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A small set of critical hyper-motifs governs
heterogeneous flow-weighted network
resilience

Tianlei Zhu 1, Xin Yang 1 , Zhiao Ma 1, Huijun Sun1, Jianjun Wu2,
Ziyou Gao 1 & Jianxi Gao 3,4

Flow-weighted networks are widespread in real-world systems, capturing the
essence of flow interactions among various entities. Examples are food webs,
social networks, transportation systems, and financial transactions. These
networks are vulnerable to degradationwhen subjected to disturbances, often
triggering cascading failures that severely impact their functionality. Despite
their importance and recent advancements, the underlying mechanisms
driving network degradation—from functional to dysfunctional states due to
structural changes—remain poorly understood. In this study, we present a
resilience analysis framework for flow-weighted networks. Our approach
begins with constructing a hypergraph that encodes cascading failures
through hyperedges. We then apply percolation theory to examine phase
transitions and identify stable hyper-motifs throughout the degradation pro-
cess. Our numerical simulations demonstrate that this framework discovers
the Black Swan nodes in flow-weighted networks and provides a comprehen-
sive resilience assessment. Our resilience analysis framework offers theoretical
support for enhancing network resilience, suppressing rumor spread, pre-
venting economic collapses, reducing traffic congestion, and improving eco-
logical stability—ultimately fostering a more resilient and sustainable society.

Flow-weighted (FW) networks, often represented by directed and
weighted edges whose weights represent the amount of flow between
nodes1,2, are ubiquitous in many domains, including passenger move-
ment in transportation, information dissemination in society, and
capital circulation in the economy. However, these networks are vul-
nerable to node or link failures, where even small damage can cause
cascading failures and catastrophic collapses, attracting significant
attention in the past decades. Early approaches focused largely on
structural resilience3–5, also known as network robustness6,7—the sys-
tem’s ability to retain large-scale connectivity in the face of attacks. It is
usually characterized by analyzing how the size of the giant compo-
nent (G) changes as nodes or edges are randomly removed using
percolation theory to determine theminimumstructural requirements

a network must meet to support its functionality8–15. However, resi-
lience is not purely a structural problem16–18 (Fig. 1a–d). Consider
transportation networks, which can become gridlocked in a natural
disaster even if the underlying roads and railways are unscathed. To
truly address the dynamical resilience of FW networks, we must con-
sider the flow dynamic models and cascading failures due to flow
reallocation (Fig. 1e–g), ultimately resulting in a large-scale collapse of
network connectivity.

Growing evidence reveals that the cascading failure caused by
perturbing a node depends not only on that node’s properties but also
on the network topology, flow dynamics, and external
disturbances19–21. Although we consider FW networks including only
pairwise interactions (Fig. 1h), disrupting a single node can trigger
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failures of multiple nodes. All the affected nodes can be viewed as
collectively forming a higher-order interaction, with the event acting
as a hyperedge that connects them beyond simple pairwise relation-
ships (Fig. 1i). As the number of perturbed nodes increases, some
trigger minor cascades, while others unleash large-scale failures,
creating a complex and heterogeneous hypergraph (Fig. 1j–l). Recent
substantial evidence indicates that higher-order interactions provide
an effective framework for decoding the intricacies of network
dynamics22–27, prompting us to develop a hypergraph-based frame-
work for the resilience analysis of FW networks28.

To address these challenges, we develop a framework for ana-
lyzing the dynamical resilience in FW networks through high-order

interactions. Specifically, we map perturbed pairwise interacting FW
networks as hypergraphs through Coupled Map Lattices-based (CML-
based) cascading dynamics, where hyperedges serve as a tool to
encode the dynamic cascades. When disturbances are sufficiently
large, the failure of a single node can lead to network-wide impacts; we
refer to such nodes as Black Swan nodes, which can be identified using
a threshold-based clustering method29 (see the “Methods” section for
details). Subsequently, we observed a percolation transition in the
hypergraph and objectively evaluated dynamical resilience through
hyper-motifs (Fig. 1m–s). Thesefindings demonstrate the effectiveness
of our framework and have significant implications for enhancing the
resilience of real-world FW networks.

