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Serological proteomic characterization for
monitoring liver fibrosis regression in
chronic hepatitis B patients on treatment

Mengyang Zhang1,2,3,7, Shuyan Chen1,2,3,7, Xiaoning Wu1,2,3, Jialing Zhou1,2,3,
BingqiongWang1,2,3, TongtongMeng1,2,3, RongxuanHua1,2,3, Yameng Sun1,2,3,4 ,
Hong You 1,2,3 & Wei Chen2,3,4,5,6

Longitudinal serological proteomic dynamics during antiviral therapy (AVT) in
chronic hepatitis B (CHB) patients with liver fibrosis remain poorly char-
acterized. Here, using four-dimensional data-independent acquisition mass
spectrometry (4D-DIA-MS), paired liver biopsy (LBx)-proven serum samples
from 130CHB liver fibrosis patients undergoing short-term (78weeks) or long-
term (260 weeks) AVT are analyzed. Our findings show that prolonged AVT
drives progressive serological proteomic remodeling in fibrosis regressors,
characterized by a temporal inversion in the activation of the complement and
coagulation cascades. Using machine learning algorithms trained on the 4D-
DIA-MS discovery cohort, we develop a logistic regression model incorporat-
ing a seven-protein panel for short-term AVT and a three-protein panel for
long-term AVT, respectively, both of which demonstrate moderate dis-
criminatory capabilities for fibrosis regression. Subsequent external validation
in an independent cohort (n = 54) with serial LBx assessments at baseline,
78 weeks, and 260 weeks, where serological proteins are quantified using
parallel reaction monitoring mass spectrometry (PRM-MS), further confirms
their generalizability. Furthermore, our longitudinal trajectory analysis high-
lights that the long-term proteomic signature exhibits greater stability com-
pared to the short-term panel. This study proposes and validates duration-
adapted serological proteomic panels as non-invasive tools for monitoring
histological fibrosis regression in on-treatment CHB patients.

Chronic hepatitis B (CHB) infection remains a principal driver of
liver fibrosis burden worldwide1. While liver fibrosis regression
has been well-documented in CHB patients following successful
suppression of hepatitis B virus (HBV), only 40%-60% of patients
achieve regression by antiviral therapy (AVT)2,3. Recent studies

indicate that histological non-regression of fibrosis is positively
associated with increased risks of hepatocellular carcinoma and
liver-related mortality4,5, which can be distressing for patients
after prolonged treatment when their fibrosis fails to regress or
even worsens. This clinical reality underscores the critical need
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for longitudinal monitoring strategies to assess liver fibrosis
regression during AVT.

Although liver biopsy (LBx) remains the gold standard for asses-
sing the histological status of HBV-related liver fibrosis, its inherent
drawbacks (e.g., sampling variability and procedural risks) limit its use
for serial monitoring of liver fibrosis6. In recent years, transient elas-
tography (TE), a non-invasive test (NIT), has been developed and
shown to be effective for evaluating liver fibrosis in treatment-naïve
patients due to its reliability and reproducibility7. However, liver stiff-
nessmeasured by TE is largely influenced by inflammation rather than
fibrotic remodeling during AVT8,9, indicating that TE is not suitable for
monitoring liver fibrosis regression in CHB patients on AVT. Similarly,
established serological indices and emerging biomarkers, such as
platelet counts, platelet-based models (aspartate aminotransferase to
platelet ratio index [APRI] and fibrosis-4 index [FIB4]), Wisteria flor-
ibunda agglutinin-positiveMac-2-binding protein (M2BPGi), Chitinase-
3-like protein 1 (CHI3L1), and Golgi protein 73 (GP73), show good
diagnostic potential for treatment-naïve liver fibrosis10–13. However,
they have proven inadequate or nonspecific for accurately evaluating
liver fibrosis regression13.

Previous studies have revealed that baseline heterogeneity in host
and viral factors—such as age, gender, alcohol consumption, comor-
bidities, and the natural course of HBV—significantly affects antiviral
outcomes, including virologic suppression, biochemical remission,
and fibrosis regression14. This variability complicates the effectiveness
of routine NITs and the identification of novel biomarkers for mon-
itoring liver fibrosis regression during AVT. Our prior clinical studies
also demonstrated that the serological biochemical indices related to
HBV infection and liver inflammation significantly improved following
a period of AVT, regardless of changes in histological fibrosis2,4,5,15.
Therefore, we posit that the changes in the serological proteomic
profile may be also highly sensitive to the recovery of virology and
inflammation, posing a critical barrier to the discovery of serological
proteomic biomarkers for liver fibrosis regression in CHB patients.

To our knowledge, the dynamic serological proteomic profiling of
CHB liver fibrosis patients during AVT remains largely unexplored, and
there are currently no effective NITs that accurately reflect fibrosis
regression in on-treatment CHB patients. However, recent advance-
ments in omics methodologies and the capabilities of machine learn-
ing (ML) enable hypothesis-free screening of even thousands of
potential biomarker candidates for disease diagnosis and treatment
efficiency evaluation16. Consequently, this study employed four-
dimensional data-independent acquisition mass spectrometry (4D-
DIA-MS) to characterize the comprehensive serological proteomic
dynamics during AVT in CHB patients with liver fibrosis, using paired
LBx-proven serum samples (n = 130). Additionally,multipleMLmodels
were developed to identify potential serological biomarkers that can
distinguish between regressive and non-regressive CHB liver fibrosis
patients following AVT. The performance of these models was vali-
dated internally through bootstrap resampling and calibration curves,
as well as externally in an independent cohort (n = 54) where ser-
ological proteins were quantified using parallel reaction monitoring
mass spectrometry (PRM-MS).

Results
Study design and patient characteristics
The study design workflow is illustrated in Fig. 1. We analyzed paired
serum samples from130CHBpatients with liver fibrosis receiving AVT,
comprising two treatment duration groups: short-term (78 weeks,
n = 94) and long-term (260 weeks, n = 36). Paired pre-/post-treatment
LBx were obtained for all short-term patients and 15 long-term
patients; the remaining 21 long-term patients with baseline clinical
diagnosis of compensated cirrhosis provided only post-treatment LBx.
Fibrosis regression occurred in 59.6% (56/94) of short-term and 69.4%
(25/36) of long-term treated patients, as determined by standardized

histological criteria (see “Methods”). Longitudinal serological pro-
teomic profiling was performed using 4D-DIA-MS (discovery cohort),
with data randomly divided into training (60%) and testing (40%) sets
through stratified sampling on the regression status for ML develop-
ment. We then employed bootstrap resampling (1000 iterations) and
calibration curve analysis for internal validation, complemented by
external validation in an independent PRM-MS cohort (n = 54) with
serial LBx at baseline (Ishak score ≥ 2), 78 weeks, and 260 weeks. This
validation cohort demonstrated fibrosis regression rates of 59.3% (32/
54) and 77.8% (42/54) following short-term and long-term treatment,
respectively. Furthermore, the model performance was assessed in
subgroups of patients from both the 4D-DIA-MS discovery cohort
(training and testing sets) and the PRM-MS validation cohort, specifi-
cally focusing on three clinically relevant populations: patients with
significant baseline fibrosis (Ishak ≥ 3), patients without steatosis at
baseline (non-steatosis), and patients with substantial histological
improvement versus non-regression following AVT (designated as
ΔIshak ≥ 1). Finally, model performance was compared against routine
NITs, including liver stiffness measurement (LSM), APRI, and FIB4,
across both the 4D-DIA-MS discovery and PRM-MS validation cohorts.
Thedemographic andclinical characteristics of the enrolledpatients in
the 4D-DIA-MS discovery cohort (training and testing sets) and PRM-
MS validation cohort are summarized in Table 1. Detailed subgroup
sample sizes are provided in Supplementary Table 1.

