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Modeling integration site data for safety
assessment with MELISSA

Tsai-Yu Lin 1,6, Giacomo Ceoldo 2,6, Kimberley House1, Matthew Welty1,
Thao Thi Dang1, Denise Klatt2, Christian Brendel 2,3, Michael P. Murphy4,
Kenneth Cornetta 1 & Danilo Pellin 2,3,5

Gene and cell therapies pose safety concerns due to potential insertional
mutagenesis by viral vectors. We introduce MELISSA, a regression-based sta-
tistical framework for analyzing Integration Site (IS) data to assess insertional
mutagenesis risk, by estimating and comparing gene-specific integration rates
and their impact on clone fitness. We characterized the IS profile of a lentiviral
vector on Mesenchymal Stem Cells (MSCs) and compared it with that of
Hematopoietic Stem and Progenitor Cells (HSPCs). We applied MELISSA to
published IS data from patients enrolled in gene therapy clinical trials, suc-
cessfully identifying both known and novel genes that drive changes in clone
growth through vector integration. MELISSA offers a quantitative tool to
bridge the gap between IS data and safety and efficacy evaluation, facilitating
the generation of comprehensive data packages supporting Investigational
NewDrug (IND) andBiologics License (BLA) applications and the development
of safe and effective gene and cell therapies.

Gene therapy using Hematopoietic Stem and Progenitor Cells (HSPC)
modified with viral vectors has emerged as a promising approach for
treating rare monogenetic diseases1,2. This strategy involves introdu-
cing functional copies of therapeutic genes into patients’ HSPCs,
enabling them to produce the missing or malfunctioning protein and
restore normal cellular function. Due to their efficient gene delivery
capabilities, viral vectors have also found extensive application in
novel cell therapies such as Chimeric Antigen Receptor (CAR)-T
immunotherapies, where Lenti/Retroviral Vectors are used to deliver
CAR genes in a patient’s T cell.

The capability for viral vectors to integrate their cargo DNA into
unpredictable locations within the host genome carries a certain risk
of Insertional Mutagenesis (IM), defined as the disruption or dysre-
gulation of a gene caused by a vector insertion. IM can lead to
enhanced cell growth due to the activation of oncogenes or the
disruption of tumor suppressor genes by the integrated DNA3–6.
Clonal dominance underscores the risk of a particular clone or a
small subset of clones of transduced cells gaining a growth

advantage, potentially skewing the clonal composition of the repo-
pulating cells towards monoclonal or oligoclonal configurations that
pose additional long-term safety and efficacy concerns, including
oncogenic transformation7–9.

Regulatory agencies like the US FDA require rigorous preclinical
safety and efficacy evaluations and 15 years of IM monitoring for
patients treated with genetically modified HSPCs10. Recently, the US
FDA extended monitoring to individuals receiving BCMA- or CD19-
directed autologous CAR T cell immunotherapies. A comprehensive
risk-benefit analysis is crucial for evaluating the potential for IM, yet
the scientific community still lacks standardized indices, metrics, and
methods to clearly distinguish between safe and unsafe integration
profiles.

The association of the integrome, namely the distribution of IS
across the host genome, with genomic annotation data has elucidated
the role of chromatin conformation, transcriptional activity, and the
cellular genome 3D nuclear organization on IS frequency11–15. These
insights, combined with the analysis of oncogenic transformation
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mechanismsobserved in clinical trials, enabled the generation of novel
and safer viral vectors for HSPC gene therapies.

Using IS analysis to monitor the clonal composition over time,
scientists can gain insights into the diversity and dynamics of the
engrafting cell population, assess the long-term efficacy, and the risk
of clonal dominance7,16–18. From a safety perspective, IS analyses serve
as the primary screening tool for identifying potential risks asso-
ciated with uncontrolled clonal expansion by detecting abundant
clones based on their relative contribution and mapping IS location
within the host cell genome. Conventionally, the identification of
abundant clones has been based on predefined percentage thresh-
olds calculated on an individual sample basis. Leveraging IS infor-
mation from multiple datasets to estimate the integrome and clonal
contributions can improve the characterization of gene targeting
preferences and associated risks and enhance the detection of clonal
expansion dynamics.

This paper introduces a set of statistical tools, MELISSA (ModEL-
ing IS for Safety Analysis), to translate IS data into actionable safety
assessment and evaluation insights. MELISSA provides statistical
models for measuring and comparing gene targeting rates and their
effects on clone growth within a gene-based approach. MELISSA
modeling consists of a regression approach that analyzes and com-
bines data from complex experimental designs, including datasets
with multiple patients, donors, replicates, and additional covariates of
interest. MELISSA facilitates the quantitative comparisons of different
conditions and includes rigorous statistical testing, visualization, and
annotation to aid the biological interpretation of results.

From an experimental standpoint, we constructed a unique
dataset to compare the integration and safety profiles ofMesenchymal
Stem Cells (MSCs) isolated from two different sources and mobilized
CD34+ HSPCs. This enabled us to evaluate the effectiveness of our
proposed framework as a tool for analyzing preclinical experiments
and guiding the development of novel gene therapy strategies.

Additionally, we analyzed published IS data from patients enrol-
led in gene therapy clinical trials for Beta-thalassemia (β-thal), Sickle
Cell Disease (SCD), Wiskott-Aldrich Syndrome (WAS)18, and for
X-linked Severe Combined Immunodeficiency (SCID-X1)19. By lever-
aging longitudinalmodeling of clone sizes, our analysis identified both
known and novel genes with the potential to influence clonal fitness
when targeted by an IS. These findings were consistent across a range
of clinical scenarios, from cases with high relative abundance of
dominant clones (e.g., patient 3 in SCID-X1, 57%) to those without
clearly concerning expansions (e.g., β-thal, 1%; SCD, 2.4%; WAS, 9.5%).
This highlightsMELISSA’s sensitivity and ability to detect early signs of

clonal expansion, demonstrating its effectiveness in identifying risk
factors before they become prominent.

MELISSA is a quantitative tool for supporting researchers, clin-
icians, and regulatory agencies in advancing the development of safe
and effective gene and cell therapies. Its goal is to bridge the gap
between the IS datasets generated from preclinical experiments to
support IND applications and clinical samples for safety and efficacy
evaluation.

Results
MELISSA is a robust statistical framework available as an R package
designed to analyze and interpret IS data for safety evaluation in viral
vector-based gene and cell therapies. We evaluated MELISSA using a
comprehensive Monte Carlo simulation study to assess performance
metrics, specifically focusingon thePositive PredictiveValue (PPV) and
the detection rate. This allowed us to understand the proportion of
true positive results among all positive test results, reflecting the
reliability of a positive test outcome and the likelihood of detecting a
real effect or difference when it exists.

As shown in the schematic in Fig. 1, it requires three primary
inputs. The IS tables are provided in bed file format and contain clone
size estimates (as read counts, UMIs, or shear site data)20–22. The design
matrix includes sample-specific covariates, such as conditions, repli-
cates, cell type, time after therapy, and others. MELISSA can analyze
the full set of genes using genome annotation files, providing a com-
prehensive overview of potential IM risks. Alternatively, it allows users
to provide a list of genomic regions of interest for targeted analysis,
such as the cytogenetic bands and overlapping genomic intervals of
varying sizes used in this manuscript.

MELISSA provides a comprehensive suite of functionalities. It
generates descriptive statistics summarizing IS distribution across
various genomic features and calculates samples’ clonality indexes
commonly referenced in the literature. It tackles critical safety-related
questions: (1) estimating gene-specific IS rates within a single group or
comparing them across groups to identify potential differences across
conditions; (2) estimating whether IS within a gene influences clone
growth, again for single or multiple groups.

Furthermore, MELISSA facilitates downstream analysis through
various methods. Researchers can generate informative graphical
representations and utilize gene-scoring tables to identify potential
associations between IS data and underlying biological mechanisms
with tools such as Gene Ontology (GO) enrichment analysis, Gene Set
Enrichment Analysis (GSEA) and KEGG and REACTOME pathway
analysis23–25. Additionally, the distribution of genomic annotations,

Fig. 1 | Schematic of MELISSA workflow.MELISSA receives as input 1. IS data in a
bed file format, 2. a design matrix with all the relevant samples’ annotation, 3. a
reference genome or a bed file containing genomic region to be tested for IS
enrichment. MELISSA combines input data and performs two main types of

analysis: gene targeting rates and gene/clone fitness alterations.MELISSA also has a
dedicated function for calculating clonality indexes, graphical representation of
the results, and downstream pathway enrichment analyses.
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provided in BED file format (e.g., epigenetic profiles) within IS flanking
regions, offers deeper insights into the mechanisms driving IS selec-
tion process.

Statistical modeling
MELISSA implements two complementary statistical models that
address distinct biological questions related to gene therapy safety: (1)
IS targeting rate analysis, which assesses whether specific genomic
regions (e.g., genes) are preferentially targeted by IS events, and (2)
clone fitness analysis, which evaluates whether IS within a region
affects the expansion dynamics of clones over time. Eachmodel canbe
applied in either a one-condition or a two-condition setting. The one-
condition analysis supports datasets with multiple samples or repli-
cates from a single group, while the two-condition analysis compares
groups, such as different cell types or experimental conditions. In all
cases, MELISSA returns two scoring metrics for each gene tested: a
score equivalent to the Likelihood Ratio Test (LRT) statistic, which
quantifies statistical significance, and a regression coefficient that
captures the magnitude and direction of the effect.

