameters:

Δt =A1e
�Ea1
RT +A2e

�Ea2
RT : ð5Þ

To fit the four parameters, we use a two-step approach. First, on a
manually selectedArrhenius interval,wefit the standardArrhenius law.
This yields fitted values of the duration P̂. Next, we take the durations
for the other temperatures and fit an Arrhenius law on the differences
P � P̂, such that the sum of these fits describes the whole curve. Next,
we used the resulting parameters as starting values in a full nonlinear
fit of Eq. (5) using the curve_fit function from scipy.

The Quadratic Exponential (QE) function, which contains three
free parameters, is given by

ΔtðTÞ=Ae
�Ea
R

1
T +

B
T2

� �
:

ð6Þ

It can be fit using standard least squares on the logarithm of the
duration as a function of 1/T.

The Power law - Exponential (PE) function is given by

ΔtðTÞ=ATBe
�Ea
RT : ð7Þ

The fit is done using standard least squares. The code for fitting the
functions is all included in the GitHub repository.

Note that for the fitting of the data for X. tropicalis embryos, we
left out the point at the lowest temperature since this seems to be an
outlier.

The bootstrap procedure we used to obtain distributions for the
fitted activation energies is described in detail in Supplemen-
tary Note 2.

ODE modeling
The equations and parameter values for both the 2ODEmodel and the
5ODEmodel are described in SupplementaryNote 3. Simulationswere
performed in Python using solve_ivp from the scipy package. In
general, we simulated for a time of 1000min using the BDF solver.

To detect the cycle period from a simulation, we detect peaks in
the timeseries of the cyclin variable, and use the last two peaks to
determine the period. If these peaks are too different in their y-values,
we don’t consider the system oscillating, as this would correspond to a
damped rather than a sustained oscillation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. • The western blots and
droplet tracking data have been deposited in a Zenodo repository96,
publicly available as of the date of publication. • All datasets necessary
to reproduce the figures in the manuscript have been deposited in a
Zenodo repository98, publicly available as of the date of publica-
tion. Source data are provided with this paper.

Code availability
Codes are provided with this paper. • All datasets and original mod-
eling codes necessary to reproduce the figures in the manuscript have
been deposited in a Zenodo repository98, publicly available as of the
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date of publication. • All codes for image processing and analysis
methods have been deposited in a Zenodo repository98, publicly
available as of the date of publication.

References
1. Wilson, J. Environment and birth defects. (Academic Press, New

York, 1973).
2. Cossins, A.Temperature biology of animals. (Springer, 1987).
3. Gillooly, J., Brown, J., West, G., Van Savage, M. & Charnov, E.

Effects of size and temperature on metabolic rate. Science 293,
2248 LP – 2251 (2001).

4. Gillooly, J., Charnov, E., West, G., Van Savage, M. & Brown, J.
Effects of size and temperature on developmental time. Nature
417, 70–73 (2002).

5. Hochachka, P. & Somero, G. Biochemical adaptation: mechanism
and process in physiological evolution. (Oxford University
Press, 2002).

6. Sunday, J. M. et al. Thermal-safety margins and the necessity of
thermoregulatory behavior across latitude and elevation. Proc.
Natl. Acad. Sci. 111, 5610–5615 (2014).

7. Pörtner, H. O. et al. Trade-offs in thermal adaptation: The need for
a molecular to ecological integration. In Physiological and Bio-
chemical Zoology, 79, 295–313 (Physiol Biochem Zool, 2006).

8. Bennett, J. M. et al. The evolution of critical thermal limits of life on
earth. Nat. Commun. 12, 1198 (2021).

9. Levy, O. et al. Resolving the life cycle alters expected impacts of
climate change. Proc. R. Soc. B: Biol. Sci. 282, 20150837 (2015).

10. Mitchell, D. et al. Attributing humanmortality during extreme heat
waves to anthropogenic climate change. Environ. Res. Lett. 11,
74006 (2016).