Comparable serological proteomic kinetics in fibrosis regres-
sors versus non-regressors during AVT
Our 4D-DIA-MS analysis quantified a total of 816 serological proteins,
which underwent rigorous quality filtering (Supplementary Fig. 1). This
process involved the exclusion of immunoglobulins and their frac-
tions, proteins with more than 50% missing values across all samples.
As a result, approximately 36.5% of the initial identifications were
removed, yielding 518 high-confidence proteins with median coeffi-
cients of variation of around 10% across baseline and post-treatment
time points (Supplementary Fig. 2). Treatment-induced serological
proteomic changes were quantified as post-/pre-treatment (post/pre)
ratios for subsequent analyses. Based on the post/pre ratios of 518
robust proteins, hierarchical clustering (HCL) with average linkage and
the Euclidean distance metric revealed that the variation trends in the
serological proteome were generally comparable between fibrosis
regressors and non-regressors in both short-term and long-term AVT
groups (Fig. 2a). Principal component analysis (PCA) of the post/pre
ratios confirmed this observation, showing no systematic separation
between regression status groups or treatment duration cohorts
(Fig. 2b). To further assess inter-patient proteomic divergence, we
implemented the scale-invariant “1-r” similarity metric. However, the
integration of “1-r” values into HCL algorithm failed to distinguish
fibrosis regression status in either treatment duration group (Fig. 2c).
These complementary analytical approaches demonstrate funda-
mental similarities in AVT-induced proteomic dynamics between
patients with differing fibrosis outcomes. This conserved kinetic sig-
nature across regression status groups underscores the challenges of
conventional hypothesis-driven approaches for identifying serological
biomarkers of histological fibrosis improvement during AVT.

ProlongedAVT induces progressive serological proteomic shifts
in fibrosis regressors and non-regressors
Following short-term AVT, fibrosis regressors exhibited 25 uniquely
decreased and 9 increased proteins, while non-regressors showed 38
exclusively decreased and 17 increased proteins, with 50 proteins
commonly downregulated and 11 upregulated in both groups (Fig. 3a,
b and Supplementary Table 2). However, post/pre ratios of these dif-
ferentially abundant proteins (DAPs) demonstrated limited dis-
criminatory capacity, with all area under the curve (AUC) values < 0.70
for distinguishing regression status (Fig. 3a, b and Supplementary
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Table 2). In contrast, fibrosis regressors following long-term AVT dis-
played pronounced serological proteomic remodeling, characterized
by 90 uniquely decreased and 33 increased proteins, whereas non-
regressors showed minimal specific changes (13 decreased and 14
increased proteins), alongside 22 commonly downregulated and 10
upregulated proteins (Fig. 3c, d and Supplementary Table 3). Notably,
33 DAPs in regressors following long-term AVT achieved clinically
relevant discriminatory power (AUC>0.70) using post/pre ratios,
highlighting their potential as biomarkers for fibrosis regression
(Fig. 3c, d and Supplementary Table 3). Comparatively, the extent of
serological proteomic changes was more pronounced in fibrosis
regressors than non-regressors after long-term AVT.

Subsequentially, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of DAPs stratified by fibrosis
regression status and AVT duration revealed temporal pathway

divergence. Specifically, decreased DAPs—whether regressor-specific,
shared, or non-regressor-specific—triggered by short-term AVT were
predominantly enriched in cell adhesion molecules; in contrast,
increased DAPs that were specific to non-regressors or shared by both
groups were significantly associated with complement-coagulation
cascades (Fig. 3e). Following long-term AVT, decreased DAPs (regres-
sor-specific, shared, or non-regressor-specific) converged on fibro-
genesis pathways, including cell adhesion molecules and extracellular
matrix (ECM)-receptor interactions, while increased DAPs specific to
regressors or shared by both groups sustained complement and coa-
gulation cascades activation (Fig. 3f). Notably, suppression of fibro-
genesis persisted across both groups regardless of therapy duration;
however, the complement-coagulation responses exhibited a tem-
poral inversion: non-regressors dominated after short-term AVT,
whereas regressors prevailed after long-term AVT (Fig. 3g). This

Fig. 1 | Study design framework. Paired serological proteomes from CHB liver
fibrosis patients undergoing either short-term or long-term AVT were profiled
using 4D-DIA-MS technology. The resulting 4D-DIA-MSdatawere randomlydivided
into training and testing sets. ML models, incorporating five feature selection
methods and four ML algorithms, were developed using the training set and sub-
sequently validated in the testing set to identify optimal panels for differentiating
fibrosis regression status during AVT. The performance of the prioritized models
was internally validated through bootstrap resampling and calibration curves, and
externally assessed in an independent cohort where serological proteins were
quantified using PRM-MS. Additionally, the models were compared with routine

NITs and evaluated in clinically relevant subgroups of patients. Abbreviations: 4D-
DIA-MS four-dimensional data-independent acquisition mass spectrometry, APRI
aspartate aminotransferase to platelet ratio index, ALT alanine aminotransferase;
AST aspartate aminotransferase, AVT antiviral therapy, FIB4 fibrosis-4 index, LSM
liver stiffnessmeasurement,MLmachine learning, NIT non-invasive test, PLSpartial
least squares, PLT platelet, PIR predominantly progressive, indeterminate, pre-
dominantly regressive, PRM-MS parallel reaction monitoring mass spectrometry,
SVM support vector machine. Created in BioRender. Chen, W. (2025) https://
BioRender.com/84noo7b.
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Table 1 | Clinical characteristics of 4D-DIA-MS discovery and PRM-MS validation cohorts

4D-DIA-MS: Short-term PRM-MS: Short-
term (n = 54)

p 4D-DIA-MS: Long-term PRM-MS: Long-
term (n = 54)

p

Train (n = 57) Test (n = 37) Train (n = 22) Test (n = 14)

Demographics

Age, years 32 (27, 41) 40 (29, 46) 37 (28, 42) H = 3.816
p =0.148

44 (37, 51) 41 (37, 49) 37 (28, 42) H = 12.548
p =0.002

Male, n (%) 45 (78.9) 25 (67.6) 42 (77.8) χ² = 1.783
p =0.410

16 (72.7) 12 (85.7) 42 (77.8) χ² = 0.835
p =0.659

Laboratory tests

ALT, U/L

Baseline 89.5
(42.0, 140.6)

84.0
(35.0, 145.0)

72.7 (49.5, 110.0) H =0.282
p =0.869

51.5
(36.0, 63.0)

52.7
(34.0, 79.7)

72.7 (49.5, 110.0) H = 5.926
p =0.052

Week 78/260 21.7 (15.0, 31.0) 25.0
(16.8, 32.6)

26.5 (20.0, 38.7) H = 2.988
p =0.225

24.0
(18.0, 32.0)

26.5
(21.9, 40.0)

21.7 (16.5, 28.0) H = 90.000
p =0.132

AST, U/L

Baseline 53.3
(33.4, 80.0)

51.0
(37.2, 98.4)

53.5 (41.2, 82.0) H =0.211
p = 0.900

42.2
(35.0, 53.0)

43.4
(30.0, 83.0)

53.5 (41.2, 82.0) H = 3.390
p =0.184

Week 78/260 21.7 (19.0, 27.2) 25.5
(20.0, 30.6)

26.7 (21.0, 31.0) H = 4.346
p =0.114

23.1
(19.0, 26.9)

26.0
(22.5, 28.0)

20.2 (18.0, 25.0) H =6.614
p =0.037

Total bilirubin, umol/L

Baseline 13.8
(10.8, 20.0)

14.4 (12.1, 19.5) 16.2 (11.9, 19.1) H = 0.517
p = 0.772

17.2
(12.9, 20.5)

13.9 (10.9, 21.0) 16.2 (11.9, 19.1) H = 4.044
p =0.132

Week 78/260 14.3 (11.2, 16.7) 12.6 (9.0, 17.7) 12.4 (9.7, 15.2) H = 3.017
p =0.221

18.0 (13.2, 21.7) 14.8 (11.6, 19.4) 14.0 (9.9, 17.5) H = 3.877
p =0.144

Albumin, g/L

Baseline 43.0
(40.0, 46.0)

42.6
(39.0, 47.4)

42.6 (40.0, 45.3) H =0.422
p =0.810

43.6
(40.5, 46.5)

42.5
(39.2, 45.5)

42.6 (40.0, 45.3) H =0.685
p =0.710

Week 78/260 45.4
(43.0, 47.5)

45.5
(43.6, 46.9)

45.4 (43.0, 48.0) H =0.023
p =0.988

47.3
(43.5, 48.6)

44.2
(43.9, 50.0)

46.3 (43.7, 48.3) H =0.580
p =0.748

Platelet, 10^9/L

Baseline 162 (132, 223) 137 (111, 192) 167 (121, 189) H = 1.963
p =0.375

128.5 (94, 147) 127 (111, 151.5) 166.5 (121, 189) H =9.643
p =0.008

Week 78/260 161 (121, 202) 142.5
(115, 175.5)

148 (119, 199) H = 1.854
p =0.396

146 (126, 193) 164 (103, 255) 195 (171, 223) H = 11.844
p =0.003

International normalized ratio

Baseline 1.06 (1.00, 1.14) 1.09 (1.00, 1.14) 1.05 (1.00, 1.13) H = 1.562
p =0.458