Fig. 1 | A general resilience analysis framework ofhigh-order interactions of the
FWnetwork. a In Scenario 1, under an intact network topology, this flow allocation
scheme causes slight congestion, resulting in a declined flow delivery function.
b Scenario 2 maintains the same network structure as Scenario 1 but adopts a
different flow allocation scheme, and no congestion is observed. cAfter one edge is
damaged in Scenario 1, although the network remains connected, capacity limita-
tions under this flow allocation scheme lead to severe congestion, which sig-
nificantly degrades the flow delivery function. d Scenario 2 experiences more
severe damage, resulting in a disconnected network, yet no congestionoccurs. This
indicates a disparity between the structural resilience and dynamical resilience of
the FW network. e–g During disturbances, the FW network experiences flow
redistribution and disturbance propagation, ultimately leading to cascading fail-
ures.h Initial state of the FWnetworkbeforehypergraph construction. i Small-scale

cascading failures occur after certain nodes in the network are disturbed. jCoupled
effects emerge from small-scale cascading failures. k The network is divided into
several distinct clusters. l The emergence of the Black Swan node results in global-
scale failures.mMatrix representation of the hypergraph.n Black swan node in the
hypergraph causes network-wide impact. o Protecting the Black Swan node from
failure, the hypergraph remains connected.pThe removal of a keyhyperedge leads
to a percolation transition in the hypergraph. q The distribution of hypergraph
cardinality. r Percolation transition process on the hypergraph. s Forms of hyper-
motifs existing in the network post-percolation transition. Hyper-motifs composed
of more hyperedges can be represented by hyper-motifs formed by pairwise
combinations. Therefore, this study only considers hyper-motifs formed by pair-
wise combinations.
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Results
FW network dynamic propagation models
Flow propagation phenomena exhibit distinct characteristics across
different real-world FW networks. For instance, the trophic lengths of
foodweb networks are constrained by energy transfer efficiency, while
transportation networks experience congestion propagation due to
vehicle flow dynamics. To characterize these diverse propagation
mechanisms in FW networks, researchers have developed various
dynamical models, including the Motter-Lai model for overload fail-
ures in infrastructure networks and the SIR model for epidemic
spreading30,31. Recently, CMLmodels have been extensively employed
to describeflowpropagation dynamics in FWnetworks acrossmultiple
domains32–36, such as the non-linear dynamics and bifurcation phe-
nomena in biological neural networks37,38, spatiotemporal system
recognition in computational neural networks39, and cascading failures
in transportation systems40. To capture the cascading dynamics in FW
networks, we extend the existing model as shown in Eq. (1).

xiðtÞ=
ð1� μ1 � μ2Þφðxiðt � 1ÞÞ+μ1

P
j2N, j≠i

f ijφðxj ðt�1ÞÞ
Souti

+

μ2
P

8j2N, j≠i
f jiφðxj ðt�1ÞÞ

Sini

�������

�������
+R ð1Þ

where φ xð Þ represents a chaotic logistic mapping function, signifying
the evolution of the node’s state at the previous time34; xiðtÞ denotes
the status of node i atmoment t; μ1 and μ2 are the coupling coefficients
of each term in the model, representing the degree to which the cur-
rent node state is influenced by that component. The first part of the
model represents the inheritance of the current node state from the
previous timestep node state, the secondpart represents the impact of
the outgoing flow, and the third part represents the impact of the
incoming flow. If μ1 = 0.2, and μ2 = 0.3, it implies that the current node
state inherits 50% from the previous timestep node state, with 20%
influenced by the surrounding outgoing flow, and 30% influenced by
the surrounding incoming flow. In all experiments presented in this
study, unless otherwise specified, we set μ1 =μ2 =0:4; S

out
i and Sini

respectively represent the sumof the outflow and inflow at node i;N is
the set of all nodes in the network; R represents a given perturbation
factor for the node, which typically ranges within the interval
R= ð0, +1�, and a larger value signifies a stronger disturbance. The
calculation methods for the various parts of the model are shown in
Eqs. (2)–(4).

