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Finding spatially variable ligand-receptor
interactions with functional support from
downstream genes

Shiying Li1,3, Ruohan Wang1,3, Sitong Liu1 & Shuai Cheng Li 1,2

Spatial transcriptomics has emerged as a groundbreaking tool for the study of
intercellular ligand-receptor interactions (LRIs) that exhibit spatial variability.
To identify spatially variable LRIs with activation evidence, we present SPIDER,
which constructs cell-cell interaction interfaces constrained by cellular inter-
action capacity, and profiles and identifies spatially variable interaction (SVI)
signals with support from downstream transcript factors via multiple prob-
abilistic models. SPIDER demonstrates superior performance regarding
accuracy, specificity, and spatial variance relative to existing methods.
Experiments of simulations and real datasets in bulk and single-cell resolutions
validate SPIDER-identified SVIs by spatial autocorrelation and correlation with
downstream target genes, and reveal their consistency across multiple biolo-
gical replicates. Particularly, distinct SVIs on mouse datasets reveal the
potential in representing regional and inter-cell type interactions. SPIDER
groups SVIs with similar spatial distributions into SVI patterns that are sup-
ported by strong Pearson correlations on spot annotations, generating
interaction-based sub-clusters within cell-type regions, and deriving
enriched pathways.

Cell-cell interactions (CCIs) play a vital role in cellular functions,
organogenesis, and disease progression, with identified CCIs widely
applied in disease diagnosis and therapeutic strategies1–3. These
highly complex interactions involve multiple signaling pathways and
crosstalk between different cell types, some facilitated by ligand-
receptor interactions (LRIs). Single-cell RNA sequencing (scRNA-seq)
technology facilitates LRI inference from the co-expression of sig-
naling molecules, such as ligands, receptors, and downstream tran-
scription factors4.

Recently, the advance of spatially resolved transcriptome (ST)
technologies5–8 has improved the accuracy of LRI inference by
applying spatial proximity to LRI signal detection9. For example,
Giotto and SpaTalk infer LRIs from neighboring cells defined by
Delaunay triangulation, and recent COMMOT limits the signaling
range of LRIs by collective optimal transport (COT)10–12. The inferred
LRI signals are subject to differential expression tests given cluster

labels such as cell types. For example, SpaTalk identifies enriched
LRIs between any two clusters with a permutation test of randomly
shuffling cell labels to reconstruct interacting cell pairs11. COMMOT
summarizes LRI signals into a cluster-by-cluster signaling matrix and
applies label permutation tests to identify the interaction sig-
nificance between any pair of clusters12. However, examining LRIs
with predefined spot clusters neglects possible regional interactions
among mixed clusters or sub-clusters13.

Given the regulatory role of LRIs for tissue organization and
homeostasis14, LRI signals could exhibit spatial heterogeneity across
spatial locations, which we refer to as spatially variable LRIs (SVIs).
Spatial variance in LRI signals can reflect cell states independent of
gene-based annotations - cells from multiple clusters or a subcluster
could exhibit homogeneous LRI signals15. Furthermore, similar to
spatially variable genes (SVG), SVIs preserve the spatial relationships
of cells and capture cellular heterogeneity concerning interactions16.
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Therefore, the identification of SVIs fills the gap in existing CCI
studies.

Statistical models for assessing the significance of the depen-
dence between signals and spatial coordinates have been proposed
and reviewed17. Spatial autocorrelation statistics, such asMoran’s I and
Geary’s C, serve as the baseline measurements for spatial variance18,19.
For more sophisticated methods, SOMDE, SpatialDE, SpatialDE2, and
nnSVG are based on the Gaussian process, SPARK-X is based on non-
parametric covariance tests, and scGCO is based on hidden Markov
random fields and graph cut20–24. However, the abovemethods are not
directly applicable to identifying SVIs due to two obstacles. First, the
LRI signal is inferred between two neighboring cells without specific
locations, which is a prerequisite for spatial variance models. Fur-
thermore, the other challenge is the computational scalability17. For
example, SPARK-X and nnSVG scale linearly with the number of spatial
locations22,23, while SpatialDE2 scales quadratically21. Detecting the
spatial variance of interaction signals is more computationally inten-
sive, as the number of spot pairs producing the signal doubles or
triples the number of spots. This introduces the need for current SVG
methods to adapt to the increasingly larger data size, as ST platforms
move towards even higher resolution.

In addition to detecting spatial variance for a single signal,
methods also exist for detecting the spatial co-occurrence between
two signals. SVCA is a Gaussian process-based framework that
decomposes gene expression variation into intrinsic effects, environ-
mental effects, and gene interaction effects, identifying genes with a
high proportion of variance explained by the interaction term25.
Similarly, SpatialCorr employs a likelihood ratio test statistic to detect
spatially varying gene correlations derived from the Gaussian kernel
and assesses statistical significance through sequential Monte Carlo
permutation26. However, the above methods do not consider if the
spatially co-occurring genes form any spatial patterns. Recently, Spa-
tialDM proposed to identify SVIs by introducing Moran’s R, a bivariate
extension of the aforementioned spatial autocorrelation statistic
Moran’s I, to detect spatial co-expression with spatial patterns27.
However, SpatialDM fails to consider any functional support for
identified SVIs, for example, whether the SVIs trigger any downstream
targets in receivers. Without functional validation, the reported SVIs
could contain false positives that should not be integrated into
downstream analyses. Therefore, a method that removes such false
positives by utilizing the enrichment of the ligand-receptor-target
(LRT) signaling network is still lacking.

In this study, we propose the package, named SPtial Interaction-
encoDed intErface decipheR (SPIDER), to identify SVIs with functional
supports. SPIDER constructs interaction capacity-constrained cell-cell
interaction interfaces using a power diagram. SPIDER then encodes
each interfacewith the estimated interaction strengths of individual LR
pairs by joining COT and co-expressions. Subsequently, SPIDER seeks
functional support of an LRI by examining the activation of its target
genes. In selecting potentially spatially variable LRIs, SPIDER recruits a
self-organizing map (SOM) neural network to form abstract interfaces
with interfaces in close proximity and identify signals that are poten-
tially spatially variable across interfaces using six probabilistic models.
Finally, SPIDER screens for SVI candidates with functional support, and
generates interaction patterns by grouping SVIs with similar spatial
distributions. Across all simulated scenarios in both bulk and single-
cell resolutions, SPIDER is able to receive the highest Area Under the
Receiver Operator Curve (AUC) and specificity values compared to
other methods. On real datasets, SPIDER shows robustness in identi-
fying SVIs from both single-cell and spot-based ST data generated by
different platforms, including 10x Visium, Slide-seq V2, seqFISH, and
Stereo-seq8,28–30. SPIDER demonstrates scalability by effectively oper-
ating across a range of constructed interfaces, from hundreds to over
one hundred thousand, accommodating the increasing size of ST data.
The difference in resolution also suggests the robustness of SPIDER

against sequencing platforms. The SPIDER-identified SVIs have been
validated based on two criteria: they exhibit higher scores on spatial
autocorrelation metrics than the excluded LRIs, and they correlate
stronger with their downstream target genes than the excluded LRIs.
The biological significance of SVIs and SVI patterns has been validated
through strong Pearson correlations with spot annotations, indicating
biologically relevant spatial patterns. The analysis has also generated
interaction-based sub-clusters within cell-type regions and clusters
characterized by mixed cell-type interactions. Furthermore, SPIDER
derives enriched pathways from SVIs and their supporting genes and
excludes false-positive SVIs without literature evidence.

Results
Overview of SPIDER
Following the assumption that LRIs are spatially constrained, SPIDER
estimates an interaction interface between any pair of cells given their
interaction capacity and spatial proximity (Fig. 1A). SPIDER first eval-
uates the interaction capacity for each cell based on the total expres-
sion of ligand and receptor genes. SPIDER then applies a power
diagram to identify interfaces between cells based on varying inter-
action capacities31.

Similar to the commonly used Delaunay triangulation in ST data
analysis, a power diagram generates polygons representing spots.
However, power diagrams directly represent interaction areas, with
polygon sizes proportional to assigned interaction capacities. There-
fore, the capacity-based power diagram outperforms Delaunay trian-
gulation in its superior adaptability to identify interfaces according to
varying interaction dynamics (detailed comparison in Supplemen-
tary Note 1).

In a power diagram, cells are lifted onto a paraboloid surface in 3D
space, with the position of each cell determined by its assigned weight
and 2D positions. The lifted positions shape an overall convex hull
when viewed from above the paraboloid. This convex hull is then
projected back downward onto the original 2D plane. The boundaries
determined by this projection define the sizes and shapes of each cell’s
bounding polygon within the 2D plane. The area of each polygon is
directly proportional to the corresponding cell’s original liftingweight,
with higher weights yielding larger polygons.

Subsequently, SPIDER models LRI signals across interfaces,
represented as interaction profiles, as well as interaction directions,
using a COT approach integrated with co-expression analysis of
ligand and receptor genes (Fig. 1B and Supplementary Note 2). First,
SPIDER applies COT to estimate the distribution of ligand and
receptor expression across interfaces12. The COT problem is for-
mulated tominimize the transport of LR expression across interfaces
while penalizing un-transported expression, with constraints ensur-
ing expression is transported from source to target spots. The COT
solution represents the optimal distribution plan of ligands and
receptors across interfaces, therefore facilitating the estimation of
LRI signals and directions. Subsequently, the direction of an LRI in an
interface is inferred as the maximum between bi-directional COT
scores. For the interaction profiles, each entry in the profile repre-
sents an LR pair from the LR database. From the optimal
transport scores, LRI-specific expressions are extracted for each
spot to calculate LR co-expression. The interaction strength of
a ligand-receptor pair is then calculated as the maximum of the
corresponding COT score and co-expression value.

Subsequently, SPIDER locates theprofiled interfaceon the ST slice
at the center of the connected spots (Fig. 1C). As a result, we obtain the
coordinates and expressions for interfaces. In particular, locating
interfaces enables the construction of a spatial proximity graph with
interfaces as nodes, which facilitates calculating the spatial variance of
an LRI signal.

To reduce the number of sites in testing spatial variance,
SPIDER further finds an abstract representation of interfaces
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based on the interface spatial proximity graph (Fig. 1C). Specifi-
cally, SPIDER utilizes SOM, an unsupervised neural network, to
adaptively integrate adjacent interfaces into an abstract interface.
SOM derives the mapping between interfaces and an abstract

interface by both the topological neighboring relations and the
relative interface densities32. The proximity-based abstraction of
SOM preserves the spatial continuity of joint interaction profiles.
Each abstract interface joins the interaction profiles of the
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Fig. 1 | Schema of SPIDER. A SPIDER estimates interaction interfaces between
neighboring cells based on interaction capacity and spatial proximity. Interface
sizes are proportional to assigned capacities in a power diagram representation76.
B SPIDERmodels ligand-receptor interaction (LRI) signals across interfaces using a
collective optimal transport approach integrated with co-expression analysis to
estimate interaction profiles and directions. C Interfaces are located on the spatial
transcriptome slice and represented as nodes in a proximity graph. Self-organizing
mapping derives an abstract interface graph joining adjacent interfaces. D A

knowledge graph is used to estimate receptor activation by analyzing weighted
paths reaching spatially variable TFs (svTFs) using a cell-specific adjacency matrix.
The power of thismatrix quantifies path counts at increasing lengths. ECorrelating
receptor activation scoreswith LRI scores provides supporting evidence for LRIs by
analysis of svTFpatterns. F Statistical testing identifies spatially variable interaction
(SVI) candidates. G Candidates are further screened for SVIs supported by corre-
lating receptor activations with LRI scores. H SVIs with similar distributions are
clustered using a mixture model.
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contracted interfaces into an abstract interaction profile with a
mean-max signal convolution.

After interface construction, SPIDER analyzes spatially variable
transcription factors (svTFs) to provide functional support for LRI
scores. The inclusion of svTF analysis serves two major purposes.
First, the activation of a TF downstream of an SVI provides
mechanistic validation for the detected SVI. If an SVI is functional, its
signaling should propagate through the receptor to downstream
gene regulatory programs, resulting in the spatial activation of spe-
cific TFs11. Therefore, observing spatially variable expression of a TF
that can be mechanistically linked to an upstream SVI offers strong
evidence that the SVI is not merely a result of spatial co-expression or
technical artifact, but is biologically meaningful and functionally
realized in the tissue context. Second, integrating svTFs into our
analysis enhances the biological interpretability of SVIs, as it allows
us to connect spatial cell-cell communication events with down-
stream changes in gene regulatory networks and pathway enrich-
ment analysis. By linking SVIs to the activation of specific TFs, we can
better understand how spatial signaling events drive functional het-
erogeneity within the tissue and how these events may shape spatial
patterns of gene expression and cell states. Consequently, we
exclude non-spatially variable TF genes, as they provide less com-
pelling functional evidence for SVIs and are less likely to reflect the
downstream consequences of spatial signaling.

SPIDER contains a knowledge graph representing known reg-
ulatory relationships among ligands, receptors, and downstream tar-
get TF genes. Receptor activation is estimated by tracing weighted
paths reaching svTF nodes through this graph topology, using a cell-
specific adjacency matrix representation integrated with cell expres-
sions (Fig. 1D).

Powers of the weighted adjacency matrix quantify path counts
linking receptors and TFs at increasing hops, akin to signal propaga-
tion through multiple network steps. Hop matrices extracted at each
power allow the dissection of receptor-TF connectivity over a range of
path lengths. The summationof hopmatriceswithin a length threshold
yields a combined matrix of full activation scores, systematically
characterizing signal flow over the knowledge graph. Correlating the
resulting activation scores with the LRI profiles implicating those
receptors provides functional evidence of receptor-TF collabora-
tions (Fig. 1E).

Subsequently, SPIDER identifies SVI candidates by a multi-model
test, as illustrated in Fig. 1F from the abstract interfaces. Specifically,
SPIDER integrates six statistical models and two benchmark tests for
spatial variance and retains LRIs with statistically significant spatial
variances that pass the joint model tests. SPIDER further screens for
SVI candidates that are supported by svTFs, generalizing the set of
svTF-supported SVIs (Fig. 1G).

SPIDER then clusters SVIs based on similarities in spatial dis-
tributions using a Gaussian process mixture model (Fig. 1H). The
number of clusters is automatically determined by a Dirichlet process
prior21. Each SVI cluster generates a spatial pattern as the posterior
mixture of the member SVIs modeled as Gaussian process compo-
nents, summarizing the spatial distribution of the included SVIs. We
refer to the Gaussian process mixture as the activation strength of the
generated pattern, which provides a quantitative measure of the
summarized SVI profiles within the cluster. To explore the potential
biological processes associated with SVIs that share similar spatial
distributions, SPIDER also identifies significantly enriched pathways
within each SVI cluster from KEGG and Reactome databases using
Fisher’s exact test33,34.

