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Coordinated multi-level adaptations across
neocortical areas during task learning

Shuting Han 1,2,3 & Fritjof Helmchen 1,2,3

The coordinated changes of neural activity during learning, from single neu-
rons to populations of neurons and their interactions across brain areas,
remain poorly understood. To reveal specific learning-related changes, we
applied multi-area two-photon calcium imaging in mouse neocortex during
training of a sensory discrimination task. We uncovered coordinated adapta-
tions in primary somatosensory area S1 and the anterior (A) and rostrolateral
(RL) areas of posterior parietal cortex (PPC). At the single-neuron level, task-
learning was marked by increased number and stabilized responses of task
neurons. At the population level, responses exhibited decreased dimension-
ality and reduced trial-to-trial variability, paralleled by enhanced encoding of
task information. The PPC areas became gradually engaged, opening addi-
tional within-area subspaces and inter-area subspaces with S1. Task encoding
subspaces gradually aligned with these interaction subspaces. Behavioral
errors correlated with decreased encoding accuracy and misaligned sub-
spaces. Thus, multi-level adaptations within and across cortical areas con-
tribute to learning-related refinement of sensory processing and decision-
making.

Learning a new task requires accurate sensory processing and trans-
forming relevant sensory information into appropriate actions. This
process often involves not only reconfigurations of local neuronal
populations but also coordinated changes across brain areas. Many
studies have characterized learning-related changes at single-neuron
and population coding levels within local populations1–7. These chan-
ges include increased stimulus selectivity1,6, recruitment of new
neurons3,6, stabilized responses of individual neurons2,3,7, and
increased task information encodedby the populations1–6. Recently, an
increasing number of studies focused on understanding how popula-
tion activity dynamics, which often reflects task-related information,
changes with learning8–12. For example, learning a new task is accom-
panied by stabilized population dynamics and optimized activity
subspaces of intrinsic dynamics to encode task-relevant variables10,13–15.
The local population dynamics can also constrain the learning process:
learning something new within the intrinsic subspace of neural
dynamics is easier thanoutside of the subspace16, and the internal state

of the animal, e.g., the level of task engagement, can shape learning
through changing these subspaces17. Understanding such population-
level changes is important for unveiling the neural computations
underlying the optimization of sensory processing during learning,
supported by changes on the single-neuron level.

Beyond the changes in local populations, task-learning is often
accompanied by coordinated changes across brain areas. Learning to
perform a specific task typically involves a distinct set of brain areas,
with specific higher areas becoming increasingly engaged to selec-
tively process task-relevant information sent by primary sensory
areas6,18,19. However, we still poorly understand how information pro-
cessing is transformed in a coordinated way across multiple areas
during learning, from primary sensory areas that receive sensory
inputs, to higher areas that further process sensory information, make
decisions, and generate actions. Despite the rising interest in under-
standing cross-areal processing from the perspective of behavior-
relevant subspaces as well as interaction subspaces20–22, it remains
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unclear whether within-area and inter-area interaction subspaces are
reconfigured during learning to facilitate task information processing,
or whether these intrinsic subspaces rather impose constraints on
learning. One major challenge to answer these questions is to record
from enough neurons simultaneously across multiple areas. Here, we
addressed this challenge by employing a custom multi-area two-pho-
ton microscope23,24 to measure the learning-related changes in popu-
lation dynamics,within andbetween areas along the cortical hierarchy,
and to analyze the changes in their interaction subspaces.

A key area in processing and routing sensory information is the
posterior parietal cortex (PPC). The PPC has dense connections with
primary sensory regions, including the visual (V1), somatosensory (S1),
and auditory (A1) cortices, as well as with frontal areas and the
thalamus25. PPC supports a wide range of functions, such as multi-
sensory integration, evidence accumulation, decision-making, and
working memory26–29. Although PPC overall receives inputs from all
primary sensory regions, recentworks have supported the existenceof
functional subregions of PPC in the mouse brain: the rostrolateral
region (PPC-RL) receivesmore inputs fromV1 and S1, and is involved in
visual and tactile processing, and the anterior region (PPC-A) receives
more inputs from V1 and A1, and is involved in visual and auditory
processing23,26. In particular, PPC emerges as a key area for routing
sensory information during learning of a texture discrimination
task26,28,30, and is dynamically reorganizedduring the learningprocess8.
These features make PPC an attractive example area to study the
principles of learning mechanisms within and across areas.

Here we characterize learning-related changes in the local popu-
lations of whisker-related S1 barrel cortex, PPC-RL, and PPC-A. Speci-
fically, we trained mice to perform a two-alternative auditory-cued
texture discrimination task, while simultaneously imaging population
activity in S1 and PPC throughout learning. To provide an overview of
learning-related changes from this rich dataset, we systematically
examined four types of population subspaces: the variance subspace,
the encoding subspace, the within-area interaction subspace, and the
inter-area interaction subspace. We find that task-learning is accom-
paniedby systematic and coordinated changeswithin and across these
areas, both on the single-neuron level and on the population level. The
PPC areas were gradually engaged during the learning process,
expanding their within-area and inter-area interaction subspaces with
S1. Task representation was amended through an improved alignment
of encoding subspaces with these interaction subspaces. These
learning-related changes were degraded during incorrect trials. These
results suggest that refinement of sensory and choice processing
during learning is achieved through coordinated adaptations across
neocortical areas on multiple levels, from the enhanced responses of
task neurons, to improved alignment of task-relevant information, to
the optimized intrinsic dynamic subspaces within and across areas.

Results
Behavioral task
We trained 15 mice (age 2–4months, both sexes) expressing GCaMP6f
in L2/3 to perform an auditory-cued two-alternative texture dis-
crimination task while monitoring neuronal population activity in S1
and PPC23 (Fig. 1a and Methods). The task consisted of four sequential
phases (Fig. 1b and Methods): each trial started with an auditory tone
(tone window), followed by presentation of sandpaper texture to the
whisker pad (texture window). A low tone was always paired with
rough sandpaper and a high tone with smooth sandpaper. Then, the
mouse chosebetween two lick ports (choicewindow) to obtain a sugar
water reward (reward window). The reward window was triggered as
soon as mice had made their choice. Each day, mice performed
between 100 and 500 trials during training. To account for the dif-
ferent trial numbers each day, we split each training day into sessions
of 80–120 trials (Methods). To study learning-related changes, we
defined three learning phases according to the behavioral

performance: naive (performance<55%), learning (performance
55%–75%), and expert (performance ≥75%) phase (Fig. 1c). During the
expert phase, a subset of the sessions included a small fraction
(10–30%) of tone-texturemismatch trials, inwhich the tonewas paired
with the non-matching texture, and reward was given according to
texture. These data revealed interesting results about predictive pro-
cessing and have been previously published23. Due to the low per-
centage ofmismatch trials and becausewe did not observe re-learning
due to these mismatch trials, we included this expert dataset for ana-
lysis, but excluded all the mismatch trials, as well as the sessions with
low behavioral performance (<70% correct rate).

Task-learning was accompanied by various behavioral changes.
Compared to naive sessions, mice showed reduced licking in the tone
and early texture windows in expert sessions (Fig. 1d, e), as well as
reduced early responses (Fig. 1f). These changes were present in both
correct and incorrect trials (Fig. 1d–i), suggesting a systematic change
of the behavioral strategy of mice. We also monitored the pupil and
movement ofmicewith a behavior camera (Fig. 1a). The pupil diameter
during the reward window was larger in expert compared to naive
sessions (Fig. 1j), and face movements were reduced during the tone
window, consistent with the reduced licking behavior (Fig. 1k).
Removing the data points during early licks (licks before choice win-
dow) led to a comparable level of face movement during the tone
window across learning phases (Supplementary Fig. 1). These obser-
vations suggest a refinement of the task-related behavior of the mice
over the learning process.