11. Gilbert, S. Developmental biology. (Sinauer Associates: Sunder-
land, 2000).

12. Radchuk,V., Turlure,C.&Schtickzelle,N. Each life stagematters: the
importance of assessing the response to climate change over the
complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).

13. Mitchell, N. J. & Janzen, F. J. Temperature-Dependent sex deter-
mination and contemporary climate change. Sex. Dev. 4,
129–140 (2010).

14. Lillie, F. R. & Knowlton, F. P. On the effect of temperature on the
development of animals. Zool. Bull. 1, 179–193 (1897).

15. Laidler, K. J. & King, M. C. Development of transition-state theory.
J. Phys. Chem. 87, 2657–2664 (1983).

16. Laidler, K. J. The development of the Arrhenius equation. J. Chem.
Educ. 61, 494–498 (1984).

17. Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of
ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

18. Ratkowsky, D. A., Olley, J. & Ross, T. Unifying temperature effects
on the growth rate of bacteria and the stability of globular pro-
teins. J. Theor. Biol. 233, 351–362 (2005).

19. Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance
curves, phenotypic plasticity, and the time scales of temperature
exposure. Integr. Comp. Biol. 51, 691–702 (2011).

20. Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the
temperature dependence of physiological and ecological traits.
Proc. Natl. Acad. Sci. USA 108, 10591–10596 (2011).

21. Sinclair, B. J. et al. Canwe predict ectotherm responses to climate
change using thermal performance curves and body tempera-
tures? Ecol. Lett. 19, 1372–1385 (2016).

22. Rezende, E. L. & Bozinovic, F. Thermal performance across levels
of biological organization.Philos. Trans. B 374, 20180549 (2019).

23. Kashefi, K. & Lovley, D. R. Extending the upper temperature limit
for life. Science 301, 934 (2003).

24. Knies, J. L. & Kingsolver, J. G. Erroneous Arrhenius: modified
Arrhenius model best explains the temperature dependence of
ectotherm fitness. Am. Nat. 176, 227–233 (2010).

25. DeLong, J. P. et al. The combined effects of reactant kinetics and
enzyme stability explain the temperature dependence of meta-
bolic rates. Ecol. Evol. 7, 3940–3950 (2017).

26. Daniel, R. M., Danson,M. J. & Eisenthal, R. The temperature optima
of enzymes: a new perspective on an old phenomenon. Trends
Biochem. Sci. 26, 223–225 (2001).

27. Arcus, V. L. & Mulholland, A. J. Temperature, dynamics, and
enzyme-catalyzed reaction rates. Annu. Rev. Biophys. 49,
163–180 (2020).

28. Somero, G. N. The cellular stress response and temperature:
function, regulation, and evolution. J. Exp. Zool. Part A: Ecol.
Integr. Physiol. 333, 379–397 (2020).

29. Persson, L. B., Ambati, V. S. & Brandman, O. Cellular control of
viscosity counters changes in temperature and energy availability.
Cell 183, 1572–1585.e16 (2020).

30. Kuntz, S. G. & Eisen, M. B. Drosophila embryogenesis scales uni-
formly across temperature in developmentally diverse species.
PLoS Genet. 10, e1004293 (2014).

31. Begasse, M. L., Leaver, M., Vazquez, F., Grill, S. W. & Hyman, A. A.
Temperature dependence of cell division timing accounts for a
shift in the thermal limits of c.elegans and C.briggsae. Cell Rep.
10, 647–653 (2015).

32. Crapse, J. et al. Evaluating the Arrhenius equation for develop-
mental processes. Mol. Syst. Biol. 17, e9895 (2021).

33. Falahati, H., Hur, W., Di Talia, S. & Wieschaus, E. Temperature-
Induced uncoupling of cell cycle regulators. Dev. Biol. 470,
147–153 (2021).

34. Gelens, L., Huang, K. C. & Ferrell, J. E. How does the Xenopus
laevis embryonic cell cycle avoid spatial chaos?. Cell Rep. 12,
892–900 (2015).

35. Fontanilla, R. A. & Nuccitelli, R. Characterization of the sperm-
induced calcium wave in Xenopus eggs using confocal micro-
scopy. Biophys. J. 75, 2079–87 (1998).