1.12 (1.05, 1.20) 1.16 (1.03, 1.21) 1.05 (1.00, 1.13) H =6.853
p =0.033

Week 78/260 1.00
(0.96, 1.06)

1.00
(0.96, 1.03)

1.00 (0.93, 1.04) H =0.319
p =0.852

1.01 (0.96, 1.11) 0.98
(0.95, 1.02)

1.01 (0.96, 1.04) H = 2.041
p = 0.360

HBsAg, 103IU/mL

Baseline 4.8 (1.6, 9.6) 2.8 (0.8, 5.0) 4.0 (1.9, 13.4) H = 4.312
p =0.116

1.7 (0.8, 4.7) 2.8 (2.0, 5.0) 4.0 (1.9, 13.4) H = 7.955
p =0.019

HBeAg, n (%)

Baseline 36 (67.9) 26 (72.2) 43 (82.7) χ² = 3.139
p =0.208

10 (45.5) 6 (50.0) 43 (82.7) χ² = 12.194
p =0.002

HBV DNA, Log IU/mL

Baseline 6.6 (4.8, 7.6) 6.3 (4.7, 7.2) 6.7 (5.4, 7.5) H =0.834
p =0.659

4.7 (3.2, 6.0) 6.1 (4.3, 6.9) 6.7 (5.4, 7.5) H = 16.447
p =0.000

Week 78/260 0.0 (0.0, 1.4) 0.0 (0.0, 0.0) 0 (0, 1.4) H = 1.814
p =0.404

0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) H =0.660
p =0.719

LSM, kPa

Baseline 9.9 (7.2, 14.4) 10.7 (8.5, 15.2) 12.6 (8.6, 18.6) H = 4.373
p =0.112

13.5
(10.7, 19.6)

14.0 (8.7, 20.4) 12.6 (8.6, 18.6) H =0.279
p =0.870

Week 78/260 6.1 (5.3, 9.1) 6.8 (6.1, 8.2) 6.9 (5.6, 9.1) H = 1.409
p =0.494

8.5 (6.7, 10.2) 7.4 (6.1, 11.2) 6.0 (4.6, 8.3) H = 13.563
p =0.001

APRI

Baseline 0.8 (0.5, 1.4) 0.9 (0.6, 1.9) 0.9 (0.6, 1.4) H = 1.198
p =0.549

0.9 (0.7, 1.4) 0.9 (0.5, 1.6) 0.9 (0.6, 1.4) H =0.061
p = 0.970

Week 78/260 0.3 (0.2, 0.5) 0.4 (0.3, 0.6) 0.5 (0.3, 0.6) H = 4.054
p =0.132

0.4 (0.3, 0.6) 0.4 (0.3, 0.5) 0.3 (0.2, 0.3) H = 13.315
p =0.001

FIB4

Baseline 1.2 (0.9, 1.6) 1.8 (1.0, 3.1) 1.5 (1, 2.2) H = 4.428
p =0.109

2.3 (1.6, 3.2) 2.3 (1.7, 2.8) 1.5 (1, 2.2) H =9.089
p =0.011
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divergence underscores the capacity of sustained AVT to drive pro-
gressive serological proteomic remodeling in fibrosis regressors, sur-
passing the changes observed in non-regressors.

Serological proteomic panels for monitoring liver fibrosis
regression in CHB patients following short-term AVT
Based on post/pre ratios of the specific DAPs identified in fibrosis
regressors and non-regressors in response to short-term AVT from the
training cohort, we employed five feature selection methodologies:
univariate logistic regression, backward stepwise regression, least
absolute shrinkage and selection operator (Lasso) regression, partial
least squares (PLS) regression, and support vectormachine (SVM). The
selected protein panels were subsequently evaluated through four ML
algorithms (logistic regression, PLS regression, SVM, and random
forest) using ten iterations of fivefold cross-validation. Performance
was independently validated in the corresponding testing cohort. As
shown in Fig. 4a, the logistic regression model incorporating DAPs
selected through univariate feature selection demonstrated optimal
performance, achieving training and testing AUCs of 0.85 (95% con-
fidence interval [CI]: 0.74–0.95) and 0.66 (95% CI: 0.47–0.84),
respectively, for distinguishing fibrosis regression status. The final
panel comprised sevenproteins (Supplementary Fig. 3a, b): cholesteryl
ester transfer protein (CETP), contactin 1 (CNTN1), paraoxonase 3
(PON3), isocitrate dehydrogenase 1 (IDH1), prosaposin (PSAP), serpin
family A member 5 (SERPINA5), and complement factor H related
4 (CFHR4).

To address potential overfitting, we first performed internal
validation using 1,000 bootstrap resamples in the training set
(Supplementary Fig. 4a, b). The optimism-corrected AUC remained
stable at 0.85 (medium), with calibration analysis showing strong
agreement between predicted and observed outcomes (Brier score =
0.154). This performance substantially exceeded that of conventional
NITs, including the post/pre ratios of LSM (AUC = 0.64, 95% CI:
0.56–0.72; Brier score = 0.231), APRI (AUC = 0.56, 95% CI: 0.50–0.61;
Brier score = 0.238), and FIB4 (AUC = 0.56, 95% CI: 0.50–0.62; Brier
score = 0.241) in predicting fibrosis regression. Then, external vali-
dation in an independent PRM-MS cohort confirmed the general-
izability of the model, yielding an AUC of 0.79 (95% CI: 0.66-0.91) for
fibrosis regression status discrimination (Fig. 4b). Moreover, sub-
group analyses demonstrated consistent performance across

clinically relevant populations: baseline Ishak ≥ 3, non-steatosis
patients at baseline, and those with ΔIshak ≥ 1 post-AVT in both the
4D-DIA-MS discovery cohort (training set, testing set, and the total of
both sets) and the PRM-MS validation cohort (Fig. 4c). Collectively,
this optimized serological proteomic panel demonstrates robust
performance across multiple validation frameworks and clinical
subgroups, establishing its potential as a non-invasive biomarker for
monitoring short-term AVT-induced fibrosis regression in CHB
patients.

Serological proteomic panels for monitoring liver fibrosis
regression in CHB patients after long-term AVT
To identify serological biomarkers of fibrosis regression following
long-term AVT, we extended our analytical pipeline to evaluate post/
pre ratios of specific DAPs in fibrosis regressors and non-regressors
undergoing prolonged AVT. Using five feature selection methods and
four ML algorithms with ten iterations of fivefold cross-validation,
univariate logistic regression identified a minimal serological panel
comprising three proteins: serpin family A member 7 (SERPINA7),
CD163molecule (CD163), andCFHR4 (Supplementary Fig. 3c, d).While
the random forest model incorporating this three-protein panel
showed peak training performance (AUC =0.93, 95% CI: 0.84–1.00)
and testing performance (AUC =0.70, 95% CI: 0.40–1.00), it exhibited
limited generalizability in the external PRM-MS validation cohort
(AUC=0.55, 95% CI: 0.47–0.63) (Fig. 5a, b). In contrast, the logistic
regression model incorporating the same three-protein panel
demonstrated consistent discriminative capacity across the training
set (AUC =0.87, 95% CI: 0.71–1.00), testing set (AUC=0.68, 95% CI:
0.28–1.00), and external PRM-MS validation cohort (AUC =0.75, 95%
CI 0.63–0.88) (Fig. 5a, b). Internal validation via 1,000 bootstrap
resamples confirmed the robustness of the model, with an optimism-
adjusted AUC of 0.87 and excellent calibration (Brier score = 0.138),
surpassing conventional NITs, including the post/pre ratios of LSM
(AUC=0.59, Brier = 0.214), APRI (AUC =0.72, Brier = 0.184), and FIB-4
(AUC=0.77, Brier = 0.195) (Supplementary Fig. 4c, d). Additionally,
subgroup analyses further validated stable performance among clini-
cally relevant strata (baseline Ishak ≥ 3, non-steatosis at baseline, and
ΔIshak ≥ 1 post-AVT) across both discovery and validation cohorts
(Fig. 5c), underscoring the stability and generalizability of the model
for diverse patient populations.