Recruitment of task neurons in S1 and PPC during learning
To study learning-related changes across the neocortical areas, we
used a custom-built two-area two-photon microscope to simulta-
neously record from neuronal populations in S1 barrel cortex and the
twoPPC subregions23,24. In our experiments,we simultaneously imaged
somatic calcium signals from S1 and PPC-RL (total 13 mice) or from S1
and PPC-A (total 9 mice), from 2–3 depths (100–300 µm) in L2/3,
covering 50–600 neurons in each area (Fig. 2a and Methods). The
exact locations of S1, PPC-RL and PPC-A were identified by sensory
mapping and retinotopic mapping (Methods). We extracted ΔF/F tra-
ces as well as the deconvolved spike rates of individual neurons using
Suite2p31, and all following analysis concerning neuronal activity was
performed on the z-scored spike rates. The z-scoring procedure, per-
formed independently for each session, in principle removed the
effect of changes in population firing rates across learning for all the
following analysis.Over the course of training, we could follow roughly
the same field of views (FOVs) with similar imaging quality (Fig. 2b, c).
However, due to restrictions by the dense labeling in the GCaMP6f
transgenicmouse lines, the large FOVs acrossmultiple depths, and the
long training process, we did not seek to match and track individual
neurons across days for each mouse.

We first examined whether PPC-RL and PPC-A were required for
performing the task using optogenetic inhibition. We trained 8 mice
expressing channelrhodopsin-2 (ChR2) in GABAergic neurons (VGAT-
ChR2-EYFP transgenic line) to perform the task.Once they had reached
the expert phase, we tested their performance when PPC areas were
bilaterally photoinhibited through activation of GABAergic neurons
(Supplementary Fig. 2a). Inhibition of either PPC-RL or PPC-A during
the texture window reduced behavioral performance (Supplementary
Fig. 2b), suggesting that both areas are required for optimally per-
forming the task. Additionally, we also inhibited PPC areas in tone-only
and texture-only conditions, where only one stimulus modality was
presented to the mice. Inhibition of either PPC-RL or PPC-A reduced
performance in the tone-only condition where no texture was pre-
sented (Supplementary Fig. 2c), suggesting that both areas were
involved in transforming sensory association to decision23. Inhibiting
PPC-RL, but not PPC-A, also impaired texture-only performance
(Supplementary Fig. 2d), suggesting that PPC-RL was more involved in
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processing pure texture information. These results indicate that both
PPC areas are required for transforming sensory information ade-
quately into correct actions in this task.

Task-learning can be accompanied by activity changes in neurons
within local populations. While some studies have reported an
increased number and enhanced responses of neurons with task-
related activity (defined as ‘task neurons’) during learning in the neo-
cortex, others have found the opposite1,6,7,18. Therefore, we first char-
acterized the changes in taskneurons in S1 andPPCduring the learning
process. We identified two types of task neurons: task-responsive
neurons were defined as neurons that showed significantly higher
activity in specific task windows compared to randomly sampled
activity from a matching number of frames outside of the window;
task-discriminative neurons were defined as a subset of responsive
neurons that showed a significant difference in activity with respect to
the relevant task variable in the specific window (tone 1 vs. tone 2;
texture 1 vs. texture 2; lick left vs. lick right; reward left vs. reward

right). These neurons were identified separately for each task window
and the corresponding task variables. Since early licks during the
texture window were not punished, we removed all neural activity
frames from the first early lick until the choice window onset in all
following analysis, to avoid the confounding influence of licking-
related activity. As the first lick during the choice window triggers
outcome, we further aligned each trial to this lick time and defined the
choice window as the 0.5-s period before the first lick in all following
analysis. Overall, S1 displayed a higher percentage of texture-
responsive neurons compared to other task variables, and this per-
centage further increased during learning, highlighting the roleof S1 in
texture processing (Fig. 2d). Whereas PPC-RL showed an increased
percentage of texture-responsive neurons, PPC-A developed a higher
percentage of tone-, texture- and choice-responsive neurons, indicat-
ing its role as a higher-order area in this task. Task-discriminative
neurons in these areas also increased during learning, with PPC-A
overall containing the highest percentage of task-discriminative
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Fig. 1 | Learning behavior of mice in a two-alternative tone-texture
discrimination task. a Schematic of Experimental setup (adapted from reference
23). b Task design. Each trial consisted of a tone followed by a paired texture
presented to the whisker pad of themice. Then, mice chose between two lick ports
to receive a sugar water drop as reward. c Learning curves of all mice (n = 16),
subdivided into sessions of 80–120 trials. Naive is defined as performance <55%,
learning as 55–75% and expert as ≥75%. Line colors indicate mice. d Lick pattern in
correct trials, represented as percentage of trials with a lick at each time point, in
naïve (gray line) and expert (orange line) mice. eQuantification of lick rates during
tone window (left), early texture window (middle), and late texture window (right),
in correct trials (black line representsmean). fResponse time in correct trials.g Lick
pattern in incorrect trials, represented as percentage of trials with lick at each time

point, in naive and expert mice. h Quantification of lick rates during tone window
(left), early texture window (middle), and late texture window (right), in incorrect
trials. i Response time in incorrect trials. j Pupil diameter (z-scored) over trial time
(left) and quantification over learning (right). Gray and orange in the left panel
indicate naive and expert conditions; colors in the right panel indicate task win-
dows. k Face movement (z-scored) over trial time (left) and quantification over
learning (right). Colors as in (j). (15 mice, d–i: n = 138 [naive], 192 [learning], 171
[expert] sessions; j, k: n = 134, 191, 166 sessions due to missing/broken behavior
videos; two-sided Wilcoxon rank-sum test; *p <0.05, **p <0.01, ***p <0.001;
p-values were corrected for multiple comparisons using FDR method in j, k;
mean ± SEM). Source data are provided as a Source Data file.
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neurons for tone, choice and reward (Fig. 2e). In particular, the per-
centage of task-discriminative neurons that were jointly responsive to
adjacent task windows also increased (Supplementary Fig. 3), poten-
tially benefiting the transition between task phases and allowing for

more robust population dynamics during the trials. We also investi-
gated the temporal response profile of these task neurons over the
course of learning by comparing the average firing rate of the task-
discriminative neurons in naive and expert sessions. As the percentage
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of task neurons increased during learning, their average response
profile also broadened (Fig. 2f), suggesting a tiling of task neuron
activity during the trials, contributing to longer-lasting and more
stable population dynamics across S1 and PPC areas. Additionally, the
average response strength of texture and choice neurons during the
texture and choice window also increased (Fig. 2g). Thus, task-learning
was accompanied by an overall recruitment of task neurons as well as
extended and enhanced neuronal responses.