Souti =
X

j2N, j≠i
f ij ð2Þ

Sini =
X

j2N, j≠i
f ji ð3Þ

φ xð Þ=4xð1� xÞ ð4Þ

The chaotic logistic mapping function ensures the stable inheri-
tance of the node state (xi tð Þ 2 ð0, 1�, φ xð Þ 2 ð0, 1�). When the node
state value xiðtÞ> 1, the node is considered failed, and xiðtÞ is set to 0.
The initial state of each node, xið0Þ, is represented by the ratio of the
node’s current flow to themaximumflowamong nodes in the network,
as shown in Eq. (5).

xið0Þ=
Sini + Souti

maxfSini + Souti g
ð5Þ

During the CML simulation process, if a node in the FW network
fails, the flow passing through this node needs to be redistributed. We
assume that after the node fails, the flowof this node is allocated to the
nearest K nodes, with each node being allocated a flow size

proportional to its own flow share. For the failed node, since its own
flow is 0, there will be no allocation to this failed node during the flow
distribution. This can be specifically expressed using Eqs. (6) and (7).

f ki = S
in
k

SiniXK

i = 1
Sini

ð6Þ

f ik = S
out
k

SoutiXK

i = 1
Souti

ð7Þ

where f ki represents the inflow allocated to node i, and f ik represents
the outflow allocated to node i. In fact, the flow allocation to neigh-
boring nodes from a failed node is subject to a degree constraint
such that K ≤ ki, i 2 N, implying that for a given network, the set of
possible K values is 1, 2, :::, max ki

� �� �
. Throughout all experiments

presented in this paper, unless otherwise specified, we set K = 7.
The detailed steps for cascading failure simulation based on the
CMLmodel and hypergraph construction canbe found in theMethods
section.

Topological analysis of real FW networks
Before assessing the resilience of FW networks, we first examine the
fundamental topological characteristics across six real-world FW net-
works fromdistinct domains (as shown in SupplementaryTable 1 in the
Supplementary Information, SI), namely the European email social
network, the United States congressional voting network, the eco-
nomic trade network, the Chinese transportation network, the United
States wet food web network, and the United States dry food web
network (referred to as Nets 1–6 in subsequent discussions). Subse-
quently, we compared the hyperedge cardinality distributions when
mapping FW networks to hypergraphs under Motter–Lai-based cas-
cading dynamics, SIR dynamics (the details of these two models are
provided in the Methods), and CML-based cascading dynamics41,42, as
shown in Fig. 2a. Here, C denotes the hyperedge cardinality, and pC

represents the occurrence probability of hyperedges with sizeC. It can
be observed that all six FW networks exhibit outliers (red squares)
under the three dynamical models. The sizes of these outliers
approach the network scale, indicating that the cascading failures
caused by these outliers would lead to systemic collapse. We refer to
these outliers as Black Swan nodes. To identify Black Swan nodes in
networks, we adopt cardinality as a node feature and apply threshold-
based K-means clustering to classify nodes into two sets (P and �P). The
implementation involves two steps: (1) Determinewhether hyperedges
exceeding the given threshold size T Nj j exist in the network, where
T 2 0, 1½ �. If none are found, no Black Swan nodes exist, and
P =N, �P =+. If such hyperedges exist, (2) Initialize cluster centers
using the minimum and maximum hyperedge sizes, then apply K-
means to identify Black Swan nodes. �P is the set of Black Swan nodes
and P =N � �P (refer to the “Methods” section for the details of Black
Swan nodes detection approach). The fitting results of nodes inP (blue
dots) exhibit characteristics of a power-law distribution but display
distinct slopes under different models. And the distribution demon-
strates Lévy features when nodes in P and �P are treated as a whole43

(for a detailed analysis of different parameters of the CML model,
please refer to Supplementary Figs. 2–9). Such Black Swan events not
only appear in the cascade failures of complex networks, but also in
human hunting and gathering behaviors44, economic growth
fluctuations45, and animal movement processes46. Therefore, a thor-
ough analysis of the characteristics of these nodes is crucial for
understanding FW network resilience.

The cardinality distribution in synthetic networks also demon-
strates similar properties, as shown in Fig. 2b, where εr represents the
probability of connection between two nodes in a random network
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model, εsf represents the number of connections between new and
existing nodes in a scale-free network model, and εsw represents the
probability of rewiring long-range connections in a small-world net-
work (see Supplementary Figs. 10–13 for more results on synthetic
networks). These conclusions indicate that whether in real-world FW
networks or synthetic networks, there inevitably exist some high-
influence nodes that, once disrupted, have a significant impact47,48. If

such nodes could be reasonably protected, it would significantly
enhance the network’s resilience.