The gene targeting rate analysis is based on logistic regression
and estimates the likelihood that an IS falls within a specific gene
compared to the rest of the genome. The model treats IS presence or
absenceat eachgenomic coordinate as a binaryoutcomeandaccounts
for features such as gene length and overall IS frequency. In the one-
condition setting, MELISSA compares a baseline model that assumes
uniform targeting across all genes to an alternative where the gene of
interest has its own targeting rate. The gene targeting score (LRT sta-
tistic) measures the significance of deviation from the genome-wide
average IS rate, while the IS-enrichment (regression coefficient)
quantifies the strength of the enrichment. In the two-condition setting,
MELISSA tests whether targeting rates for a given gene differ between
groups by comparing models with shared versus condition-specific
targeting parameters. The differential gene targeting score is derived
by assigning the sign of the regression parameter to the LRT statistic to
reflect the direction of the change.

The clone fitness model evaluates whether IS in a given gene is
associated with altered clone expansion over time. It assumes that IS
may perturb gene function through mechanisms such as promoter
interference or enhancer disruption4,26. Clone size trajectories are
modeled using logistic regression for binomial count data. In the one-
condition setting, the model tests whether clones with IS in a given
gene grow at a rate different from the global baseline, comparing a
model with a shared growth rate to one that allows for a gene-specific
effect. The regression coefficient associated with time represents the
growth rate increment and indicates how clone contribution changes
per time unit beyond the genome-wide trend. In the two-condition
setting, the model tests whether gene-associated growth rates differ
across groups. As with targeting, both the LRT statistic and the signed
growth coefficient are used to interpret the results.

Multiple testing correction is applied using the False Discovery
Rate (FDR)method27 or theHolm–Bonferronimethod28, as specifiedby
the user.

Simulation study
To evaluate MELISSA’s performance in detecting variations in IS tar-
geting rates and gene-specific effects on clone fitness, we conducted a
simulation study on chromosome 15 (hg38) in which we included five
artificial genes (TestGenes) with a length of 5, 10, 20, 40, and 80 kb
pairs not overlapping with the existing 1027 endogenous genes. The
study assessed how the PPV and TestGenes’ detection rate varied with
sample size and effect strength (Fig. 2, Suppl. Table 1). For each setting,
1000 simulations were performed to assess the model’s performance.
For simplicity, IS locations were simulated by sampling genomic
coordinates under a piecewise uniform distribution, without
accounting for mapping biases associated with low-complexity or

repetitive genomic sequences. Further details of the simulation design
are provided in the “Methods” section, and the simulated datasets are
shown in Suppl. Fig. 1.

Two strategies were used to simulate IS datasets for gene target-
ing rate analysis. In the single-group analysis (Fig. 2A), N = 100, 200,
400, 800 IS elements were generated, corresponding to genome-wide
IS datasets ranging from 3000 to 25,000 IS, in line with preclinical and
clinical datasets. IS were simulated using a two-part model: a genome-
wide baseline and elevated integration rates for over-targeted genes,
with fold increases of h = 1 (no effect), 2, 4, 8, 16, 32, and 64. For
differential targeting analysis (Fig. 2B), each gene was assigned a
unique rate, consistent across datasets, with group 1 showing elevated
integration probabilities compared to group 2.

To analyze clone fitness and detect variations in clone growth
rates, we simulated time-series data of IS clone sizes across six time
points (t =0 to 5). We first generated a database of 10,000 potential IS
coordinates using a constant baseline and a variable gene-specific
targeting rate. Clone sizes were determined by sampling IS from this
database, with replacement, at each time point. Sampling probabilities
for IS in TestGenes linearly increase over time (Fig. 2C), mimicking
selective clone expansion. In the single-group scenario, datasets with
cumulative clone sizes of M = 1000, 2000, 4000, 8000 were gener-
ated. For differential analysis (Fig. 2D), 12 datasets were generated,
representing two groups with identical sampling probabilities, except
for TestGeneswhere group 1 had higher growth rates controlled by the
effect size h.

We evaluated the impact of P value adjustment methods on the
performance of MELISSA, with results shown in Suppl. Fig. 2. Using
adjusted P values, MELISSA’s PPV consistently outperformed results
obtained using raw p-values, emphasizing the importance of correc-
tion methods in improving predictive accuracy. The Holm and FDR
adjustmentmethods yielded comparable results. Computational times
under different scenarios are detailed in Suppl. Table 2.

Our simulation study demonstrated that MELISSA’s PPV and
detection rates consistently improved with increasing sample sizes
and effect strengths. In single-group analyses, detecting higher gene
targeting rates in short genes proved challenging, while clone fitness
analysis showed strong sensitivity, even for low effect sizes. For the
differential setting, the results highlighted thatdetectingdifferences in
gene targeting rates ismore efficient than detecting variations in clone
fitness. Importantly, the model produced no false positives, confirm-
ing its high specificity.

Using MELISSA to evaluate the clonal dynamics of transduced
MSC over time
MSC is a heterogeneous cell population found in bone marrow, adi-
pose tissue, placenta, umbilical cord and cord blood, dental pulp, and
other tissues that show potential for cell therapy applications due to
their regenerative potential. There are over 1500 clinical trials
exploring their application across diverse diseases (www.clinicaltrial.
gov), and lentiviral vector (LV) are being evaluated to increase the
therapeutic potential of MSCs. While extensive research has been
conducted on the integrome in other cell types, our understanding of
LV integration and its potential risks in MSCs remains limited.

Low passage healthy donor Bone Marrow-derived (BM), Adipose-
derived (Ad) MSCs, and CD34+ healthy donor mobilized HSPCs were
transducedwith an LV encoding EGFP. IS analysis was performed on all
cell types early after transduction and at various passages of in-vitro
culture for MSCs (P1, P4, P6, P8). Cells transduced at the initiation of
the culture will give rise to a progeny of cells (IS clone) that share the
exact IS coordinates (i.e., the LV IS). More details on the MSC trans-
duction, IS retrieval protocol and bioinformatic analysis are available
in the “Methods” section.

Accurate clone size estimation is crucial for IS analysis since it
allows for understanding clones’ relative contribution and
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Fig. 2 | Simulation study results. Average Positive Predicted Value (PPV) across
1000 simulations for model (A) gene targeting rate; B differential gene targeting;
C clonefitness;Ddifferential clonefitness. Solid, dashed, dotted, anddash-dot lines
correspond to different sample sizes. Seven increasing effect sizes have been tes-
ted, ranging from h = 1 (no effect) to 64. Detection rate bar graphs (bottom of each

panel) report the number of times each TestGene hasbeen tested (semi-transparent
bars) and the number of times in which the TestGene is detected as significantly
over-targeted/gene growth associated, for the simulationswith sample sizeN = 400
for (A, B), and M=4000 for (C, D).
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characterizing the composition of the population. Here we estimated
clone sizes using the sonicLength method29, albeit alternative quanti-
fication strategies (read counts, UMIs) are compatible with the
MELISSA framework. As shown in Fig. 3A and Suppl. Table 3, the
cumulative clone size in BM MSCs shows a consistent positive trend
throughout the in-vitro culture period. In contrast, the number of
distinct clones steadily increases in P1 through P6, with a drop
observed at P8. Ad MSCs displayed a declining IS count and a similar
trend in total clone size. These observations are further supported by
the Shannon diversity index analysis (Fig. 3B), indicating stable diver-
sity in BM MSCs and a progressive loss of diversity in Ad MSC.

LV integration preferences have been primarily reported in
hematopoietic cells. The distribution observed in our HSPC datasets
confirmed the known tendency of LV vectors to integrate into gene
bodies. Interestingly, we found that this pattern also showed remark-
able consistency in MSCs30–32. In the gene-based analysis reported in
the following sections, we extended the gene bodies (region from the
transcription start site to the end of the transcript) by including the
1-kb gene promoter region upstream of a gene’s transcriptional start
site, thereby encompassing ~85.2% of the IS database (74.9% intronic,
10% exonic, and 0.3% resided in gene promoter regions).

MELISSA identifies both shared and cell type-specific over-tar-
geted genes in MSCs and HSPC
We analyzed IS datasets using MELISSA to identify the most targeted
genes in BM MSC, Ad MSC and HSPC to investigate the presence of
differentially targeted genes.

Figure 4A shows the gene scores from the HSPC control dataset
analysis. Among 1959 significant genes, known Recurrent Integration
Genes (RIGs) like PACS1, KDM2A, and GRB2 have higher scores33, con-
firming our approach effectively captures established integration
patterns.

In BM MSC, we found 5313 genes had at least 1 IS within their
extended gene body, of which 1134 were significantly over-targeted. In
Ad MSC, 718 genes out of 5401 were significantly over-targeted.

As shown in Fig. 4B, 157 genes were over-targeted in all cell types,
109 genes appear to be MSC specific, and the overlap between BM
MSCandHSPC (295 genes) is higher than the shared genes betweenAd
MSC and HSPC (134 genes).

We defined a set of High-Risk genes that includes cancer-
associated genes and genes related to IM events and verified how
their targeting rates varied among cell types34. The heatmap in Fig. 4C
highlights how the IS patterns are very similar, especially on the highly
targeted High-Risk genes. The one exception was SPPL2B which was

specific for BMMSC. Interestingly, genes associated with documented
clonal expansion in humans, such as LMO2, have no detected IS, and
genes such as MECOM and HMGA2 had scores higher in HPSC
than MSCs.

We provide a more detailed representation of the IS distribution
around two genes in Fig. 4D. NPLOC4 appeared among the top ten
targeted genes across all datasets, while PLEC is highly enriched in IS in
both BM MSC and Ad MSC datasets but there was no IS noted in the
HSPC dataset. The complete results of the analysis are available in the
Source Data file, the genome-wide gene targeting score visualization is
provided in Suppl. Fig. 4 and the pathway analysis for each dataset in
Suppl. Fig. 5–7.