Reduced population response dimensionality and trial
variability
Performing a task involves transforming single-neuron activities into a
unified sensory representation to guide decisions. During the task,
neuronal population activity often resides in a low-dimensional sub-
space, allowing for robust information representation and reliable
behavioral output12,32–35. To further understand the changes in the
population activity structure regarding variability across neurons and
trials, we analyzed the dimensionality of the neuron space and the trial
space. To account for the reduced number of recorded neurons in the
expert phase (due to the decay in imaging quality over longitudinal
imaging),we resampled theneuronalpopulations innaive and learning
sessions to match one of the expert sessions and repeated this pro-
cedure 50 times. For the dimensionality of the neuron space, we per-
formedprincipal component analysis (PCA) on the population activity,
with neurons as variables and trials as observations at each time point

of the trial, for each session separately (Fig. 3a). This analysis identifies
coordinated changes across neurons and the dominant patterns in the
activity. Compared to naive sessions, the population dimensionality in
expert sessions consistently decreased in S1 and PPC-RL areas in all
taskwindows but remained unchanged in PPC-A (Fig. 3b, c). This result
suggests that in expert sessions, neurons in S1 and PPC-RL developed
correlated firing patterns in each task window, while the activity pat-
terns in PPC-A remained diverse. We further analyzed the dimension-
ality in the trial space by performing PCA on the population activity
with trials as variables and neurons as observations (Fig. 3d). This
analysis directly measures the neuronal reliability across trials. While
the dimensionality remained unchanged in S1 and PPC-RL during the
learningprocess, it decreased inPPC-A (Fig. 3e, f), indicatingdecreased
trial-to-trial response variability.

We wondered if the changes in neuronal dimensionality were
beneficial for carrying task information. To test this, we performed a
decoding analysis on the top 5 principal components (PCs) of the
neuron space during each task window, using the corresponding task
variables (e.g., decoding texture identity during the texture window).
All top 5 PCs across S1 and PPC areas showed an increased dis-
crimination index of task variables over the course of learning (Fig. 3g),
suggesting improved task information encoding across multiple
dimensions. We conclude that task-learning was accompanied by
reduced trial-to-trial variability and enhanced task encoding in S1 and
PPC populations.
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Improved task encoding subspaces in S1 and PPC populations
during learning
In addition to the global changes in the variance subspace during task-
learning, the representation and processing of task information can
also be improved through coordinated changes across areas. To
examine this aspect, we systematically investigated three additional
types of population subspaces during the task: the encoding subspace,
the within-area interaction subspace, and the inter-area interaction
subspace (Fig. 4a). The encoding subspace captures the optimal
encodingdirection of task variables; thewithin-area subspace captures
the intrinsic within-area interaction between subsets of neurons in
either S1 or PPC; the inter-area subspace captures the interaction
between S1 and PPC populations, which we could analyze because we
simultaneously imaged from S1 and PPC during the task. We aimed to
characterize each type of subspace and directly compare them with
each other in the same neuronal space. Since generating within-area
subspace requires two subpopulations within an area, we randomly
split eachpopulation into twosubpopulations and computed the three
types of subspaces from these subpopulations (Fig. 4a). To reduce the

computational complexity and ensure stable model estimation23,36, we
reduced the subpopulation dimensionality with PCA and kept the top
30 PCs prior to the subspace computation. Using more PCs did not
change the main findings in the following sections (Supplementary
Fig. 4). We repeated this random split procedure 10 times. Because
these random splits gave stable results (Supplementary Fig. 5), we
averaged the results from all the subpopulations for the following
analysis.

We first characterized the encoding subspaces for task variables.
We defined the encoding subspace as the axis that captures the dif-
ference between the population mean responses to the task variable
types14, for example, texture 1 vs. texture 2 (Fig. 4b). We generated a
separate encoding axis for each task variable, using the population
activity from the corresponding task window. All encoding axes
increased their discrimination index for their target task variable over
the course of learning (Fig. 4c), suggesting that the task-related
population activity became more separable in this subspace, poten-
tially facilitating the sensory and choice information readout. Indivi-
dual mice showed variability in these observations that corresponded
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to their learning rate; however, averaging sessions for each mouse
before pooling the results did not change our observations (Supple-
mentary Fig. 6). Furthermore, the encoding axes from adjacent task
windows became better aligned over learning across S1 and PPC areas
(Fig. 4d, e), suggesting shared task representation between adjacent
windows, consistent with the prolonged responses of task neurons as
well as the increase in jointly responsive task neurons (Fig. 2f, g and
Supplementary Fig. 3). In PPC-A, the similarity between encoding axes
from non-adjacent task windows decreased, suggesting more distinct
representations in non-adjacent windows. These results suggest that
the encoding subspace reorganized over the learning process to
optimize the representation of task information.

Improved alignment of encoding subspaces with within-area
interaction subspaces
Wenext characterized thewithin-area interaction subspaces. To do so,
we applied canonical correlation analysis (CCA) to the two sub-
populations from each area (Fig. 5a). CCA is a statistical method for
quantifying the relationship between two sets of variables, and has
been used previously to study the interaction between neuronal
populations23,37–39. Conceptually, CCA finds pairs of projection axes
from the two populations that maximize the correlation between the
projections (Methods). Similar to PCA, CCA finds uncorrelated sets of
projection axes within each population. These axes are ordered with
descending correlation values between the paired projections, along
the canonical dimensions. The top pair of projection axes thus repre-
sents the optimal interaction subspace between the two populations,
capturing the strongest canonical correlation.

Given the two subpopulations from the same area, their top
canonical correlation value represents the within-area interaction
strength, as it reflects the covariance between the subpopulations.
Compared to naive sessions, the within-area interaction strength
slightly decreased in S1 in expert sessions, whereas it increased in
PPC-RL during the texture window and increased in PPC-A during
both texture and choice windows (Fig. 5c). These results suggest
stronger shared activity within PPC, but diverse subgroups of activity
patterns in S1. We further investigated the within-area subspace
dimensionality by identifying the number of significant interaction
dimensions, defined as the number of canonical dimensions with
correlation values higher than the shuffled threshold (Fig. 5b). The
shuffled distribution was generated by taking the top canonical
correlation from shuffled models, where the trial correspondence
was randomized but the overall population firing rate during the task
was preserved. The identified significant interaction dimensions
captured the instantaneous co-activity between populations. Among
the three areas, PPC-A had the highest within-area subspace dimen-
sionality. With learning, the within-area subspaces in S1 and PPC-A
significantly increased their dimensionality across task windows,
suggesting more coordinated neural activity and consistent encod-
ing patterns, while PPC-RL showed an increase only during the tex-
ture window (Fig. 5d). This is consistent with our previous finding
that PPC-A but not PPC-RL forms tone-texture associations and
generates sensory predictions23. We conclude that task-learning
expanded thewithin-area interaction subspace and strengthened the
interactions within PPC.

We then wondered whether the within-area interaction axis con-
tained more task-relevant information over the learning process,
through improved alignment with the task encoding axis. To answer
this question, we computed the cosine similarity between the encod-
ing axis and the top within-area axis computed from the same sub-
population (Fig. 5e), reflecting the alignment between the task-related
variability and the within-area population variability. We performed
this comparison for each pair of axes from all task windows. In S1, the
alignment between the encoding axes and the within-area axes from
the texture and choice windows remained stable over the course of

learning. In PPC areas, the texture encoding axis becamemore aligned
with the within-area axes during the texture and choice windows
(Fig. 5f), indicating that thewithin-area activity inPPCduring these task
windows could carry more texture information, which is essential for
the correct choice. In contrast, the tone encoding axis in PPC-A
became more distinct from the within-area axes in the following task
windows, coinciding with the changes in encoding axis structure. We
also quantified the changes in the within-area subspace structure by
computing the similarity between pairs of within-area axes, which
reflects the similarity of shared activity patterns across task windows.
We found that thewithin-area axis structure across task phases did not
show increased alignment in PPC-A, and even becamemore distinct in
S1 and PPC-RL over the learning process (Supplementary Fig. 7a),
indicating distinct neuronal patterns across task windows in S1 and
PPC-RL. Together, these results suggested an improved alignment
between task encoding subspaces and within-area subspaces in PPC
during learning, presumably driven by an optimized encoding sub-
space structure and potentially contributing to improved task repre-
sentation by the local populations.