Evaluation of SPIDER on simulated datasets compared to the
SOTA CCI methods
To examine the accuracy of SPIDER in identifying SVIs, we simulated
multiple datasets from the pancreatic ductal adenocarcinoma (PDAC)

dataset in Fig. 2A with 428 spots and 498 LR pairs28. We used the SVCA
package25 to simulate the interaction strength between ligands and
receptors, as well as the receptor activation of TF genes. Specifically,
SVCA dissected the expression variance of a gene into distinct Gaus-
sian process components that individually represent the contributions
from intrinsic cell states, spatial proximity, gene interactions, and
residual noise.

By controlling the fraction of expression variance explained by
gene interactions, we simulated ligand gene expression from the cor-
responding receptor expression. This fraction, which defines the
interaction strength level, allows heterogeneous interaction strengths
across both cells and LR pairs. Similarly, we simulated the expression
of TF genes by controlling the fraction of intrinsic variance from
receptors. As the spatial pattern of simulated expression is dominated
by thatof the given receptor gene,we selected the top 100SV andnon-
SV receptors. Considering that SVCA is a Guassian-based framework,
we further imposed different levels of Poisson noise on the simulated
count matrix.

We constructed various simulation scenarios by combining the
simulated ligand and TF expression data, initially generating 12
simulations by systematically varying the interaction strength
levels–specifically, setting the fraction of ligand variance explained
by receptor interaction to 99, 75, 50, and 25%–in conjunction with
different noise levels. At the median noise level, we generated an
additional 12 simulations by adjusting the fraction of svTF-supported
non-SV receptors, with options for full, partial, or no svTF support.
Lastly, we created four null simulations at the median noise level
across different interaction strength levels, ensuring that all SV
receptors were unsupported by svTFs, while non-SV receptors could
have varying levels of support.

We benchmarked SPIDER’s performance against state-of-the-art
(SOTA) CCI inference methods: cluster-based SpaTalk for ST data and
CellChat for non-spatial single-cell data, as well as spatial correlation-
based SpatialCorr and SpatialDM. To further test the effect of SPIDER
components, we replace the interface scoring step in SPIDER with
COMMOT and stLearn.We also evaluated the individual performances
of SPIDER SVI models, namely SpatialDE, SpatialDE2, scGCO, SPARKX,
SOMDE, and nnSVG.

AUC, or Area Under the Curve, is a widely utilized performance
metric that evaluates the effectiveness of binary classification models
by quantifying the area under the Receiver Operating Characteristic
(ROC) curve. This metric provides a comprehensive measure of a
model’s ability to differentiate between positive and negative classes,
with a value of 1.0 signifying perfect discrimination. When the inter-
action strength is set at 99%, SPIDER achieved an average AUC of 0.84
across all noise levels, surpassing both SpatialDM (AUC=0.701) and
TF-based SpaTalk (AUC=0.697), as illustrated in Fig. 2B. Additionally,
SPIDER outperformed CCI methods SpatialCorr (AUC =0.475) and
CellChat (AUC=0.673), which are not specifically designed for iden-
tifying SVIs. In contrast, the performance of scoring methods stLearn
and COMMOT was less satisfactory, yielding AUCs of 0.713 and 0.562,
respectively, thereby indicating SPIDER’s superiority in LRI scoring.

To further evaluate the selected SVIs identified by SPIDER, we
employed two standard measures of spatial autocorrelation: Moran’s I
and Geary’s C. High values of I and low values of C indicate non-ran-
dom, clustered distributions18,19. We reverse the Geary score for visual
and contextual consistency. In addition to these baseline assessments,
we analyzed specialized metrics from the SOMDE and nnSVG algo-
rithms, specifically the log-likelihood ratio (LR) and SOMDE’s fraction
of spatial variation (FSV) score, which quantifies spatially explained
interaction variability20,22. Under conditions of 99% interaction
strength level, the SVI candidates selected by SPIDER and SpatialDM,
and LRIs from SpatialCorr, CellChat, and SpaTalk exhibited sig-
nificantly higher scores than those excluded by the above methods
(adjusted p-value ≤ 0.0001), as illustrated in Fig. 2C. Additionally,
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SPIDER-nominated SVI candidates generally demonstrated sig-
nificantly higher scores compared to those identified by SpatialDM,
SpatialCorr, CellChat, and SpaTalk.

In scenarios with lower interaction strength levels of 25, 50, and
75% and three noise levels, SPIDER consistently outperformed all other
methods (Fig. 2D and Supplementary Fig. 1A). As summarized in Sup-
plementary Table 1, SPIDER achieved an average AUC of 0.886, com-
pared to average AUCs of 0.762 and 0.703 for SpatialDM and SpaTalk,
respectively. Similar performance trends were observed for spatial
variance metrics in other simulation cases, where SPIDER often
attained higher scores than SpatialDM, SpatialCorr, CellChat, and
SpaTalk, although not always statistically significant, as demonstrated
in Supplementary Fig. 1B. Additionally, SPIDER outperformed all other
methods under different combinations of interaction strength levels
and fractions of svTF-supported non-SV receptors (Supplementary

Fig. 1C). SPIDER also demonstrated robust performance in composite
interaction scenarios (details in Supplementary Note 3), achieving
mean AUROCs of 0.930 (mixed interaction strength levels) and 0.871
(mixed noise levels), with superior performance in weak interaction
identification (AUROC=0.931 vs 0.797–0.671) and high-noise spatial
pattern (AUROC=0.779 vs 0.767–0.669) compared to SpatialDM and
SpaTalk. Systematic validation through variance ranking and spatial
autocorrelation metrics further confirmed SPIDER reliability in
detecting SVI across interaction variance gradients and varying spatial
patterns.

Furthermore, the individual SPIDER SVI model consistently yiel-
ded higher AUCs than SpatialDM across varying interaction and noise
levels (Fig. 2D). Notably, SPIDER-SpatialDE and SPIDER-nnSVG, which
utilize only the statistical results from SpatialDE and nnSVG, achieved
the highest AUCs of 0.902 and 0.901, respectively. Among SPIDER SVI
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Single-cell simula�on with PDAC data

.E.D

Single-cell simula�on with DLPFC data

Bulk simula�on with PDAC data Bulk simula�on with DLPFC data

G. .H.F

.J.I

L.K. M. O.N. P.

Fig. 2 | Comparisons between SPIDER and other state-of-the-art CCI methods
on simulated PDACandDLPFCdatasets in single-cell andbulk resolutions. A–E
Comparisons on simulated single-cell PDAC datasets. A PDAC sample with region
annotations. B Receiver Operating Characteristic (ROC) of the simulation dataset
with 99% interaction strength level; Area Under ROC (AUC) for each method is
marked in the legend.C The boxplot offive SVI evaluationmetrics on LRIs detected
by SPIDER, SpatialDM, CellChat, SpatialCorr, SpaTalk, and those excluded by the
abovemethods (n=490LRIs). TheGeary score,where a lower value indicates higher
spatial clustering, is reversed for visualization consistency. D Comparison of
average AUCs across datasets under four different interaction strength levels (25,
50, 75, and 99%, respectively) and median noise level across different fractions.
EComparisonof average specificity scores across null datasets under four different
interaction strength levels (25%, 50%, 75%, and 99%, respectively) across all three
noise levels. F–J Comparisons on simulated single-cell DLPFC sample 151,673.
F DLPFC sample 151,673 with region annotations. G ROC of the simulation dataset
with 99% interaction strength level.H The boxplot of five SVI evaluationmetrics on
LRIs detected by SPIDER, SpatialDM, CellChat, and SpaTalk, and those excluded by
the above methods, with reverted Geary scores (n = 407 LRIs). I Comparison of
average AUCs across datasets under four different interaction strength levels and
median noise level across different fractions. J Comparison of average specificity
across null datasets under four different interaction strength levels with all three

noise levels between SPIDER and SpatialDM. K–M Comparisons on simulated bulk
PDAC datasets. K Bulk PDAC simulation with annotations. L ROC of the simulation
dataset with 99% interaction strength level; Area Under ROC (AUC) for each
method ismarked in the legend.MComparisonof AUCs across datasets under four
different interaction strength levels with two resolution settings and all three noise
levels. N–P Comparisons on simulated bulk DLPFC datasets. N Bulk DLPFC simu-
lation with annotations. O ROC of the simulation dataset with 99% interaction
strength level; AUC for each method is marked in the legend. P. Comparison of
AUCs across datasets under four different interaction strength levels with two
resolution settings and all three noise levels). PDAC: pancreatic ductal adeno-
carcinoma; DLPFC: dorsolateral prefrontal cortex. The boxplots display the
median (center line), the 25 and 75th percentiles (box bounds), whiskers
extending to the most extreme data points within 1.5 × the interquartile range,
minima and maxima as the lowest and highest points within the whiskers, and
outliers as individual points beyond thewhiskers. The statistical significance of box
plots is calculated using one-sided Mann-Whitney-Wilcoxon test with Benjamini-
Hochberg correction, with the exact adjusted p-values listed in Supplementary
Table2 and the following significanceannotations: ****: adjustedp-value ≤ 1.00e-04;
***: 1.00e-04 < adjusted p-value ≤ 1.00e-03; **: 1.00e-03 < adjusted p-value ≤ 1.00e-
02; *: 1.00e-02 < adjusted p-value ≤ 5.00e-02. Source data are provided as a Source
Data file.
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models, Gaussian models, such as SPIDER-SOMDE (average AUC=
0.899) and SPIDER-SpatialDE2 (average AUC=0.895) outperformed
scGCO (average AUC=0.884) and SPARKX (average AUC=0.872).

To evaluate performance under null scenarios, we conducted
tests on SPIDER and comparable methods using simulated data with-
out svTF-supported SVIs. Specificity, defined as a method’s ability to
minimize false positives, serves as a critical performance indicator,
with higher values indicating superior outcomes. SPIDER consistently
demonstrated higher specificity compared to SpatialDM and SpaTalk
across various interaction levels, with average specificities of 0.848,
0.392, and 0.418, respectively (Fig. 2E). Additionally, SPIDER out-
performed individual statistical models and most other methods in
terms of specificity (Supplementary Fig. 1C). It is noteworthy that some
methods achieved higher specificity than SPIDER, primarily due to
their tendency to reject a majority of LRI pairs.

We further test for the effect of TF variability on SPIDER. Across
three TF noise levels, SPIDER consistently outperformed SOTA CCI
methods with the highest mean AUCs of 0.813, compared to average
AUCs of 0.779 and 0.639 for SpatialDM and SpaTalk, respectively
(Supplementary Fig. 2A).While both SPIDER and SpaTalkwere affected
by theTFnoise, SPIDERpresented a smaller dropof0.036 inAUCvalue
from low tohighTFnoise levels compared to thatof 0.043 for SpaTalk.
Additionally, SPIDER under the median TF noise generally out-
performed SOTA CCI methods against varying LRI noise levels and
interaction strength levels (Supplementary Fig. 2B, C).

To eliminate dataset-specific influences, we replicated the
simulation using the human dorsolateral prefrontal cortex (DLPFC)
sample 151673 shown in Fig. 2F5. When the interaction strength level
is set at 99%, SPIDER achieved an AUC of 0.85 across all noise levels,
surpassing both SpatialDM (AUC =0.78) and TF-based SpaTalk
(AUC = 0.81), as illustrated in Fig. 2G. Additionally, SPIDER out-
performed the CCI method CellChat (AUC =0.72), with SpatialCorr
failing to run on this larger dataset. In this dataset, we observed a
better but still lesser performance of scoring methods stLearn and
COMMOT, yielding AUCs of 0.81 and 0.74, respectively, again sup-
porting SPIDER’s superiority in LRI scoring. The spatial variance
evaluation metrics also suggested the higher quality of SVIs from
SPIDER compared with SpatialDM, CellChat, and SpaTalk (Fig. 2H).
Such accuracy and quality persist for other combinations of inter-
action strength levels and noise levels (Fig. 2I and Supplementary
Fig. 3A, B). Across all interaction strength and noise level, SPIDER
performance is in alignment with previous findings, exhibiting higher
an average AUC of 0.859 and average specificity of 0.592, compared
to SpatialDM, which recorded an average AUC of 0.803 and average
specificity of 0.395, and SpaTalk, which recorded an average AUC of
0.809 and average specificity of 0.408 (Fig. 2J and Supplemen-
tary Fig. 3C).

In both simulations, integrating six distinct spatial variance
testing models within SPIDER confers notable advantages over rely-
ing on any single model. As shown in Supplementary Table 1, while
individual models such as SPIDER-SpatialDE and SPIDER-nnSVG
achieve high AUROC values (0.902 and 0.901, respectively), and
others like SPIDER-SPARKX and SPIDER-SpatialDE2 exhibit strong
specificity (0.835 and 0.833, respectively), none surpass SPIDER itself
in both AUROC and specificity across both PDAC and DLPFC simu-
lations. This demonstrates that the integrative framework of SPIDER
leverages the complementary strengths of each method, resulting in
consistently robust performance–particularly in balancing sensitivity
and specificity. Furthermore, by aggregating results from multiple
tests, SPIDER effectively reduces the disagreement commonly
observed among existing spatial variance detection methods35,
thereby enhancing the reliability of identified SVI candidates.
Importantly, SPIDER’s flexible design allows users to consider a
custom group of spatial variance tests, ensuring adaptability to
datasets with varying size and noise characteristics.

Furthermore, we evaluate SPIDER and comparative methods
(SpatialDM and SpaTalk) on bulk simulations of the PDAC and DLPFC
datasets. Across all simulations, SPIDER consistently demonstrated
superior predictive performance for identifying SVIs supported by
svTFs while lowering resolution differentially influenced certain
models’ accuracy.WegeneratedbulkPDACdatasetwith thenumberof
cells per spot as four and six (Fig. 2L and Supplementary Fig. 4A). We
foundSPIDER still demonstrated satisfactory identificationof SVIswith
svTF support compared to SpatialDM and SpaTalk, as indicated by
ROCs in Fig. 2M and Supplementary Fig. 4B when the number of cells
per spot set to four. Notably, the accuracy of SpatialDE2, scGCO, and
SPARKX was more impacted by the reduced bulk resolution. This
pattern held for both cell-per-spot settings tested (Fig. 2N). For the
DLPFC bulk simulations (Fig. 2O and Supplementary Fig. 4C), SPIDER
again showed superior predictive ability based on the ROCs (Fig. 2P
and Supplementary Fig. 4D). In this dataset though, only SpatialDE2
appeared to suffer substantially from the lower bulk resolution,
according to its AUROCs for both cell-per-spot settings (Fig. 2Q).
Overall, SPIDER maintained strong predictive performance in identi-
fying SVIs supported by svTFs under bulk resolution, outperforming
alternative approaches. However, moving to bulk simulations
decreased performance for some methods, with SpatialDE2 con-
sistently most affected on both datasets.