Percolation transition in FW network
We compared the differences in percolation transition processes
under four distinct percolation rules. These rules are predicated on the
principles of maximum flow, maximum degree, minimum flow, and
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minimum degree, respectively, and map onto four varied real-world
scenarios. In reality, nodes that boast a higher flow or a greater degree
are frequently deemed more critical and are thus more vulnerable to
targeted attacks; conversely, nodes with a lower flow or a reduced
degreeoften receive less attentionand aremoreprone to spontaneous
failures, especially when protective measures fall short. Fig. 3 illus-
trates the percolation process for various networks under the perco-
lation rules predicated on maximal flow. It is observable that on these
real-world FWnetworks, a distinct percolation transition phenomenon
emerges. In the other three rule-based scenarios (see Supplementary
Figs. 14–18), however, the network displayed no evident signs of per-
colation transition, indicating that flow plays a decisive role in the
network properties within the FW network.

We analyze the impact of varying parameter values on the critical
percolation threshold of the original network, as well as on networks
that have been reinforced by four other resilience enhancement stra-
tegies (as shown in Supplementary Figs. 19–27). To be specific, the
resilience enhancement strategy based on the CML simulation model
(CML-based strategy) entails prioritizing the fortificationof Black Swan
nodes. The flow-based resilience enhancement strategy (flow-based
strategy) involves prioritizing the reinforcement of nodes with higher
flow, the degree-based resilience enhancement strategy (degree-based
strategy) emphasizes the strengthening of nodes with greater degree,
and the random-based resilience enhancement strategy (random-
based strategy) serves as a benchmark model against which other
enhanced strategies are compared. We simulate a random-based
strategy on all networks 100 times and then average the results to

ensure statistical robustness in our findings. In our study, we enhance
the resilience of 10% of nodes across all networks, operating under the
assumption that these reinforced nodes do not succumb to cascading
failures subsequent to perturbations.

We compared the variations of critical percolation thresholds
under no enhancement strategy and four enhancement strategies, as
shown in Fig. 4b, d, f, h, j, l. In Nets 1–4, flow-based strategy anddegree-
based strategy performed comparably, slightly underperforming the
CML-based strategy; however, in Nets 5 and 6, the CML-based strategy
andflow-based strategy exhibited similarperformance, outperforming
the degree-based strategy. Thedynamical resilienceof networks under
the Random-based strategy remained the lowest among the four
enhancement strategies, only marginally higher than that of networks
without enhancement.

The efficacy of the four methods for enhancing resilience varies
across different networks, attributable to the intrinsic characteristics of
each network49. For instance, Nets 1–4 are not naturally occurring but
artificially constructed. Within these networks, nodes with higher
degrees tend to handle more substantial flow; hence, the performance
of the degree-based strategy exhibits similarities to the flow-based
strategy. Nets 5 and 6 represent naturally formed food web networks,
where producers (plants) inherently possess the highest carbon con-
tent. As one ascends the trophic levels, higher-order consumers exhibit
lower carbon content. Under these circumstances, producer nodesmay
not exhibit high degrees but sustain significant flow; therefore, the
CML-based strategydemonstrates results comparable to theflow-based
strategy and significantly outperforms the degree-based strategy.

Fig. 2 | Cardinality distribution and Black Swan nodes. a The probability dis-
tribution of the cardinality in real-world network hypergraphs based on different
dynamic models. The green solid line signifies the fitting condition after the
exclusion of outliers, resulting in a considerably improved fit for the local data.
Consequently, it can be posited that the local data conforms to a power-law dis-
tribution, yet when accounting for outliers, the global data adheres to a Lévy dis-
tribution. Different networks exhibit varying degrees of resilience to perturbations
due to their inherent characteristics, and they demonstrate similar properties
under varying disturbances. b Hyperedge cardinality distributions for three types

of network models under varying parameters. In both random and scale-free net-
works, the number of connections increases with the gradual rise in parameters,
leading to an increased probability of the emergence of Black Swan nodes. This is
attributed to disturbances and flow being able to propagate through an increasing
number of pathways, thereby exerting a larger impact within the system. Since the
average degree of small-world networks does not changewith parameter increases,
the probability of Black Swan nodes arising in these networks does not exhibit
significant variation.