Gene targeting rates have been linked to transcriptional activity,
primarily through the interaction of LEDGF/p75 with H3K36me3-
marked chromatin35,36. To assess whether this association can be
explained by gene expression levels, we analyzed published bulk RNA-
seq data from healthy donor-derived HSPC37 (8 replicates) and BM
MSCs38,39 (8 replicates). We then performed a regression analysis to
assess the correlation between gene targeting scores and expression
levels. As shown in Fig. 4E, a positive correlation was observed in both
HSPCs (β =0.9, p = 2e-11, R² = 1.33e-2) and BMMSCs (β =0.27, p =0.15,
R² = 1.64e-3), although statistically significant only for HSPC. However,
the explained variance was low, indicating that gene expression levels
are a poor quantitative predictor of targeting rates. The gene expres-
sion analysis is described in the “Methods” section.

Differential gene targeting analysis highlights differences
between MSC and HSPC and minor differences within MSC
integromes
In addition to the gene sets intersection analysis, MELISSA allows us to
compare the safety profiles in two cell types with a dedicated model,
avoiding loss of relevant information and focusing exclusively on
detecting the differences between, for example, a novel and a refer-
ence integrome.

First, we compared BM MSC to HSPC (Fig. 5A) and identified 119
genes over-targeted in BM MSC and 47 in HSPC. The most over-
targeted gene in BM MSC was PLEC (Fig. 4D), while DACH1 was the
most over-targeted gene in HSPC and showed no IS in BM MSC.

We investigated whether differences in gene expression could
account for the variation in targeting rates between HSPCs and BM
MSCs. To this end, we computed gene expression fold changes
between the two cell types and assessed their association with differ-
ential targeting scores. As shown in Fig. 5B, this analysis revealed a
weak but statistically significant positive correlation (β = 0.13, p < 2e-

Fig. 3 | IS datasets descriptive statistics. A Integration site counts and cumulative
clone size: Bar chart depicting the cumulative clone size for each dataset. The
number of distinct IS retrieved in each sample is reported with dots. B Shannon
entropy (H) index. Line plot representing the longitudinal dynamics of the diversity
during in-vitro culture with subsequent passages of MSC. CD34 HSPC were

analyzed at a single timepoint. C Integration site annotation distribution: stacked
bar chart displaying the distribution of integration sites according to genomic
annotation, delineating the genomic regions where integration events are most
prevalent.
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Fig. 4 | Results for the single group gene targeting rates analysis. A Gene tar-
geting score for the HSPC dataset. Dots correspond to genes and are ordered
according to chromosome location, with genes in even-numbered chromosomes
having a lighter color. Y axis value is the signed likelihood ratio test statistics (score)
for the null hypothesis that the tested gene’s integration rate is equal to genome-
wide baseline. Genes marked with a * are included in the high-risk gene list. The
dashed red line represents the threshold for statistically significant enrichment
(586 genes, with adjusted FDR P value < 0.05). 3 replicates, 8204 tested genomic
intervals (containing at least one integration), corresponding to 1959genes. Source
data are provided as a Source Data file. B Overlap between significantly over-
targeted (adjusted FDR P value < 0.05) gene sets. 4 replicates for both MSC types,
3019 and 6288 tested genomic intervals for BM MSC and Ad MSC respectively.
Source data are provided as a Source Data file. CMost targeted genes inMSCs and
HSPC. IS enrichment scores for the top 10 most frequently targeted genes in each

dataset. Genes associated with documented clonal expansion in gene therapy
clinical trials are included in the heatmap, marked by a red line under the gene
name. Colors in the heatmap represent the IS enrichment, quantified as the log
odds (regression coefficient estimate) associated with the gene effect. Source data
are provided as a Source Data file. D Detailed view of two over-targeted genes
reveals cell type-specific and shared integration patterns: NPLOC4 is over-targeted
among all cell types, PLEC is over-targeted exclusively in bothBMMSCandAdMSC.
E Comparison between the expression level (x axis, log10 scale) and the targeting
rates (y axis) defined in Fig. 4A. The expression level is the average across 8 samples
of raw counts, normalized for differences in sequencing depth across samples. A
default zero expression level is assigned to genes not expressed. Red line repre-
sents the linear regression of gene targeting score and gene log10 expression score.
Source data are provided as a Source Data file.
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16, R² = 0.018), indicating that gene expression may partially account
for the observed differences in targeting rates, but other factors likely
play a more prominent role.

The waterfall plot in Fig. 5C further investigates the differential
targeting of the High-Risk gene set in BM MSC and HSPC. Despite 29

high-risk genes being over-targeted in BM MSC (top genes: SPPL2B,
PPARD, STAG2, SETD2) and 13 inHSPC (topgenes:GRB2, PTPRD, IKZF2),
the risk profiles of the two integromes are well-balanced overall, with
an average risk score equal to 0.4 (0 = equal risk). Pathway analysis
calculated using gene targeting scores is reported in Suppl. Fig. 8.

Fig. 5 | Differential gene targeting analysis. A Differential gene targeting analysis
comparing BM-MSC (4 replicates) and HSPC (3 replicates). The differential tar-
geting score (y-axis) is the signed LRT statistic for the null hypothesis that the
testedgene’s integration rate is the same inboth cell types. If the gene is enriched in
the integration site in BM-MSC (HSPC), it is plotted in the blue (gray) section. 6969
genomic intervals containing at least 2 integrations are tested. Red dashed lines
delimiting significance (adjusted FDR P value < 0.05). Source data are provided as a
Source Data file. B Comparison between differential gene expression score (x-axis)
and targeting score (y-axis), for HSPC and BMMSC datasets. The x-axis score is the
Wald test statistic for the null hypothesis that the log2 fold changebetween the two
groups (of 8 replicates each) is zero. Differential expression set to 0 for genes not
expressed. Dashed red lines denote the test statistic thresholds at adjusted FDR P
value < 0.05. Red line represents the linear regression of differential gene targeting
score and gene expression log fold-change. Source data are provided as a Source
Data file. C BMMSC/HSPC waterfall plot for high-risk genes, ranked by differential

targeting score. Source data are provided as a Source Data file. D BM MSC/HSPC
KEGG pathway enrichment analysis calculated using differential gene targeting
scores. E Ad MSC/HSPC Gene Ontology enrichment analysis calculated using dif-
ferential gene targeting scores. Source data are provided as a SourceData file.F BM
MSC/Ad MSC analysis. Top: differential gene targeting analysis comparing MSC
types (4 replicates each, 9177 tested genomic intervals). Genes with enriched
integration rate in BM MSC (Ad MSC) are plotted in blue (green). Bottom: differ-
ential targeting score of 1239 tested cytogenetic bands. Positive/blue and negative/
green y-axis values for over-targeted bands of BM MSC and Ad MSC, respectively.
Transparency is proportional to band length. Band’s label size proportional to test
statistic. Red dashed lines delimiting significance (adjusted FDR P value < 0.1).
Source data are provided as a Source Data file. G A detailed view of two over-
targetedgenes reveals tissue-specific gene targeting:SETD2andDMDover-targeted
specifically in BM MSC and Ad MSC, respectively.
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When evaluating genes with high IS rates in the AdMSC andHSPC
analysis (Suppl. Figs. 9–10), 9 out of 51 genes in the AdMSC group and
5 out of 21 in the HSPC group were present in the High-Risk gene list.

The KEGG and the GO analysis in Fig. 5D, E were calculated using
the gene’s IS rates scores from the comparisons between MSCs and
HSPC. The analysis shows that IS rates can discriminate cell type-
specific pathways, such as in immune responses and signaling path-
ways in HSPC and extracellular matrix regulation in Ad MSC.

When comparing BMMSC to Ad MSC (Fig. 5E, and Suppl. Fig. 11),
we found only 2 differentially targeted genes. SETD2 (Fig. 5G), a critical
chromatin regulator with potential tumor suppressor activity40 is over-
targeted in BM MSC. The DMD gene was over-targeted in Ad MSC.
Despite the DMD gene not being part of the High-Risk gene sets, it is
noteworthy that a growing body of evidence suggests a potential role
of the DMD gene in tumor development and progression41,42.

Given the limited number of significant genes detected, we
applied a gene-agnostic approach using cytogenetic bands (1283
regions) to also capture potential intergenic effects that may be
missed when focusing solely on gene boundaries, allowing for a
genome-wide IS distribution comparison between MSC cell types. As
shown in Fig. 5F (bottom), this strategy identified both broad
chromosome-level and more localized Mb-scale regions with sig-
nificant differential targeting scores, in some cases exceeding those
observed for individual genes.

The most enriched cytogenetic bands in BMMSCs was 17q25.3 (6
Mbp; score = 33.0, p = 3e-6), a gene-dense region containing RIG,
NPLOC4, and 13 High-Risk genes. In comparison, sub-band 3p21.31,
which includes SETD2, had a lower score (score = 10.0, adjusted
p =0.03). In AdMSCs, the entire chromosome X, which includes DMD,
was significantly over-targeted (score = –40.4, p = 2e-7), as was sub-
band 6q25 (score = –21.6, p = 4e-4).

All targeting score tables corresponding to the comparisons
described in this section are available in the Source Data file.

Different gene sets influence MSC clone growth dynamics
in-vitro
While analyzing gene-targeting rates reveals potential safety risks, it
does not directly assess whether IS within specific genes alter cell
behavior. To address this crucial safety concern, we can quantify how
targeting a particular gene impacts the fitness of individual cell clones.
MELISSA’s model tracks the growth of clones with IS within specific
genes, comparing them to average growth rates and potentially across
different conditions. This approach helps discern whether clone
selection is driven by stochastic factors or a direct consequence
of the IS.