To determine if task information in the within-area subspace
increased over learning, we projected population activity onto the
within-area axes and performed a decoding analysis for each task
variable (Fig. 5g). In expert sessions, the discrimination indexofwithin-
area activity was overall improved across S1 and PPC areas (Fig. 5h), in
agreement with the increased number of task neurons as well as
improved population encoding performance. Therefore, task-relevant
information was enhanced across within-area subspaces in S1 and PPC
during learning.

Improved alignment of encoding subspaces with inter-area
interaction subspaces
Our experimental design of simultaneous imaging from S1 and PPC
areas allowed us to also probe the inter-area interaction subspaces
between them. To do so, we applied CCA to the subpopulations from
S1 and PPC-RL, or from S1 and PPC-A (Fig. 6a). As for the within-area
subspace analysis, we computed the top canonical correlation
strengths and the number of significant dimensions of interactions.
Over the course of learning, the interaction strength between S1 and
PPC-RL slightly decreased during the tone and reward windows, while
their interaction subspace dimension expanded during the texture
window (Fig. 6b). In contrast, S1 and PPC-A interaction strength
remained stable and consistently higher compared to S1 and PPC-RL
interactions. Additionally, the interaction subspace dimensionality
increased for S1 and PPC-A during the tone, texture and choice win-
dows (Fig. 6c), suggesting enhanced coordination and communica-
tion, potentially due to the engagement of both populations in a
common computational process driven by the common task inputs.
This enhanced communication of S1 and PPC-A is also consistent with
our previous finding of strong interactions between S1 and PPC-A, but
not PPC-RL, during sensory predictions23.

We then compared the alignment between the inter-area axes
and the encoding axes for each pair of areas, measured by the cosine
similarity (Fig. 6d). Both PPC-RL and PPC-A showed improved align-
ment of their encoding axes and their inter-area axes with S1 over the
learning process. In PPC-RL, its inter-area axes with S1 after the tex-
ture onset became more aligned with the texture and choice
encoding axes (Fig. 6e), suggesting more efficient and coordinated
information transfer between S1 and PPC-RL. In PPC-A, this
improvement in alignment occurred earlier during the trials, prior to
texture onset, where the inter-area axes during the tone window
developed texture and choice information over learning (Fig. 6f).
Such improvement also occurred in the S1 interaction subspace with
PPC-A. These results suggest that PPC-A forms sensory associations
between tone and texture and plays an important role in multi-
sensory processing in this specific task. To understandwhether these
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changes in alignment can be explained by the changes in the intrinsic
inter-area axis structure, we also analyzed the similarity between
pairs of inter-area axes across task windows. We found that the
alignment between inter-area interaction axes across task windows
did not change significantly overall during learning (Supplementary
Fig. 7b, c). These results suggest an improved alignment between
task encoding subspaces and S1-PPC interaction subspaces during
learning, potentially contributing to improved communication of
task information between areas.

We further tested whether the inter-area subspace developed
more task informationwith learning, following its improved alignment
with the task encoding subspaces. As described above, we projected
population activity onto the inter-area axes and performed a decoding
analysis for each task variable (Fig. 6g). We found that the projected
inter-area activity of S1 and PPC showed improved discriminability of
task variables (Fig. 6h, i). Therefore, the interaction between S1 and
PPC areas carried enhanced task-relevant information over the course
of learning.
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Disrupted task representation andmisaligned subspaces during
mistakes
During the expert phase, mice still made mistakes (Fig. 1c). In these
expert incorrect trials, the licking pattern as well as the pupil diameter
and face movement of mice were different from the incorrect trials in
naive sessions, but were overall similar with the expert correct trials,
despite slightly increased face movement during tone and reduced
face movement during choice (Supplementary Fig. 8). We wondered
whether these expert incorrect choices can be explained by changes in
the underlying task representation on both single-neuron and popu-
lation levels. We first compared the activity of task neurons during
correct and incorrect trials in expert sessions. Compared to correct
trials, the response of task-discriminative neurons showed reduced
activity strength and shortened response profile in incorrect trials
(Fig. 7a, b), suggesting a weakened neural representation. While
population dimensionality in the neuron and trial spaces was mini-
mally affected by incorrect behavior during the expert phase (Sup-
plementary Fig. 9a–d), the encoding subspace of S1 and PPC
populations in incorrect trials showed reduced task variable dis-
criminability (Fig. 7c). Consistently, the top PCs in neuron space also
carried less task information during incorrect trials across S1 and PPC
areas (Supplementary Fig. 9e).

Finally, we investigated the changes in within-area and inter-area
subspaces during incorrect trials. We generated within-area and inter-
area subspaces for correct and incorrect trials separately, using
matchingnumber of trials (Methods).While bothwithin-area and inter-
area interaction strength and dimensionality were minimally affected
by incorrect behavior (Supplementary Fig. 9f–k), these axes were less
well aligned with the task-encoding axes compared to correct trials in
S1 andPPC-A (Fig. 7d–h), both in their within-area interaction subspace
(Fig. 7f) and in their communication subspace (Fig. 7h), while PPC-RL
was not affected (Fig. 7f, g). In addition, population activity projected
onto both within-area and inter-area axes carried less task information
(Supplementary Fig. 10). Together, these results suggest that beha-
vioral mistakes in expert mice were associated with less reliable neu-
ronal responses and misaligned encoding and intrinsic interaction
subspaces, potentially leading to erroneous task information proces-
sing and behavioral output.

Discussion
Using simultaneous multi-area two-photon imaging, combined with a
sensory discrimination task and longitudinal behavioral and neuronal
recordings throughout learning, we provided a systematic overview of
learning-related changes in S1 and the higher association areas PPC-A
and PPC-RL, both required for optimally performing the task. We dis-
covered changes on different levels, supporting multiple learning
mechanisms. On the single-neuron level, additional task neurons were
recruited, and the task-related neuronal responses were enhanced. On
the population level, neuronal response dimensionality and trial-to-
trial variability decreased differentially in S1 and PPC. Task

representation was enhanced through reconfigured task encoding
axes. The improved population readout was also accompanied by
increased alignment between the task encoding subspaces and the
within- and inter-area subspaces in PPC areas. Incorrect choices of
expertmicewereaccompaniedby less reliable neuronal responses and
misaligned encoding and intrinsic interaction subspaces, potentially
contributing to the behavioral mistakes.

At the local population level, task-learning can be accompanied by
enhanced task information readout in both primary sensory areas and
higher areas11,12,14,40. This can be achieved through enhancing neural
coding consistency41 and re-aligning the readout dimensions with the
more stable intrinsic within-area subspaces11. In our study, we found
evidence for bothmechanisms. As the task representation improved, the
within-area subspaces in PPC also strengthened and expanded, and their
alignment with the task encoding dimensions increased. We also
observed distinct changes in S1, PPC-RL, and PPC-A that accompanied
the improved task representationduring learning. S1 andPPC-RLshowed
decreased neuronal activity dimensionality, decreased within-area axis
similarity across time, but stable trial-to-trial variability and increased
encoding axis similarity. These findings potentially suggest that the
populations compress their variability at each time point to achieve
more consistent task encoding, with a dynamic shared variability struc-
ture across time. In contrast, PPC-A showed decreased trial-to-trial
variability, decreased overall encoding axis similarity, but stable neuro-
nal activity dimensionality and stable within-area axis similarity across
time. These adaptations in PPC-A potentially suggest reduced noise
levels across trials and diversification of the task-related encoding
structure across time, while preserving the variability of the population.