G SG

Net  1
R = 1.75

Net  2
R = 1.75

Net  3
R = 1.75

Net  4
R = 3.75

Net  5
R = 1.75

Net  6
R = 2.25

qc ≈ 0.76 qc ≈ 0.86 qc ≈ 0.64

qc ≈ 0. 63 qc ≈ 0.52 qc ≈ 0.75

a b c

d e f

Fig. 3 | The process of network percolation under maximum flow rule in the
real-world FW network. Diverse networks demonstrate distinct phase transition
points, with a delayed percolation transition indicating a diminished resilience of
the network at that juncture. Near the critical percolation threshold qc, the size of

the giant component G drops sharply, and the size of the second giant component
SG reaches its peak. a–d FW networks formed by human activities in various fields.
e, f FW networks formed by species predation relationships in nature.
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In summary, sincenetworkcascading failures represent a dynamic
process, the CML-based strategy is adept at identifying pivotal nodes
when faced with various disturbances, whereas the key nodes identi-
fied by the other threemethods contribute only to enhancing network
resilience.

Various stable hyper-motifs in FW network
Motifs and hyper-motifs serve as fundamentalmeso-scale structures in
network composition, playing a critical role in understanding network
dynamics and resilience50–52. After the percolation transition occurs in
the network, the Black Swan nodes are reasonably protected, greatly
enhancing the network's resilience. However, small-scale, inter-
dependent cascading failure processes persist within the network.
These interrelated cascading failure processes, which remain difficult

to eliminate even after resilience enhancement, can be well-
represented by stable hyper-motifs. The nodes covered by these pat-
terns could still cause localized impacts on the network if attacked. In
basic graphs, hyper-motifs are often defined as combinations of dif-
ferent motifs, categorized into directed and undirected types52,53.
However, there are still differing views on the definition of hyper-
motifs in hypergraphs. For example, Lee et al.54 suggest that hyper-
motifs are used to describe the connectivity patterns of three con-
nected hyperedges, whereas Lotito et al.55 define hyper-motifs as
subgraphs involving a given number of nodes,which canbe connected
through higher-order interactions of arbitrary order. Therefore, pro-
viding a rigorous definition of hyper-motifs in the context of hyper-
graphs is critical56. In this study, we define a certain class of hyper-
motifsΠðu, vÞ in hypergraphs as all patterns that include u hyperedges,

Fig. 4 | Comparison and analysis of the effects of different enhancement stra-
tegies. a, c, e,g, i,k Joint distributions of nodeflowanddegree forNets 1–6, and the
Black Swan nodes are emphasized with triangles outlined in black. b, d, f, h, j, l The
critical percolation thresholds under four scenarios forNets 1–6. “O” represents the
origin network without any enhancement strategy, “C” denotes the CML-based
strategy, “F” signifies the flow-based strategy, “D” corresponds to the degree-based

strategy, and “Rd” represents the random-based strategy. a, c, e, g Nets 1–4 exhibit
analogous characteristics in their joint flow-degree distributions. i, k Nets 5 and 6
also manifest comparable joint flow-degree distribution characteristics.
b, d, f, hWithin Nets 1–4, the flow-based strategy and degree-based strategy show
parallel performance. j and l In Nets 5 and 6, the performance of the CML-based
strategy aligns closely with that of the flow-based strategy.
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each containing a maximum of v nodes. It is evident that there exists
Π u, vð Þ 2 Πðu, v+ 1Þ and Π u, vð Þ \ Π u + 1, vð Þ=+. Fig. 5a illustrates all
hyper-motifs contained in Πð2, 4Þ.

We quantified the normalized counts of all Πð2, 4Þ hyper-motifs
throughout the percolation process in the six real-world networks, as
shown in Fig. 5b. During the dry season, the ecological interactions
between Florida’s taxa become more locally fragile, and the inter-
species impacts are more pronounced, leading to a more diverse
exhibition of stable hyper-motifs in Net 6. In contrast, during the wet
season, when both flora and fauna thrive and food sources are more
abundant, the resilience of each taxon is markedly superior to that of
the dry season, resulting in a reduction in both the diversity and
quantity of stable hyper-motifs. Therefore, Nets 5 and 6 show the
starkest contrast. These findings indicate that distinct stable hyper-
motifs signify variations in the local vulnerability of FW networks to
disturbances, and different networks tend to develop various hyper-
motif structures.