Table 1 (continued) | Clinical characteristics of 4D-DIA-MS discovery and PRM-MS validation cohorts

4D-DIA-MS: Short-term PRM-MS: Short-
term (n = 54)

p 4D-DIA-MS: Long-term PRM-MS: Long-
term (n = 54)

p

Train (n = 57) Test (n = 37) Train (n = 22) Test (n = 14)

Week 78/260 1.0 (0.8, 1.6) 1.4 (0.9, 2.4) 1.1 (0.8, 1.6) H = 5.693
p =0.058

1.3 (1.1, 2.3) 1.3 (1.0, 1.7) 0.9 (0.7, 1.3) H = 22.381
p =0.000

Histological assessments

Ishak fibrosis score, n (%)

Baseline χ² = 7.600
p =0.107

χ² = 46.499
p =0.000

0/1/2 17 (29.8) 10 (27.0) 7 (13.0) 2 (9.1) 3 (21.4) 7 (13.0)

3/4 34 (59.6) 20 (54.1) 33 (61.1) 4 (18.2) 2 (14.3) 33 (61.1)

5/6 6 (10.5) 7 (18.9) 14 (25.9) 4 (18.2) 0 (0.0) 14 (25.9)

Unknown 0 0 0 12 (54.5) 9 (64.3) 0

Week 78/260 χ² = 6.311
p = 0.177

χ² = 10.622
p =0.031

0/1/2 25 (43.9) 15 (40.5) 15 (27.8) 4 (18.2) 3 (21.4) 22 (40.7)

3/4 26 (45.6) 17 (45.9) 25 (46.3) 12 (54.5) 6 (42.9) 28 (51.9)

5/6 6 (10.5) 5 (13.5) 14 (25.9) 6 (27.3) 5 (35.7) 4 (0.07)

Note: Continuous variableswere expressed asmean ± standarddeviation ormedian (interquartile range),whereas categorical variableswere expressed as counts andpercentages. For comparisons
across three independentgroups, continuous variableswere analyzedusingone-wayANOVA (for normally distributeddatawith homogeneity of variance) or theKruskal-Wallis test (for non-normally
distributed data).Categorical variableswere comparedusing the chi-square test (whenexpected frequencies ≥ 5) or the Fisher-Freeman-Haltonexact test (whenexpected frequencies <5). Statistical
significance was defined as p < 0.05, with significant values highlighted in bold.
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Comparison of short-term and long-term serological proteomic
panels for monitoring liver fibrosis regression in on-treatment
CHB patients
A systematic comparison of short-term and long-term proteomic
panels revealed distinct temporal dynamics in their ability to monitor
AVT-inducedfibrosis regression. As illustrated in Supplementary Fig. 5,
the short-term panel lost its discriminative capacity for regression
status after prolonged AVT, while the long-term panel similarly failed
to stratify outcomes following short-term AVT (AUC <0.60 across
discovery and its subgroup cohorts). This finding confirms the
duration-dependent remodeling of serological proteomes between
fibrosis regressors and non-regressors. Subsequently, cross-panel
analysis identified CFHR4 as the sole conserved biomarker shared
between the long-term and short-term panels. CFHR4 demonstrated
moderate diagnostic performance for long-term AVT response across
the training set (AUC =0.81, 95% CI: 0.60–1.00), testing set (AUC =
0.70, 95%CI: 0.39–1.00), and combined discovery cohort (AUC =0.72,
95% CI: 0.53–0.90), but a poor diagnostic performance in the external

PRM-MS validation cohort (AUC=0.60, 95% CI: 0.43–0.77) (Supple-
mentary Fig. 6).

Additionally, longitudinal trajectory analysis revealed critical
divergences in protein behavior. Long-term panel proteins, including
SERPINA7, CD163, and CFHR4, exhibited consistent directional
changes across both the 4D-DIA-MS discovery and PRM-MS valida-
tion cohorts. Specifically, SERPINA7 (CD163 was not detected) was
downregulated, while CFHR4 was upregulated in regressors after
long-term AVT (Fig. 6a). Notably, these proteins displayed a trend of
inverse trajectories during pre-treatment fibrogenesis—SERPINA7
and CD163 (p < 0.05) were elevated, whereas CFHR4 was suppressed
in cases of progressive fibrosis (Supplementary Fig. 7)—establishing
their dual relevance as biomarkers for both fibrogenesis and
regression. In stark contrast, short-term panel proteins exhibited
cohort-specific variability during AVT (Supplementary Fig. 8), with
inconsistent inverse relationships to baseline fibrotic progression
(Supplementary Fig. 7). This result underscores superior biological
fidelity of long-term proteomic signatures, which consistently reflect

A
V

A
V

a c

b

Fig. 2 | Comparison of serological proteomic kinetics between fibrosis regres-
sors and non-regressors during AVT. a The heatmap illustrates the overall
dynamics of serological proteomes between fibrosis regressors and non-regressors
following AVT, represented by the Log2-transformed post/pre ratios of protein
abundance (n = 81 for R; n = 49 for NR; n = 94 for short-term; n = 36 for long-term).
Darker shades of grey indicate lower ratios, while darker shades of red indicate
higher ratios. Both the row post/pre ratios and the column patient samples were
clustered using HCL with average linkage and Euclidean distance metrics. b PCA
plots compare short-term versus long-term patients and fibrosis regressors versus
non-regressors, based on the Log2-transformed post/pre ratios of protein

abundance (n = 81 for R; n = 49 for NR; n = 94 for short-term; n = 36 for long-term).
Grouped samples are distinguished by distinct colors. c The heatmap depicts the
divergence of serological proteomic kinetics between any two patients undergoing
AVT, based on the scale-invariant measure “1-Pearson’s correlation coefficient (r)”.
Total patients: n = 94 for short-term; n = 36 for long-term; n = 81 for R; n = 49 forNR.
Short-term patients: n = 56 for R; n = 38 for NR. Long-term patients: n = 25 for R;
n = 11 forNR. Darker shades of grey signify lower divergence, while darker shades of
red signify higher divergence. Both row and column “1-r” values were clustered
using HCL with average linkage and Euclidean distancemetrics. Sample groups are
color-coded. Abbreviations: AVT antiviral therapy, NR non-regressor, R regressor.
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bidirectional fibrosis dynamics compared to the transient and
context-dependent fluctuations observed in short-term markers.
Furthermore, functional characterization through gene set enrich-
ment analysis (GSEA) linked the dynamics of the long-term panel
(CFHR4 upregulation and CD163 downregulation) to the regulation
of complement-coagulation cascades during sustained AVT (Fig. 6b).
Collectively, these findings establish the temporal specificity of
proteomic biomarkers in fibrosis monitoring and highlight the

clinical necessity for duration-adapted serological panels. Addition-
ally, long-term signatures offer robust mechanistic insights into AVT-
induced fibrosis regression, potentially through the modulation of
coagulation and complement pathways.

Discussion
The high prevalence of HBV-related liver fibrosis remains a significant
contributor to end-stage cirrhosis and hepatocellular carcinoma17,

a b

e f

g
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highlighting the growing need for reliable NITs to assess liver fibrosis.
Current diagnostic approaches prioritize NITs such as APRI, FIB-4, and
imaging elastography as first-line evaluations for antiviral-naïve
patients with HBV-related liver fibrosis18. However, these methods
present notable limitations, including indeterminate results and a
stronger correlation with liver inflammatory activity than with histo-
logical fibrotic remodeling8,19–21, which diminishes their utility in
reflecting LBx-verified fibrosis regression following AVT. Additionally,
emerging evidence suggests that baseline heterogeneity in host-
pathogen interactions may also influence AVT-induced liver fibrosis
regression14, posing challenges for both the implementation of

conventional NITs and the development of novel biomarkers to
monitor fibrotic resolution during treatment.