At the multi-area level, enhanced signal propagation between
areas could provide another learningmechanism. This can be achieved
through stronger shared signals between areas and by better aligning
the task information and inter-area communication subspaces20,42. For
example, studies have shown that task-learning increases shared
dimensionality among motor cortex neurons20 and that top-down
signals can change the population interaction structure dynamically
during a behavioral task21. However, although the inter-area commu-
nication subspaces can be flexible43,44, task-learning does not require
reconfiguration of these subspaces. Inmany cases, the intrinsic within-
and across-population activity structures remain stable and impose
constraints on task learning16,22. Improving task representation along
the inter-area subspaceswithout changing them, e.g., by regulating the
internal states such as attention, is sufficient to improve task
performance17,42. Our results support this mechanism by showing an
improved alignment between task encoding subspaces with the S1 and
PPC inter-area subspaces, potentially facilitating the readout of rele-
vant task information by PPC.

Task-learning often involves changes in specific pathways6,18,19,45.
Our study is focused on learning-related changes in the S1 and PPC
areas. While both PPC-RL and PPC-A were engaged in this task and
required for optimal task performance, learning this task preferentially

Fig. 5 | Task encoding axes aligned with PPC within-area axes during learning.
a Diagram of using CCA to generate pairs of within-area interaction axes from sub-
populations of the same area, which maximizes the canonical correlation between
the projected data from each sub-population. b Example of identifying significant
CCA dimensions. Black line represents canonical correlation in descending
dimensions; gray zone represents confidence interval from shuffled models.
c Canonical correlation strength in naive and expert condition for each task win-
dow, in S1, PPC-RL, and PPC-A. Line colors represent learning phases. d Number of
significant dimensions in naive and expert condition for each task window, in S1,
PPC-RL, and PPC-A. e Diagram of comparing within-area interaction axis with
encoding axis, using cosine similarity. f Left: pairwise similarity betweenwithin-area
interaction axis (x-axis) and encoding axis (y-axis), across task windows. Red boxes
indicate that the data is above the corresponding shuffled distribution; red and
black asterisks indicate that the data from the expert condition is significantly

higher or lower than the naive condition. Right: quantification of axis similarity.
Line colors represent the task window of the within-area axis; gray lines represent
95%quantile of shuffleddata.gDiagramof computing decoding performance from
projected population activity on the within-area interaction axis. This example
shows texture decoding, using neural activity during the texturewindow to project
on the within-area axis. h Left: discrimination index of task variables (y-axis), using
projection on the within-area axis from each task window (x-axis). Lines and
asterisks are represented as in (f). Right: quantification of discrimination index.
Colored lines represent the taskwindowof thewithin-area axis. (S1: 13mice, 122, 171,
119 sessions [naive, learning, expert]; PPC-RL: 13 mice, 66, 72, 86 sessions; PPC-A: 9
mice, 56, 99, 33 sessions; *p <0.05, **p <0.01, ***p <0.001; (f, h) left panels:
*p <0.05; two-sidedWilcoxon rank-sum test against naive condition; p-values were
corrected for multiple comparisons using FDR method; mean± SEM). Source data
are provided as a Source Data file.
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involved PPC-A throughout the tone, texture and choice windows,
opening additional within-area interaction subspaces, whereas PPC-RL
was involved mostly in texture processing. In addition, the interaction
subspaces between S1 and PPC-A expanded throughout the task,
whereas S1 and PPC-RL interaction was enhanced only during the
texture window. These results agree with our previous findings that
PPC-A, but not PPC-RL, encodes predictive texture information using
the preceding tone, in expert mice performing the same behavioral

task23. As a higher association area, the PPC is important for routing
sensory information in behavioral tasks, with its activity emerging
during learning as an intermediate step of sensory information
flow26,28. Our study adds to the accumulating evidence that different
PPC subregions have distinct roles23,26. The higher engagement of PPC-
A compared to PPC-RL in our study is possibly due to the task design,
where a specific tone was paired with a fixed subsequent texture,
allowing mice to form specific tone-texture associations23. In other
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behavioral tasks where only one stimulus type is required for the
correct decision, PPC-A has been implicated in auditory discrimina-
tion, while PPC-RL was linked to tactile discrimination26. However, PPC
is a highly flexible area, and changes in the task design could strongly
influence whether and how PPC is involved46.

In our specific task design, there are two types of learning: sensory
association learning, which links the tone stimuli to the paired sub-
sequent texture stimuli, and sensorimotor learning, where the tone-
texture sequence is associated with a specific choice. We observed
some differences regarding these two types of learning. During the
tone window, which represents sensory association learning, the
populations showed less prominent increases in discrimination ability
and number of task-responsive neurons, but more noticeable increa-
ses in the population dimensionality as well as the interaction dimen-
sions between S1 and PPC-A. PPC-A to S1 interaction during the tone
window also developed information about the upcoming texture,
through increased alignment with the texture encoding axis. During
the texture window, which is prior to the choice window and thus
represents sensorimotor learning, thepopulation showedan increased
percentage of task neurons and improved discrimination ability, as
well as increased within- and inter-area dimensions. Both PPC-A and
PPC-RL improved their texture and choice encoding. We would like to
note here that learning a tactile discrimination task is typically
accompanied by refined movement patterns2,3,5,6,30, which could influ-
ence the observed neuronal activity. In our case, the neuronal findings
were accompanied by changes in facialmovement during the tone and
texture windows, possibly due to specific whisking patterns that
emerged during learning6,30. These changes in movement patterns
couldpotentially explain someof the neuronalfindings, alongsidewith
the neuronal adaptations underlying sensory processing and decision
making related to the task. Together, these results suggest thatdistinct
mechanisms exist for different types of learning. Fully understanding
these processes will require further studies.

Overall, our results showed that task-learning is achieved through
coordinated changes onmultiple levels acrossneocortical areas. These
changes include local recruitment of task neurons, and the improved
alignment of task-relevant information with the intrinsic interaction
subspaces within and across areas, resulting in improved sensory
processing and refined behavioral output. These findings highlight the
complexity of learning processes, and we expect them to prompt
future research to further understand the specific mechanisms and
their impact on neural computation and behavior underlying learning.

Methods
All procedures of animal experimentation were carried out according
to the guidelines of the Veterinary Office of Switzerland and following
approval by the Cantonal Veterinary Office in Zurich (licenses 234/
2018, 211/2018, 141/2022).

Mice and dataset
Part of the dataset and method has been previously published23. Mice
were housed on a 12-h reversed light/dark cycle at an ambient tem-
perature of between 21 °C and 23 °C, with humidity level between 55%
and 60%. A total of 15 mice were included in this study. Mice belonged
to one of the following transgenic strains: RasGRF2a-dCre;CamK2a-
tTA;TITL-GCaMP6f (M10, M11, M12, M26, M28, M29, M33, M34, M35),
GP5.17(C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J, Jackson Laboratory
025393) (M14, M15), Snap25-IRES2-Cre-D;CamK2a-tTA;TITL-GCaMP6f
(M17), RasGRF2a-dCre;tTA2-GCaMP6f (M30, M38, M40). All mice
expressed GCaMP6f in layer 2/3 pyramidal neurons of the neocortex.
Both sexes were included in this study (male: M10, M14, M15, M26,
M30, M33, M34, M35; female: M11, M12, M13, M17, M28, M29, M38,
M40). Among the 15 mice, S1-PPCA imaging was performed on 9 mice
(M26,M28,M29,M30,M33,M34,M35,M38,M40), with 5mice imaged
since naive phase (M33, M34, M35, M38, M40), the rest imaged during
late learning and/or expert phase; S1-PPCRL imaging was performed on
13 mice (M10, M11, M12, M14, M17, M26, M28, M29, M30, M33, M34,
M35,M40), with 8mice imaged sincenaive phase (M10,M11,M12,M14,
M17, M26, M28, M29), the rest imaged during late learning and/or
expert phase. Mice were 2.5-4months old at the beginning of behavior
training, and 3-5 months old at the time of imaging.