Using both single-cell and bulk resolution simulations, we exam-
ined the impact of spatial constraints on SPIDER and two comparative
methods, SpatialDM and SpaTalk. When spatial constraints on LRIs are
absent–i.e., when spatial information is disregarded–none of the
methods should identify SVIs. Across repeated random simulations
with varying interaction strength levels, SPIDER and SpatialDM con-
sistently achieved remarkably accurate specificity scores of 1 (Sup-
plementary Fig. 5). In contrast, SpaTalk performed less effectively,
likely due to its primary focus on identifying cluster-level interactions
rather than SVIs.

To evaluate SPIDER’s robustness under weak spatial constraints,
we permuted spots or cells within blocks of varying sizes while
adjusting interaction strength levels (Supplementary Fig. 6A). SPIDER
consistently outperformed both SpatialDM and SpaTalk across three
block size settings, achieving a mean AUROC of 0.8716, compared to
0.7625 for SpatialDM and 0.6487 for SpaTalk (Supplementary Fig. 6B).
Furthermore, we observed that loosening spatial constraints had a less
pronounced effect on bulk resolution datasets, with a reduction in
mean AUROC of only 0.0184 compared to a reduction of 0.0558 in
single-cell resolution datasets (Supplementary Fig. 6C). This difference
is likely attributable to the aggregated signals within spots in bulk
resolution datasets.

In real samples, we assessed the interaction types identified by
SPIDER under varying degrees of spatial constraint. Specifically, we
permuted spots or cells within blocks of different sizes in two can-
cerous and two normal brain samples. Across all samples, the pro-
portion of short-distance interactions decreased as spatial constraints
were relaxed, confirming the influence of spatial proximity on inter-
actions (Supplementary Fig. 6D). Notably, cancerous tissues exhibited
a greater reduction in short-distance interactions, consistent with the
predominant role of ECM-receptor interactions in cancer. In contrast,
brain samples, where long-range secreted signaling dominates,
showed less pronounced changes in interaction proportions.

SPIDER involves three hyperparameters for interface abstraction
and svTF filtering of LRIs. We systematically assessed the impact of
interface abstraction as well as alternative settings for these
hyperparameters–the mixture parameter, SOM node number, and
svTF filtering threshold–on model performance using simulation
datasets (detailed in Supplementary Note 4). Power analysis demon-
strates that interface abstraction is essential for larger datasets, where
it effectively enhances sparse signals, but is less critical for smaller
datasets. While the mixture parameter had limited overall influence,
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adjusting the SOM node number and svTF threshold demonstrated
more prominent effects. Specifically, higher SOM nodes tended to
reduce accuracy for some methods more substantially on the larger
DLPFC dataset, and the stringent svTF threshold of 0.5 showed
stronger dependence on dataset noise profiles than less restrictive
cutoffs.

For practical application, we recommend enabling interface
abstraction and using a moderate SOM node number (e.g., 10) for
large-scale or high-complexity datasets, while for smaller datasets with
less than 1000 spots or cells, interface abstraction can be omitted or a
lower SOM node number (e.g., 5) is preferred. The mixture parameter
can be set to the default value of 0.3, but increasing it to 0.5 may help
amplify weak signals in sparse data. For svTF filtering, the default
threshold of 0.3 generally balances sensitivity and specificity, whereas
a more stringent threshold of 0.5 may be used when higher specificity
is required, though this may reduce sensitivity in noisy datasets. In
summary, parameter values should be tailored to dataset size and
noise level: larger and noisier datasets benefit from interface abstrac-
tion, moderate SOM node numbers, and careful adjustment of the
svTF threshold. Users are encouraged to iteratively refine these para-
meters based ondataset characteristics and the biological relevance of
detected interfaces.

Evaluation of SPIDER on real datasets compared to SOTA CCI
methods
We compare SPIDER, SpatialDM, stLearn, and COMMOT on the real
PDAC dataset, where SPIDER identified 42 svTF-supported SVIs, while
SpatialDM, stLearn, and COMMOT proposed 260, 323, and 346 LRIs,
respectively. Similar to the simulation cases, we compare the selected
LRIs with six metrics, as shown in Fig. 3A. Statistical tests annotated in
Fig. 3A further confirmed that svTF-supported SVIs by SPIDER received
significantly higher metrics values than those identified by SpatialDM,
stLearn, and COMMOT, suggesting that SPIDER is more strict in
identifying SVIs with both spatial variance and functional support from
target TF genes. In addition, such pattern generally holds for other
parameter settings (Supplementary Fig. 7).

We first compare the SPIDER-proposed LRIs with svTF gene sup-
port with the SpatialDM SVIs and stLearn and COMMOT LRIs,
acknowledging that the three SOTAmethods are not designed for this
specific task. The level of TF support, quantified by the number of
supporting svTF genes for an LRI, is significantly lower for all three
SOTA methods, as shown in Fig. 3B. Furthermore, 59 SpatialDM SVIs
and 85 stLearn LRIs are not supported by any svTF genes (Fig. 3C). As a
result, SpatialDM, stLearn, and COMMOT received high false-positive
rate (FPR) of 0.417, 0.667, and 0.750, respectively, when comparing to
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Fig. 3 | Comparisons between SPIDER and SOTA CCI methods on real PDAC
dataset. A Boxplot of six SVI-evaluation metrics, showing significantly higher
scores of SPIDER-identified SVIs over those by SpatialDM, COMMOT, and stLearn,
with those excluded as a baseline (n = 498 LRIs). The Geary score is again reversed.
B Boxplot of the number of supporting svTFs per LRI among SPIDER svTF-
supported LRIs, SpatialDM SVIs, stLearn and COMMOT LRIs (n = 374, 260, 346,
and 320 LRIs, respectively). C Venn plot of svTF-supported LRIs, SpatialDM SVIs,
and stLearn LRIs. D TSPAN14/15 signaling LRIs with their best supporting TF genes
and correlations. E Barplot of the average number of ligands per receptor (left) and
the average number of receptors per ligand (right) in three different LRI sets:
SPIDER SVIs, SpatialDM SVIs, COMMOT and stLearn LRIs, and all LRIs in the data-
base. F Barplot showing the number of TF supports for the top five SVI ranked by
number of TF supports. G Dot plot of pathways enriched by each SVI and its
supporting spatially variable TF genes. H Deconvoluted cell type annotations and
the corresponding SPIDER SVIs with the five highest Pearson correlation

coefficients. I Interaction patterns generated by LRIs identified by SPIDER and
SpatialDM. J Heatmap of Pearson correlation coefficients between interaction
patterns and PDAC region annotations, from SPIDER and SpatialDM, respectively.
K Heatmap of pattern-indicated interaction between PDAC region annotations.
PDAC: pancreatic ductal adenocarcinoma; corr: Pearson correlation coefficient.
The boxplots display the median (center line), the 25th and 75th percentiles (box
bounds), whiskers extending to the most extreme data points within 1.5 × the
interquartile range,minima andmaxima as the lowest and highest pointswithin the
whiskers, and outliers as individual points beyond the whiskers. The statistical
significanceof box plots is calculated using one-sidedMann-Whitney-Wilcoxon test
with Benjamini-Hochberg correction, with the exact adjusted p-values listed in
Supplementary Table 3 and the following significance annotations: ****: adjusted p-
value ≤ 1.00e-04; ***: 1.00e-04 < adjusted p-value ≤ 1.00e-03; **: 1.00e-03 < adjus-
ted p-value ≤ 1.00e-02; *: 1.00e-02 < adjusted p-value ≤ 5.00e-02. Source data are
provided as a Source Data file.
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LRI svTF support. Such pattern can be observed across dataset: Spa-
tialDM achieved the lowest mean FPR of 0.230 among the three
methods, followed by 0.781 from stLearn and 0.958 from COMMOT
(Supplementary Fig. 8A). The gap between SpatialDM and other two
CCImethods also supports the relation between SVI and svTF support.
We further examine the false positive LRIs from the three SOTA
methods that are rejected in SPIDER for the lack of svTF support
(Supplementary Fig. 8B). For example, among three LRIs related to
TSPAN14/15 signaling (Fig. 3D), only APP-TSPAN15 are supported by
downstream target GAPDH, while the interaction between ADAM10
and APP-TSPAN15/14 are rejected (Pearson r =0.323, 0.256, and 0.122,
respectively). However, ADAM10-TSPAN15 is falsely identified by Spa-
tialDM, COMMOT, and stLearn, and ADAM10-TSPAN14 by SpatialDM
and stLearn, as neither validates svTF gene support. We first compare
the SPIDER-proposed LRIs with svTF gene support with the SpatialDM
SVIs, acknowledging that SpatialDM is not designed for this specific
task. The level of TF support, quantified by the number of supporting
svTF genes for an LRI, is significantly lower for SpatialDM SVIs, as
shown in Fig. 3C. Furthermore, 59 SpatialDMSVIs arenot supportedby
any svTF genes. For example, among three SpatialDM SVIs related to
TSPAN14/15 signaling (Fig. 3D), only APP-TSPAN15 are supported by
downstream target GAPDH, while the interaction between ADAM10
and APP-TSPAN15/14 are rejected (Pearson r =0.323, 0.256, and 0.122,
respectively). APP has been shown to influence the phosphorylation of
key proteins like ERK within the MAPK signaling pathway, leading to
increased cell migration, invasion, and epithelial-mesenchymal tran-
sition (EMT), promoting aggressive tumor behavior in various
cancers36. In particular, the ERK pathway can regulate metabolic
enzymes, including GAPDH, a known PDAC therapeutic target asso-
ciatedwith increasedmetabolic activity in tumor growth37. In addition,
by keeping only svTF-supported LRIs, we found a reduced average
number of ligands per receptor and receptors per ligand in SPIDER
svTF-supported SVIs, as shown in Fig. 3E. This observation also vali-
dates SPIDER’s effectiveness in finding functional SVIs, with co-
expressing but not functioning LRIs excluded by downstream target
genes. Both the higher level of TF support and the exclusion of less
biologically meaningful LRIs suggest the effectiveness of SPIDER in
identifying svTF-supported LRIs compared with SpatialDM, stLearn,
and COMMOT.

Subsequently, we examine the biological insights provided by the
pathways activated jointly by SVI and their supporting svTF genes. We
show the top five ranking SVIs by their number of supporting svTF genes
in Fig. 3F, all of which are supported by over twenty target TF genes. GO
analysis on genes implicated in the top five ranking SVIs, alongwith their
supporting svTF genes, showed diverse enriched pathways in Fig. 3G
and Supplementary Table 4. We notice similar enriched pathways for
LAMC2-ITGA2 and THBS2-NOTCH3, especially two cancer-related terms,
proteoglycans in cancer and PI3K-Akt signaling pathway (entries
hsa05205 and hsa04151, adjusted p-values ≤ 0.0001). The remaining
three SVIs all enriched immune-related pathways such as antigen pro-
cessing and presentation (entry hsa04612, adjusted p-value ≤ 0.0001).
Here, SPP1-ITGB1 and TGM2-SDC4 and their svTF genes further enrich
T-helper cell-related pathways, while INS-INSR and its svTF genes enrich
the FoxO signaling pathway (hsa04068, adjusted p-value =0.0005).
Additionally, we compare the biological insights provided by false
positive LRIs and svTF-supported SVIs. The false positive LRIs fromother
three CCI methods enriched 22 pathways, while SPIDER svTF-supported
SVIs enriched 47 pathways, with only a small intersection of nine path-
ways (Supplementary Fig. 8C).

Notably, these biologically enriched SVIs not only highlight key
signaling axes but also offer a practical guide for downstream experi-
mental validation and therapeutic exploration. For instance, LAMC2-
ITGA2 and THBS2-NOTCH3 along with their supporting svTF genes,
which activate cancer-related pathways, represent promising candi-
dates for perturbation assays such as ligand-blocking or CRISPR-

mediated disruption, enabling assessment of their spatial functional
roles. Moreover, INS-INSR or TGM2-SDC4 and their svTF genes,
involved in metabolism and immune regulation, may inform targeted
modulation strategies within the tumor microenvironment. By inte-
grating spatial variance and downstream activation, SPIDER effectively
narrows the search space for biologically meaningful, testable ligand-
receptor interactions with translational potential.

Subsequently, we examine the spatial pattern of SPIDER SVIs
against LRI spatial regions identified by SptialDM and stLearn. The
deconvoluted cell type annotations of the PDAC dataset served as
another validation of the identified SVIs (Supplementary Fig. 8D). As
shown in Fig. 3H, SVIs identified by SPIDER, such as SERPINE1-PLAUR
and PLAU-ITGA3, captured subregional spatial arrangements of two
cancer clones, A and B, dispersed in the tumor region of the sample
(Pearson r = 0.873 and 0.764, respectively). Both SVIs aid the under-
standing of the spatial heterogeneity and the molecular mechanisms
underlying PDAC as they involve interactions between genes that are
crucial in the tumor microenvironment and are implicated in the
pathogenesis and progression of pancreatic duct adenocarcinoma38.
These clone-specific SVIs also provide experimentally actionable
hypotheses: spatial perturbation of SERPINE1-PLAUR or PLAU-ITGA3
in situ–through blocking antibodies or local gene silencing–can help
elucidate the functional consequences of disrupting localized tumor
subclone communication. Such targeted validationmay clarify the role
of these LRIs in maintaining clonal niches and promoting invasion or
immune escape, guiding precision therapeutic design in spatially
heterogeneous tumors. However, SpatialDMproposed less correlating
marker SVIs for the cancer clones, with the Pearson r of the topmarker
SVIs are 0.697 and 0.517, respectively (Supplementary Fig. 8E). Fur-
thermore, stLearn LRIs demonstrated insignificant correlations with
the two cancer clone types. Similarly, SPIDER-proposed SVIs also cor-
related with major cell types, such as LTF-LRP1 and acinar cells with
Pearson r =0.850, as well as TGM2-SDC4 and ductal cells with Pearson
r=0.818. Again, we can observe a higher average correlation with SPI-
DER SVIs than SpatialDM SVIs and stLearn LRIs, along with other cell
types such as the tuft cells, pDCs, and endocrine cells (Supplemen-
tary Fig. 8F).

In addition, SPIDER can reveal interactions among annotated cell
types from identified SVIs. We observed that 27 SPIDER SVIs exhibited
heterotypic signaling between different cell types, while the remaining
15 exhibited homotypic signaling within the same cell type (Supple-
mentary Fig. 8G). Interaction strength is also stronger for heterotypic
signaling (Supplementary Fig. 8H). Traditional CCI analysis using
scRNA-seq data finds a larger portion of homotypic signaling, sug-
gesting that SVIs could reveal more heterotypic signaling39.

In particular, we observed heterotypic SVIs representing tumor-
TME and TME-exclusive interactions (Supplementary Fig. 8I). Agreeing
with the metastatic role of the aforementioned PLAUR, the SVI FN1-
PLAUR revealed tumor-TME interactions, including the bi-directional
cancer-stroma crosstalk, as well as interaction signals from duct epi-
thelium to the cancer region. Conversely, SVI INS-INSR, with INSRbeing
a known regulator of immune responses, showed strong TME inter-
actions but limited interactions with the tumor region - it mainly
revealed the interaction between duct epithelium and stroma issue.
The biological importance of these SVIs is further validated, with FN1-
PLAUR identified by SpatialDM, COMMOT, and stLearn, and INS-INSR
recognized by SpatialDM and COMMOT.