Our prior investigation established the LBx-dependent “Beijing
Classification” system as a validated framework for assessing post-AVT
fibrosis regression2,4,5. While histological evaluation remains the gold
standard, serum-based NITs may offer distinct advantages in clinical
practicality and patient acceptability22. Leveraging advancements in
high-throughput proteomics, we employed cutting-edge 4D-DIA-MS
to analyze paired serum samples fromCHBpatients with histologically
confirmed liver fibrosis undergoing AVT. The 4D-DIA-MS technique
combines data-independent acquisition with ion mobility separation,

Fig. 3 | Abundance and functional alterations of serological proteomes in
fibrosis regressors and non-regressors receiving AVT. a, c Venn diagrams illus-
trate the specifically or commonly upregulated (↑) and downregulated (↓) DAPs
between fibrosis regressors and non-regressors following short-term or long-term
AVT. DAPs post-AVT were identified using a two-sided paired Student’s t-test or a
two-sided Wilcoxon signed-rank test, in conjunction with a FC criterion. Proteins
meeting both criteria (p-value < 0.05 and FC > 1.2) were defined as statistically
significant. Short-term patients: n = 56 for R; n = 38 for NR. Long-term patients:
n = 25 for R; n = 11 for NR. b, d Heatmaps depict the average abundance of DAPs in
fibrosis regressors and non-regressors before and after AVT. The intensity of red
indicates higher abundance, while darker shades of grey represent lower abun-
dance. The AUC values, calculated based on the post/pre ratios of DAPs to differ-
entiate fibrosis regressors fromnon-regressors, are visualized (Short-termpatients:
n = 56 for R; n = 38 for NR. Long-term patients: n = 25 for R; n = 11 for NR). Darker

colors represent higher AUC values, and lighter colors correspond to lower AUC
values. DAPs with AUC values å 0.7 are marked. DAP groups are color-coded.
e, f Significantly enriched KEGG pathways of DAPs that were either unique to or
shared between R and NR after short-term or long-term AVT. DAVID employs a
modified Fisher’s exact test (one-sided) for KEGG pathway enrichment analysis,
with Benjamini-Hochberg correction for multiple testing. An adj.p value < 0.05
was considered statistically significant. g Venn diagrams show the representative
pathways that were specifically or commonly enriched (↓, decrease; ↑, increase)
between fibrosis regressors and non-regressors in the short-term or long-term
patient groups. Abbreviations: AUC area under the curve, DAP differentially
abundant protein, Post post-treatment, Pre pre-treatment, Short-R regressor
in the short-term group, Short-NR non-regressor in the short-term group,
Long-R regressor in the long-term group, Long-NR non-regressor in the long-
term group.

a

b c

Fig. 4 | ML models for discriminating liver fibrosis regressors following short-
term AVT. a AUC values (95% CI) of ML models developed using five feature
selection methods and four ML algorithms. These models were constructed from
the training set and validated in the testing set derived from short-term patients in
the 4D-DIA-MS discovery cohort. The AUC value (95% CI) of the optimal short-term
panel is highlighted in dark red. Training set: n = 34 for R; n = 23 for NR. Testing set:
n = 22 for R; n = 15 for NR. b Receiver operating characteristic (ROC) curve analysis
of the selected short-term panel and ML model for monitoring fibrosis regression
status in short-term patients from the PRM-MS validation cohort (IDH1 was not
detected, which was imputed using the mean abundance of IDH1 in the training
set). Data were presented as AUC values with 95% CI. PRM-MS validation cohort:

n = 32 for R; n = 22 for NR. c AUC values (95% CI) of the selected optimal short-term
panel and ML model across clinically relevant populations, including patients with
baseline Ishak scores ≥ 3, non-steatosis patients at baseline, and thosewithΔIshak≥
1 post-short-term AVT. These values are presented for both the 4D-DIA-MS dis-
covery cohort (including the training set, testing set, and the total of both sets) and
the PRM-MS validation cohort (IDH1 was not detected, which was imputed using
the mean abundance of IDH1 in the training set). Detailed subgroup sample sizes
are provided in Supplementary Table 1.Abbreviations: 4D-DIA-MS four-dimensional
data-independent acquisition mass spectrometry, AUC area under the curve, PLS
partial least squares, PRM-MSparallel reactionmonitoringmass spectrometry, SVM
support vector machine.
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enhancing the accuracy anddepth of proteomicquantification23. Using
this innovative platform, we identified over 500 reproducibly quanti-
fied proteins across longitudinal serum samples following rigorous
quality control. However, unsupervised clustering approaches were
unable to differentiate between fibrosis regressors and non-regressors
after AVT, based on the post/pre ratios or scale-invariant measures of
changes in these robust proteins. This convergence in serological
proteome dynamics likely reflects near-universal virological suppres-
sion (undetectable HBV DNA) and inflammatory normalization (ALT
normalization) across our cohort, even with short-term AVT. These
findings further support the notion that serological proteomic fluc-
tuations during AVT primarily reflect virological and inflammatory
normalization, presenting substantial challenges in identifying ser-
ological protein biomarkers of histological fibrosis improvement.

While serological proteomic trajectories showed broad simila-
rities between fibrosis regressors and non-regressors during AVT,
longitudinal analysis revealed that prolonged AVT drives divergent
proteomic remodeling in regressors, surpassing the changes observed
in non-regressors. This aligns with our recent clinical and tran-
scriptomic observations demonstrating the superior fibrosis regres-
sion rates following long-term versus short-term AVT (80.4% versus
65.2%, respectively)24, coupled with the enhanced restoration of ECM-
related gene signatures specifically in regressors during prolonged
therapy25. These temporal patterns suggest that the increased detec-
tion of reduced DAPs in regressors after long-term AVT likely reflects
cumulative histological improvements achieved through sustained

AVT. Intriguingly, proteomic profiling uncovered treatment-duration-
dependent shifts in pathway activation. Although fibrogenesis sup-
pression persisted in both groups irrespective of AVT duration, short-
term AVT preferentially amplified complement-coagulation cascades
in non-regressors—a pattern reversed with prolonged therapy, where
regressors displayed dominant activation of these pathways. Studies
have demonstrated that the complement and coagulation system
plays apivotal role in liver homeostasis and immune responses,with its
activation contributing to beneficial effects on liver immune response
and regeneration26. Therefore, the temporal switch in complement-
coagulation activation implies that long-term AVT may synergistically
enhance immunoregulatory competence and microenvironmental
homeostasis, even without overt fibrosis regression.

Currently, whileML offers transformative potential for biomarker
prioritization in omics discovery pipelines, translational implementa-
tion remains challenging due to frequent overfitting and lackof clinical
validation16. To address these limitations, we implemented rigorous
partitioning of our 4D-DIA-MS proteomic dataset into independent
training and testing cohorts prior to feature selection, ensuring no
data leakage duringmodel development27. This strategy capitalized on
the strength of 4D-DIA-MS in generating reproducible, untargeted
proteomic profiles—ideal for unbiased discovery—while leveraging the
capacity of ML to decode complex biomarker signatures. Notably, the
optimized logistic regression models, incorporating a seven-protein
panel for short-termAVT and a three-protein panel for long-term AVT,
demonstrated superior discrimination offibrosis regression compared

a

cb

Fig. 5 | ML models for discriminating liver fibrosis regressors following long-
term AVT. a AUC values (95% CI) for ML models developed using five feature
selection methods in conjunction with four ML algorithms. These models were
constructed from the training set and subsequently validated in the testing set
derived from long-term patients in the 4D-DIA-MS discovery cohort. The AUC
values (95% CI) for the optimal long-term panels are highlighted in dark red.
Training set: n = 15 for R; n = 7 for NR. Testing set: n = 10 for R; n = 4 for NR. b ROC
curve analysis of the selected long-term panel, used to monitor fibrosis regression
status in long-term patients from the PRM-MS validation cohort (CD163 was not
detected, which was imputed using the mean abundance of IDH1 in the training
set). Data were presented as AUC values with 95% CI. PRM-MS validation cohort:

n = 42 for R; n = 12 for NR. c AUC values (95% CI) of the ML models across clinically
relevant populations, including patients with baseline Ishak scores ≥ 3, non-
steatosis patients at baseline, and those exhibiting aΔIshak ≥ 1 post-long-termAVT.
These values are presented for both the 4D-DIA-MS discovery cohort (comprising
the training set, testing set, and the aggregate of both sets) and the PRM-MS vali-
dation cohort (CD163 was not detected, which was imputed using the mean
abundance of IDH1 in the training set). Detailed subgroup sample sizes are pro-
vided in Supplementary Table 1. Abbreviations: 4D-DIA-MS four-dimensional data-
independent acquisitionmass spectrometry, AUC area under the curve, PLS partial
least squares, PRM-MS parallel reaction monitoring mass spectrometry, SVM sup-
port vector machine.
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to conventional NITs in internal validation. Critically, we bridged dis-
covery to clinical applicability through PRM-MS-based external vali-
dation in an independent cohort, exploiting the precision of PRM for
targeted quantification28, and confirmed the model robustness across