However, a network’s global resilience can differ significantly
from its local resilience57. For instance, in a regional power grid, large-
scale outages may be rare due to strong global resilience; however,
localized perturbations can still trigger local cascading failures. To
evaluate local resilience,weemployed stable hyper-motifs, as depicted
in Fig. 5c (for details on themetric calculation, refer to Supplementary
Eq. (3) and Supplementary Fig. 28). Here, Rl denotes the network’s
local resilience, referring to the resilience of the network as repre-
sented by the residual structure. Our results align closely with
empirical observations. For example, while Nets 5 and 6 appear com-
parable in global resilience, a local analysis reveals that the food web
during the dry season is significantly more vulnerable than during the
rainy season. Similarly, in Nets 1 and 2, social or voting relationships
exhibit strong substitutability and diversity, contributing to stronger
local resilience, like Net 3. In contrast, Net 4, representing human
mobility patterns58, exhibit a high degree of spatiotemporal correla-
tion, resulting in severe congestion on certain routes. As a result, Net 4
is more vulnerable to local cascading failures, negatively impacting its
local resilience.

Discussion
This study begins with pairwise-interacting FW networks, disregarding
complex features of real-world FW networks59. such as diverse effi-
ciency among various species in foodweb networks, andmaps six real-
world FW networks to hypergraphs via CML-based cascading

dynamics.We first analyzed the hypergraphs’ cardinality distributions.
The results demonstrate that the cardinality distributions generally
follow Lévy distributions, but transition to power-law distributions
whenBlack Swannodes are excluded. Existing research predominantly
focuses on power-law distributions or scale-free properties in net-
works, with limited analysis of Black Swan nodes. In reality, these Black
Swan nodes critically determine the dynamical resilience of FW
networks60. Subsequently, we compared critical percolation thresh-
olds for Nets 1–6 without enhancement versus four enhancement
strategies using percolation theory. The CML-based strategy effec-
tively identifies critical nodes in networks, thereby enhancing the
dynamical resilience of FW networks. Following percolation transi-
tions, the cascading failures exhibit discrete characteristics. By quan-
tifying hyper-motif occurrence levels,we achieveddeeper insights into
FWnetworks’ cascading dynamics, ultimately enabling comprehensive
analysis of dynamical resilience61.

For future research, we believe that our work can be expanded to
analyze the dynamic properties of evolving FW networks over time,
exploring the formation rules of community phenomena in the early
stages of FWevolution, summarizing the formation rules of high-order
interactions in the FW network, building a multidimensional resilience
assessment framework for FW networks, investigating the nonlinear
phenomena within other types of networks62–66, thereby providing
theoretical foundation for the design and resilience enhancement of
FW networks existing in various fields in the real world67–70.

Methods
Data processing
We have selected six representative FW networks from the real world.
Each network includes data on the node set, along with detailed
information on the direction and size of each flow. For Nets 1–3, 5 and
6,which lack tangible distancemetrics,wedefine thedistance between
nodes through a generalized distance, as presented in Eq. (8).

dij = 1�
f ij

maxi, j2N, i≠jf f ijg
ð8Þ

where dij represents the distance between node i and j, f ij represents
the flow between node i and j, and N is the set of nodes. The rationale
behind defining the generalized distance in this manner is that flow
typically favors traversing shorter paths, thus edges with substantial
flow have correspondingly shorter distances. The application of this

Fig. 5 | Employing hyper-motifs to analyze the local resilience of the FW net-
work. Owing to the heterogeneous scales of networks, a direct comparison of the
frequency of hyper-motifs across distinct networks is devoid of significance. This
stems from the observation that, purely in terms of quantity, networks of a larger
scale tend to present an increased count of hyper-motifs. Consequently, we
undertake a comparative analysis post-normalization of the hyper-motif

occurrences across networks of varying scales, for which the specificmethodology
is delineated in the “Methods” section. a All kinds of hyper-motifs in Πð2, 4Þ. b The
normalized occurrence frequency of hyper-motifs. c A higher value indicates
poorer local resilience, whereas networks characterized by high substitutability
tend to demonstrate greater local resilience.
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generalized distance is extremely versatile, able to depict flow net-
works in the real world that do not have actual distances, such as
economic trade networks, Internet networks, shopping networks, etc.
For Net 4, we employ the distances between nodes as they exist in the
real world.

Given that the flow from a node to itself does not interact with
other nodes in practical scenarios, we set f ii =0, 8i 2 N. Meanwhile, in
terms of the generalized distance between nodes, to prevent a portion
of the flow frombeing allocated to the node itself, we set dii = 1,8i 2 N.
Ultimately, weobtain the processed flowmatrix and distancematrix as
shown below.