Using a clone growth rate (regression parameter) calculated from
the single group statistical analysis, wemeasured the impact for genes
targeted in BMMSC and AdMSC. Interestingly, the gene scores shown
in Fig. 6A and available in the SourceData file reveal distinct sets of top
genes associatedwith growth for each cell type. In contrast, geneswith
documented potential for clonal expansion have no significant impact.
In the AdMSC dataset, we identifiedmore genes significantly affecting
clone growth rates (Ad MSC: 48, BMMSC: 32) and a higher number of
High-Risk genes (Ad MSC: 17, BM MSC: 7).

Figure 6B highlights a key difference: IS in 19 genes show a sig-
nificant positive impact on Ad MSC clone growth, with FKBP5
showing the most substantial effect. Conversely, only one gene,
RORA, positively influenced BMMSC growth. A genome-wide analysis
using a sliding window approach produced consistent results, iden-
tifying only two regions with significantly higher growth rates in BM
MSCs. These included a region intersecting the RORA gene
(chr15:60760219–61542469; score = 12.66, p = 0.03) and
chr21:26869616–27651866 (score = 17.43, p = 0.003).

Figure 6C further details these findings, visualizing the individual
and cumulative contributions of clones harboring IS events within

FKBP5, reaching a 3% total contributionwith 9 IS, while theRORA effect
is less pronounced and limited to 0.3%.

Integration preferences in MSC and HSPC show different cor-
relations with epigenetic marks
MELISSA offers several tools to help in the biological interpretation of
the findings derived from the IS rates and clone fitness analysis

We investigated the relationship between the distribution of IS
and chromatin status in a cell-type-specific manner by taking advan-
tageof theRoadmapEpigenomicsproject,whichpublishedChromatin
ImmunoPrecipitation followed by sequencing (ChIP-seq) data on the
histone modifications H3K4me1, H3K4me3, H3K9me3, H3K27me3,
H3K36me3. We utilized data reports for BM MSC, Ad MSC and mobi-
lized CD34 +HSPC (Suppl. Table 4). Our analysis assessed the enrich-
ment of these epigenetic marks within a 100 kb window centered on
the IS, similar to the analysis proposed in ref. 33. A heatmap repre-
sentation of distance histograms is shown in Fig. 6D.

The results for the HSPC dataset are consistent with the profiles
previously reported in the literature for all the six marks analyzed. For
the open chromatin markers H3K4me3 and H3K36me3 and the
repressive mark H3K27me3, we found a consistent pattern of distance
distribution in both MSC cell types and HSPC, with the typical ±2 kb
sharp short-distances depletion for H3K4me3 and the progressive and
smooth short-distances enrichment and depletion for H3K36me3 and
H3K27me3 respectively. However, for the marker of active enhancers
H3K4me1 and the repressivemark H3K9me3,MSC cell types andHSPC
IS showed different patterns. In HSPC, short distances ( ±2 kb) were
underrepresented for both histone modifications, yet this pattern was
not found in BM MSC and Ad MSC.

Gene targeting and clone fitness analysis in gene therapy
clinical trials
In the manuscript by ref. 18, IS tables were generated from sorted
myeloid (monocytes and granulocytes) and lymphoid (B, T, and NK
cells) subpopulations isolated from peripheral blood samples col-
lected at a minimum of two time points post-therapy. The study
included patients enrolled in gene therapy trials for β-thal (1 patient),
SCD, (1 patient), and WAS (3 patients). Suppl. Fig. 12A summarizes the
dataset, showing the number of IS and cumulative clone size for each
cell type, time point, and patient.

The datasets display considerable heterogeneity in size across
trials and patients. Notably, the β-thal patient exhibited a substantially
higher number of IS compared to the SCD patient, while within the
WAS cohort, patient WAS2 had a higher IS count than the other WAS
patients. MELISSAmodels are designed to handle such imbalances and
effectively account for longitudinal changes due to progressive clonal
selection over time. Figure 7A displays the IS-enrichment score for
significant genes. Miami plots for individual clinical trials are provided
in Suppl. Fig. 13.

Compared to the 1944 genes significantly over-targeted in HSPC,
fewer over-targeted genes were identified in the clinical trial datasets.
No major differences were observed between myeloid (β-thal: 835,
SCD: 687, WAS: 1215) and lymphoid lineages (β-thal: 875, SCD: 702,
WAS: 1285). However, the clinical data exhibited a broader range of
gene targeting scores than HSPC. Notably, there was a strong increase
in highly targeted genes in specific genomic regions, such as chro-
mosome6, and a consistent decrease in targeting scores in regions like
chromosomes 4 and 18 across lineages and trials.

To assess whether gene targeting rates differ significantly
between clinical samples and control HSPC data, we employed
MELISSA differential models. Figure 7B highlights the comparison
between WAS, with data from four patients and the longest follow-up
period (Suppl. Fig. 14 for β-thal and SCD), to determine whether IS
within specific genes are more likely to pass the bottleneck of
engraftment, characterizing the integrome of long-term repopulating
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HSCs. In alignment with the single-group analyses, several broad
genomic regions were significantly differentially targeted. For
instance, regions such as chr6 p22.1-p21.31, chr1 p36.13-p36.11, and
chr11 q12.2-q13.4, while enriched in targeted genes in HSPC, exhibited
such an increase in their relative contribution in the clinical datasets
that clones harboring IS in these regions have a significantly higher
probability of long-term engraftment. Conversely, genes in chr13 and
chr18, significantly over-targeted in HSPC, are likely lost upon in vivo
selection.

We conducted a clone fitness analysis across all available clinical
trial data, incorporating cell type as a covariate to identify evidence of
IM. Given the limited number of patients in the clinical data, to mini-
mize potential false-positive gene associations caused by stochastic
clonal selection (withoutmechanistic interaction), we implemented an
additional robust analysis step that filters out gene/clone growth
associations that are not significant after excluding measurements
from the most abundant clone in the tested gene. Further details on
this procedure are provided in the “Methods” section.

In the SCD dataset (Fig. 7C), six genes were identified with sig-
nificant increases in growth rate. The most significant, C1RL (score =
1558, p < 1e-11), encodes Complement Component 1 Receptor-Like
protein, involved in immune response modulation. A detailed repre-
sentation of IS location and abundance in C1RL is shown in Fig. 7D.
Despite a maximum cumulative contribution of 2%, the consistent
increase across multiple independent clones and lineages suggests a
potential mechanism linking C1RL to IM events in gene therapy. C1RL

has been significantly associated with survival in a cohort of acute
myeloid leukemia patients and is widely expressed in myeloid leuke-
mia cell lines, including K-562 (chronic myelogenous leukemia), THP-1
(myelomonocytic leukemia), HL-60, and NB4 (acute promyelocytic
leukemia), as well as glioma43,44.

In the β-thal dataset, IS in three genes were identified as poten-
tially altering clone fitness and conferring a proliferative advantage
(Suppl. Fig. 15). The most significant, HMGA2 (Fig. 7E, score = 2732,
p < 1e-16), encodes the AT hook 2 transcription factor, known for
binding AT-rich DNA regions. This IM event, extensively described in
previous studies45–47, suggests that IS in the last intron generatesmRNA
lacking let-7 miRNA binding sites, leading to reduced HMGA2 degra-
dation and driving proliferative advantage. Despite the expansion of
HMGA2-integrated clones, no progression to a leukemic phenotype
was observed, and the event was classified as benign due to its stabi-
lization over time. MELISSA’s statistical model detected this IM event
using IS tables from just three time points (11, 36, and 48months), with
a cumulative IS contribution in HMGA2 of only 1%. As shown in Suppl.
Fig. 16, this effect is specific to the myeloid lineage, consistent with
published data. The second most significant gene, SFPQ (score = 458,
p < 1e-5), is an epigenetic regulator with histone deacetylase binding
activity.

Detecting clonal expansion in SCID-X1 gene therapy trial
Enhanced proliferation of clones harboring IS in HMGA2 has been
reported in all eight patients enrolled in the SCID-X1 gene therapy

Fig. 6 | Integration site gene targeting effects on clone growth dynamics.
A Clone growth rate scores for the top 10 genes identified using the clone growth
dynamics modeling in a single group setting (1 replicate, 4 time points). Genes
associated with documented clonal expansion in gene therapy clinical trials are
included in the heatmap, marked by a red line under the gene name. The color in
the heatmap represents the estimated clone growth rates, measuring the average
increase in clone size at each passage for ISmapping to a specific gene. Source data
are provided as a Source Data file.B Enrichment score for differential clone growth
dynamics in BMMSCandAdMSC. The plot illustrates the growth association score,
quantifying thedifferential impactof integration site targeting genes on the growth
dynamics of clones within BM MSC and Ad MSC samples longitudinally over pas-
sages. Top plot: dots represent genes with high clone growth in BMMSC (blue) or
Ad MSC (green). The score is the signed LRT statistic for null hypothesis of same
growth rate in tested genomic interval (8637 tests). The dashed red line represents