Surgical procedures
We performed a craniotomy over S1 and PPC in the left hemisphere of
all mice. During surgery, mice were anesthetized with 2% isoflurane
mixed with oxygen and maintained at 37 °C body temperature. Mice
were treated with analgesia medication (Metacam, 5mg/kg, s.c.; lido-
caine gel over the skull skin) before exposing the skull. Then, a 4-mm
round cranial window was made and covered with a glass coverslip
using dental cement (Tetric EvoFlow). A light-weighted head-post was
mounted on the skull using dental cement. Mice were continually
monitored after surgery for at least three days. For strains expressing
destabilized Cre (dCre), we induced GCaMP6f expression by intra-
peritoneally administering trimethoprim (TMP, Sigma T7883; in
Dimethyl sulfoxide (DMSO, Sigma 34869) at 100mg/ml; 150mgTMP/g
body weight) at least one week before imaging started.

Behavior training
Mice recovered for at least 1 week before the behavior training started.
During the first phase of training, mice were handled by the experi-
menter for several days until showing no sign of stress, then they were
gradually accustomed to head fixation. Next, mice were put on water
scheduling, and they were introduced to the behavior setup. During
the first 2–3 sessions, mice obtained sugar water auto-reward after the
choice tone (2 beeps at 3 kHz of 50-ms duration with 50-ms interval),
from one of the two lick ports. Once they learned to lick after the
choice tone, we introduced the full task.

Fig. 6 | Task encoding axes aligned with S1 and PPC inter-area axes during
learning. a Diagram of using CCA to generate pairs of inter-area interaction axes
from sub-populations of two different areas (Area A and B), which maximizes the
canonical correlation between the projected data from each sub-population.
b Canonical correlation strength in naive and expert conditions for each task
window, for S1 and PPC-RL interaction (left) and S1 and PPC-A interaction (right).
Line colors represent learning phases. c Number of significant dimensions in naive
and expert conditions for each task window. d Diagram of comparing inter-area
axiswith encoding axis. e Similarity between inter-area axis and encoding axis for S1
(top) and PPC-RL (bottom) interactions. Left: pairwise similarity between inter-area
axis (x-axis) and encoding axis (y-axis), across task windows. Red boxes indicate
that the data is above the corresponding shuffled distribution; red or black aster-
isks indicate that the data from expert condition is significantly higher or lower
than the naive condition. Right: quantification of similarity. Line colors represent
inter-area axis windows; gray lines represent 95% quantile of shuffled data. f Same

plots as in (e) but for S1 (top) and PPC-A (bottom) interactions. g Diagram of
computing decoding performance from projected population activity on the inter-
area axis. This example shows texture decoding, using neural activity during the
texturewindowprojected on thewithin-area axis.hTask variable decoding from S1
and PPC-RL activity projection on the inter-area axis. Left: discrimination index of
task variables (y-axis), using projection onto the inter-area axis from each task
window (x-axis). Right: quantification of discrimination index. Colored lines
represent inter-area axis windows. i Same plots as in (h) for task variable decoding
from S1 and PPC-A activity projection on the inter-area axis. (S1 and PPC-RL inter-
action: 13 mice, 66, 72, 86 sessions [naive, learning, expert]; S1 and PPC-A interac-
tion: 9 mice, 56, 99, 33 sessions; *p <0.05, **p <0.01, ***p <0.001; (f–i) left panels:
*p <0.05; two-sidedWilcoxon rank-sum test against naive condition; p-values were
corrected for multiple comparisons using FDR method; mean± SEM). Source data
are provided as a Source Data file.
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Behavior training was conducted using custom LabView software.
Each trial startedwith either a low tone or a high tone (10 kHzor 18 kHz,
6 repetitions, 50-ms duration and 50-ms intervals), followed by a mat-
ched smoothor a rough texture (sandpaper, P100vs. P1200 forM10–17,
P280 vs. P800 for M26–40) carried by a rotary motor, mounted on a
linear stage. Both the tone and the texture were presented for 1 s. Then,
the choicewindowstartedwith the choice tonedescribedabove, lasting

for up to 2 s. As soon asmice licked, the choicewindowwas terminated,
and the rewardwindow started. Each correct choice led to a small sugar
water reward (~4 µl) on the respective water spout; incorrect choices
were neither rewarded nor punished. The inter-trial interval was ran-
domly distributed between 4–8 s.

Training startedwith 2–3 sessionsof auto-reward,where the reward
was automatically delivered from the correct lick port, no matter what
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the mice chose. Once the mice were accustomed to the task structure,
formal training started. During training, we adopted a “repeat incorrect”
strategy, where incorrect trials were followed by the same tone-texture
stimulus pair until the mouse chose correctly. To motivate the mice,
approximately 10% of miss trials were auto-rewarded in the reward
window. Each day, the training lasted as long as the mouse was actively
engaged in the task, typically 100–500 trials. Mice were trained once
per day for 5–6 days a week. Weight, health, and water intake were
monitored daily. All training was performed in the dark, with mice
continuously monitored with a CMOS infrared-sensitive camera (Basler
acA1440–220um) under 850-nm infrared LED background illumination.
Behavioral videos were recorded at 50Hz, and body movement was
computed using frame-to-frame correlation. The pupil was constrained
by a small UV LED (385nm, Thorlabs LED385L) positioned close to the
eye, and illuminated by the two-photon near-infrared laser. We tracked
the pupil diameter by binarizing the pupil image and fitting an ellipse to
the pupil region. Body movement and pupil diameter were both
smoothed with a median filter of 200-ms width.

To account for the differences in trial number for each day during
learning, we split the training days into sessions of 80–120 trials
(median: 120 trials; mean± SD: 116 ± 9 trials) and computed all analysis
based on sessions. As this procedure pooled correlated neuronal
populations from the same training day as independent samples, we
also stratifiedone sessionpermousewith the samenumber of trials for
eachday, which reproducedourmainfindings (Supplementary Fig. 11).
During the expert phase, mice went through mismatch experiments,
where we studied predictive processing, as previously published23.
Briefly, 10-30% percent of the trials were mismatch trials where tone-
texture pairingwas inverted. Since themismatch trials were infrequent
and we implemented the repeat incorrect strategy in these experi-
ments to reinforcenormal trial pairing,we also included these datasets
for analysis, but excluded all mismatch trials as well as sessions with
lower performance (<70%).

Optogenetics
For the optogenetics experiment, we trained 8 VGAT-ChR2-EYFP mice
to perform the behavioral task. Before behavior training, we implanted
optical fibers (400-µm diameter, NA 0.39) bilaterally above PPC-A and
PPC-RL, through a small cranial window. The coordinates used to
determine PPC-A and PPC-RL are (−1.8, 2.25) and (−2.5, 3.35), respec-
tively (from Bregma and midline, in mm). Laser light (470 nm, 1mW
above cortex; Thorlabs M470F4) was modulated by a 40-Hz square
wave (50% duty cycle) and delivered throughout the texture window
for 1 s. In each session, either bilateral PPC-A or bilateral PPC-RL was
inhibited in 50%of the trials. Due to theperformancefluctuationof this
transgenic strain, we excluded the non-expert subsessions during
analysis. At the end of all optogenetics sessions, we conducted tone-
only and texture-only sessions, where either the tone or the texture
were omitted while maintaining the original temporal structure of

trials. Optogenetics inhibition was performed during the texture win-
dow, as described above.