platforms. Subgroup analyses further reinforced clinical utility,
showing consistent performance across diverse populations (baseline
Ishak ≥ 3, non-steatosis patients at baseline) and treatment responders
(ΔIshak ≥ 1) in both 4D-DIA-MS discovery and PRM-MS validation
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Fig. 6 | Longitudinal dynamics and functional characterization of long-term
proteomic panel biomarkers. a Box plots with overlaid longitudinal trajectories
illustrate the dynamic alterations in serological levels of long-term panel proteins
(SERPINA7, CFHR4, CD163) between baseline (Week 0) and post-long-term AVT
(Week 260) in fibrosis regressors versus non-regressors. Data are derived from the
4D-DIA-MS discovery cohort (training set: n = 15 pairs for R and n = 7 pairs for NR;
testing set: n = 10 pairs for R and n = 4 pairs for NR) and the PRM-MS validation
cohort (n = 42 pairs for R and n = 12 pairs for NR). All paired serum samples were
biological replicates, with each pair originating from an individual patient. Nor-
malized protein abundances were compared using a two-sided paired Student’s
t-test (for normally distributed data) or a two-sidedWilcoxon signed-rank tests (for
non-parametric data). A p-value < 0.05 was considered statistically significant. The
box plots display the median (50th percentile; centre line), the 25th and 75th per-
centiles (box bounds), and the minima and maxima (whiskers) within 1.5 times the

interquartile range (IQR) from the box bounds. b GSEA was performed on the
complement and coagulation cascade pathway using proteins (CFHR4 and CD163)
stratified into high- and low-expression groups based on median abundance
thresholds in the 4D-DIA-MS discovery cohort. GSEA uses permutation-based sig-
nificance testing to evaluate directional enrichment of gene sets in ranked gene
lists, inherently employing a one-sided approach to detect coordinated over-
representation at extremes of the expression profile. The enrichment plot displays
the trajectory of the enrichment score across rank-ordered proteins, with the
leading edge subset (indicated by the vertical red line) representing the proteins
driving pathway enrichment. The p-value for the enrichment analysis is shown in
the plot, highlighting the statistical significance of the enrichment. Abbreviations:
4D-DIA-MS four-dimensional data-independent acquisitionmass spectrometry, NR
non-regressor, PRM-MS parallel reaction monitoring mass spectrometry, R
regressor.
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phases. This multilayered validation framework—spanning technical
reproducibility (4D-DIA-to-PRM transition), cohort independence
(training-testing-external cohorts), and clinical heterogeneity (sub-
group consistency)—establishes a paradigm for translatingML-derived
proteomic signatures into clinically actionable tools. Moreover, we
systematically evaluated the incremental value of clinical parameters
alongside serological proteomic features during model training.
Unfortunately, integrative models combining protein and clinical data
failed to outperform serological protein-only classifiers in dis-
criminating fibrosis regression (Supplementary Fig. 9), suggesting that
proteomic signatures may capture latent biological signals beyond
conventional clinical metrics—a hypothesis requiring further
mechanistic investigation.

Our longitudinal proteomic analyses revealed notable differences
in AVT-induced biological remodeling based on treatment duration.
Long-term AVT resulted in more pronounced serological proteome
reorganization and pathway activation in fibrosis regressors compared
to short-term AVT, highlighting duration-dependent functional adap-
tations. This temporal divergence provides a mechanistic basis for the
observed specificity of our diagnostic panels: the short-termmodel (7-
protein panel) was unable to effectively discriminate fibrosis regres-
sion status at long-term endpoints, while the long-term panel (3-pro-
tein signature) demonstrated limited utility during the early treatment
phases. Importantly, the proteins included in the long-term panel
exhibited consistent directional changes across both the 4D-DIA dis-
covery and PRM validation cohorts, showing inverse trajectories dur-
ing pre-treatment fibrogenesis. In contrast, the constituents of the
short-term panel displayed inter-cohort variability in expression pat-
terns, showing inconsistent inverse relationships with baseline fibrotic
progression. The modest proteomic perturbations observed during
the early treatment phases, combined with the biological noise
inherent to acute therapeutic responses, likely contribute to the inter-
cohort inconsistency and temporal instability of the short-term sig-
natures. In contrast, the robustness of the long-term panel—validated

across orthogonal platforms and diverse populations—positions it as a
clinically actionable tool for identifying non-regressors after pro-
longed AVT. Except for the superior stability, the long-term panel also
exhibited mechanistic relevance to complement-coagulation cas-
cades, aligning with sustained functional modulation following sus-
tained AVT. This stratification capability has direct translational
relevance, enabling intensified monitoring of high-risk patients to
mitigate the incidence of decompensated cirrhosis and hepatocellular
carcinoma through timely clinical interventions.

To our knowledge, this study represents the pioneering long-
itudinal proteomic investigation characterizing on-treatment ser-
ological dynamics and biomarker trajectories associated with
histologically confirmed fibrosis regression in CHB patients. The study
presents several notable advantages. First, we used paired LBx-
validated serum samples from multicenter randomized controlled
trials, ensuring clinical relevance through standardized enrollment
criteria and antiviral regimens2,4,5,15. The histopathological rigor was
reinforced by robust inter-observer agreement (κ =0.65; ICC =0.71,
95% CI: 0.65–0.76), exceeding the thresholds necessary for repro-
ducible fibrosis staging29. Second, we employed a dual-phase dis-
covery-validation framework: 4D-DIA-MS facilitated unbiased
proteome-wide profiling, while PRM-MS provided targeted verifica-
tion, leveraging their complementary strengths in discoverydepth and
quantification precision23,28. Third, our multilayered validation strat-
egy, which included internal bootstrapping, external PRM-MS valida-
tion, and subgroup analyses across different populations, confirmed
the generalizability of the models while mitigating the risk of over-
fitting. However, our study also has limitations. 1. There was cohort
asymmetry, with the long-term group having fewer paired serum
samples than the short-termgroup in the 4D-DIA-MSdiscovery cohort,
which may limit the power to detect subtle proteomic shifts. 2. While
4D-DIA-MS demonstrated robust reproducibility, its detection
threshold may have excluded low-abundance proteins that are critical
to fibrotic resolution. 3. The failure in quantifying IDH1 in the short-

Fig. 7 | Dynamic serological proteomic signatures and biomarker panels for
monitoring fibrosis regression in on-treatment CHB patients. Prolonged AVT
induced progressive serological proteomic and functional shifts in both fibrosis
regressors and non-regressors. Notably, serological proteomic recovery was more
pronounced infibrosis regressors compared to non-regressors following long-term

AVT. Additionally, a seven-protein panel was identified for monitoring fibrosis
regression during short-term AVT, while a three-protein panel was established for
long-term AVT. Abbreviations: AVT antiviral therapy, CHB chronic hepatitis B, DAP
differentially abundant protein, NR non-regressor, R regressor.
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term panel and CD163 in the long-term panel by PRM-MS technique,
whichmay have led to an underestimation of diagnostic performance.
4. Although serological biomarkers offer non-invasive clinical utility,
their expression levels and regulatory dynamicsmay differ from those
in liver tissue due to compartmentalized pathophysiology. Future
studies integrating paired tissue-serum proteomics are needed to
resolve this critical knowledge gap.

In conclusion, our study addressed a critical unmet need in CHB-
related liver fibrosis management by linking proteomic dynamics to
histological outcomes, offering actionable tools for monitoring
fibrosis regression; the association of the long-term panel with
complement-coagulation activation offers valuable mechanistic
insights into AVT-induced functional restoration (Fig. 7). This study
advances non-invasive fibrosis monitoring by integrating cutting-
edge proteomics with ML-driven biomarker discovery. Its strengths
lie in technical rigor, validation depth, and biological plausibility of
identified pathways. However, limitations in cohort size, diagnostic
performance, and mechanistic elucidation highlight the need for
multicenter validation and functional studies to translate these
findings into clinical practice.