LRIs can be categorized into three types: long-distance secreted
signaling and short-distance signaling, which encompasses both ECM-
receptor interactions and cell-cell contact signaling27. We evaluate
SPIDER’s ability to identify both long-distance and short-distance sig-
naling, using SpatialDM as a benchmark. In the PDAC sample, the
proportion of secreted signaling in SPIDER SVIs is the highest (0.33 for
SPIDER compared to 0.26 for SpatialDM, 0.23 for COMMOT and 0.32
for stLearn). Additionally, a majority of the samples analyzed show
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larger percentages of secreted signaling in SPIDER SVIs compared to
SpatialDM, stLearn, and COMMOT (Supplementary Fig. 9).

Besides identifying LRIs with spatial variance, both SPIDER and
SpatialDM can generate interaction patterns from the identified LRIs,
as shown in Fig. 3I. The basic evaluations of SPIDER patterns are illu-
strated in Supplementary Fig. 10A, suggesting SPIDER SVI patterns are
satisfying representations of their member SVIs. Subsequently, we
further compare the biological relevance and region specificity of the
interaction patterns generated by SPIDER and SpatialDM, highlighting
their respective abilities to capture meaningful tissue interactions.

We anticipate that certain interaction patterns, akin to SVIs, will
reflect intra-cell type interactions, as assessed by the correlation
between these patterns and regional annotations (Fig. 3J). Specifically,
SPIDER-generated interaction patterns 4 and 3 exhibited strong cor-
relations with the cancer and duct epithelium regions, with Pearson
correlation coefficients of 0.822 and 0.648, respectively. In contrast,
pattern 2 displayed a significant negative correlation with the cancer
region, yielding a Pearson coefficient of -0.802.Conversely, interaction
patterns derived from SpatialDM demonstrated weaker correlations
with the annotated regions, with the highest Pearson coefficient being
0.626. Thus, the SVI patterns produced by SPIDER more effectively
capture the interaction differences within tissue regions.

SPIDER interaction patterns also demonstrate interactions
between cell types (Supplementary Fig. 10B). In particular, pattern 1
and pattern 2 revealed tumor-TME (Tumor Microenvironment) and
TME-exclusive interactions similar to SVIs (Fig. 3K). Here, pattern 1
represents the interaction between the cancer region and duct epi-
thelium (adjusted p-value ≤ 0.001, Supplementary Fig. 10C). Similarly,
pattern 0 represents the interaction between cancer and stroma,
while pattern 3 represents the stroma-epithelium interaction (adjusted
p-values ≤ 0.0001, Supplementary Fig. 10C).

We conducted additional analyses comparing SVI identified by
SPIDER, SpatialDM, stLearn, and COMMOT using samples from the
DLPFC dataset and other datasets (Supplementary Note 5). SVIs sup-
ported by svTFs in SPIDER generally exhibited higher spatial and TF
correlation metrics than those from SpatialDM, stLearn, and COM-
MOT. In terms of finding LRIs supported by svTFs, SPIDER received the
highest level of svTF support, and generally reduced the average
number of ligands/receptors per receptor/ligand. SPIDER SVI patterns
also showed stronger correlations with cell types than the SpatialDM-
derived patterns in the DLPFC samples.

SPIDER identifies svTF-supported spatially variable ligand-
receptor interactions from multiple samples in single-cell
resolution
This section serves as a comprehensive assessment of SPIDER’s capa-
city to identify svTF-supported SVIs across samples from different
platforms and biological repeats. To test SPIDER’s robustness against
biological repeats, we apply SPIDER on the seqFISH mouse organo-
genesis dataset with three organogenesis samples, each with two
biological repeats29. Furthermore, we showcase SPIDER’s robustness
against sequencing platforms with the Stereo-seq mouse brain
dataset almost at a single-cell resolution30.

On the seqFISH mouse organogenesis dataset, we first assess the
quality of the identified SVIs using both spatial-variance metrics and
svTF correlations. In terms of the spatial variance of SPIDER-proposed
SVIs, we found significantly higher scores from SVIs than those
excluded in all five spatial variance metrics in all samples (Fig. 4A).
Furthermore, Fig. 4A shows that the identified SVIs demonstrate sig-
nificantly higher svTF correlations than those excluded. Additionally,
SpatialDM and stLearn both proposed interactions lacking svTF sup-
port, receiving mean FPRs of 0.344 and 0.766 when comparing to LRI
svTF support (Supplementary Fig. 11A, B). The level of TF support,
quantified by the number of supporting svTF genes for an LRI, is also
lower for SpatialDM and stLearn, as shown in Supplementary Fig. 11C.

Aside from the benchmarking metrics, we further evaluate the
biological validity of TF-supported SVI activation. Ranking SVIs by
their number of supporting svTF genes in all six samples allows us to
evaluate the level of support, as shown in Supplementary Fig. 11D.
The top five SVIs received support from over twenty target TF genes
(Fig. 4B), namely Sftp1-Fzd2, Bmp7-Acvr1, Bmp2-Acvr1, Wnt5a-Fzd2,
and Apln-Aplnr. We apply GO analysis on genes implicated in the
above SVIs along with the corresponding supporting svTF genes
(Supplementary Table 6). All five SVIs and svTFs enrich PI3K/Akt
signal transduction pathway and signaling pathways regulating
pluripotency of stem cells (entries mmu04151 and mmu04550,
adjusted p-values ≤ 0.05, Fig. 4C), in accordance with the developing
state of samples. Additionally, the two Fzd2-related SVIs and their
supporting svTF genes enrich the Wnt signaling pathways (entry
mmu04310, adjusted p-value ≤0.001), and the two Bmp-Acvr SVIs
enrich TGF-β signaling pathways (entry mmu04350, adjusted p-
value ≤ 0.01), with both pathways known to participate in embryonic
development.

Furthermore, we examine the difference between active and non-
active SVIs. Specifically, supporting svTF genes vary among LRIs of the
same receptor, potentially providing diverse information for under-
lying function activation. Take receptor Fgfr2 in Embryo 1 (z2) as an
example (Fig. 4D and Supplementary Fig. 11E): while Fgf5-Fgfr2 is not
supported by any svTF genes, Fgf10-Fgfr2 and Fgf17-Fgfr2 are most
supported by Ldhd and Aldob, with Pearson r of 0.396 and 0.410,
respectively. Moreover, Fgf5-Fgfr2 is rejected by svTFs in most sam-
ples. However, Fgf5-Fgfr2 is identified by SpatialDM in two samples,
and stLearn in all six samples.

This concurs with the distinct roles of FGFs in development.
Specifically, Fgf5 interacts primarily with Fgfr1 to regulate hair
cycling40, without functional evidence in organogenesis, indicating its
limited interaction with Fgfr2 and lack of supporting transcription
factors in that context. Conversely, Fgf10 and Fgf17 are critical for
organ development, with Fgf10 playing a vital role in lung branching
morphogenesis and Fgf17 being implicated in cerebellar
development41. The presence of supporting svTFs for Fgf10-Fgfr2 and
Fgf17-Fgfr2 underscores the necessity of these factors in facilitating
their interactions with Fgfr2, highlighting the importance of context-
dependent regulatory mechanisms in these signaling pathways. A
similar difference can be observed in other Fgf receptors (Supple-
mentary Fig. 11F–J).

Now that we have validated SPIDER’s ability to identify high
quality SVIs from single-cell samples, we can access its robustness as
drawing similar results frombulk samples. To this end, we constructed
bulk samples by aggregating neighboring cells into spots using SOM
for the six single-cell samples. On the aggregated bulk sample, we also
identified high-quality SVIs, with average Jaccard similarity between
the single-cell and bulk SVI lists as 0.7278 for five-cell-per-spot aggre-
gation and 0.6683 for ten-cell-per-spot aggregation (Supplementary
Fig. 12A, B). Across all samples, eight of ten SVIs with the most sup-
porting svTF genes are consistent in both aggregations, with Sftp1-
Fzd2, Bmp7-Acvr1, Bmp2-Acvr1, Wnt5a-Fzd2, and Apln-Aplnr still
received support from over twenty target TF genes (Supplementary
Fig. 12C, D). Therefore, both the quality and level of TF support for
svTF-supported SVIs are rather consistent between single-cell and bulk
samples.

After examining the supporting svTF genes for SVIs, we proceed
to the assessment of SVIs in terms of biological validity, demonstrated
by their regional presence related to annotated cell types. First, SPIDER
identified SVIs that correlate with cell types across all samples.
Figure 4E shows relatively strong correlations (highest Pearson
r =0.917) between erythroid and the SVI Kitl-Epor, in accordance with
the importance of Kitl-Epor interaction in erythropoiesis42. Further
validating this finding, Kitl-Epor has strong correlations across all
samples as shown in Supplementary Fig. 13A. Similarly, agreeing with

Article https://doi.org/10.1038/s41467-025-62988-0

Nature Communications |         (2025) 16:7784 9

www.nature.com/naturecommunications


bone morphogenetic protein (BMP) signaling’s participation in heart
development, the BMP-related SVIs Bmp7-Acvr2a and Bmp7-Acvr1
correlate moderately with the spatial distribution of cardiomyocytes
as shown in Fig. 4F43. Again, Bmp2/7-Acvr1/2a interactions are found
across samples (Supplementary Fig. 13B) with the highest Pearson r
at 0.729.

Aside from the above cell types, we also observed other cell types
with correlated SVIs. In the endothelium region, we found a constant
presence of Alpn-Alpnr interactions across all six samples, as shown in
Supplementary Fig. 13C (highest Pearson r=0.616). Similarly, in the gut
tube region,we found the presenceofCdh-Fgfr1 interactions infive out
of six samples (Supplementary Fig. 13D, highest Pearson r = 0.861).
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Fig. 4 | Validation of SPIDER on identifying TF-supported SVIs on multiple
datasets at single-cell resolution. A–K Validation of SPIDER on identifying TF-
supported SVIs on multiple seqFISH mouse samples at the single-cell resolution.
A The boxplot of five SVI evaluation metrics and one TF correlation metric (n=282
LRIs). B The stacked bar plot showing TF supports for the top 10 SVIs across
samples, ranked by the number of supports.C The dot plot lists pathways enriched
by each SVI and its supporting spatially variable TF genes.D SVI related to the Fzd2
receptor, with different supporting TF genes and correlations. EThe location of the
annotated erythroid region in three embryo samples (z2) and the profile of the top
SVI with the highest correlation Kitl-Epor. F The location of the annotated cardio-
myocyte region in three embryo samples (z2) and the profile of the top SVI with the
highest correlation Bmp7-Acvr2a/Acvr1. G The annotated sample embryo 1 (z2) of
the embryo dataset, the location of the annotated brain region composed of the
forebrain, midbrain, and hindbrain, and the profiles of the regional SVIs Fgf15-Fgfr1
and Sfrp1-Fzd2. H Clustering of spots based on identified SVIs. I, J Sub-clusters
within the brain region and the spinal cord region, respectively. KMarker SVIs for
the main clusters involved in the brain region and the spinal cord region, respec-
tively.L–P. Validationof SPIDERon identifyingTF-supported SVIs on the Stereo-seq

mouse sample at approximately single-cell resolution. L Annotation of the Stereo-
seq mouse sample. M The boxplot of five SVI evaluation metrics and one TF cor-
relation metric (n=1295 LRIs). N The dot plot lists marker SVIs of inter-cell type
interfaces. O Clustering of cells based on identified SVIs. P Cell types within SVI-
definedCluster 0 and6, respectively. Theboxplots display themedian (center line),
the 25 and 75th percentiles (box bounds), whiskers extending to the most extreme
data points within 1.5 × the interquartile range, minima and maxima as the lowest
and highest points within thewhiskers, and outliers as individual points beyond the
whiskers. The statistical significance of box plots is calculated using one-sided
Mann-Whitney-Wilcoxon test with Benjamini-Hochberg correction, with the exact
adjusted p-values listed in Supplementary Table 5 and the following significance
annotations: ****: adjusted p-value ≤ 1.00e-04; ***: 1.00e-04 < adjusted p-value ≤
1.00e-03; **: 1.00e-03 < adjusted p-value ≤ 1.00e-02; *: 1.00e-02 < adjusted
p-value ≤ 5.00e-02. For bar plots, data are presented as mean values ± 95% con-
fidence intervals. Corr: Pearson correlation coefficient. Inter: interneuron-selective
cells; GABA: long-projecting GABAergic Cell; Astro: astrocyte; CR: Cajal-Retzius
Cell; Oligo: oligodendrocyte. Source data are provided as a Source Data file.
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In addition, SPIDER proposed SVIs marking subregions within cell
types. For example, within the annotated brain region composed of
the forebrain, midbrain, and hindbrain, SPIDER identified SVIs with
regional presence. In Embryo 1 (z2), SPIDER-proposed Fgf15-Fgfr1 and
Sfrp1-Fzd2 are located separately in the midbrain and hindbrain,
moderately correlating with the brain region (Pearson r =0.519 and
0.505, Fig. 4G). Validating our finding, Fgf15 is a known regulator of
neurogenesis in themidbrain44. Its regionpresence in themidbrain can
be observed in other samples (Supplementary Fig. 13E). These region-
specific SVIs offer direct hypotheses for functional developmental
studies. For example, Fgf15-Fgfr1 and Fgf17-Fgfr3, enriched in distinct
brain subregions, could be targeted using spatially resolved gene
perturbation or reporter assays to study their role in neuronal differ-
entiation or regional patterning. The ability of SPIDER to map such
localized, functionally supported interactions enables focused
experimental interrogation of developmental signaling landscapes.

To further investigate the regional feature of SVIs, we used SVI to
perform cell clustering using the Leiden algorithm implemented in
Scanpy45 as detailed in Methods. To demonstrate the effectiveness of
SVIs in revealing interaction-based clusters, we also performed cell
clustering using genes implicated by the identified SVIs. Based on both
AMI and ARI metrics evaluated against ground truth annotations, SVI-
based clustering achieved significantly higher performance (mean
AMI = 0.5957, mean ARI = 0.3456; see Supplementary Fig. 14A) com-
pared to clustering using only the implicated genes (mean AMI =
0.2783, mean ARI = 0.1368). These results indicate that while both
gene- and interaction-based clustering capture tissue heterogeneity,
SVI-based clustering provides additional insights into distinct cell
states.

Using Embryo 1 (z2) as an example, we further assess the biolo-
gical validity of SVI-based clusters compared to clusters derived from
genes implicated in these SVIs (Fig. 4H; Supplementary Fig. 14B).
Notably, SVI-based clustering identified major clusters corresponding
to annotated brain and spinal cord regions (Fig. 4I, J), which were not
detected by clustering based solely on the implicated genes (Supple-
mentary Fig. 14C). In accordance with the aforementioned regional
SVIs within the brain region, clustering based on SVIs separated the
brain region into clusters 9, 10, 7, and 3, representing the hindbrain,
midbrain, and two sub-regions within the forebrain, respectively.
Similarly, the spinal cord also consisted of four SVI-defined subregions,
which could be related to the separation of the anterior, dorsal, and
ventral regions of the spinal cord.