the threshold for statistically significant differential clone dynamics (adjusted p
value 0.05). Colored vertical lines highlight statistically significant genes. Bottom
plot: sliding windows of different lengths (y-axis), color scale denotes the magni-
tude of the LRT statistic (blue BM MSC, green Ad MSC, 18002 tested windows).
Colored dots inside the windows denote the statistically significant ones with
adjusted FDR p value < 0.05. Source data are provided as a Source Data file.
C Detailed view of the relative contribution during the in-vitro culture of IS within
FKBP5 (AdMSC) andRORA (BMMSC). The bar graph represents the IS’s cumulative
contribution (%) within the gene, while dots correspond to individual clones.
D Integration site association with histone modifications in the different cell types.
Comparison of the distancebetween IS datasets and the (top to bottom)H3K4me3,
H3K27me3, H3K36me3, H3K4me1, and H3K9me3 histone modification profiles in
the corresponding cell types. The histogram (bin size 300bps) of distances is
converted into a heatmap.
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clinical trial19, with cumulative clonal contributions up to 15%. This
phenomenon has been attributed to the presence of a cryptic splice
acceptor site within the cHS4 chromatin insulator element included in
the LV vector used for this trial, which can lead to premature tran-
scription termination or the generation of aberrant fusion transcripts.
To evaluate whether MELISSA can consistently detect this expansion

across patients, we analyzed IS datasets generated from bead-selected
myeloid (CD14+, PMN) and lymphoid (CD3+ T, CD19+ B, and NK) cells
isolated from peripheral blood, comprising ~2 million IS. A graphical
summary of the dataset is shown in Suppl. Fig. 12B. One patient (p2)
was excluded from the analysis due to death at 2.5 years of follow-up
from causes unrelated to the treatment.
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We performed patient-specific clone fitness analyses, progres-
sively incorporating additional IS data over time to determine when
MELISSA could first detect the HMGA2 effect. As shown in Fig. 8A,
HMGA2 consistently ranked as the topgene influencing clonalfitness in
six out of seven patients when the full follow-up period was con-
sidered. In four patients (p3, p4, p5, and p6),HMGA2-associated clonal
expansion was already detectable as early as 6 months post-gene
therapy.

Figure 8B illustrates the contribution of individual IS to the
cumulativeHMGA2 clonal abundance in β-thal and SCID-X1 patients. In
SCID-X1 patients, sense-oriented IS consistently contributed over 90%
of the total HMGA2 signal at all evaluated time points (12, 36, and
48 months), while antisense-oriented IS contributed less than 10%.
Spatially, IS in sense between exons 3 and 5 showed a uniform dis-
tribution and gradual increase in contribution over time. In contrast,
the β-thal patient displayed a less pronounced orientation bias, parti-
cularly at early time point (sense/antisense ratio ~70%/30%) but a
strong proliferative effect associated with IS located in intron 4, sug-
gesting that positional effects may outweigh strand effects in this
context.

While most MELISSA analyses focus on testing groups of IS
mapped to predefined genomic regions (e.g., genes or cytogenetic
bands) to limit the number of false positive due to stochastic clonal
selection and PCR amplification biases, it can also be applied to the
analysis of individual clones. For this application, MELISSA requires an
individual IS to be detected in at least three distinct samples (time
points or cell types) to be evaluated. Figure 8C reports the fitness
scores for the IS with a significant growth advantage from the SCID-X1
patients (adjusted p value < 0.1). The highest-scoring clone was iden-
tified in Patient 6, with an IS located at chr19:5812269 in NRTN (57%
contribution), a gene encoding a growth factor known to enhance cell
proliferation and survival, particularly in the enteric nervous system
and cancer microenvironments.

Interestingly, although HMGA2 consistently ranked highest in
gene-level growth association analysis, no single clone with an IS in
HMGA2 was identified as the top proliferating clone in any patient,
underscoring the value of complementary gene-level and clone-level
assessments.

Discussion
Ensuring the safety of gene and cell therapies is a top concern for all
stakeholders in the field, from researchers and regulators to patients
and their advocates. While IS analysis is a cornerstone of evaluating
safety outcomes in preclinical and clinical studies using cell products
transduced with viral vectors, the existing analytical frameworks pri-
marily focus on sample report generation48, data handling49, and
modeling of clonal tracking data50–52. This leaves a critical gap in
evaluating safety concerns such as gene targeting rates and the pre-
sence of clones with altered fitness and proliferative advantage. To
address this gap, we developed an analytical framework named
MELISSA.

MELISSA is designed as an R package and facilitates the analysis,
combination, and comparison of IS datasets generated using diverse
conditions and complex experimental design. This powerful tool
allows researchers to leverage the flexibility of regression models,
generating gene-referenced quantitative scores that measure both
targeting rates and their effect on clone fitness, and include dedicated
functionality to explore the biological relevance of the results.

The simulation study presented in Fig. 2 highlights the remarkable
performance of our methodology. Across all scenarios, the PPV
increased as both effect size and sample size grew, showing the con-
sistency of the testing procedure. This is true for target genes of all
simulated lengths, although, for long TestGenes (40-80 Kb), the PPV
shows a stronger increase with effect size.

The PPV curves for gene targeting (Fig. 2A, B) are similar, despite
the differential analysis using twice the data of the single-group ana-
lysis. In our simulations, genes with fewer than 2 IS were excluded
(users defined parameters). Shorter genes (5–10 Kb) were less likely to
be included in the single-group analysis but, when tested, were more
easily detected as significant. For genes of typical length (20–40 Kb),
effect sizes of 4 (single-group) and 2 (differential) ensured sufficient
coverage, though detection rates exceeded 50% only at effect
sizes of 16.

In termsof clonefitness analysis,which is crucial for detecting risk
of IM, our modeling demonstrated the best performance across all
metrics in the single-group scenario. It excelled in terms of PPV, cov-
erage, and detection rate, even for shorter TestGenes and low effect
sizes, highlighting its sensitivity. In differential settings, the detection
ratewas lower because themodel primarily leveraged the growth rates
of a restricted number of clones located in TestGenes in the two
groups.

Recent research highlights the potential ofMSCs for gene therapy
applications. Their immunomodulatory and regenerative properties,
ease of isolation, rapid ex vivo expansion, and multilineage differ-
entiation capabilities make them promising vehicles for targeted
therapies in various contexts, including cancer gene therapy53. How-
ever, studies have revealed heterogeneity among MSCs derived from
different tissues, suggesting this variation might contribute to the
diverse levels of efficacy and outcomes observed in animal studies and
MSC-based clinical trials.

To address this limitation, we characterized andmade available to
the scientific community a detailed LV integrome in BMMSCs and Ad
MSCs. We then compared their safety profiles, using HSPC transduced
with the same LV vector as a reference. We chose HSPCs due to the
extensive data available on their LV integration distribution and
associated effects, providing a well-established benchmark for
comparison.

Figure 3 highlights critical differences in clonal dynamics between
the cell types despite both BMMSCs and AdMSCs demonstrating high
transduction efficiency. BM MSCs exhibited a more stable clonal
composition, suggesting a more homogeneous cell population that
better adapts to the culture conditions. Ad MSCs displayed a marked

Fig. 7 | Gene targeting and clone fitness analysis on Six et al. (2020) gene
therapy clinical trials IS data. A IS enrichment score for genes found significantly
over-targeted in at least one group of datasets, using the single-group gene tar-
geting analysis (LRT for null hypothesis that targeting rate in tested genomic
interval is equal to baseline). Only statistically significant genes (adjusted FDR p
value < 0.05) are plotted. Each bar corresponds to a over-targeted gene with x-axis
and y-axis that contain the chromosome location and the estimated regression
parameter, respectively. Number of datasets / numbers of tested genomic intervals
is 9/7522, 6/8604, 6/1671, 4/1275, 41/9022, 28/4170, 3/5250 for β-thal lymphoid, β-
thal myeloid, SCD lymphoid, SCD myeloid, WAS lymphoid, WAS myeloid, HSPC,
respectively. B Differential gene targeting analysis comparing WAS (69 datasets)
and HSPC (3 replicates), 11436 tested genomic intervals. Gene with enriched inte-
gration rate in WAS (HSPC) are plotted in brown (gray). Genes marked with a * are

included in the high-risk gene list. The dashed red line represents the threshold for
statistically significant enrichment (adjusted FDR p value < 0.05). C Gene/growth
association in the SCD trial. The gene/growth association score provides a metric
for assessing the significance of the fitness advantage or disadvantage conferred by
IS within a gene. The score is the signed LRT statistic for null hypothesis that the
size of clones with integration inside the tested gene does not increase with time.
Genes marked with a * are included in the high-risk gene list. The dashed red line
represents the threshold for statistically significant differential clone dynamics
(adjusted FDR p value < 0.05). Empty dots showgenes that have an adjusted p value
for the robust analysis (largest clone in tested gene removed when computing the
score) higher than 0.05. D Focus plots for clones harboring IS in C1RL gene in the
SCD trial. E Focus plots for clones harboring IS in HGMA2 gene in the β-thal trial.
Top: IS position. Bottom: individual and cumulative abundance.
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decline in diversity and IS count over the culture period, suggesting a
progressive loss of transduced cells and a limited proliferative activity
compared to BMMSCs. Therefore, we did not identify an IS profile that
could discriminate more primitive culture-initiating cells from the
whole MSC cell population. This is in contrast to the study by ref. 54
where primitive culture-initiating cell expansion was observed. It must
be noted that MSC in their study were obtained from whole umbilical
cord pieces and may well have a different phenotype from both BM
and Ad MSCs.

Encouragingly, the distribution of IS with respect to gene anno-
tation was consistent across cell types. We found that the high pro-
pensity of LV to integrate within gene bodies extends to MSC and this
feature strengthen the relevance of our gene-based approach, with

only 15% of the IS data points not considered in our analysis due to
their intergenic position.

Our study generated a valuable resource for researchers working
with LV-HSPC gene therapies consisting of a dataset composed of over
35,000 IS across three replicates. This dataset closely aligns with
existing knowledge on HSPC integromes regarding RIG and overall
association with the epigenetic profile (Figs. 4, 6D).