Sensory mapping
The exact locations of S1, PPC-A, and PPC-RL were determined using
widefield sensory mapping and retinotopic mapping, as previously
reported23. Briefly, forwidefieldmapping,micewere lightly anesthetized
and presented with visual, whisker, and hindlimb stimuli (30 repetitions
for eachmodality) on the contralateral side to the imagingwindow,while
we simultaneous performed widefield imaging. In the widefield imaging
system, we used a blue LED light source (Thorlabs; M470L3) and an
excitation filter (480/40nm BrightLine HC), a 4x objective (Thorlabs
TL4X-SAP, NA 0.2) for imaging, an emission filter (529/24nm, BrightLine
HC), and aCMOS camera (HamamatsuOrca Flash 4.0) for collection. For
retinotopic mapping, a drifting spherically-corrected checkerboard
visual stimulus of four cardinal directions (10 repetitions each direction)
was presented on an LED screen (Adafruit Qualia 9.7” DisplayPort
Monitor, 2048× 1536 pixel resolution) across the visual field of themice.
The retinotopicmap was calculated using a previously reported analysis
pipeline47. The final locations of S1, PPC-A and PPC-RL were determined
by optimally aligning the sensory map and retinotopic map together to
the Allen Mouse Common Coordinate48.

Two-area two-photon imaging
Two-area two-photon imaging was performed using a previously
reported custom-built microscope24. The simultaneous two-area ima-
gingwas achieved through a temporalmultiplexing scheme,where the
laser pulses from a Ti: sapphire laser (Mai Tai HP DeepSee, Spectra-
Physics) was split in two temporally interleaved copies, each directed
through an independently movable unit to a separate field of view.
Two-photon imagingwasperformed at 920-nmexcitationwith a green
emission filter (510/42 nm bandpass), through a 16x objective
(N16XLWD, Nikon, NA 0.8). In each area, we performed volumetric
imaging using an electrically tunable lens (Optotune EL-10-30-C), from
3 different depths in layer 2/3, separated by 40–50 µm, with typically
450× 500 µmFOV size, at a resolution of typically 370 × 256 pixels. For
two areas and three imaging depths per area, the volume rate was
typically 9.3 Hz. During learning, we followed the same FOVs in each
mouse, guided by the blood vessels and landmark neurons,withminor
shifts each day. In expert experiments, we slightly changed the depths
in each session to cover slightly different populations. Due to the
dense labeling of the GCaMP6f transgenic mice, the long learning
curve, and the shifts in FOVs across days, we could not track enough
neurons throughout the whole learning curve, therefore, we did not
seek to match the neurons across days.

Processing of two-photon imaging data
We used Suite2p31 to perform rigid motion correction on the raw
data, model-based background subtraction, neuron identification,

Fig. 7 | Disrupted task-related neuronal representations during incorrect trials.
a Session-averaged spike rates of task-discriminative neurons during correct (solid
lines) and incorrect (dashed lines) trials. Vertical dashed lines indicate task win-
dows. bQuantification of average spike rates of task-discriminative neurons during
correct (solid lines) and incorrect (dashed lines) trials in corresponding task win-
dows. Colors represent the quantified task window. c Discrimination index of
population activity projections on the task encoding axes during correct (solid
lines) and incorrect (dashed lines) trials in S1, PPC-RL and PPC-A. Gray lines
represent shuffled data confidence interval (CI). d Diagram of the similarity
between the encoding axis and the within-area axes from correct and incorrect
trials. eDiagramof the similarity between the encoding axis and the inter-area axes
from correct and incorrect trials. f Similarity between the within-area axis and the
encoding axis in expert condition. Left: pairwise similarity betweenwithin-area axis
(x-axis) and encoding axis (y-axis), in correct (left) and incorrect (right) trials. Red
lines indicate that the data is above 95% percentile of the shuffled distribution; red

or black asterisks indicate that the data fromexpert condition is significantly higher
or lower than the naive condition. Right: quantification of similarity. Solid and
dashed lines represent correct and incorrect trials, correspondingly; gray lines
represent shuffled data. g Similarity between inter-area axis and encoding axis in
expert condition for S1 (top) and PPC-RL (bottom) interactions. Left: pairwise
similarity between inter-area axis (x-axis) and encoding axis (y-axis), in correct (left)
and incorrect (right) trials. Right: quantification of similarity. h Same plots as in (g)
but for S1 (top) and PPC-A (bottom) interactions. (S1: 13 mice, 149, 156, 48 sessions
[naive, learning, expert]; PPC-RL: 13 mice, 79, 63, 33 sessions; PPC-A: 9mice, 70, 93,
15 sessions; S1 and PPC-RL interaction: 13 mice, 79, 63, 33 sessions; S1 and PPC-A
interaction: 9mice, 70, 93, 15 sessions; *p <0.05, **p <0.01, ***p <0.001; (e,g,h) left
panels: *p <0.05; two-sided Wilcoxon signed rank paired test; p-values were cor-
rected formultiple comparisons using FDR;mean± SEM). Source data are provided
as a Source Data file.
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fluorescence extraction, and neuron classification. This pipeline out-
puts the raw fluorescence traces, the neuropil traces, and the decon-
volved spike rates of identified neurons. We manually curated each
imaging session and discarded non-neuronal structures or low-quality
ROIs. All analysis was performed using the z-scored deconvolved spike
rates,where the spike rate of eachneuronwas normalized to have zero
mean and unit standard deviation.

Becausefluorescence signalmightbleed throughbetween twoareas
or between two adjacent imaging depths within each area, we carefully
removed potentially redundant neurons that were highly correlatedwith
neighboring neurons. We identified potential redundant neuron pairs
that fulfilled all the below criteria: (1) spike rate correlation above 0.5; (2)
lateral distance between centroids below 5 µm regardless of depths; (3)
appeared in adjacent imaging depths in the same imaging area (signal
bleed-through in the same area from adjacent imaging planes), or
appeared in thesame imagingdepths inboth imagingareas (signalbleed-
through across areas from the same imaging plane). In these duplicated
neuron pairs, we kept the neuron with the highest average fluorescence
level and discarded the one with less fluorescence. In each imaging ses-
sion, the number of redundant neuron pairs were typically below 5.

Because of the variable length of the choice window, we defined
the choice window as the 0.5-s time period before the lick event that
triggered the reward window. To exclude lick-related activity during
the texture window, we identified all early licks during the texture
window and discarded the subsequent activity in these trials until the
choicewindow.Weperformed this procedure in all analyses except for
the sliding window PCA analysis, where discarding early licks during
the texture window introduced artificial population dimensionality
shrinkage.

Task neuron analysis
We identified task-tuned neurons by testing the activity level of indivi-
dual neurons across task windows against a null distribution. We first
denoised the spike rates by a small Gaussian kernel (3 frames, sigma= 1);
then, for neuron Ni during task window Tj, we compared its average
activity within the window against a null distribution of average activity
level, generated by randomly sampling the same number of frames
outside of window Tj for 100 times. The neuron Ni is identified as
responsive in task window Tj if its activity in Tj was significantly higher
than the null distribution (one-tailedWilcoxon Rank Sum test; p<0.05).
This procedure was performed independently for each session.

To identify task-discriminative neurons, we tested the activity of
responsive neurons underlying each task variable state, for tone, tex-
ture, choice, and reward. For each task variable (for example, texture),
there are two possible values, s1 and s2 (texture 1 and texture 2). For
neuron Ni, we compared its average activity within the corresponding
task window (texture window in this example) between s1 trials and s2
trials. Neuron Ni was identified as a discriminative neuron if its activity
was significantly higher (Wilcoxon Rank Sum test, p <0.05) in s1 or s2
trials. We performed this procedure for all four task variables in the
corresponding task windows. Responsive and discriminative neurons
identified with this method are non-random, as no significant neurons
were identified in shuffled data, where the activity of individual neu-
rons was randomized within sessions.