We also found distinct marker SVIs of the subclusters in the brain
region (Fig. 4K). In particular, our findings ofmarker SVIs Fgf17-Fgfr3of
the hindbrain and Fgf17-Fgfr2 of the midbrain concord with prior
reports documenting a regional separation of these receptors46. Spe-
cifically, this separation concurs with the region-specific functions of
these FGF-receptor interactions in governing neuronal differentiation
and spatial patterning during embryonic brain development.

Subsequently, we test SPIDER on a different ST sequencing plat-
form Stereo-seq, with near single-cell resolution. Cell type annotations
on this mouse brain dataset30 are displayed in Fig. 4L. SPIDER again
identified high-quality SVI as indicated by five out of the six metrics
shown in Fig. 4M. The levels of TF support in results from SpatialDM
and stLearn are significant lower compared to SPIDER svTF-supported
LRIs, as shown in Supplementary Fig. 15A. Additionally, the false
positive LRIs from SpatialDM and stLearn enriched 21 pathways, while
SPIDER svTF-supported SVIs enriched 62 pathways, with a small
intersection of fourteen pathways (Supplementary Fig. 15B). In path-
ways uniquely enriched by either gene sets, we found only one sig-
naling pathway from false positive LRIs, and eleven from SPIDER svTF-
supported SVIs. Therefore, SPIDER is able to provide more biological
insight with TF incorporation.

Further validating the biological importance of SPIDER svTF-
supported SVIs,we foundmarker SVIs for all cell types (Supplementary

Fig. 15C). For example, the correlation between mural cell and Prg4-
Cd44 reaches 0.863, and the correlation between oligodendrocyte and
Trf-Tfrc reaches 0.821. In particular, Trf-Tfrc is known to promote oli-
godendrocyte maturation and proliferation47.

On this dataset, we explore SPIDER SVI’s potential in revealing
cross-cell-type interactions. That is, aside from SVIs marking cell type
and sub-cell type regions, we can also observe interactions between
cell types (Fig. 4N). For example,Npy-Npy2rmarksmost cross-cell type
interactions involving the interneuron-selective cells, a common neu-
romodulator for interneurons to inhibit postsynaptic neurons48. Con-
versely, the interaction between interneuron-selective cells and
oligodendrocytes is uniquely marked by Rtn2-Rtn4r, with Rtn4r being
an important regulator of oligodendrocytes49.

Furthermore, the dendrogram in Fig. 4N suggests distinct inter-
action among groups of cell types. Agreeing with the marker SVIs
identified above, one group involves oligodendrocytes and
interneuron-selective cells-related interactions. Conversely,mural cell-
related interactions are closer in the dendrogram.

We further explore cross-cell-type SVIs with interaction regions.
Similar to the previous dataset, we used SVI to perform cell clustering
using the Leiden algorithm, achieving an ARI of 0.5047 and an AMI of
0.5923 with the spot annotation (Fig. 4O). This interaction-based
clustering revealed two distinct clusters of multi-cellular interactions
in the brain. Cluster 3 was predominantly defined by interactions
among interneuron-selective cells, long-projecting GABAergic neu-
rons, and astrocytes (Fig. 4P, left). This concurred with previous hier-
archical clustering, especially since cluster 3 ismarked by Lefty1-Acvr2a
and Npy-Npy2r (Supplementary Fig. 15D) - marker SVIs of GABAergic-
astrocyte and interneuron-GABA/astrocyte communications, respec-
tively. Similarly, cluster 5 describing the crosstalk between Cajal-
Retzius cells and oligodendrocytes (Fig. 4P, right) is alsomarkedbySVI
Efnb3-Ephb1 identified as a marker for oligodendrocytes-Cajal-Retzius
cell interaction.

Under different clustering parameters, we can observe SVI clus-
ters marking subregions within annotated cell types (Supplementary
Fig. 15E). For example,we found the SVI cluster 6 in Fig. 4Oconsistently
revealing a subregion within the annotated oligodendrocyte region, as
shown in Supplementary Fig. 15F. Furthermore, cluster 6 is con-
sistently marked by the dopamine signaling SVI Gnal2-Drd2 (Supple-
mentary Fig. 15G). This SVI-indicated oligodendrocyte subregion
agrees with the function of dopamine signaling in maintaining healthy
oligodendrocyte function and supporting neuronal networks50.

Supplementary Note 6 provides a further discussion on SVI
patterns for both datasets. The mouse embryo samples revealed a
limited number of SVIs due to the small gene count, with SPIDER
generating 4-6 SVI patterns per sample. While the SVI patterns cap-
tured spatial similarities within larger organ regions instead of dis-
tinct cell types, they still identified brain regions in embryos. In the
SAWmouse brain sample, although the patterns were also fewer than
the cell types, they effectively marked Cajal-Retzius cells, oligoden-
drocytes, and mural cells.

SPIDER SVI pattern clustering reveals sub-cell type clusters on
the slide-seq V2 mouse brain dataset
We demonstrated SPIDER’s ability to cluster SVIs with similar spatial
distributions on the slide-seq V2 mouse brain data with single-cell
resolution8 as shown in Fig. 5A. SPIDER identified 119 high-quality svTF-
supported SVI out of 163 LRIs, as indicated by all six metrics shown in
Supplementary Fig. 16A. We can again identify marker SVIs for major
cell types (Supplementary Fig. 16B) such as the SVIs Nlgn1-Nrxn3
marking the CA1/CA2/CA3/subiculum and Calm2-Cacna1c marking
dentate pyramids.

From the identified SVIs, SPIDER generated seven SVI patterns,
each with an activation strength aggregated from the profiles of SVI
members (Supplementary Fig. 16C). We first evaluated the quality of
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the inferred activation strength of a pattern by their correlations with
profiles of member SVIs, compared to the rest of SVIs. The boxplot in
Fig. 5B showed significantly higher correlations between the activation
strength and member SVIs compared to the non-member SVIs.

Correlations between deconvoluted cell types and SVI patterns
(Fig. 5C and Supplementary Fig. 16D) suggested that some patterns
capture spatial heterogeneity similarly to gene expressions and
SVIs. For example, pattern 2 strongly correlatedwith oligodendrocytes
(Pearson r =0.760). Examination ofmember SVIs inpattern 2 validated
its fidelity in representing member SVI profiles, with high correlations
between activation strengths and the pattern (Pearson r =0.837
and 0.834). While pattern 3 modestly correlated with ependymal
cells (Pearson r =0.322), one member SVI, Tac1-Tacr1, has been

experimentally validated to relate to ependymal cell activation51,
demonstrating the potential biological relevance even of patterns with
weaker cell type correlations.

We also performed gene enrichment analysis with respect to
patterns (Fig. 5D). For example, pattern 1 correlates moderately with
the dentate pyramids (Pearson r=0.518), representing the interaction
between neurotrophins Bdnf and Ntfk3, indicating a potential func-
tional role of neurotrophins in the dentate pyramids52. Summarizing all
SVI-implicated genes in pattern 1, we found enriched neuron-related
pathways, such as axon guidance, neuroactive ligand-receptor inter-
action, and neurotrophin signaling pathway (mmu04360,
mmu04080, and mmu04722, adjusted p-values ≤0.01), in accordance
with the abundant neurons in the represented regions. Similarly, for
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Fig. 5 | SPIDER SVI-generated pattern results on single-cell-resolution Slide-
SeqV2 mouse brain dataset. A The cell type annotation of the sample. B The
boxplot of the correlations between the activation strength and the profiles of
member and non-member SVIs in each pattern shows that the activation
strength represents the member SVIs (n=163 LRIs). C Deconvoluted cell types
and their corresponding patterns are displayed, with annotated correlation
coefficients for each pattern. For each pattern, two member SVIs having the
highest correlation coefficients with the activation strength are plotted. D Top
ten enriched pathways for genes contained in each SVI pattern, under the sig-
nificance threshold of adjusted p-value ≤ 0.05. E Cell clustering using SVI pat-
terns. F Cell type compositions in SVI pattern-based clusters. Clusters having a
cell type with a majority of over 30% are displayed. G–I Clusters involved in the

cell types and their top three marker SVIs. G Oligodendrocytes. H CA1/CA2/
CA3 subiculum. I Astrocytes. Corr: Pearson correlation coefficient. The boxplots
display the median (center line), the 25 and 75th percentiles (box bounds),
whiskers extending to the most extreme data points within 1.5 × the interquartile
range, minima and maxima as the lowest and highest points within the whiskers,
and outliers as individual points beyond the whiskers. The statistical significance
of box plots is calculated using one-sided Mann-Whitney-Wilcoxon test with
Benjamini-Hochberg correction, with the exact adjusted p-values listed in Sup-
plementary Table 7 and the following significance annotations: ****: adjusted
p-value ≤ 1.00e-04; ***: 1.00e-04 < adjusted p-value ≤ 1.00e-03; **: 1.00e-03
< adjusted p-value ≤ 1.00e-02; *: 1.00e-02 < adjusted p-value ≤ 5.00e-02. Source
data are provided as a Source Data file.
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smaller cell populations such as the endothelial tip cells, SPIDER also
found SVI pattern 5 with similar spatial distributions (Pearson’s
r =0.362). In pattern 1, we found enriched TGF-β signaling
(mmu04350, adjusted p-value ≤0.001), agreeing with the signaling
role of TGF-β receptors for endothelial tip cells within the neural
environment53.

To further demonstrate how the SVI patterns represent spatial
interaction modules, we performed cell clustering with SVI patterns
using the Leiden algorithm. We obtained 23 cell clusters from SVI
patterns, as shown in Fig. 5E, among which 11 clusters describe the
major cell types (Fig. 5F). For example, given the high correlation
between cell types and patterns, endothelial tip and dentate pyramids
are represented by clusters 17 and 15, respectively.

To further validate that the SVI patterns represent spatially
organized interactionmodules, we performed cell clustering using the
Leiden algorithmbased on the SVI patterns. This resulted in 23 clusters
(Fig. 5E), with 11 associatedwithmajor cell types (Fig. 5F). For example,
consistentwith their high correlations to patterns, endothelial tip cells,
and dentate pyramidal cells were distinctly represented by clusters 17
and 15, respectively.

Furthermore, the SVI patterns suggest subpopulation structure
within major cell types astrocytes, CA1/CA2/CA3/subiculum, and oli-
godendrocytes. Regarding oligodendrocytes, the main regions were
characterized by clusters 14 and 6, while the sparser regions were
associated with cluster 5 (Fig. 5G). Cluster 14 was defined by the MAG
interaction, consistent with MAG being a marker of myelination and
mature oligodendrocytes54. In contrast, cluster 5 was characterized by
EphA-Ephrin signaling, which is required prior to myelination. These
results indicate the SVI patterns capture interaction variation within
oligodendrocyte populations related to distinct developmental and
functional states.

Similarly, three clusters are observed in the CA1/CA2/CA3/sub-
iculum (Fig. 5H). Here, cluster 13 encompasses multiple Calm2-related
SVIs, such as the SVI Calm2-Kcnq3 that is crucial for the proper
assembly and functionality of KCNQ2/KCNQ3 channels. These chan-
nels are vital for stabilizing neuronal membrane potentials and sup-
porting the cognitive functions associatedwith the CA1, CA2, CA3, and
subiculum regions55. Contrarily, cluster 16, possibly representing the
CA1 region, is marked by Silt2 interactions that establish synaptic
specificity in hippocampal CA156. Such sub-clusters can also be
observed for astrocytes in (Fig. 5I). Overall, SPIDER SVI patterns are
able to produce interaction-based clusters that represent interaction
diversity within cell types.

SPIDER identifies svTF-supported SVIs frommultiple samples in
bulk resolution
In this section, we show that SPIDER is not restricted to single-cell
resolution datasets by incorporating intra-spot interfaces. We use two
datasets to demonstrate these properties: a HER2-positive breast
cancer datasetwith annotated cancerous andnon-cancerous regions57,
and the aforementionedDLPFCdataset with layered structures of spot
clusters. In addition, a previous study showed that the inclusion of CCI
information improves psduotime and trajectory inference in scRNA-
seq data, given the important regulatory function of CCI in cell dif-
ferentiation and developmental processes58. Therefore, we also
explore the application of SVI in revealing diffusion pseudotime and
trajectory compared to gene expression.

SPIDER identified high-quality SVIs across all six samples in the
breast cancer dataset, as shown by the six metrics in Fig. 6A. Further-
more, we canfindmarker SVIs for cell-type annotations across samples
(Supplementary Fig. 17). For biological validation of SVIS, we take
sample G2 as an example, which contains both invasive and in situ
cancer, as well as immune infiltrated regions (Fig. 6B). We find the
presence of SVI ZG16B-CXCR4 in the region of immune cell infiltration
(correlation coefficient at 0.431), with CXCR4 has also been found to

relate to T-lymphocyte infiltration and immunotherapy in metastatic
breast cancer59. Similarly, cancer in situ and invasive cancer regions are
marked by different SVIs HSP90AA1-ERBB2 and THBS2-ITGB1 with
correlation coefficients of 0.824 and 0.697, respectively. In particular,
ERBB2, also known as HER2, is a biomarker for HER2-positive breast
cancer, and THBS2-ITGB1 interaction is known to regulate tumor
invasion in breast cancer60.

Notably, SPIDER is able to produce distinct marker SVIs that
represent the diversity between invasive cancer and cancer in situ
(Supplementary Fig. 18). Furthermore, such cancer marker SVIs are
consistent across samples, as shown in Fig. 6C. The six consistent
marker SVIs for invasive cancer have an average correlation coefficient
of 0.464,muchhigher compared to the average correlation coefficient
with cancer in situ region of −0.046. Similarly, we found 28 consistent
marker SVIs for the cancer in situ region. These SVIs have an average
correlation coefficient of 0.492 with cancer in situ region, also higher
than the average correlation coefficientwith invasive cancer of−0.029.

GO analysis on the above consistent cancer marker SVIs further
revealed functional differences between cancer in situ and invasive
cancer as shown in Fig. 6D, while sharing the enrichment of pathways
in cancer with adjusted p-values ≤0.05. For invasive cancer, the SVI-
implicated genes enrich the pathway of fluid shear stress and athero-
sclerosis (entry hsa05418, adjusted p-value ≤0.05), which has been
found to promote breast cancer cell proliferation and invasive
potential61. Similarly, the enrichment of thyroid hormone signaling
pathway (entry hsa04919, adjusted p-value ≤0.05) by the interaction
involving ITGAV, suggests the activation of processes critical for
metastasis, such as epithelial-mesenchymal transition62. Conversely,
genes from SVIs marking cancer in situ region enrich pathways whose
dysregulation often contributes to the invasive progression of in situ
cancer63.