LV vectors preferentially integrate into transcriptionally active,
open chromatin regions, which might suggest that higher gene
expression levels would be associated with increased integration fre-
quency. However, as shown in Fig. 4E, our analysis reveals that gene
expression levels are a poor predictor of targeting rates in both HSPCs
and BM MSCs, with comparable effect sizes across the two cell types.

Fig. 8 | Clonefitness analysis onDeRavin et al. (2022) gene therapy clinical trial
for SCID-X1. A Single-patient clone fitness analysis including all IS data (of six cell
types) up to a given timepoint (x-axis, inmonths). The gray dots denote genes with
fitness score (y-axis, log10 scale) greater than 1. The fitness score is the signed LRT
statistic for the null hypothesis that the size of clones with integration inside the
tested gene does not increase with time. Black connected dots show the fitness
score for HMGA2 gene (set to 1 if lower). Red bars delineate significance threshold
(adjusted FDR p value < 0.05). At the lowest time point (3 months) the number of
tested windows ranges from 233 (patient 1) to 8655 (patient 4). At the largest time
point, the range is from 5572 (patient 7, time 42) to 13008 (patient 5, time 54).
B Focus plot on HMGA2 showing clone size evolution at three time points. The y-

axis represents the empirical cumulative distribution of clone sizes, stratified by
strand of integration; integration site location is on the x-axis. Patients from De
Ravin et al. (2022) and one β-thal patient from Six et al. (2022, dashed lines) are
shown. Gray areas indicate exons in at least one HMGA2 transcript. CWaterfall plot
of single-patient, single-clone fitness analysis. Each dot represents a clone (high-
lighted if in HMGA2) with an adjusted FDR p value <0.1; dot size reflects sig-
nificance, and the y-axis shows the LRT statistic (log10 scale) for the null hypothesis
of no clone growth. The number of tested clones in the seven patients is 30074,
24292, 99426, 116176, 58139, 10388, 22720, respectively. For each patient, the five
clones with the highest growth are annotated.
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This suggests that factors beyond transcriptional activity, such as
higher-order genome organization and the spatial positioning of
genomic regions near nuclear pores, may play a more decisive role in
shaping the integrome.

Analysis of gene-specific IS rates revealed both shared and MSC-
specific integration preferences. Among the shared targeted genes,
NPLOC4 serves as anexample, showing high targeting not only inMSCs
but also in ex vivo transduced HSPCs from healthy donors and clinical
trial subjects55–58, as well as in LV transduced T cells59. In contrast, PLEC
exemplifies an MSC-specific target, as it was the most frequently tar-
geted gene inMSCs and absent in the ISprofiles of HSPCs (Fig. 5A). The
frequent targeting of PLEC in MSCs is particularly noteworthy given
previous findings of high-frequency mutations in the PLEC gene in
bone marrow-derived MSCs from patients with Acute Myeloid Leuke-
mia, suggesting a potential link between PLEC dysfunction and MSC
involvement in AML development60. This raises potential safety con-
cerns for LV-modified MSCs, especially regarding PLEC-targeted
integrations.

Furthermore, our study revealed similar targeting of high-risk
cancer genes across MSC and HSPC cell types with some distinctions.
For example, SPPL2B, a protease that cleaves the transmembrane
domain of tumor necrosis factor-alpha to release the intracellular
domain and is known for its role in immune regulation and inflam-
mation, was targeted exclusively in BM MSC. More deep studies
involving invivo experimentswill be crucial to identifyMSC-specific IM
risk genes, as our results found low targeting rates and no clonal
expansion associated with genes previously known to cause clonal
expansion in animal models and human subjects involved with LV/RV
HSPC gene therapy.

Gene therapy safety assessment often relies on comparative IS
data analysis fromdifferent sources. This can involve, as demonstrated
in this study, comparing gene targeting rates between alternative cell
sources (e.g., BM MSC vs. Ad MSC), vector designs, or transduction
protocols.

Figure 5 highlightsMELISSA’s capability of capturing differentially
targeted genes. This allows for in-depth investigation of individual
genes and calculation of genome-wide high-risk scores. The weak
correlation between gene expression levels and gene targeting scores
is further supported by the differential analysis comparing BM MSCs
and HSPCs (Fig. 5B). However, enrichment analysis based on differ-
ential targeting scores identifies cell type–specific pathways, suggest-
ing that while individual gene expression is a poor predictor of
integration, broader transcriptional programs may still shape inte-
gration preferences (Fig. 5D, E).

In the comparative analysis focusing onMSC cells (Fig. 5F, G), only
SETD2, an epigenetic regulator with potential tumor suppressor
activity40, was identified as differentially targeted in BMMSC, andDMD
in Ad MSC. However, as demonstrated in the simulation study, the
ability ofMELISSA to detect differentially targeted genes is contingent
upon the strengthof the effect and the size of thedataset. It isplausible
that by augmenting the number of IS retrieved from the MSC experi-
ment, more differentially targeted genes with weaker associations
couldbe identified, suggesting the potential for further exploration for
a more conclusive safety assessment comparison. The analysis based
on cytogenetic band annotation covers both intra- and intergenic
regions, allowing for amore comprehensive genome-wide comparison
of integration profiles. Notably, several genomic regions showed a
region targeting scores higher than the top-ranked genes. This high-
lights a key limitation of gene-based analyses. While these approaches
are useful for evaluating potential genotoxic risks associated with
known genes, they may overlook the impact of perturbing important
regulatory elements, such as distant enhancers, that fall outside gene
boundaries but still play critical roles in genome function and safety.

Using MELISSA’s clone fitness analysis, we explored the relation-
ship between LV integration and clone fitness in MSCs. Figure 6

demonstrates that distinct sets of genes significantly impacted in-vitro
clone growth dynamics within each MSC population. Notably, genes
previously linked to clonal dominance or IM in HSPC-based gene
therapy exhibited minimal influence on MSC expansion. This rein-
forces the crucial need for cell type-specific considerations when
evaluating gene sets for their potential impact on clone fitness and
associated safety risks.

The differential analysis identified a single gene, RORA, as sig-
nificantly impacting clone growth in BM MSCs. In contrast, Ad MSCs
displayed amore complex profile, with a greater number of significant
genes and stronger growth effects. Notably, clones with IS in FKBP5, a
knownoncogene, are estimated to double their contributionwith each
passage of in vitro culture. An additional analysis using a sliding win-
dow approach further confirmed that Ad MSCs harbor more genomic
regions with a significant positive impact on clone growth compared
to BMMSCs. It is important to note that these associations might also
be influenced by the observed consistent and significant loss of
transduced cells in Ad MSCs. This reduces overall cumulative clone
size and exacerbates the contribution of surviving clones.

This is the first report of IS analysis of MSC. While the differences
noted in BM MSC and Ad MSC are interesting, further studies evalu-
ating different donors are warranted. Gene modification of MSC is
likely to transfer chemokine, cytokine, or other genes aimed at
improving their potency but could also impact fitness and therefore
worthy of future study. It is also worth noting that LV vectors are
currently the most prevalent delivery vehicle for patients treated with
FDA approved gene therapies and in many ongoing clinical trials.

The association observed between histone modifications and IS
distribution in HSPCs aligns with findings reported in SCID-X133 and
wild-typeHIV15. However, the epigenomic profiles ofMSCs only exhibit
partial correlationwith their respective integromes. Notably, H3K4me1
and H3K9me3 display distinct patterns of association between MSCs
and HSPCs with their respective integromes. This inconsistency could
be explained by the co-localization of H3K9me3 and H3K4me1 specific
to HSPCs or the availability of tethering factors differing between cell
types. Further studies are needed to fully understand the biological
reasons behind this lack of consistency. However, it highlights the
importance of in-depth characterization of how host cell status drives
the IS selection process in a cell type-specific manner.

Our analysis across the multiple gene therapy clinical trials
reported in ref. 18, as shown in Fig. 7, reveals significant heterogeneity
between the integrome observed in vitro within HSPCs and that in
myeloid and lymphoid subpopulations isolated from the peripheral
blood of GTpatients. Thesedifferences can largely be attributed to the
nature of the cell populations and the timing of data collection. HSPCs
are a diverse group, comprising both short-term progenitors and long-
term repopulating HSCs. The HSPC data tables were generated shortly
after transduction, without undergoing the selective pressures of
engraftment seen in clinical data. Conversely, the clinical IS data,
generated from peripheral blood samples at least 11 months post-gene
therapy, are more reflective of the integrome of long-term HSCs. The
consistent patterns of clonal selection observed across different trials,
particularly in spatial distribution, suggest that these changes are
driven by in vivo clonal selection processes rather than by the specific
disease context.

The identification of known gene/growth associations, such as
HMGA2 in the β-thal trial, provides evidence that the MELISSA model
can capture mechanistic effects despite the limited data available. In
the SCD trial, we found clones with IS in C1RL to exhibit a similar
expansion rate to that of HMGA2 in β-thal. This emphasizes the
importance of considering significant associations, especially
in situations where data is limited to a single or few patients, as
potential indicators of IM events that warrant close monitoring to
differentiate between benign and malignant proliferative events and
avoid false-positive associations. However, we anticipate that as the
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number of patients in a dataset increases, MELISSA will be able to
detect more subtle effects and further reduce the incidence of false
positives, enhancing these findings’ robustness.

In the SCID-X1 trial, MELISSA identified significant expansion of
HMGA2-integrated clones using IS data from the first 12 months post-
gene therapy for six out of seven patients analyzed, demonstrating
early detection capability. Timely detection of expanding clones is
critical for gene and cell therapy safety, as it enables clinical investi-
gators to monitor clonal dynamics closely and intervene when neces-
sary. As data from subsequent time points were included, the
significance of the growth rate enhancement became more
pronounced.