36. Hara, K., Tydeman, P. & Kirschner, M. A cytoplasmic clockwith the
same period as the division cycle in Xenopus eggs. Proc. Natl.
Acad. Sci. USA 77, 462–466 (1980).

37. Rankin, S. & Kirschner, M. W. The surface contraction waves of
Xenopus eggs reflect the metachronous cell-cycle state of the
cytoplasm. Curr. Biol. 7, 451–454 (1997).

38. Chang, J. B. & Ferrell Jr, J. E. Mitotic trigger waves and the spatial
coordination of the Xenopus cell cycle. Nature 500,
603–607 (2013).

39. Nolet, F. E. et al. Nuclei determine the spatial origin of mitotic
waves. eLife 9, e52868 (2020).

40. Afanzar, O., Buss, G. K., Stearns, T., Ferrell, J. & James, E. The
nucleus serves as the pacemaker for the cell cycle. eLife 9,
e59989 (2020).

41. Bischof, J. et al. A cdk1 gradient guides surface contraction waves
in oocytes. Nat. Commun. 8, 849 (2017).

42. Wigbers, M. C. et al. A hierarchy of protein patterns robustly
decodes cell shape information. Nat. Phys. 17, 578–584 (2021).

43. Michaud, A. et al. Cortical excitability and cell division. Curr. Biol:
CB 31, R553–R559 (2021).

44. Anderson, G. A., Gelens, L., Baker, J. C. & Ferrell, J. E. Desyn-
chronizing embryonic cell division waves reveals the robustness
of Xenopus laevis development. Cell Rep. 21, 37–46 (2017).

45. Satoh, N. ‘Metachronous’ cleavage and initiation of gastrulation in
amphibian embryos. Dev., Growth Differ. 19, 111–117 (1977).

46. Boterenbrood, E. C., Narraway, J. M. & Hara, K. Duration of clea-
vage cycles and asymmetry in the direction of cleavage waves
prior to gastrulation in Xenopus laevis.Wilhelm. Roux’s. Arch. Dev.
Biol. 192, 216–221 (1983).

47. Lepock, J. R. Measurement of protein stability and protein dena-
turation in cells using differential scanning calorimetry. Methods
35, 117–125 (2005).

Article https://doi.org/10.1038/s41467-025-62918-0

Nature Communications |         (2025) 16:8045 16

www.nature.com/naturecommunications


48. Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. Bio-
numbers the database of key numbers in molecular and cell
biology. Nucleic Acids Res. 38, D750–D753 (2009).

49. Elias,M.,Wieczorek,G., Rosenne, S. & Tawfik, D. S. Theuniversality
of enzymatic rate-temperature dependency. Trends Biochem. Sci.
39, 1–7 (2014).

50. Hayden, L., Hur, W., Vergassola, M. & Di Talia, S. Manipulating the
nature of embryonic mitotic waves. Curr. Biol. 32,
4989–4996 (2022).

51. Edgar, B. A., Kiehle, C. P. & Schubiger, G. Cell cycle control by the
nucleo-cytoplasmic ratio in early Drosophila development. Cell
44, 365–372 (1986).

52. Jacobus H. van ‘t Hoff Etudes de dynamique chimique. Vol. 1.
(Amsterdam: Frederik Muller, 1899).

53. Eyring,H. The ActivatedComplex in Chemical Reactions. J. Chem.
Phys. 3, 107–115 (1935).

54. Johnson, F. H. & Lewin, I. The growth rate of E. coli in relation to
temperature, quinine and coenzyme. J. Cell. Comp. Physiol. 28,
47–75 (1946).

55. Voits, J. B. & Schwarz, U. S. The generic temperature response of
large biochemical networks. Preprint at arXiv https://arxiv.org/
abs/2403.17202. (2024).

56. Evans,M. G. & Polanyi, M. Some applications of the transition state
method to the calculation of reaction velocities, especially in
solution. Trans. Faraday Soc. 31, 875–894 (1935).