Flowmatrix : MF = ðf ijÞn×n
, f ii =0, i, j 2 N

Distancematrix : MD = ðdijÞn×n
,dii = 1, i, j 2 N

Hypergraph construct method
This section elaborates on the specific methods and steps required to
construct the hypergraph based on the given FW network. The
robustness validation of the algorithm is detailed in Supplementary
Figs. 29–31, and the detailed steps are as shown in Table 1.

Hypergraph percolation model
In the proposed hypergraph percolationmodel within this study, each
hyperedge represents the simulation result corresponding to a specific
node’s cascading failure after it has suffered adisturbance. This implies
that subjecting a node within the network to a certain degree of per-
turbation, based on the CML model, will result in the propagation of
disturbances that lead to cascading faults, furthering the spread of
perturbations and flow. This establishes complex interactions between
nodes, ultimately causing an area of cascading degradation.We regard
these complex interactions as higher-order interactions, which are
represented by hyperedges. Upon the disruption of a certain vertex in
the hypergraph in accordance with various percolation rules, the
corresponding hyperedge in the network is correspondingly removed.
In practice, this can be construed as fortifying the resilience of the
vertex in the FW network, such that its destruction would not trigger
cascading failures affecting other nodes, thereby ensuring the func-
tionality of the network. Hence, for a given threshold q, when the state
of the node wi is greater than q, high-order interactions are present
and the hyperedge is retained; otherwise, the hyperedge is removed,

as shown in Eq. (9).

hi =
hi, wi >q

0, . . . , 0½ �, wi ≤q

�
ð9Þ

Herein, hi denotes the ith row in the hypergraph matrix, and wi

signifies the state of the ith node (see Supplementary Fig. 1 for details).
Consequently, for a specified q, a hypergraph delineating the influence
of cascading failures can be constructed.

In the study, we adopted four different percolation rules, namely,
those based on maximal flow, maximal degree, minimal flow, and
minimal degree. The differences among these four percolation rules
mainly lie in the sequence of node disruption: priority is given to dis-
rupting nodes with the highest flow, nodes with the highest degree,
nodes with the lowest flow, and nodes with the lowest degree,
respectively. The formula for calculating the node status is shown in
Eq. (10), where σi represents node i state quantity, such as flow or
degree.

wi =
1� σi

maxfσig

max 1� σi
maxfσig

n o ð10Þ

Black Swan nodes identification
The essential distinction between Black Swan nodes and ordinary
nodes lies in the differing number of nodes affected by cascading
failures they induce; while the failure of an ordinary node can lead to
localized, small-scale cascading faults, the failure of a Black Swan node
can triggerwidespread cascading faults throughout thenetwork. Thus,
the primary criterion for differentiating the two is the extent of the
cascading failures caused by perturbations R to the nodes, denoted as
CFRi , where i 2 N.

In any given FW networkGFW = ðN, EÞ, under perturbation R, there
exists a set of cascade failure ranges fCFR1 , CFR2 , . . . , CFRjNjg for different
nodes. To identify Black Swan nodes in networks, we adopt cardinality
as a node feature and apply threshold-based K-means clustering to
classify nodes into two sets (P and �P). The implementation involves
two steps: (1) Determine whether hyperedges exceeding the given
threshold size Nj jT exist in the network, where T 2 0, 1½ � (see Supple-
mentary Fig. 8 for the sensitivity analysis results of T). If none are
found, noBlack Swannodes exist, and P =N, �P =+. If such hyperedges
exist, (2) Initialize cluster centers using the minimum and maximum

Table 1 | Hypergraph construction algorithm pseudo-code

Algorithm: Hypergraph construction

Input: Disturbance value R; Coupling coefficients μ1 and μ2; Number of the nearest neighbor nodes K; Flow matrix MF; Distance matrixMD; Node set 1, 2, . . . ,nf g.
Output: Hypergraph matrix H.

1 Initialize the hypergraph. Establish the empty hypergraph matrix H= 0f gn×n, where rows represent hyperedges and columns represent nodes.

2 For node i in node set 1, 2, . . . ,nf g:
3 Initialize node states. Using Eq. (5) in the main text to calculate each node state at time t=0. Denote as x1 0ð Þ, x2 0ð Þ, . . . , xnð0Þ

� �
.