The integration of IS clone size dynamics and spatial distribution,
as shown in Fig. 8B, provides insight into the potential mechanisms
underlying fitness perturbations. Future work will build on this fra-
mework to develop methods for inferring the most likely mechanisms
of IM and guiding the design of safer therapeutic vectors.

While MELISSA provides valuable insights, it is important to
acknowledge its limitations. Relying solely on a gene-centric approach
may overlook potential safety concerns. Since different viral vectors
exhibit distinct preferences for specific genomic features, a substantial
proportion of ISmay occur in regions not annotated as genes and thus
remain unexamined.

Gene-independent strategies, such as those based on cytogenetic
bands or genomic windows of variable length (Figs. 5F, 6B), allow for
broader screening across the genome. While establishing a causal
relationship between IS location and its impact on clone fitness ismore
challenging in these contexts, these approaches can uncover IMevents
involving the disruption of distal regulatory elements. The statistical
power and accuracy of such analyses improve with the number of
regions tested, although this also increases computational demands.

To address these challenges, futurework will focus on developing
a data-driven approach to identify genomic intervals that maximize
targeting or growth effects, aiming at reducing reliance on user-
defined regions, improving result robustness, and enhance computa-
tional efficiency.

In conclusion, we present MELISSA, a framework for analyzing IS
data to assess the safety of viral vector-mediated gene and cell thera-
pies. MELISSA offers diverse functionalities for gene targeting analysis,
differential analysis, clone growth analysis, and visualization. Applying
MELISSA MSCs revealed distinct clonal dynamics, cell type-specific
gene targeting, and the importance of cell type considerations for
evaluating safety. We envision MELISSA to become a valuable tool for
empowering researchers, clinicians, and regulators to ensure the
safety of novel gene and cell therapies.

Methods
Lentiviral vectors
A third-generation61 LV encoding EGFP (pcDNA-CSCGW62 kindly pro-
vided by P. Zoltick, Children’s Hospital of Philadelphia, Philadelphia,
PA) was produced in a 5 L shaking flask (Thompson, Oceanside, CA,
USA) using the packaging plasmids pMDL61, pRSV-Rev61, and pMD.G63.
Serum-free media adapted suspension HEK293T(IUS) cells, derived by
Indiana University School of Medicine (IUSM) from HEK293T cells
(Stanford University), were cultured in Expi293 media (Gibco, Cat#
A1435102, Grand Island, NY, USA) at 2.5 × 105 cells/mL using shake
flasks in a 37 °C 5% CO2 incubator for at least 2 passages before
transfection. Cells were counted on the day of transfection and
resuspended in TransFX-H media (Cytiva, Cat# SH3093902, Marlbor-
ough, MA, USA) supplemented with 4mM of GlutaMAX (Gibco, Cat#
35050079, Grand Island, NY, USA). The transfectant, containing Opti-
MEM (Gibco, Cat# 31985070, Grand Island, NY, USA), 4 plasmid DNA,
and PEIpro (Polyplus, Cat# 101000026, Illkirch-Graffenstaden,
France), was prepared at 5% of the total cell culture volume. Per 106

cells, 2 µg of total plasmid DNA were added. Plasmids pcDNA-CSCGW,

pMDL, pMD.G, and pRSV-Rev were mixed into OptiMEM at the weight
ratio of 4:2:1.3:1, respectively. PEIprowas added to the plasmidmix at a
ratio of 1 µL of PEIpro per 1 µg of total plasmid DNA and allowed to
polyplex for 15minutes at room temperature. The transfectants were
added to the HEK293T(IUS) cells for a final concentration of 3 × 106
cells/mL; transfected HEK293T(IUS) cells were cultured in a 37 °C
incubator supplied with 5% CO2 for 16 hours. After 16 hours of incu-
bation, TransFXmedia containing 10mMof sodium butyrate (Cayman
Chemical Co., Cat# 13121, Ann Arbor, MI, USA) was added to the cell
culture at a ratio of 1:1. Forty-eight hours post-transfection, culture
media were harvested and filtered through 0.4 µm filters (Fisherbrand,
Cat# FB12566505, Waltham, MA, USA) to remove cell debris. Filtered
LV was allotted into cryovials (Thermo Scientific, Cat# 5000-1020,
Waltham, MA, USA), 1mL/vial, and stored at −80 °C freezer until use.

Transduction of MSC
Bone marrow-derived MSCs (BM-MSCs) were acquired from ATCC
(Cat# PCS-500-012, Manassas, VA, USA) and grown in Rooster Media
(Rooster Bio, Cat# K82003, Frederick, MD, USA). Adipose-derived
MSCs (AT-MSCs) were acquired from ATCC (Cat# PCS-500-011, Man-
assas, VA, USA) and grown in DMEM/F12(Gibco, Cat# 11320082, Grand
Island, NY, USA) supplemented with 5% FBS(Cytiva, Cat# SH30910.03,
Marlborough, MA, USA), 10 ng/mL FGF-2 (R&D Systems, Cat# BT-
FGFB-AFL-025, Minneapolis, MN, USA), 5 ng/mL EGF (R&D Systems,
Cat# 236-EG-200, Minneapolis, MN, USA), and 250 µM ascorbic acid
(Lonza, Cat# CC-4398, Walkersville, MD, USA). The cells were main-
tained in a 37 °C 5% CO2 incubator. For both BM- and AT-MSC
experiments, cells at passage 1 (P1) were seeded at 1 × 104 cells/cm2 in
6-well dishes (Corning, Cat# 3516, Corning, NY, USA) for both the
control and transduced groups. The following day, the media was
aspirated from the transduced group, and 1mL of LV diluted 1:100
(with fresh culturemedia)was added to thewells alongwith Polybrene
(final concentration 8 µg/mL) (Millipore Sigma, Cat# TR1003, Bur-
lington MA, USA). Four hours later, the LV solution was aspirated, and
fresh culture media was added. Once the wells reached 70-80% con-
fluence, the cells were washed with DPBS (Gibco, Cat# 14040133,
Grand Island, NY, USA), harvested using TrypLE (Gibco, Cat#
12605028, Grand Island, NY, USA), and seeded 3 − × 103 cells per cm2.
At passage 4 (P4), the vector copy number (VCN) per cell for BM-MSC
andAd-MSCwas 3.91 and 2.69, respectively. At passage 8 (P8), the VCN
per cell was 3.45 and 2.82 for BM MSC and Ad MSC, respectively. This
procedure was repeated for both the control and transduced samples
until passage 5 (P5). At P5, someof the controlwells were transduced in
the same manner as previously described. The passaging procedure
was continued for all three groups until passage 11 (P11). The cells were
collected at various time points for insertion site analysis. The cultures
were also observed using a fluorescent microscope to observe GFP
expression.

Transduction of CD34+HSPCs
GCSF-mobilized peripheral blood-derived (mPB) CD34+ HSPCs were
pre-stimulated for 24 hours and two consecutive overnight transduc-
tion were performed at a concentration of 5 × 105 cells/mL at a multi-
plicity of infection (MOI) of 75 per transduction in the presence of the
transduction enhancers synperonic F108 (200 µg/mL final concentra-
tion, Sigma-Aldrich, Cat# 07579, St. Louis, MO, USA) and protamine
sulfate (4 µg/mL final concentration, Sigma-Aldrich, Cat# P3369, St.
Louis, MO, USA) in serum-free stem cell growth medium (CellGenix®
GMP SCGM, Cat# 20806-0500, Sartorius CellGenix, Freiburg, Ger-
many,) supplementedwith 1% Penicillin/Streptomycin (Gibco, Cat# 10-
378-016, Grand Island, NY, USA), 1% L-glutamine (Gibco, Cat#
25030081, Grand Island, NY, USA), 100 ng/mL rhSCF (Gibco, Pepro-
Tech®, Cat# 300-07-10UG, Grand Island, NY, USA), 100 ng/mL rhTPO
(Gibco, PeproTech®, Cat# 300-18-10UG, Grand Island, NY, USA) and
100ng/mL rhFLT3L (Gibco, PeproTech®, Cat# 300-19-10UG, Grand
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Island, NY, USA). The cells were cultured in supplemented SCGM for
ten days before genomic DNA isolation.

Droplet digital PCR for vector copy numbers in transduced cells
Sample DNA was extracted from cells using QIAamp DNA Mini Kit
(Qiagen, Cat# 51304, Germantown, MD, USA). The primers and probe
nucleotide sequences for detecting LV are forward primer LV-F (5’-
ACTTGAAAGCGAAAGGGAAAC-3’), reverse primer LV-R (5’-CACCCA
TCTCTCTCCTTCTAGCC-3’), and probe TP-LV (5’-6FAM-AGCTCTCTC
GACGCAGGACTCGGC-TAMRA-3’). Apolipoprotein B (APB) gene was
used as an endogenous control; the primers and probe sequences for
APB are forward primer APB-F (5’-TGAAGGTGGAGGACATTCCTCTA-
3’), reverse primer APB-R (5’-CTGGAATTGCGATTTCTGGTAA-3’), and
probe TP-APB (5’-VIC-CGAGAATCACCCTGCCAGACTTCCGT-TAMRA-
3’). The primers and probe nucleotides were synthesized by a com-
mercial vendor (Integrated DNA Technologies, Coralville, IA, USA).