Discrimination analysis
To calculate the discrimination ability of principal components (PCs)
or axis projections, we calculated a standard receiver operating char-
acteristics (ROC) curve using each task variable and computed its area
under the curve (AUC). The discrimination index was defined as DI =
(AUC−0.5) × 2.

Encoding axis analysis
We aimed to compare the encoding axis, the within-area interaction
axis, and the inter-area interaction axis within the same space. Since

the within-area axis requires two subpopulations from the same area,
we generated all three types of axes from the subpopulations. Briefly,
each population from S1, PPC-RL, and PPC-A was randomly divided
into two subpopulations with a similar number of neurons. Then, to
reduce the computational challenge and to ensure a stable CCA
computation, we reduced the dimensionality of each subpopulation
with PCA. CCA requires a sufficient amount of samples to generate
stable solutions. Our dataset consisted of ~120 trials per session, and
~10 timepoints for each taskwindow.Aprevious study using simulated
datasets has shown that ~50 samples per variable are required to
generate a stable solution36. To ensure such a condition is met, and to
ensure that each subpopulation had a similar number of variables,
especially for the inter-area axis computation, we kept the top 30 PCs
for each area. The top 30 PCs explained the following fractions of total
variance (in %): 41.4 ± 2.0 (naive, mean ± SEM), 41.7 ± 1.5 (learning),
51.7 ± 2.2 (expert, same order for the following) in S1, 37.0 ± 2.6,
38.5 ± 2.6, 47.1 ± 2.5 in PPC-RL, and 38.0 ± 1.6, 42.7 ± 1.4, 50.8 ± 2.9 in
PPC-A. Taking the top 60 PCs did not change our main results (Sup-
plementary Fig. 4; explained variance: 63.6 ± 2.0, 65.6 ± 1.7, 75.1 ± 2.1 in
S1, 58.5 ± 2.9, 60.3 ± 2.7, 72.0 ± 2.5 in PPC-RL, 62.2 ± 2.2, 68.3 ± 1.7,
77.6 ± 2.8 in PPC-A). For this analysis and all following sections, only
datasets with good imaging quality in both simultaneously imaged
areas were included. We then computed the three subspaces using
each subpopulation. We repeated the random split 10 times, resulting
in 20 subpopulations for each area. All results were obtained by
averaging these repeats. Only datasets with good imaging quality from
both areas, by manual curation, were included in this analysis.

To compute the encoding axis, we calculated the trial average
vector for each task variable (for example, texture 1 versus texture 2
trials), and defined the encoding axis as the difference between these
twomean vectors. To generate a null distribution of the discrimination
index, we shuffled the neuronal ordering of the population activity and
computed the discrimination index using the encoding axis from the
real data. This shuffling procedure disrupted the contribution of
individual neurons to task encoding, while preserving the overall firing
rate of the population during the task. To compute axis similarity, in
order to account for the differences in the variance captured by each
PC, we computed a weighted cosine similarity, defined as
P

iwiuivi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iwiu
2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iwiv

2
i

q
, where u and v are the axes, i represents

the element in the axis vector, and w is the variance explained by the
corresponding PC of each element in the axis vector.

Within-area and inter-area axis analysis
We utilized canonical correlation analysis (CCA) to evaluate the
interaction between neuronal populations within and across different
areas23. CCA works by identifying pairs of dimensions from the neu-
ronal populations in two neuronal populations, optimizing the corre-
lation between their projected activities. For example, given two
neuronal populations whose activity is represented by an nx × tmatrix
X from the first population and a ny × t matrix Y from the second
population—where t represents the number of time points and nx and
ny are the number of neurons in each respective area—CCAdetermines
min(nx, ny) pairs of dimensions, with the correlation between the
projections onto thesedimensions decreasing from the first pair to the
last. Unlike PCA, which independently maximizes the variance
explained by the top axes from X and Y, CCA focuses on maximizing
the correlation between the projections of the activity matrices X and
Y onto the identified dimensions.

We performed CCA analysis for the population activity during
each task window, where frames pooled across trials were treated as
observations. For within-area interaction axes, we performed CCA
using the two subpopulations from the same area. For inter-area
interaction axes,weperformedCCAusing twopairs of subpopulations
from the two simultaneously imaged areas. To identify interaction
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subspaces that reflect the instantaneous co-fluctuation between two
populations, we computed 100 shuffled models by randomizing the
trial correspondence between the two populations, while preserving
the temporal structure of neuronal activity during the task. These
shuffledmodels captured the interaction subspaces resulting from the
change in activity levels due to task factors (sensory inputs, choice,
reward), but not from the simultaneous interaction between popula-
tions. The highest correlation values from these shuffled models
represent the shared activity that can be explained by the task struc-
ture. We determined the number of significant interaction dimensions
using a threshold defined as mean+ 1.96 S.D. (standard deviation) of
the highest shuffled correlation from the 100 shuffledmodels. In cases
where no significant interaction dimensions were found, the top CCA
axes still represent the optimal interaction subspaces, although these
subspaces do not contain more information than the effect of com-
mon task inputs. Subsequent analysis was performed by always taking
the top axes. Using these shuffled models, we generate a null dis-
tribution of axis similarity by computing theweighted cosine similarity
with encoding axes. Similarity values from the real models were con-
sidered significant if they were higher than the 95% quantile of the
shuffled distribution. Subsequent statistical comparisons between
naive and expert conditions were restrained to pairswhere at least one
side was significantly above shuffled distribution.

It is worth noting that PCA of the neuron space also captures
features of within-area interactions, similar to CCA performed on two
subpopulations from an area. However, these two methods reflect
different characteristicsof thedata,with PCAdimensionality capturing
the total variability structure during the task, including both shared
and independent variability, while CCA dimensionality capturing the
reliable shared variability between subpopulations. When the task-
relevant variability dominates the total variance and is shared con-
sistently across neurons, both methods define similar axes.

Analysis of correct and incorrect trials
To account for the differences in trial numbers and to ensure enough
samples from each trial type over learning (e.g., expert sessions con-
tainmore correct trials than incorrect trials), we re-defined sessions in
each imaging day to include 50 trials from each trial type (correct and
incorrect trials). For each session, we randomly downsampled the trial
type with more trials to generate matching numbers of trials for each
trial type. We excluded sessions with less than 30 trials of either trial
type to ensure stable analysis results (final session length: median 50
trials for each trial type, mean ± SD: 46 ± 6 trials). We repeated this
random downsampling procedure 10 times for each dataset and
averaged the results. This procedure was implemented for all analysis
concerning the comparison between correct and incorrect trials.

Statistics and reproducibility
All statistical analysis was done in MATLAB. In general, Wilcoxon
signed-rank test was used for paired samples, andWilcoxon Rank Sum
test was used for non-paired samples. No normality test was per-
formed since these tests do not assume normality. Two-sided tests
were performed unless otherwise indicated. No statistical methods
were used to pre-determine sample sizes, but our sample sizes are
similar to those reported in previous publications1,6,8,26,28,41. Error bars
representmean± SEM. P-values were corrected for false discovery rate
(FDR) < 0.05 for multiple testing, using MATLAB function mafdr. Mice
were randomly assigned to imaging groups (S1 and PPC-A or S1 and
PPC-RL imaging). Stimulus presentation during imaging was fully
randomized. Data collection and analysis were not performed blind to
the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data are available from the corresponding authors upon request. Source
data are provided with this paper.

Code availability
Data processing and analysis code is available at: https://github.com/
HelmchenLabSoftware/multiarea_learning_manuscript.
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