Subsequently, we inspect if SVI can be used to generate pseudo-
time results in a similar manner to gene expression. In cancerous ST
samples, pseudotime represents tumor transition revealed by gene
expression changes64. Similarly, pseudotime from interaction infor-
mation reveals the temporal evolution of intercellular signaling net-
works within the tumor microenvironment. Setting invasive cancer as
the root for pseudotime, we obtained pseudotime results from both
SVI and gene expression for all samples (Fig. 6E and Supplementary
Fig. 19A). We evaluate the quality of the generated pseudotime by its
correlation with spot labels ordered by invasive cancer, TME, and
cancer in situ. Across all samples, SVI pseudotime achieved higher
correlations with ordered labels compared to gene pseudotime, with
mean correlations across samples as 0.5752 and 0.3967, respectively
(Fig. 6F). The better performance from SVIs could be justified by the
aforementioned consistent presence of cancer marker SVIs. Subse-
quently, we evaluate the biological significance of SVI pseudotime
results. Agreeing with previous findings65, the pseudotime between
invasive and in situ cancer showed the great divergence (Fig. 6G and
Supplementary Fig. 19B), suggesting that SVI can serve as a valid
counterpart of gene expression.

To test if SPIDER can identify SVIs with different spatial patterns,
we also apply SPIDER on the DLPFC dataset with clustered and layered
spatial structure, unlike the rather sparse annotations from the breast
cancer dataset. Again, SPIDER identified high-quality SVIs across all
three samples in the DLPFC dataset, as shown by the six metrics in
Fig. 6H. We can also observe SVIs marking known brain layers (Sup-
plementary Fig. 20). For example. the neuronal interactions LPL-LRP1
and PSAP-LRP1 are present in layers 3 and 1 from sample 151673
(Pearson r=0.632 and 0.480, respectively).

Furthermore, we demonstrated SPIDER’s ability to identify SVIs
that differentiate brain regions in multiple samples (Fig. 6I). Specifi-
cally, six SVIs consistently correlated with white matter across all
samples (mean Pearson r=0.720). Additionally, 26 SVIs correlated with
layer 3 in two of three samples (mean Pearson r =0.395). The higher

Article https://doi.org/10.1038/s41467-025-62988-0

Nature Communications |         (2025) 16:7784 13

www.nature.com/naturecommunications


positive correlations between SVIs and their respective regions, com-
pared to lower negative correlations with other regions, provide sta-
tistical evidence that SPIDER can delineate discrete brain regions like
white matter and layer 3 based on SVIs.

Again, we conducted GO analysis on the identified marker SVIs,
which revealed functional differences between white matter and layer 3
regions (Fig. 6J). Specifically, pathways enriched inwhitemattermarkers
primarily supported structural integrity (adjusted p-values ≤ 0.01), while
layer 3markers focused on synaptic interactions and cognitive functions
(adjusted p-values≤0.0001). Notably, the enrichment of neuroactive
ligand-receptor interaction and calcium signaling pathways in layer 3
concurs with its role in synaptic interactions. Similarly, the enriched
long-term potentiation and circadian entrainment pathways in layer 3
agree with its central role in cognitive processing.

The DLPFC dataset is characterized by its linear development
trajectory66. Therefore,we inspect if SVI canbeused to reveal the linear
trajectory in a similar manner to gene expression. Trajectory analysis
based on gene expression reveals the gene expression patterns and
functional roles of cells across different cortical layers,while trajectory
analysis based on SVIs uncovers the communication patterns between

these layers, helping us understand their coordination in maintaining
normal brain function. We obtained trajectory results from both SVI
and gene expression for all samples (Fig. 6K and Supplementary
Fig. 21A).We evaluate the quality of the generated trajectories with the
AUROC score on the edge weights against ground truth connections
between consecutive layers. Across all samples, SVI trajectoryachieved
higher AUROC scores, with mean correlations across samples as
0.9833 and 0.9065, respectively (Fig. 6L). Therefore, SVI can also
generate valid trajectory as gene expression, with a possible advantage
in this case coming from the spatial constraint of interactions.

Supplementary Note 7 provides further discussion on the SVI
patterns obtained for both datasets. Similar to our finding based on
SVIs, the SVI patterns in the breast cancer dataset also distinctly mark
regions of invasive and in situ cancer. For the DLPFC dataset, we
observed SVI patternsmarking the whitematter region across all three
samples.

Discussion
Identifying functionally activated spatially variable interactions is
crucial for understanding the relationship between tissue structure
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Fig. 6 | Validation of SPIDER on identifying TF-supported SVIs on datasets at
bulk resolution. A–D. Validation of SPIDER on identifying TF-supported SVIs on
multiple breast cancer samples at the bulk resolution. A The boxplot of five SVI
evaluation metrics and one TF correlation metric (n=490, 487, 2117, 944, 563, and
647 LRIs for samples A1 to G2, respectively). B Marker SVIs for the main clusters
involved in sample G2 with correlation coefficients higher than 0.3. C Marker SVIs
for invasive cancer and cancer in situ that are consistent across samples, shown on
samples A1 and G2. D The dot plot lists pathways enriched by genes implicated in
constant cancer marker SVIs. E Pseudotime results based on SVIs (left) and gene
expression (right) shown on samples A1 and G2. F The barplot of correlations
between cancer/TME labels and pseudotime from SVI or gene expression across all
samples.GBoxplots showing pseudotimedistributionswith respect to cancer/TME
labels (n=307, 140, 20 spots for TME, Invasive Cancer, and Cancer In Situ, respec-
tively). H–L Validation of SPIDER on identifying TF-supported SVIs on multiple
DLPFC samples at the bulk resolution.H The boxplot of five SVI evaluationmetrics
and one TF correlation metric (n=1584, 1416, and 1454 LRIs for sample 151673,
151510, and 151672, respectively). ICorrelation heatmap of whitematter and layer 3

regions on three samples with top three white matter marker SVIs (left) and layer 3
marker SVIs (right). The white color indicates the corresponding SVI is missing in
the sample. J The dot plot lists pathways enriched by genes implicated in constant
region marker SVIs. K Trajectories inferred with gene expression (top) and SVIs
(bottom) on sample 151673. L The barplot showing AUROC scores of trajectories
inferred fromgene expression and SVIs on three samples. Corr: Pearson correlation
coefficient; WM: white matter. The boxplots display the median (center line), the 2
and 75th percentiles (box bounds), whiskers extending to the most extreme data
points within 1.5 × the interquartile range, minima and maxima as the lowest and
highest points within the whiskers, and outliers as individual points beyond the
whiskers. The statistical significance of box plots is calculated using one-sided
Mann-Whitney-Wilcoxon test with Benjamini-Hochberg correction, with the exact
adjusted p-values listed in Supplementary Table 8 and the following significance
annotations: ****: adjusted p-value ≤ 1.00e-04; ***: 1.00e-04 < adjusted p-value ≤

1.00e-03; **: 1.00e-03 < adjusted p-value ≤ 1.00e-02; *: 1.00e-02 < adjusted p-value
≤ 5.00e-02. Source data are provided as a Source Data file.
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and cell-talk functions. In this paper, we introduce SPIDER, a compu-
tational method that accurately identifies spatially variable interac-
tions (SVIs) with the support of svTF genes. SPIDER identifies capacity-
constrained cell-cell interaction interfaces, and scores LRIs with
interface-adapted COT and LR gene co-expression. SPIDER constructs
the abstract interface graph by SOM, and integrates six statistical
models to produce SVI candidates20–24, leveraging the Gaussian pro-
cess with various covariance kernels, nonparametric covariance tests,
and hidden Markov random fields. SPIDER further screens for SVI
candidates that are supported by the activation of target svTF genes,
reducing the number of false positives.

SPIDER performed well at identifying svTF-supported SVIs com-
pared to other CCI methods, both in simulations and real datasets. In
simulation testing across varying levels of supported and unsupported
svTF genes, interaction strength, and noise, SPIDER generally achieved
higher AUC values among SpatialDM, SpatialCorr, SpaTalk, and Cell-
Chat. In addition to the simulation data, we applied SPIDER on six
datasets from four platforms varying in spot numbers and resolutions
(Supplementary Table 9). SPIDER-identified svTF-supported generally
exhibited higher spatial autocorrelation scores and stronger correla-
tions with downstream target svTF genes than those from SpatialDM.
These results demonstrate SPIDER’s ability to accurately recognize
svTF-supported SVIs over alternative CCI methods in multiple testing
scenarios.

The importance of screening for functionally active SVIs becomes
evident in the context of interaction-based analyses, particularly when
assessing the relevance and biological significance of these interac-
tions. In the PDACdataset, amongLRIs related toTSPAN14/15 signaling,
only the interaction APP-TSPAN15 is supported by a downstream tar-
get. Additionally, in a mouse embryo dataset, SPIDER effectively
excluded a false positive interaction Fgf5-Fgfr2 with limited relevance
to organogenesis due to the absence of svTF support. In contrast,
SpatialDM exhibited significantly lower TF support compared to
SPIDER-proposed LRIs, with many lacking supporting svTF genes. By
concentrating on svTF-supported LRIs, SPIDER reduces the average
number of ligands per receptor and receptors per ligand, demon-
strating its ability to identify biologically meaningful interactions. The
top-ranking SVIs, supported by multiple svTF genes, reveal diverse
enriched pathways, highlighting their distinct biological roles in
cooperation with downstream targets. These findings emphasize SPI-
DER’s effectiveness in identifying biologically relevant svTF-supported
LRIs and the essential roleof TF support in functional pathway analysis.

SPIDER SVIs demonstrate both heterotypic and homotypic sig-
naling characteristics, providing insights into cellular interactions
across diverse biological contexts. In a pancreatic ductal adenocarci-
noma (PDAC) dataset, approximately 64% of SPIDER SVIs represented
heterotypic interactions, with stronger interaction strength compared
to homotypic signaling. For homotypic interactions, correlations
between SPIDER SVIs and gene-driven spot annotations validated that
these SVIs effectively capture interactions within specific cell types.
Clustering analyses further confirmed the presence of both signaling
types. In a mouse embryo dataset, SPIDER identified SVIs that deli-
neated sub-regions of the brain and spinal cord. Similarly, in the SAW
mouse brain dataset, SPIDER-generated SVIs revealed regions com-
posed of mixed cell types. The identification of both heterotypic and
homotypic signaling is crucial for understanding cell type coordina-
tion, particularly within heterogeneous tissues like tumors.

The SVI patterns generated by SPIDER uncover spatial interaction
modules that enhance our understanding of the cooperative functions
of SVIs and cell types. By grouping SVIs with similar spatial distributions,
we can achieve higher-level functional annotations based on these
interactions. In the slide-seq mouse brain dataset, SPIDER identified
significant interaction modules, such as neurotrophins in the dentate
pyramids and TGF-β signaling in endothelial tip cells. Additionally, SVI
patterns facilitate interaction-based cell annotation. A comparison with

SpatialDM in the PDAC dataset showed that SPIDER effectively deline-
ates distinct SVI patterns linked to specific tissue regions, while Spa-
tialDM patterns lacked this regional specificity. The SVI patterns in the
slide-seq dataset also indicated sub-clusters within gene-based annota-
tions, revealing the presence of distinct marker SVIs.

The evaluation of SPIDER’s runtime across key steps–scoring
interfaces, scoring TF genes, and identifying SVI candidates–highlights
important insights into computational efficiency. The runtime of the
above steps on a single CPU core is reported for each sample in Sup-
plementary Table 10. As detailed in Supplementary Note 8, a strong
linear relationship was found between the number of interfaces and
the runtime for interface scoring and SVI candidate identification. In
contrast, the number of LRIs showed a weaker correlation. For svTF
scoring, the number of LRIs was a more substantial factor, but the
number of interfaces still played a role. This quantitative observation
further supports that interface screening and abstraction can sub-
stantially enhance computational efficiency for SPIDER. However,
interface abstraction presents a trade-off between LRI profile accuracy
and runtime efficiency (Supplementary Note 9). While it reduces the
number of interfaces and significantly decreases identification time, it
also smooths out LRI signals, potentiallymasking important variations.
Evaluation metrics indicate that abstracted interfaces have lower
expression variability than original interfaces. Thus, while abstraction
enhances efficiency, users should consider its impact on biological
accuracy, especially in smaller datasets or specific regions of interest.

Compared to existing methods, SPIDER offers a more flexible
framework for analyzing SVIs, facilitated by the approaches of inter-
face identification and svTF validation. Our SPIDER framework allows
users to utilize different interface scoring methods, as the underlying
assumptions may influence the results67. Additionally, SPIDER enables
customization of spatial variance testing methods, considering the
specific advantages and limitations of eachapproach in relation todata
size and noise levels. By combining results from multiple spatial var-
iance tests, SPIDER can reduce discrepancies that often arise when
calling statistically significant spatial variance35. This adaptability not
only enhances the robustness of SVI identification but also facilitates
the incorporation of advanced CCI methods.

In conclusion, SPIDER offers a powerful approach for analyzing
SVIs in ST data, significantly enhancing our understanding of cellular
interactions within complex tissues. By accurately identifying func-
tionally activated SVIs supported by svTF genes, SPIDER minimizes
false positives and captures biologically relevant interactions that are
critical for elucidating tissue structure and function. Its ability to dis-
cern both heterotypic and homotypic signaling enriches our insights
into cell type coordination, particularly in heterogeneous environ-
ments like tumors. Furthermore, the identification of distinct SVI
patterns facilitates higher-level functional annotations and interaction-
based cell annotations, allowing researchers to uncover meaningful
biological modules. Overall, SPIDER serves as a valuable tool for
exploring the intricate dynamics of cell communication, paving the
way for insightful discoveries in ST data.

Methods
Identifying cell-cell interaction interfaces constrained by inter-
action capacity
The inputs of SPIDER are the spatial gene expressionmatrixX 2 Rm×n

and the spot coordinates S= ðsT1 , � � � , sTmÞ 2 Rm× 2 of the ST data, with
m denoting the number of spatial spots and n denoting the number of
genes. From the gene set G = fg1, � � � , gng, we extract the ligand and
receptor gene set G0 that contains genes participating in known ligand-
receptor interactions. In this work, we use the LR pairs from
CellTalkDB68, which contains 3398 human LR pairs and 2033 mouse
LR pairs.

We first evaluate the interaction capacity for spot by the total
expression of ligand and receptor (LR) genes. Given the interaction
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capacity per spot, we can then use a power diagram to identify varying
numbers of interfaces for spots with different interaction capacities31.
Similar to the Delaunay triangulation, the power diagram generated
polygons representing spots, and we consider spots with adjacent
polygons to be potentially interacting. To generate a power diagram,
we lift spots from the Euclidean spaceE2 onto a paraboloid inE3. This
construction incorporates the interaction capacity cs of spot s with a
scaling function f, defining its lifted height hs in E3

hs = jjsjjF2 � c2s , where cs = f
X
g2G0

Xs, g

0
@

1
A: ð1Þ

The lifting equation and capacity scaling are detailed in Supplementary
Method 1.1. The interaction capacity cs modifies the paraboloid, with
larger capacities pulling it downward, resulting in more extensive
downward-facing facets. The convex hull of this adjusted paraboloid
forms these facets, which correspond to the power diagram for the
points. This lifting process determines the capacity-driven paraboloid
and, consequently, the capacity-guided polygons representing the
points.