57. Arroyo, J. I., Díez, B., Kempes, C. P., West, G. B. & Marquet, P. A. A
general theory for temperature dependence in biology. Proc. Natl.
Acad. Sci. 119, e2119872119 (2022).

58. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase cdk1.
Nature 425, 859–864 (2003).

59. Holt, L. J., Krutchinsky, A. N. & Morgan, D. O. Positive feedback
sharpens the anaphase switch. Nature 454, 353–357 (2008).

60. Solomon, M. J., Glotzer, M., Lee, T. H., Philippe, M. & Kirschner, M.
W. Cyclin activation of p34cdc2. Cell 63, 1013–1024 (1990).

61. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Systems-level dissec-
tion of the cell-cycle oscillator: bypassing positive feedback pro-
duces damped oscillations. Cell 122, 565–578 (2005).

62. Kamenz, J., Gelens, L. & Ferrell, J. E. Bistable, biphasic regulation
of pp2a-b55 accounts for the dynamics of mitotic substrate
phosphorylation. Curr. Biol. 31, 794–808.e6 (2021).

63. Nov k, B. & Tyson, J. J. Design principles of biochemical oscilla-
tors.Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

64. Tsai, T. Y. -C. et al. Robust, tunable biological oscillations from
interlinked positive and negative feedback loops. Science 321,
126–129 (2008).

65. Parra-Rivas, P., Ruiz-Reynés, D. & Gelens, L. Cell cycle oscillations
driven by two interlinked bistable switches. Mol. Biol. Cell 34,
ar56 (2023).

66. Yang,Q. & Ferrell, J. E. TheCdk1-APC/C cell cycle oscillator circuit
functions as a time-delayed, ultrasensitive switch. Nat. Cell Biol.
15, 519–525 (2013).

67. Kim, S. Y. & Ferrell, J. E. Substrate competition as a source of
ultrasensitivity in the inactivation of wee1. Cell 128,
1133–1145 (2007).

68. Trunnell, N. B., Poon, A. C., Kim, S. Y. & Ferrell, J. E. Ultra-
sensitivity in the regulation of Cdc25C by Cdk1. Mol. Cell 41,
263–274 (2011).

69. Mochida, S., Maslen, S. L., Skehel, M. & Hunt, T. Greatwall phos-
phorylates an inhibitor of protein phosphatase 2A that is essential
for mitosis. Science 330, 1670–1673 (2010).

70. Mochida, S. & Hunt, T. Protein phosphatases and their regulation
in the control of mitosis. EMBO Rep. 13, 197–203 (2012).

71. Gharbi-Ayachi, A. et al. The substrate of Greatwall kinase, Arpp19,
controls mitosis by inhibiting protein phosphatase 2A. Science
330, 1673 (2010).

72. Hopkins, M., Tyson, J. J. & Novák, B. Cell-cycle transitions: a
common role for stoichiometric inhibitors. Mol. Biol. Cell 28,
3437–3446 (2017).

73. Tsai, T., Theriot, J. & Ferrell Jr, J. Changes in oscillatorydynamics in
the cell cycle of early Xenopus laevis embryos. PLOS Biol. 12,
1–15 (2014).

74. Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. Approx-
imate Bayesian computation scheme for parameter inference and
model selection in dynamical systems. J. R. Soc. Interface 6,
187–202 (2009).

75. Schälte, Y., Klinger, E., Alamoudi, E. & Hasenauer, J. pyABC: effi-
cient and robust easy-to-use approximate Bayesian computation.
J. Open Source Softw. 7, 4304 (2022).

76. Mochida, S., Rata, S., Hino, H., Nagai, T. & Novák, B. Two bistable
switches govern M-phase entry. Curr. Biol. 26, 3361–3367 (2016).

77. De Boeck, J., Rombouts, J. & Gelens, L. A modular approach for
modeling the cell cycle based on functional response curves.
PLOS Comput. Biol. 17, 1–39 (2021).

78. Maryu, G. & Yang, Q. Nuclear-cytoplasmic compartmentalization
of cyclin B1-CDK1 promotes robust timing of mitotic events. Cell
Rep. 41, 111870 (2022).