4 Apply the disturbance. Add R to the state value of node i, xi 0ð Þ+ =R.

5 While 9xi tð Þ>1, 8i 2 f1, 2, . . . ,ng:
6 Disturbance propagation. According Eq. (1) in the main text, update each node state set in the next time step.

7 Flow propagation. According Eqs. (6) and (7) in the main text, the flow of all xi t+ 1ð Þ=2ð0, 1� nodes are allocated to a maximum of K neighbor nodes whose
state values are in the interval ð0, 1�.

8 Node failure. For any node i, if xi t+ 1ð Þ>1, we set xi t+ 1ð Þ=0, fij = fji =0, dij =dji = 1, 8j 2 1, 2, . . . ,nf g, t+ = 1.

9 End

10 Update hypergraph matrix H. If node i causes the failure of node j (xjðtÞ=0), then set the value in the ith row and jth column of H to 1.

11 End
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hyperedge sizes, then applyK-means to identify Black Swannodes. �P is
the set of Black Swan nodes and P =N � �P.

Stable hyper-motifs normalization
In the process of percolation, upon the occurrence of a phase transi-
tion, the network collapses into several smaller components. At this
juncture, the internal connectivity of these components relies on
short-range hyperedges, which effectively represent localized cas-
cading failures. This means that after a subset of nodes in the network
has been appropriately reinforced, extensive failure events within the
network are effectively thwarted. However, there still exist stable,
interdependent cascading failure processes within the network. Con-
sequently, to denote the persistent interdependencies and interac-
tions of cascading faults post phase transition within the network, we
employ the term hyper-motifs. These hyper-motifs are referred to as
stable hyper-motifs.

The normalization of hyper-motifs refers to the process of
adjusting the counts of hyper-motifs found across networks of various
scales, thereby enabling a comparative analysis across different sys-
tems. We normalize the stable hyper-motifs in each network using
Eq. (11). In this context, H denotes the set of hyperedges, the term πi

signifies the frequency of occurrence for the type i of hyper-motif,
while li indicates the level of presence for the type i of hyper-motif.

li =πi=
jHj
u

� �
ð11Þ

Motter–Lai model
In the Motter–Lai model, nodes are categorized into two states:
operational and failed. Each node is characterized by the flow passing
through it and its inherent capacity. During the simulation, if a node
fails, the flow that it was carrying is transferred to its neighboring
nodes, which may consequently undergo abnormal states (when the
flow exceeds their capacity, the capacity is α times of the initial flow),
potentially triggering a cascade of failures. The simulation is con-
sidered complete when no new failures occur, and the extent of a
node’s failure that leads to subsequent node failures is regarded as the
cascade failure range.

SIR model
In the SIR model, we categorize nodes into three distinct states: sus-
ceptible (S), infectious (I), and recovered (R). These states undergo
unidirectional transitions only. When susceptible individuals come
into contact with infectious ones, there is a certain probability, θ1, that
they will become infectious. Likewise, infectious individuals have a
probability, θ2, of transitioning to the recovered state.

In the simulation process, the network topology is initially intact,
and all nodes are in the susceptible state, denoted as S. A single node is
then selected to transition to the infected state, I, marking the initia-
tion of the iterative process. During each iteration, all susceptible
nodes connected to an infected node transition to the infected state
with a probability of θ1, while infected nodes have a probability of θ2 to
recover. The simulation is set to run for 100 iterations and is repeated
10 times. The extent of the infection caused by the initial node, which
includes nodes in the states I and R, is considered the scope of the
cascading failure.

Data availability
The raw data for the European email social network (http://snap.
stanford.edu/data/email-Eu-core.html), the United States congres-
sional voting network (http://konect.cc/networks/convote/), the eco-
nomic trade network (https://networkrepository.com/econ-mbeacxc.
php), and the United States foodweb carbon flownetworks during the
wet (http://konect.cc/networks/foodweb-baywet/) and dry (http://

konect.cc/networks/foodweb-baydry/) seasons are derived from pub-
licly available datasets. The original data for the transportation net-
work is available in the following GitHub repository: https://github.
com/TLZhu1/Hyper-motifs. All intermediate data can be computed by
the program.

Code availability
The code developed for this study is available at https://github.com/
TLZhu1/Hyper-motifs.
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