Methods
Study population
CHB patients with liver fibrosis undergoing AVT were screened from
our previous nationwide multicenter randomized controlled clinical
trials and their extension studies (ClinicalTrials.gov identifiers:
NCT01938781, NCT01938820, NCT03777969, and NCT02849132).
Inclusion criteria: age 18 years or older; availability of paired LBx
pre- and post-treatment (either 78 or 260 weeks of AVT) or clinically
diagnosed compensated cirrhosis at baseline with post-treatment
LBx; baseline fibrosis Ishak score ≥ 2 if the pre-treatment LBx was
available; availability of serum samples at both baseline and the time
of post-treatment LBx; hepatitis B surface antigen (HBsAg) positive
for at least 6 months before AVT; HBV DNA levels > 20,000 IU/ml for
hepatitis B e antigen (HBeAg)-positive patients or > 2000 IU/ml for
HBeAg-negative patients; and length of the LBx core ≥ 0.5 cmwith at
least five portal tracts. Exclusion criteria: current or historical liver
decompensation (ascites, variceal bleeding, or encephalopathy);
elevated serological alpha-fetoprotein (> 100 ng/mL) or creatinine
( > 1.5 times the upper normal limit); coinfection with hepatitis C or
human immunodeficiency virus; other severe liver conditions or
serious organ disorders; and pregnancy or lactation. Patients who
met the inclusion and exclusion criteria were divided into a dis-
covery group and a validation group for subsequent serological
biomarker discovery. To ensure internal consistency across all par-
ticipating centers, we implemented standardized protocols that
included the following aspects: all centers uniformly applied iden-
tical eligibility criteria for patient enrollment; all participants
received a standardized AVT regimen with entecavir as the ther-
apeutic backbone; systematic clinical evaluations were conducted at
six-month intervals following established follow-up protocols; and
the primary outcomes focused on histological fibrosis regression
and the incidence of predefined clinical endpoints. All enrolled
patients provided written informed consent. The study was
approved by the Ethics Committee of Beijing Friendship Hospital,
Capital Medical University (2016-P2-021-04), and conducted in
accordance with the Declaration of Helsinki. Patients and/or the
public were not involved in the design, conduct, reporting, or dis-
semination plans of our research.

Clinical examination
The clinical examination encompasses the collection of demographic
data, routine blood tests, liver biochemistry analyses, and LSM.
Detailed methodologies for these procedures are thoroughly docu-
mented in our prior publications2,4,15,30.

Histological assessment
Formalin-fixedparaffin-embeddedblocksof LBxwere sectioned into 5-
μm-thick slices, stained with reticulin, and assessed by two patholo-
gists who were blinded to the experimental conditions, timing of the
LBx, and other clinical details. Inter-observer agreement for histo-
pathological scoring was assessed using ICC and Cohen’s kappa (κ),
with 95% confidence intervals calculated via bootstrapping (1000
iterations). Discordant cases were reviewed by a third senior pathol-
ogist to reach a consensus. Histological changes were evaluated using
Ishak and/or PIR scores2. The PIR score represents a novel pathological
classification designed to assess the dynamic changes in fibrosis
quality2. It categorizes fibrosis into three types: predominantly pro-
gressive (characterized by thick, broad, loose, and pale septa with
inflammation), predominantly regressive (marked by delicate, thin,
dense, and splitting septa), and indeterminate (exhibiting a balance
between progressive and regressive scarring). This classification
underscores the significance of evaluating and recognizing the evol-
ving nature of fibrosis, particularly in the context of AVT. For patients
with paired LBx, a fibrosis regressor was defined as either a decrease in
the Ishak score by≥ 1 after treatment (ΔIshak≥ 1) or a stable Ishak score
accompanied by predominantly regressive changes according to the
post-treatment PIR score. For patients clinically diagnosed with com-
pensated cirrhosis before treatment, a fibrosis regressor was identified
as having an Ishak stage ≤ 4 post-treatment (ΔIshak ≥ 1) or exhibiting
predominantly regressive changes in those with Ishak fibrosis stages
5–6 after treatment. Conversely, a fibrosis non-regressor was defined
as a patient who did not meet the criteria for fibrosis regression.
Additionally, patients without liver steatosis at baseline (non-steatosis)
were defined as having histological steatosis of less than 5% before
treatment for those with paired LBx. For patients clinically diagnosed
with compensated cirrhosis prior to treatment, non-steatosis was
determined based on the absence of signs of fatty liver detected on
ultrasound.

Clinical diagnosis of compensated cirrhosis
Patients diagnosed with compensated cirrhosis should meet at least
one of the following criteria. (1) Presence of endoscopic examination:
An endoscopic examination revealed esophageal and/or gastric vari-
ces, with the exclusion of non-cirrhotic portal hypertension. (2)
Absence of endoscopic examination: If an endoscopic examination has
not been performed, at least two of the following four criteria must be
satisfied. i. Imaging examination: Ultrasound, computed tomography,
or magnetic resonance imaging indicated typical changes associated
with cirrhosis, including an irregular liver surface, granular or nodular
liver parenchyma, with or without splenomegaly (defined as spleen
thickness exceeding 4.0 cm or greater than 5 rib units). ii. Hematolo-
gical indicators: Routine blood tests showed a platelet count of
<100 × 109/L, with no alternative explanation. iii. Serum and coagula-
tion abnormalities: Serum albumin levels <35 g/L or prothrombin time
extended by more than 3 s (after discontinuation of thrombolytic or
anticoagulant drugs for more than 7 days), or decreased cholinester-
ase levels (excluding the influence of anti-cholinesterase drugs). iv.
Liver stiffness: LSM> 12.4 kPa.

Serum sample preparation
Blood samples were collected using standard venepuncture protocols
into pro-coagulation vacuum tubes. Serum was obtained by cen-
trifugation at 376 × g for 10min at 4 °C and immediately frozen at
−80 °C until use. Highly abundant serological proteins in each 40μL
sample were removed using the ProteoExtract® Albumin/IgG Removal
Kit (MilliPore, MA, USA) following the vendor’s protocol, as albumin
constitutes 70–90% of the serological proteome. The depleted serum
was freeze-dried and reconstituted in SDS lysis buffer (Beyotime,
Hangzhou, China). After centrifugation at 12,000× g for 10min at
room temperature, the supernatant was collected, and protein
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concentration was detected using a bicinchoninic acid assay. Each
sample containing 10μg of protein was loaded onto a 12% SDS-PAGE
gel for separation. The gel was stained with Coomassie Brilliant Blue
using eStain LG (GenScript, Nanjing, China) and analyzed with an
automatic digital gel imaging system (Tanon, Shanghai, China).

Equal amounts of protein (50μg) were adjusted to a consistent
concentration and volume based on the measured protein con-
centration. Samples were then treated with dithiothreitol (Thermo
Fisher Scientific, MA, USA) at a final concentration of 5mM and
incubated at 55 °C for 30min. Subsequently, 10mM iodoacetamide
(Thermo Fisher Scientific) was added and allowed to react in the dark
for 15min at room temperature. Protein precipitation was achieved
by mixing samples with six volumes of pre-cooled acetone and
incubating at −20 °C for overnight. After centrifugation at 8000 × g
for 10min at 4 °C, the resulting pellets were dissolved in 100 μL of
50mM ammonium bicarbonate solution (Thermo Fisher Scientific)
and digested with Trypsin (1μg, Likuso, Shanghai, China) at 37 °C
overnight. The enzymatic reaction was halted by adjusting pH to 3
with phosphoric acid (Sigma, MO, USA). Peptides were desalted
using SOLA™ SPE (Thermo Fisher Scientific), freeze-dried in a
vacuum freeze dryer, and then reconstituted with iRT peptides (1:10,
Biognosys, Zug, Switzerland).

The peptide samples underwent fractionation using an Agilent
1100 HPLC System (Agilent, CA, USA). A gradient of mobile phases A
(2% acetonitrile in HPLC-grade water) and B (90% acetonitrile in HPLC-
grade water) was employed for reverse-phase chromatography. The
gradient was programmed as follows: from 0 to 10min, 2% B; from 10
to 10.01min, 2% to 5% B; from 10.01 to 37min, 5% to 20% B; from 37 to
48min, 20% to 40% B; from 48 to 48.01min, 40% to 90% B; from 48.01
to 58min, 90% B; from 58 to 58.01min, 90% to 2% B; from 58.01 to
63min, 2% B. Separation of tryptic peptides occurred at a flow rate of
250μL/min and was monitored at 210 nm and 280 nm. Fractions were
collected every minute from 10 to 50minutes into centrifuge tubes
1–10 sequentially, repeating this collection sequence until the gradient
was complete. The separated peptides were subsequently lyophilized
for mass spectrometry (MS) analysis.