79. Gavet, O. & Pines, J. Progressive activation of cyclinb1-cdk1 coor-
dinates entry to mitosis. Dev. cell 18, 533–543 (2010).

80. Deneke, V. E., Melbinger, A., Vergassola, M. & Di Talia, S. Waves of
cdk1 activity in s phase synchronize the cell cycle in drosophila
embryos. Dev. cell 38, 399–412 (2016).

81. Guan, Y. et al. A robust and tunable mitotic oscillator in artificial
cells. eLife 7, e33549 (2018).

82. Guan, Y.,Wang, S., Jin,M., Xu, H. & Yang,Q. Reconstitution of cell-
cycle oscillations in microemulsions of cell-free Xenopus egg
extracts. J. Vis. Exp. e58240 (2018).

83. Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early
embryonic cell cycle. Nature 339, 275–280 (1989).

84. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle
oscillator: Hysteresis and bistability in the activation of Cdc2. Nat.
Cell Biol. 5, 346–351 (2003).

85. Piñeros, L. et al. The nuclear-cytoplasmic ratio controls the cell
cycle period in compartmentalized frogeggextract.Curr. Biol.35,
1–16.e1–e6 (2025).

86. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36,
581–605 (1991).

87. Jin,M., Tavella, F.,Wang, S. & Yang, Q. In vitro cell cycle oscillations
exhibit a robust and hysteretic response to changes in cytoplasmic
density. Proc. Natl. Acad. Sci. 119, e2109547119 (2022).

88. Touhami, A., Jericho, M. & Rutenberg, A. D. Temperature depen-
dence of MinD oscillation in Escherichia coli: running hot and fast.
J. Bacteriol. 188, 7661–7 (2006).

89. Aller Pellitero, M., Álvarez Lamsfus, C. & Borge, J. The Belousov-
Zhabotinskii reaction: improving the Oregonator model with the
Arrhenius equation. J. Chem. Educ. 90, 82–89 (2013).

90. Blandamer, M. J. & Roberts, D. L. Analysis of the dependence on
temperature of the frequency of oscillation of the Belousov-
Zhabotinskii reaction. J. Chem. Soc. 73, 1056 (1977).

91. Nogueira, P. A., Batista, B. C., Faria, R. B. & Varela, H. The effect of
temperature on the dynamics of a homogeneous oscillatory sys-
tem operated in batch and under flow. RSC Adv. 4,
30412–30421 (2014).

92. Charlebois, D. A., Hauser, K., Marshall, S. & Balázsi, G. Multiscale
effects of heating and cooling on genes and gene networks. Proc.
Natl. Acad. Sci. 115, E10797–E10806 (2018).

93. Hussain, F. et al. Engineered temperature compensation in a
synthetic genetic clock. Proc. Natl. Acad. Sci. 111, 972–977 (2014).

94. Helenek, C. et al. Synthetic gene circuit evolution: Insights and
opportunities at the mid-scale. Cell Chem. Biol. 31,
1447–1459 (2024).

Article https://doi.org/10.1038/s41467-025-62918-0

Nature Communications |         (2025) 16:8045 17

https://arxiv.org/abs/2403.17202
https://arxiv.org/abs/2403.17202
www.nature.com/naturecommunications


95. Sun, M., Li, Z., Wang, S., Maryu, G. & Yang, Q. Building dynamic
cellular machineries in droplet-based artificial cells with single-
droplet tracking and analysis. Anal. Chem. 91, 9813–9818 (2019).

96. Rombouts, J. et al. Western blots and droplet tracking data for
manuscript “mechanistic origins of temperature scaling in the
early embryonic cell cycle”. https://doi.org/10.5281/zenodo.
15591678 (2025).

97. Mochida, S. & Hunt, T. Calcineurin is required to release Xenopus
egg extracts frommeiotic m phase. Nature 449, 336–340 (2007).