Droplet digital PCR (ddPCR) was performed on the Bio-Rad
QX200 system to quantify vector copy numbers in transduced MSCs
by following the manufacturer’s procedures. The controls are no-
template controls (water), negative controls (DNA from untransduced
CD34(-) cells), and positive controls (1.5 × 105 copies of target
sequences). Each sample was tested in triplicates. An excess master
mix of reagents without DNA was prepared according to the total
number of testing articles (including controls) and the following con-
ditions: for each reaction, a final concentration of 1x no dUTP ddPCR
super mix for probe (Bio-Rad, Cat# 1863023, Hercules, CA, USA),
900 nM of LV-F, 900 nM of LV-R, 250nM of TP-LV, 900nM of APB-F,
900 nM of APB-R, 250nM of TP-APB, and 5 units (in 1 µL) of HindIII-HF
restriction enzyme (New England BioLabs, Cat# R3104S, Ipswich, MA,
USA) were assembled. The master mix was distributed to a microtube
before adding 1 µg of testing article DNA; DNase/RNase-free water was
added to bring the final volume to 20 µL in each reaction. The 20 µL
samples were loaded into a cartridge (Bio-Rad, Cat# 1864008, Her-
cules, CA, USA) with 70 µL of generation oil (Bio-Rad, Cat# 1864005,
Hercules, CA, USA) loaded in all the bottom wells for droplet genera-
tion in a droplet generator (Bio-Rad, Cat# 1864002, Hercules, CA,
USA). The formed droplets were transferred to a 96-well ddPCR plate
(40 µL droplets/well) (Bio-Rad, Cat# 12001925, Hercules, CA, USA)
before being sealed with a pierceable foil heat seal (Bio-Rad, Cat#
1814040, Hercules, CA, USA) at 180 °C using a heat sealer (Bio-Rad,
Cat# 1814000, Hercules, CA, USA). The sealed plate was placed on a
C1000 Touch Thermal Cycler (Bio-Rad, Cat# 1851197, Hercules, CA,
USA), and the PCRwas run using the following program – Step 1 (95 °C
for 10minutes), Step 2 (40 cycles of 94 °C for 30 seconds followed by
60 °C for 1minute), and Step 3 (98 °C for 10minutes). After Step 3, the
thermocycler was held at 12 °C until the droplets were read using a
QX200 droplet reader (Bio-Rad, Cat# 1864003, Hercules, CA, USA).
The data was analyzed using Bio-Rad QX200 Manager Software.

DNA Library preparation for integration site analysis
DNA library for integration site analysis was prepared according to the
INSPIIRED48,64 protocol with slight modifications described below. The
genomic DNA from LV-transduced cells was extracted and eluted in
DNase-/RNase-free water with QIAamp DNA Mini Kit (Qiagen, Cat#
51304, Germantown, MD, USA) by following the manufacturer’s pro-
cedure. The extracted genomic DNA was fragmented at the Indiana
University School of Medicine Center for Medical Genomics Service
Core (IUSM-CMG). DNA fragmentation was performed by sonication
using the CovarisME220 sonication systemwith 40Watts peak power,
10% duty factor, 1000 cycles/burst at 25 °C for 30 seconds, Oligonu-
cleotides (linkers, primers, and blocking oligos) for DNA library pre-
paration were synthesized, according to the INSPIIRED protocol48, by
Integrated DNA Technologies, Inc. The DNA library was evaluated
using the Agilent High Sensitivity DNA kit (Agilent Technologies, Cat#
5067-4626, Santa Clara, CA, USA) on an Agilent Bioanalyzer 2100

Electrophoresis System at IUSM-CMG to ensure library quality. A
maximum of 5 prepared DNA libraries were pooled and sequenced
using MiSeq Reagent Kit v2 300-cycle (Illumina, Cat# MS-102-2002,
San Diego, CA, USA) on the MiSeq system at IUSM-CMG.

Statistical modeling
The four statistical analyses considered in this manuscript are the
following.

A) Gene targeting. The tested gene has a higher IS rate than the
rest of the genome. B) Differential gene targeting. The rate of IS in the
tested gene is different in the two groups. C) Clone fitness. In the tested
gene, clone sizes grow faster (on average, over time) than in the rest of
the genome. D) Differential clone fitness. In the tested gene, there is a
difference between group 1 and 2 in clones’ growth rate. For analyses A)
and B), the presence/absence of an IS at each genomic coordinate is
modeled as a binary variable (1 if an ISmaps to the specific location and
0 otherwise). This binary variable is then considered as the response
variable in a logistic regression, where the number of IS inside and
outside the tested gene (y = 1) is subtracted from the length of the
tested gene and the total length of the investigated genome (y =0). For
analyses C) and D), we model clone size growth using logistic regres-
sion for proportion data as the response variable and include time in
the set of covariates. In all analyses, we performed a likelihood ratio test
for each gene. The test statistic is used to assign a p-value to each gene.
The p-values are then corrected to account for multiplicity. In the
simulation and experimental data analysis, the false discovery rate
(FDR) correction method is used. All analyses can be done with an
iterative approach, where significant genes are iteratively removed
from the dataset until no significant genes are detected. For the clone
fitness analyses (C) and (D), we implemented an optional robust sta-
tistical calculation to analyze the gene therapy clinical data. This
approach was designed to reduce the likelihood of false positives—
instances where significant gene-growth associations arise, not from
mechanisticmodifications of clone fitness due to the IS, but fromclonal
population dynamics. The clonal selection process, driven by the
engraftment bottleneck and the need to maintain homeostasis, is
expected to expand certain clones. These expansions are not caused by
altered clone fitness due to IS location and are, therefore, likely to
occur randomly across the genome. However, with a limited number of
independent datasets (e.g., data from only one patient for β-thal and
SCD), it becomes challenging to differentiate between mechanistic and
clonal dynamics effects. To address this issue, we developed a proce-
dure to reduce our false positive rate. For each gene, the robust statistic
is calculated by excluding the IS with the highest count (summed
across all cell types and time points) within that gene, mitigating the
bias introduced by clonal population dynamics. The robust statistic
serves as a filter, with the standard statistic reported only for genes that
remain statistically significant when the robust statistic is applied.

Simulation study
The simulation study focuses on chromosome 15, which is ~108Mb in
length. Five new genes, referred to as TestGenes (with length of 5, 10,
20, 40, 80 Kb), were added to the gene list at non-overlapping loca-
tions. Thefinal list of 1032genes, including theTestGenes,wasused for
simulating integrations across all simulations. The study explores
various effect sizes (h = 1, 2, 4, 8, 16, 32, 64), where h = 1 represents the
null hypothesis, and sample sizes N = 100, 200, 400, 800 IS for gene
targeting analysis (A, B); and cumulative clone sizes M = 1000, 2000,
4000, 8000 for clone fitness analyses (C, D). For each combination of
h and sample size, 1000 simulations were performed.

Gene targeting (A): IS were sampled without replacement, with
probability proportional to 1 for IS outside the TestGenes and pro-
portional to h for IS within TestGenes. Four datasets, each with N
integrations, were generated for each simulation. Differential gene
targeting (B): ISwere sampledwithout replacement, withprobability in
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TestGenes proportional to: h for IS within TestGenes in group 1, 1 for IS
within TestGenes in group 2. For the 1027 endogenous genes, the IS
probability (same in both groups) was proportional to a value sampled
from an exponential distribution with parameter 1. The baseline IS rate
outside of genes was set at 0.001. Each simulation produced four
datasets of sizeN for each group. Clone fitness (C): A total of 10,000 IS
were generated using the method described for group 2 in analysis B,
representing the total population of IS. At each time point,M elements
from the total population are sampled (with replacement). IS clone
sizes are defined by the times each IS is sampled. Selective growth for
ISwithinTestGenes is simulatedby increasing the samplingprobability
over time for IS within TestGenes, while for IS outside TestGenes
remained constant. The unnormalized probability for an IS within
TestGenes evolved as (qit= 1 + (h-1) t), while it remained qit= 1 for those
outside. Differential clone fitness (D): Two sets of 10,000 IS were
generated for group 1 and group 2, similar to (C). Clones were sampled
for both groups at each time point, with IS outside TestGenes evolving
with a random growth rate sampled from a uniform distribution [min=
0, max= 2] for both groups. For TestGenes, group 1 had sampling
probabilities evolving as (qit = 1 + h t), while group 2 followed (qit = 1 + t).

Gene expression analysis
To compare gene targeting results with gene expression profiles, we
performed transcript quantification and differential expression ana-
lysis using the DESeq2 R package65. For the analysis shown in Fig. 4E,
raw transcript counts were normalized across datasets and subse-
quently averaged. Gene symbols were then mapped to the transcript-
level scores to enable direct comparison with gene targeting results.
For the analysis presented in Fig. 5B, raw transcript counts from HSPC
and BM MSC datasets were used to compute differential expression.
Test statistics corresponding to the null hypothesis of no differential
expression between cell typeswere extracted, and the resulting signed
values were used as differential expression scores.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data generated in this study on MSC and HSPC lentiviral inte-
grations are available in the NCBI BioProject database under accession
code PRJNA1090149 at (https://www.ncbi.nlm.nih.gov/bioproject/?
term=PRJNA1090149) and in the Genome Sequence Archive under
accession code SRA1832300. Integration site data from clinical trials
for Beta-thalassemia, Sickle Cell Disease and Wiskott-Aldrich Syn-
drome have been published in ref. 18 and are available in the NCBI
BioProject database under accession code PRJNA449379 at (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA449379). Integration site data
from clinical trials for SCID-X119 are deposited in Zenodo (https://
zenodo.org/record/8147763). Source data are provided with
this paper.

Code availability
The code used to develop the model, perform the analyses, and gen-
erate results in this study is publicly available and has been deposited
in MELISSApaper at (https://github.com/pellinlab/MELISSApaper)
under the Creative Commons Attribution-NonCommercial 4.0 Inter-
national (CC BY-NC 4.0) license. The specific version of the code
associated with this publication is archived in Code Ocean capsule
available at (https://codeocean.com/capsule/9281121/tree).
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