4D-DIA-MS analysis
Serological proteomeof the discovery cohort was quantified using 4D-
DIA-MS by Shanghai OE Biological Technology Co., Ltd. (Shanghai,
China), following established protocols. Liquid chromatography-
tandem mass spectrometry (LC-MS/MS) was performed using an
EvosepOne system (EvosepBiosystems,Odense, Denmark) coupled to
a timsTOF Pro 2 mass spectrometer (Bruker Daltonics, MA, USA).
Samples were loaded onto Evotip C18 traps at 1μL/min and separated
on a 15-cm analytical column using the standardized 30SPD method
(15-min effective gradient). Mobile phases consisted of 0.1% (v/v) for-
mic acid in water (Solvent A) and 0.1% (v/v) formic acid in acetonitrile
(Solvent B). Mass spectrometry operated in PASEF mode31 with shared
parameters: capillary voltage at 1.5 kV, dry gas flow of 3.0 L/min at
180 °C, m/z range of 100–1700, and ramped collision energy
(20–59 eV). For data-dependent acquisition (DDA), precursors were
fragmented across ion mobility (1/K0) values of 0.85–1.3 Vs/cm

2 using
intensity-triggered MS/MS (isolation width: ±1m/z; topN=12). Data-
independent acquisition (DIA) employed extended ion mobility
(0.6–1.6 Vs/cm2) with variable isolation windows covering the full m/z
range, synchronizing cycle time with chromatographic peak width.
DDA established spectral libraries, while DIA enabled quantitative
profiling.

MS/MS spectra preprocessing was performed using Spectronaut
Pulsar™ (v15.3, Biognosys) under the following parameters: Trypsin
was specified as the proteolytic enzyme with allowance for up to two
missed cleavages; methionine oxidation and N-terminal carbamido-
methylation were set as variable and fixed modifications, respectively;
a 1% false discovery rate (FDR) threshold was applied at three

hierarchical levels (peptide-spectrum match, peptide, and protein)
using the Target-Decoy strategy with mProphet algorithm
implementation32. DDA-derived spectral libraries were used for DIA
data processing, with precursor, peptide, and protein FDR thresholds
set to 1%. Protein identification was conducted against the UniProt-
reviewed human proteome database (uniprot-reviewed_yes+tax-
onomy_9606.fasta). Quantification was executed at the MS2 level
using an intensity-based local normalization strategy, where peptide
quantities were derived from the mean intensity of the top 1–3 ranked
precursors, and protein quantities were subsequently calculated as the
mean of 1–3 highest-abundance peptides33. To ensure data quality, the
abundance matrix of serological proteins was cleaned by removing
immunoglobulin or its fractions and proteins with over 50% missing
data. Missing data imputation and proteomic data normalization were
performed using the missForest and vsn packages, respectively. Addi-
tionally, the coefficient of variation was employed to evaluate the
abundance variability of each serological protein among individuals.

Expression and functional analyses of serological proteome
Changes in serological proteome post-AVT were analyzed by calcu-
lating the Post/Pre ratios ofMS signal intensity and visualized using the
ComplexHeatmap package. The divergence in serological protein
abundance among individuals was assessed using the one minus
Pearson’s Correlation Coefficient (1-r) with the corrplot package. HCL
with average linkage and Euclidean distance metric was used to
visualize similarities and differences in serological protein abundance
among individuals using the pheatmap package. PCA was performed
to identify categorical variables (principal components, PCs) in the
data based on observed variables, serving to verify the results of the
HCL. PCA was implemented using the PCA function from the Facto-
MineR package, with confidence ellipse drawn using the factoextra
package with default parameters. DAPs post-AVTwere identified using
a two-sided paired Student’s t-test or a two-sided Wilcoxon signed-
rank test, combinedwith the fold change (FC) criterion. Proteinswith a
p-value < 0.05 and FC> 1.2 were considered statistically significant.
Venn analysis was performed to identify specific and common DAPs
between or among groups using the VENNY 2.1 tool (https://bioinfogp.
cnb.csic.es/tools/venny/index.html). Functional interpretation of
DAPs was performed using KEGG pathways through the DAVID web
server (https://davidbioinformatics.nih.gov)34,35, with an adjusted p-
value < 0.05 considered statistically significant. GSEA was performed
to interpret the molecular functions of proteins of interest based on
Sangerbox 3.035. Samples were categorized into low and high sub-
groupsbasedon themedian Post/Pre ratio of protein of interest, with a
p-value < 0.05 considered statistically significant. Visualization ofDAPs
of interest was implemented using ggplot2 package.

ML models
The ML analysis was conducted with the aim to identify potential
serological proteins that could distinguish histological fibrosis
regression in CHB patients with liver fibrosis following short-term or
long-termAVT. Initially, the short-termor long-termdata from4D-DIA-
MS discovery cohort were randomly divided into training and testing
sets through stratified sampling on the regression status, comprising
60% and 40%of the patients, respectively, using the caretpackage. The
training set was employed for model development, while the testing
set was reserved for subsequent validation. Feature selection was then
performed using five methods: univariate logistic regression, back-
ward stepwise regression, Lasso regression, PLS regression, and SVM
applied to specific DAPs in regressors or non-regressors from the
training set. This process employed packages including stats, MASS,
glmnet, ropls, and e1071. Following feature selection, ML models,
including regularized Logistic regression with Ridge penalization, PLS
regression, SVM, and random forest, were established based on the
five selected features using the glmnet, kernlab, e1071, randomForest,
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caret, MLmetrics, and pROC packages. Models that incorporated rela-
tively fewer serological proteins but demonstrated good performance
in both training and testing sets were prioritized for further internal
and external validations. Internal validation was conducted in the
training set using bootstrap resampling (drawing datasets of equal size
to the original training cohort with replacement over 1,000 iterations)
and calibration curves by the boot and calibrate packages.

PRM-MS analysis
To validate candidate short-term and long-term biomarker panels in
the independent validation cohort, a customized PRM-MS assay was
performed by Shanghai OE Biological Technology Co., Ltd. (Shanghai,
China). This targeted approach prioritized maximal coverage of can-
didate proteins. Serum protein preparation and DDA-based spectral
library construction followed identical protocols to those described
for 4D-DIA-MS experiments, ensuring methodological consistency.
Targeted proteomics via PRM-MS was performed on a timsTOF Pro 2
instrument (Bruker Daltonics) coupled to a nanoflow liquid chroma-
tography system. Tryptic peptideswere separated on a reversed-phase
C18 column (75μm×25 cm, 1.6μm, 120Å; IonOpticks, Melbourne,
Australia) at 300nL/min using mobile phase A (0.1% formic acid in
H2O) and B (0.1% formic acid in acetonitrile) with a 60min nonlinear
gradient: 2→ 22% B (0–45min), 22→ 37% B (45–50min), 37→ 80% B
(50–55min), and 80% B (55–60min). Mass spectrometry operated in
positive-ion PRM-PASEF mode with precursor lists configured in
timsControl PRM module. Key parameters included: 1.4 kV capillary
voltage, 100–1700m/z scan range, ion mobility window (1/K0) of
0.6–1.6 Vs/cm2, 100ms ion accumulation/release time, and 10min
scheduled retention time windows, enabling high-efficiency targeted
quantification.

Raw PRM data were analyzed with SpectroDive software (v11.8,
Biognosys) through a two-step workflow: (1) automated peak extrac-
tion with subsequent manual validation and retention time alignment
to ensure peptide identification accuracy and cross-sample con-
sistency, followedby (2) protein quantification using themean peptide
quantity algorithm (arithmetic mean of normalized peptide inten-
sities) embedded in the software. Sparse data points were imputed
non-parametrically via the missForest package, and global normal-
ization was applied using the vsn package.

Statistical analysis
Statistical analysis was performed using R 4.4.3 (https://www.r-project.
org/) or GraphPad Prism 9 (GraphPad Software Inc., CA, USA). Con-
tinuous variables were presented as mean± standard deviation or
median (interquartile range), while categorical variables were sum-
marized with counts and percentages. For comparisons between
paired groups, continuous variables were analyzed using a two-sided
paired Student’s t-test or a two-sided Wilcoxon signed-rank test,
depending on the normality of data distribution. Continuous variables
among three independent groups were compared using one-way
ANOVA (for normally distributed data with equal variances) or the
Kruskal-Wallis H test (for non-parametric comparisons). Categorical
variables among three independent groups were analyzed using the
Chi-square test (when expected frequencies ≥ 5) or the Fisher-
Freeman-Halton exact test (when expected frequencies <5). A
p-value of <0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw 4D-DIA-MS data, PRM-MS data, and their processed peptide
and protein abundance data generated in this study have been

deposited in the Proteomics Identifications Database (PRIDE, https://
www.ebi.ac.uk/pride/) under accession codes PXD059174 and
PXD063833.

Code availability
The R codes generated in this study are available in the Figshare
database (https://doi.org/10.6084/m9.figshare.27087253). All R
packages used in this study are publicly available through the Com-
prehensive R Archive Network (CRAN) or Bioconductor, with specific
version numbers and persistent digital object identifiers (DOIs) pro-
vided in Supplementary Table 4.
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