98. Rombouts, J. et al. Combined code archive for manuscript
“Mechanistic Origins of Temperature Scaling in the Early
Embryonic Cell Cycle”. https://doi.org/10.5281/zenodo.
16269314 (2025).

99. Li, Z. et al. Comprehensive parameter spacemapping of cell cycle
dynamics under network perturbations. ACS Synth. Biol. 13,
804–815 (2024).

100. Faber, J. &Nieuwkoop, P. Normal table of Xenopus laevis (Daudin):
a systematical & chronological survey of the development from
the fertilized egg till the end of metamorphosis. (Garland Sci-
ence, 1994).

101. Fisher, M. et al. Xenbase: key features and resources of the
Xenopus model organism knowledgebase. Genetics 224,
iyad018 (2023).

102. Stegeman, G. W., de Mesquita, M. B., Ryu, W. S. & Cutter, A. D.
Temperature-dependent behaviours are genetically variable in
the nematode Caenorhabditis briggsae. J. Exp. Biol. 216,
850–858 (2013).

103. Félix, M. -A. & Braendle, C. The natural history of Caenorhabditis
elegans. Curr. Biol. 20, R965–R969 (2010).

104. Vera, L.M. et al. Circadian rhythmof preferred temperature in fish:
behavioural thermoregulation linked to daily photocycles in zeb-
rafish and nile tilapia. J. Therm. Biol. 113, 103544 (2023).

Acknowledgments
The work is supported by grants from the National Institutes of Health
(R01 GM046383 and P50 GM107615, J.E.F., R01GM144584, Q.Y.), the
National Science Foundation (MCB#2218083, Q.Y.), Internal funds KU
Leuven (C14/23/130, L.G.), a junior research grant from the Research
Foundation - Flanders (G074321N, L.G.), a doctoral fellowship from the
Research Foundation - Flanders (11D0918N, J.R.) and postdoctoral fel-
lowships from EMBL/EIPOD4 (Marie Skłodowska-Curie Cofund actions
847543, J.R.) and FNRS (Chargé de recherche, 40024839, J.R.). We
acknowledge the support of the EMBLHPC resources.We thank Ernesto
Flores for his contributions to the design and testing of the temperature
chamber during his NSF REU project in the Yang lab in the summer
of 2022.

Author contributions
L.G., Q.Y., and J.E.F. conceived the study; F.T., A.V., C.P., and L.G. con-
ducted the experiments; J.R., F.T., and L.G. analyzed the data; J.R.
developed and analyzed the models; J.R., F.T., J.E.F., and L.G. prepared
the figures; L.G. and J.E.F. wrote themanuscript, with L.G. incorporating
feedback from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-62918-0.

Correspondence and requests for materials should be addressed to
Qiong Yang or Lendert Gelens.

Peer review information Nature Communications thanks Gábor Balázsi
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-62918-0

Nature Communications |         (2025) 16:8045 18

https://doi.org/10.5281/zenodo.15591678
https://doi.org/10.5281/zenodo.15591678
https://doi.org/10.5281/zenodo.16269314
https://doi.org/10.5281/zenodo.16269314
https://doi.org/10.1038/s41467-025-62918-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Mechanistic origins of temperature scaling in the early embryonic cell cycle
	Results
	Temperature scaling in the Xenopus laevis embryo
	Diverse ectothermic species yield similar temperature scaling
	A simple oscillator model accounts for deviations from Arrhenius scaling
	The durations of interphase and M-phase scale differently with temperature
	Cyclin synthesis and degradation respond differently to temperature
	In vitro assays confirm the imbalance in cyclin synthesis and degradation scaling
	Decreasing the cyclin synthesis rate decreases the viable temperature range

	Discussion
	Methods
	Animal care
	Xenopus egg extract
	Temperature gradient generation
	Western blotting
	H1 kinase activity assay
	APC/C activity assay
	PP2A-B55 activity assay
	Time-lapse fluorescence microscopy
	Image processing and analysis methods
	Morpholino oligonucleotides
	Fitting of scaling laws
	ODE modeling
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgments
	Author contributions
	Competing interests
	Additional information