After obtaining possibly interacting spots from the power dia-
gram, we further screen for spot pairs based on both their spatial
proximity and interaction capacity. We first keep spot pairs that are in
close proximity. For grid ST datasets, the proximity threshold is
defined as the third quantile of the distancebetween all adjacent spots.
For non-grid ST datasets, we apply the 99th quantile instead. We then
estimate the ideal number of interfaces for each spot based on their
interaction capacity with a Gaussianmixture model (GMM). For a spot
with more interfaces than its ideal number of interfaces, we prune its
interface with the most distant adjacent spot.

We also adapt the modeling of interfaces to account for ST
resolution. Specifically, for bulk resolution, we consider an interface
between two spots as a regional representation of interaction signals,
and we define an inner interface to represent the interactions within a
spot. Considering that our task is to identify interaction with spatial
variation, the regional interaction signal can also indicate variation
in space.

Finally, we determine the spatial locations of interaction inter-
faces. For each neighboring spot pair ðs, s0Þ identified and screened
above, we define the interaction interfaceI = ðs, s0Þ representing the
interactions between the two spots. Formally, we obtain the set of
interaction interfaces I and the location of interfaces Z as

I = fI1, � � � , Ikg where Ii = ðsi, s0iÞ;
Z= zT1 , � � � , zTk

� � 2 Rk × 2 where zi =
si + s

0
i

2 :
ð2Þ

with si and s0i denoting the twoneighboring spots on either side of the i-
th interface Ii, and k denoting the number of identified interfaces.

Estimating ligand-receptor interaction strengths and directions
on interfaces with COT and co-expression
We model the ligand-receptor interaction (LRI) signals at each inter-
action interface from gene expression X, referred to as the interaction
profile, by incorporating both COT and the co-expression of ligand-
receptor (LR) genes at the interaction interface. From the set of LR
genes G0, we extract the ligand gene setL and the receptor gene setR.
The set of LR pairs are represented as P = fðl1, r1Þ, � � � , ðln0 , rn0 Þg, where
n0 denotes the number of LR pairs.

We first utilize COT to estimate the distribution of ligand and
receptor expression across the interfaces. The COT implementation is
based on the approach provided by COMMOT12, with modifications to
constrain the transport plan between SPIDER interfaces. Specifically,

for the set of interfaces I , the COT formulation is adjusted as follows:

min
T

P
ðl, rÞ 2 L×R
ðs, s0Þ 2 I

Tðl, r, s, s0Þ+ P
l2L

FðμlÞ+
P
r2R

FðνrÞ

s.t. Tðl, r, � , �Þ=0 8ðl, rÞ =2P,P
Tðl, � , s, �Þ≤Xs, l ,

P
Tð�, r, � , s0Þ≤Xs0 , r :

ð3Þ

Here, F is the penalty function associated with the untransported
LR expression, defined as μl, s =Xs, l �

P
r, s0Tðl, r, s, s0Þ and

νr, s0 =Xs0 , r �
P

l, sTðl, r, s, s0Þ. The COT score of the p-th LRI ðl, rÞ 2 P at
the i-th interface ðs, s0Þ 2 I is therefore

T̂ i,p = maxfTðl, r, s, s0Þ,Tðl, r, s0, sÞg: ð4Þ

Furthermore, from theoptimal transport planT, we extract the LR
specific expressions of ligands L 2 Rm×n0

and receptors R 2 Rm×n0
to

compute LR co-expression. Specifically, the co-expression of the p-th
LRI (l, r) at the i-th interface ðs, s0Þ is

Ti,p = max ðLs,pRs0 ,pÞ
1
2, ðRs,pLs0 ,pÞ

1
2

n o

where Ls,p =
X

fðs, s0 Þ2I j8s0 g
Tðl, r, s, s0Þ,

Rs0 ,p =
X

fðs, s0 Þ2I j8sg
Tðl, r, s, s0Þ:

ð5Þ

For the ith interface between spots s and s0, we define the inter-
action profile yi, where the pth entry represents the interaction
strength of the pth ligand-receptor pair:

yi,p = maxfTi,p, T̂ i,pg: ð6Þ

Then we can present the interaction profiles across k interfaces
between neighboring spots for all n0 ligand-receptor pairs as a two-
dimensional matrix Y= ðyT

1 , � � � ,yT
k Þ 2 Rk ×n0

.
Additionally, we infer the interaction direction from the optimal

transport plan. The interaction direction can be determined by the
choice made in Equation (4). That is, the interaction pair ðs, s0Þ is
reversed to ðs0, sÞ when Tðl, r, s, s0Þ<Tðl, r, s0, sÞ, and kept as ðs, s0Þ
otherwise.

Scoring the activation of spatially variable downstream genes
The objective of this step is to use transcription factor (TF) genes to
support scored LRIs. We collect a knowledge graph encoding known
LR-TF regulatory relation fromSpaTalk11, which is a directedgraphwith
LR/TF nodes and regulatory edges. Let V denote all nodes in the
knowledge graph, we use VR and VTF to denote the receptor and TF
nodes. Using the spatial information of ST data, we can further parti-
tion the TF node set VTF into a set of spatially varying TF (svTF) genes
VsvTF and non-spatially varying TF genes VnsvTF. We calculate activation
scores for each receptor by analyzing weighted paths from VR to VsvTF
in the knowledge graph. The directed graph structure is encoded by
the adjacency matrix A 2 RjV j× jV j. The power of an adjacency matrix,
denoted as Ah, where h is a positive integer, represents the number of
paths of hop h between vertices in the graph. Specifically, the entry
(VR, VsvTF) of the matrix Ah indicates the number of distinct paths of
hop h that start at a receptor vertex VR and end at a svTF vertex VsvTF.

We further derive aweighted adjacencymatrix by considering the
level of target node activation represented by gene expression. Let x
denote the gene expression vector of a spot, the weighted adjacency
matrix ~A are defined as ~Aij =Aijxj . Its powers ~A

h
capture the number of

paths between nodes within h hops weighted by the co-expression of
target nodes. To make sure the weighted adjacency matrix is com-
parable among different h, we regularize ~A

h
with the weights aswell as
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the number of paths. The regularized weighted adjacency matrixA
h
is

therefore defined as

A
h
ij =

~A
h
ij

� �1
h

Ah
ij

ð7Þ

We use H 2 RjVRj × jVTF j to record activation scores between each
receptor-svTF pair with a spot, which is defined as the weighted
receptor-svTF path sum within 3 hops

H=
X
h≤ 3

Hh where Hh =A
h½VR,VTF � 2 RjVRj× jVTF j: ð8Þ

Here, the hop matrices Hh is a subset that keeps only receptor-svTF
paths. We reorganize the H matrices across all cells into a single
activation score matrix S 2 Rm×nrt , where nrt is the number of
receptor-svTF pairs.

Finally, we calculate the correlation between Sr (activation scores
for receptor r) and LRIs scores implicating r. Correlating svTFs pro-
vides supporting evidence for those LRIs, with a user-defined thresh-
old on correlation coefficients filtering supported LRIs, with a
threshold of 0.3 set as default.

Building abstract interfaces with self-organizing map
In this section, we build an abstract graph from the interfaces derived
above. Fromm spots, the number of interfaces is approximately 2m for
square or hex grid ST data, and 3m for non-grid ST data, as shown in
SupplementaryMethod 1.2. Considering that statistical tests for spatial
variance are challenged by computational scalability, we reduce the
number of interfaces by finding an abstract graph of interfaces.

An abstract interface represents a group of spatially adjacent
interfaces; we derive such a mapping with a self-organizing map
(SOM) that preserves the spatial topology of interfaces20. Formally,
we initialize a K × K square lattice covering the ST slice whose vertices
represent an abstract interface with initial coordinates
Ẑ= ðẑT1 × 1, ẑT1 × 2, � � � , ẑTK ×K Þ 2 RK2 × 2. To achieve a level of abstraction
that balances between a resolution that retains detail while still
reducing the number of interfaces, we set K by requiring the number
of interfaces represented by a single abstract interface as k

K2 = 5 by
default. In the training process, SOM iteratively updates themapping
between an interface at z and its best-matching abstract interfaces
selected as the one with the smallest distance from z, as well as the
coordinates Ẑ of abstract interfaces to better present the spatial
topology of interfaces. Here, we use the batch SOM implemented in
SOMDE20.

After training, we construct the interaction profile of an abstract
interface with a mixed max-average pooling on the represented inter-
face profiles. The joint of two pooling methods retains the most pro-
minent LRI signals while avoiding overestimating variance due to the
limited neighborhood size69. In particular, we set themixture portion of
average values to 0.7 to avoid extreme values presenting as noise in
calculating the spatial variance of interaction signals. We denote the
profiles of abstract interfaces as Ŷ= ðŷT

1 × 1, ŷ
T
1 × 2, � � � , ŷT

M ×M Þ 2 RM2 ×n0
.

Identifying spatially variable LRI candidates
SPIDER incorporates six state-of-the-art methods for spatial variance
evaluation. From the profile matrix and coordinates of the abstract
interfaces, denoted as Y and Z to ease the notation, we have
Y= ðy1,y2, � � � ,yp, � � � , yn0 ÞT , where n0 is the number of ligand-receptor
pairs and yp denotes the profile of LRI p across all abstract interfaces.
SPIDER measures the spatial-induced variance of yp with several
formulations below.

Gaussian process (GP) regression is a common approach for
spatial regression; under the GP model, an LRI signal yp follows a

normal distributionwith themeanof μ ⋅ 1 and a covariancematrix from
two terms - a non-spatial noise term ψI and a spatial term formulated
by a covariance function σ2Q(ϕ)70. In the spatial variance term, Q(ϕ)
captures the spatial correlation between abstract interfaces under the
lengthscale ϕ controlling the decay rate of correlation with distance.
The parameters are inferred by maximizing the log-likelihood, with
which we obtain the log-likelihood ratio (LLR) compared to the null
hypothesis of no spatial covariance.

Assuming that the LLR follows a χ2 distribution, we obtain the
correspondingp-value and q-value for yp.We can also rank LRIwith the
fraction of spatial variance (FSV) defined in SpatialDE70. For the above
process, we apply the implementation in SpatialDE and SOMDE20 using
a squared exponential covariance function.

Furthermore, we incorporate two variations of the GP regression
model (Supplementary Method 1.3.1). Replacing the full covariance
matrix with a nearest-neighbor approximation accelerates the model
fitting process to scale linearly with the number of abstract interfaces,
instead of cubically when using the full covariance matrix; the sub-
sequent estimationof LLR, p-value, and q-value resembles the previous
method. We apply the implementation in nnSVG22. To integrate a
variety of covariance functions, we incorporate all possible covariance
functionswith a generalized linearmixedmodel. For an efficientmodel
fitting process, we utilize an extended score test that only estimates
the model under the null hypothesis as implemented in SpatialDE221.
Assuming that the sum of the score vector for the variance compo-
nents follows a mixture of χ2 distributions, we obtain the corre-
sponding p-value and q-value for yp.

Moreover, we apply a nonparametric covariance test for esti-
mating the spatial variance (Supplementary Method 1.3.2). Assumes
that if yp is independent of Z, then the spatial distance between two
abstract interfaces zi and zj would also be independent of the LRI
profile difference between the two abstract interfaces i and j. With yp
and Z, we have the centered profile and coordinate covariance matri-
ces Q(yp) and Q(Z). Subsequently, tr(Q(yp)Q(Z))/k, a correlation mea-
surementbetweenyp and spatial coordinatesZ is computed. Assuming
that the correlationmeasurement follows amixture of χ2 distributions,
we obtain the p-value and the corresponding q-value for yp. SPIDER
uses the implementation in SPARK-X23.

Given that LRI profiles are often noisy due to sequencing limita-
tions, we further denoise the LRI profiles by discretization, that is,
converging the continuous LRI profile to discrete labels. We achieve
spatial neighbor-aware discretization with hidden Markov random
field by assuming that the observable LRI signal yp are conditionally
dependent on theunderlyingdiscrete labels f= {fi}whose states arenot
observable. Initially, we estimate fwith a Gaussianmixturemodel, with
whichwe apply the alpha-expansion graph cut algorithm implemented
in scGCO24 to find a label vector f of interfaces that minimizes an
energy function (detailed in Supplementary Method 1.3.3). The opti-
mal label f * defines an active region F for the LRI signal, on which we
test for the spatial non-randomness p-value with the complete spatial
randomness framework24, as well as the corresponding q-values.

Since we have multiple statistical tests, SPIDER filters the SVIs by
applying a strict threshold of p-value ≤ 0.01 across all tests. If the
resultant SVIs is less than 10, SPIDER combines the resulting p values
using the Cauchy p value combination rule71 to obtain a single p value,
which is also subject to the thresholdofp-value ≤0.01. The threshold is
also implemented as a hyperparameter for users to adjust.

SVI pattern generation with a Gaussian process mixture model
Weuse aGaussianprocessmixturemodel proposed in SpatialDE70with
a Dirichlet process prior21 to group SVIs sharing similar spatial dis-
tributions. The nonparametric Dirichlet process prior automatically
determines the number of patterns. From the LRI profile matrix Ŷ, we
obtain the latent SVI membership of the SVI pattern and the distribu-
tion of eachpattern c, denoted as μ̂c, in the formof aGPmixturemodel
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with components as the GP models of SVI members, solved by varia-
tional inference as implemented in SpatialDE221.

We term μ̂c as the activation strength for pattern c. Following the
mapping between z and its best-matching abstract interface ẑ*ðzÞ, each
interface z has the same activation strength as ẑ*ðzÞ. We use
ϒ= ðμ1,μ2, � � � ,μcÞT to denote the activation strength matrix of
interfaces.

Construction of simulation tests and comparisons with other
methods
To examine SPIDER’s accuracy in identifying SVIs, we simulated mul-
tiple ST datasets containing both spatially variable (SV) and non-SV
ligand-receptor interactions (LRIs) as well as target gene supports
using the SVCA package25. In these simulations, the interaction
strength of each LRI is not uniform but is varied across cells. Specifi-
cally, the level of interaction strength is controlled by the fraction of
ligand expression variance explained by its interaction with the cor-
responding receptor, as specified in SVCA. Similarly, SVCA simulates
target gene expressions from a given receptor by controlling the
intrinsic effect, that is, the fraction of target gene variance explained
by receptor activation. Therefore, we use the fraction of the interac-
tion effect to control the strength level of interaction, and the fraction
of the intrinsic effect to control the activation of target TF genes by
receptors.

We first simulated ligand expression for testing the identification
of SVI candidates. To distinguish SV and non-SV patterns, we selected
the top 100 SV and non-SV receptors from a real dataset. From the
expression of SV receptors, SVCA simulates ligands that present
similar spatial patterns, thereforegenerating LRIswith spatial patterns.
Similarly, ligands generated from non-SV receptors will result in LRIs
without spatial patterns.We control the level of interaction strengthby
supplying a range of fractions of variance to be explained by gene
interactions. We further apply a Poisson noise on the generated ligand
expression, with λ defined as the product of expressions and a scaling
factor adjusting the intensity of the noise, resulting in three noise
levels.

Subsequently, we simulated TF expression for testing svTF sup-
port of LRIs. We constructed a four-hop knowledge graph, where the
target TFgenes canbe either svTF (spatially variable TF) ornsvTF (non-
spatially variable TF), and their expression can either correlate or not
correlate with the receptor gene. By setting the intrinsic effect to 0.9,
we obtain TF expressions correlatingwith the input receptor gene, and
the uncorrelated TF expressions take the negative part of the corre-
lating TF expressions. If the input receptor gene is spatially variable,
then the simulated TF expressions are also spatially variable. To gen-
erate nsvTF for SV receptors, we apply a Poisson distributionwith λ = 1
to disrupt the generated spatial pattern while maintaining the corre-
lation between TFs and the SV receptor.On the other hand, if the input
receptor is not spatially variable, we apply a Gaussian model with
length-scale 2 to at an expression hot-spot to simulate spatial variance.
When testing the effect of TF variability on SPIDER, we also apply three
levels of Poisson noise on the generated TF gene expression as above.

Joining the simulated ligand and TF expression, we construct
various simulation cases. Initially, we generated 12 simulations by
systematically varying the interaction strength levels–specifically,
setting the fraction of ligand variance explained by receptor interac-
tion to 99, 75, 50, and 25%–and applying three noise levels using
scaling factors of 0.5, 0.7, and 0.9, which correspond to low (0.1),
medium (0.3), and high (0.5) noise, respectively. For both SV and non-
SV receptor genes, half of them are supported by svTFs, while the
other half are not. At the median noise level and with four interaction
strength levels, we generated an additional 12 simulations by adjusting
the fraction of svTF-supported non-SV receptors. Specifically, non-SV
receptor genes can be fully supported, partially supported, or not
supported by svTFs to evaluate the TF scoring function of SPIDER.

Lastly, we generated 12 null simulations at the median noise level
across different interaction strength levels, ensuring that all SV
receptors are not supported by any svTFs. In contrast, non-SV receptor
genes can be fully supported, half supported, or not supported
by svTFs.

Several methods have been developed for ST-based LRI ana-
lyses. SpatialDM and SpatialCorr detect spot-level interactions,
while SpaTalk identifies cluster-level interactions. On the other
hand, CellChat detects cluster-level interactions without using spa-
tial knowledge. For cluster-based LRI methods SpaTalk and Cell-
Chat, we kept the lowest p-value for each ligand-receptor pair
between any two clusters. We compared SPIDER with these meth-
ods. However, it should be noted that these methods, except for
SpatialDM, are rather unfavorable in this simulation setting for
having relatively different objectives.

Furthermore, to show the effect of SPIDER’s interaction scoring
on the capacity-constrained interfaces, we incorporated two other
methods, namely stLearn and COMMOT, that provide spot-based
interaction scoring12,13, and followed with SPIDER’s statistical model
testing. Statistical testing with similar LRIs is used in stLearn to esti-
mate spot-wise interaction significance scores. On the other hand, we
supply COMMOT’s spot-spot interaction scores onto the constructed
interfaces.

We generated receiver operating characteristic (ROC) curves
under each interaction scenario for all benchmarking methods, SPI-
DER, and different models used in SPIDER. The ROC curves were then
used to compare the AUC (Area Under the Receiver Operator Curve)
values. For null cases with no svTF-supported SVIs, we use the speci-
ficity metric with a significance cutoff of 0.01.

To generate bulk simulation datasets, we grouped adjacent cells
into computational spots using SOM on the PDAC and DLPFC simu-
lation datasets. Due to the smaller number of cells in the PDAC sample,
we set the number of cells per spot to four and six for both the PDAC
and DLPFC samples. The simulated expression values of cells within
each spot were aggregated by taking the mean expression, generating
bulk-level profiles from the underlying single-cell simulations. For
cluster-based SpaTalk, we label a spot by the majority of cluster labels
from its member cells.

Evaluating the effect of spatial constraints on both simulation
and real datasets
We further assessed SPIDER’s robustness under weak and non-existent
spatial constraints by applying permutation tests to both single-cell
and bulk resolution PDAC simulations across four interaction strength
levels. To model weak spatial constraints, we performed block per-
mutations, randomly shuffling cells or spots within predefined block
sizes of 3, 5, and 10, with larger block sizes representing progressively
weaker spatial constraints. To simulate the complete absence of spatial
constraints, we randomly permuted all spots or cells without main-
taining any block structure, repeating this process five times for each
interaction strength setting.

Decoding cell type interactions with directed and
undirected SVI
Given spot annotations such as cell types or cluster labels, SPIDER
decodes the interacting parties from an SVI. Let C = {Ct} denote the
categories in the given annotation, and c = {cs} denote the spot labels.
We define a symmetric matrixK representing cell type interactions for
the pth LRI, where

KðCt ,Ct0 Þ=
P

ðs, s0 Þys,p � 1fCt2fcs , cs0 gg � 1fCt0 2fcs , cs0 ggP
ðs, s0 Þ1fCt2fcs , cs0 gg � 1fCt0 2fcs , cs0 gg

ð9Þ

subject to t ≠ t0. Here ðs, s0Þ represents an interface, ys,p is the expres-
sion level of the pth LRI on spot s, and 1 is the indicator function. For
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the diagonal entry, we have

KðCt ,CtÞ=
P

ðs, s0 Þ ys,p � 1fCt = csg � 1fCt = cs0 gP
ðs, s0 Þ1fCt = csg � 1fCt = cs0 g

: ð10Þ

The matrix K reveals the mean SVI expressions of interfaces connect-
ing different cell types in the sample.

Subsequently, we construct a non-symmetric version of K for
directed cell type interactions, with

KðCt ,Ct 0 Þ=
P

ðs, s0 Þ ys,p � 1fcs =Ct g � 1fcs0 =Ct0 gP
ðs, s0 Þ1fcs =Ct g � 1fcs0 =Ct0 g

: ð11Þ

The diagonal entries remain unchanged as in Equation (10). SPIDER
visualizes the non-symmetric K with a chord diagram, with the option
to exclusively display interactions between different cell types.

Downstream analyses with identified SVIs and SVI patterns
In the above section, we obtain the SVI expression matrix Y0, subset
from the full expression matrix Y, and the SVI pattern matrix ϒ. Sub-
sequently, we demonstrate that SPIDER populatesY0 andϒ back to the
feature space of the spot.

We retain a mapping between spots and interfaces as B, with B(s)
denoting a set of interfaces connected to spot s. LetX and χdenote the
spot-transformed SVI expression and SVI pattern matrics, defined as

Xs =
1

jBðsÞj
X
i2BðsÞ

Y0
i and χs =

1
jBðsÞj

X
i2BðsÞ

ϒi: ð12Þ

Furthermore, we calculate Pearson correlation with known spot
annotations and perform SVI or SVI pattern-based spot clustering
given the populated features. We showcase the resemblance between
spot annotations and SVIs or SVI patterns by calculating their Pearson
correlations. Specifically, we calculate the Pearson correlations
between the populatedmatrices with known spot annotations, such as
one-hot encoded cell type labels or cell type deconvolution results.

For the populated SVI and SVI pattern matrices X and χ, we apply
Scanpy’s clustering pipeline45. Specifically, we embed the populated
matrices in a two-dimensional space using Scanpy’s UMAP imple-
mentation with default parameters. We then use Scanpy’s Leiden
implementation to extract clusters from the UMAP-reduced features.
For themouse embryo andmousebrain datasets, we set the resolution
of Leiden as 0.1 and 0.5, respectively, to approximate the number of
annotated clusters. For the SAW dataset, we vary the resolution para-
meter to 0.1, 0.5, and 1, respectively. We further find the differentially
expressed SVIs among interaction-based clusters using Scanpy’s
rank_genes_groups with default parameters. The top SVIs were ranked
by integrating log-fold change and t-test p-value. We further utilized
the SVI matrix X for inferring pseudotime and trajectory, following
Scanpy’s trajectory inference pipeline with the number of PCA com-
ponents set to 10.

Considering that interfaces could serve as a counterpart of spots
or cells, we also performed clustering, pseudotime and trajectory
inference on interfaces instead of spots. The method and results are
discussed in detail in Supplementary Note 10. Similarly, SVIs could be
seen as a counterpart of genes, for which we performed additional
tests to examine the relation between SVIs and genes (details in Sup-
plementary Note 11).

Pathway enrichment for LRIs and svTFs
We perform pathway enrichment analyses on a given set of LRIs, both
utilizing the “enrichR” function implemented in the GSEApy package
to test for enrichment on pathway databases such as KEGG and
Reactome72. Specifically, for enrichment analysis on genes implicated
in the set of LRIs, we call “enrichR” with default human KEGG pathway

“KEGG_2021_Human” and mouse KEGG pathway “KEGG_2019_Mouse”.
For enrichment on an SVI and its supporting svTFs, the gene set is the
joint set of the LR genes and the supporting svTFs.

Configuration of the used software
We configured several computational software packages for interface
scoring, abstraction, and SVI analysis. For COT scoring of interfaces, we
used the default parameters implemented in COMMOT, except for
adjustments made at interfaces. When applying SOMDE for interface
abstraction, we configured themixture portion parameter to 0.7 and set
it to represent 10 interfaces, with each abstract interface by default. For
identifying and evaluating SVI candidates, we applied eight software.
Regarding the SpatialDE, SpatialDE2’s omnibus mode, and SPARKX for
detecting SVI candidates, we left them at their default settings. For
SOMDE,we set the defaultmixtureportion andnumber of interfaces per
abstract interface to four for under 1000 interfaces or ten otherwise. To
evaluate different combinations of edge and node penalties using the
scGCO software, we systematically varied the smooth factor among 1, 5,
10, and 20 and the unary scale factor between 50 and 100. Across all
statistical tests run using various combinations, we report the smallest
q-value to determine significant SVI candidates. For nnSVG, we try with
default parameters, and when nnSVG fails for some inputs, we include
two configuration options - adding a pseudo-count of 1 to the interface
profile matrix or discarding low-reliability LRI pairs. We obtained Mor-
an’s I and Geary’s C metrics using the Squidpy package73 with 1000
permutations set for significance testing.

We compared SPIDER with several methodologies, including
SpatialDM, SpaTalk, CellChat, stLearn, COMMOT, and spatialcorr. For
SpatialDM, we set the parameters l=1.2 and a cutoff of 0.2, using bin-
spot results for cell-type correlation assessments. SpaTalkwas runwith
default parameters. In the case of CellChat, we specified the type as
truncatedMean in the computeCommunProb function and set the trim
to 0.01. For stLearn, we applied score pval_adj_cutoff=0.05, and set
distances to 8 for DLPFC and 1.3 for PDAC simulations. The resultant
lr_sig_scores were used as the LRI scores. For COMMOT, we applied a
distance threshold (dis_thr) of 2.1 and enabled heteromeric interac-
tions. Lastly, spatialcorr was evaluated with a bandwidth of 10, but it
took too long to process the DLPFC simulations, leading to its exclu-
sion from further evaluations. A significance threshold of 0.01 was
applied to the final LRI results from all methods, consistent with the
threshold used in SPIDER.

Datasets
An overview of datasets, including cell or spot number, gene number,
as well as the number of interfaces and SVIs, are included in Supple-
mentary Table 9. Preprocessing of count matrices, LR pair databases,
and interfaces are described in Supplementary Method 1.4.

Human pancreatic ductal adenocarcinoma dataset. Raw data of the
Spatial Transcriptomics sample PDAC-A of pancreatic ductal adeno-
carcinoma is collected from GSE111672, and the spot annotations are
from Fig. 2 of the publication28. Cell type deconvolution with paired
scRNA-seq data is performed by SPOTlight following the github tutorial.

SAW mouse brain dataset. Raw data and clusters of the stereo-seq
mouse brain samples are collected from CNP000443730.

Mouse hippocampus dataset. Raw data and annotations of the slide-
seq V2mouse hippocampus samples are collected from the Single Cell
Portal under project SCP8158. Cell type deconvolution with a mouse
single-cell RNA-seq hippocampus dataset74 is performed by Seurat
following the official tutorial.

Mouse embryodataset. Rawdata and cell types of the seqFISHmouse
embryos are collected from the Spatial Mouse Atlas29.
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Human dorsolateral prefrontal cortex dataset. The raw counts and
manual annotations of the human dorsolateral prefrontal cortex
samples are collected from globus. For each biological sample, one
repeat sample is selected, namely samples 151,510, 151,672, and
151,673.

Human breast cancer dataset. From the HER2-positive breast cancer
Spatial Transcriptomics samples provided in the study of Wu et al.57,
we selected six samples namely A1, B1, C1, D1, G2, and F1, whose count
matrices and spot annotations are collected from zenodo project
3957257.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ST datasets analyzed in this study are collected from their original
publications: Spatial Transcriptomics data of PDAC-A with GEO acces-
sion number GSE11167228; Stereo-seq data of the mouse brain with the
ChinaNational GeneBankDataBase SequenceArchivewith the accession
number CNP000443730; Slide-seq V2 data of themouse hippocampus at
the Single Cell Portal under project SCP815 at https://singlecell.
broadinstitute.org/single_cell/study/SCP815/sensitive-spatial-genome-
wide-expression-profiling-at-cellular-resolution8; seqFISH data of mouse
embryos from the Spatial Mouse Atlas dataset at https://content.cruk.
cam.ac.uk/jmlab/SpatialMouseAtlas2020/29; Visium data of the human
dorsolateral prefrontal cortex from the globus website at http://
research.libd.org/globus5; Visium data of human breast cancer from
Andersson et al. under the zenodo project 3957257 at https://zenodo.
org/record/395725757. SVI lists for all samples are provide in Supple-
mentary Data 1. Source data are provided with this paper.

Code availability
The source code of SPIDER is available in https://github.com/
deepomicslab/SPIDERunder the MIT License and the scripts to repro-
duce the results in our manuscript are in https://github.com/
deepomicslab/SPIDER-paper. The original source code for third-party
software used in this study is also publicly available under OSI-
approved licenses. In particular, we would like to thank the authors of
COMMOT, SOMDE, SpatialDE, SpatialDE2, SPARKX, scGCO, nnSVG,
and SpatialDM for their work, which was essential for our analyses.
Tutorials of SPIDER are available in https://spiderst-readmedoc.
readthedocs.io/en/latest/. A working example of SPIDER is hosted by
Code Ocean in https://codeocean.com/capsule/119403875.
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