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One-shot learning for solution operators of
partial differential equations

Anran Jiao 1, Haiyang He2, Rishikesh Ranade3, Jay Pathak 2 & Lu Lu 1,4

Learning and solving governing equations of a physical system, representedby
partial differential equations (PDEs), from data is a central challenge in many
areas of science and engineering. Traditional numerical methods can be
computationally expensive for complex systems and require complete gov-
erning equations. Existing data-drivenmachine learningmethods require large
datasets to learn a surrogate solution operator, which could be impractical.
Here, we propose a solution operator learning method that requires only one
PDE solution, i.e., one-shot learning, along with suitable initial and boundary
conditions. Leveraging the locality of derivatives, we define a local solution
operator in small local domains, train it using a neural network, and use it to
predict solutions of new input functions via mesh-based fixed-point iteration
ormeshfree neural-network based approaches.We test ourmethodon various
PDEs, complex geometries, and a practical spatial infection spread application,
demonstrating its effectiveness and generalization capabilities.

Learning and solving governing equations of a physical system from
data is a central challenge in a variety of areas of science and engi-
neering. These governing equations are usually represented by partial
differential equations (PDEs). In real-world applications, however,
most PDEs lack analytical solutions. Consequently, various approaches
on solving PDEs have been developed over the years. Traditional
numerical methods including finite element method, finite difference
method, and spectral methods have been well established. However,
the computational costs of these numerical methods are prohibitively
expensive for complex systems. Moreover, these methods typically
require spatial discretization on some mesh of nodes, and evaluation
of the solution at any other point requires interpolation or some other
reconstructionmethod.More importantly, numericalmethods require
a complete understanding of the underlying PDEs.

Recently, physics-informedmachine learning (PIML) has obtained
great attention and provides alternative approaches for solving PDEs
or approximating solution operators for PDEs1. By integrating physics
into the loss function of a neural network using automatic differ-
entiation, physics-informed neural networks (PINNs) have been suc-
cessfully applied to solve forward problems of various types of PDEs
across multiple fields2–11. PINN is able to generate differentiable PDE
solutions at any point without a mesh. However, solving a new PDE

requires the training of a new neural network, which is still computa-
tionally expensive. To address this issue, deep neural operators have
been developed very recently to learn PDE solution operators by using
neural networks, such as deep operator network (DeepONet)12–18 and
Fourier neural operator14,19. Deep neural operators enable fast predic-
tion of PDE solutions under varying conditions, such as different
boundary and initial conditions.

Training deep neural operators requires large amounts of data,
which is either experimental data or data from computational simu-
lations of physical systems20. However, in practice, it can be expensive
or infeasible to obtain or store large amounts of such data. For
instance, in geophysics applications, it is quite expensive to measure
seismic activity, resistivity, ground penetrating radar, and magnetic
fields21. Similarly, in climate modeling, observed climate records are
insufficient and running a long-term high-resolution climate simula-
tion is not feasible with current computational power22. The field of
fluid dynamics faces analogous challenges, as the complexity of
simulating fluid flow and heat transfer in various engineering appli-
cations requires high-performance computing resources, which are
economically and computationally expensive. When the governing
PDEs are known, physics-informed DeepONet (PI-DeepONet)13 has
been proposed to reduce the data requirement by incorporating PDEs
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into the loss function. PI-DeepONet has been applied to long-time
integration of parametric evolution equations, in which the temporal
domain is decomposed and a single network is trained only within a
short-time interval23. However, in many complex real problems, the
explicit form of the PDEs may be unknown due to the complexity or
insufficient understanding of physics. Given these challenges, it would
be highly beneficial if we develop methods aiming to minimize the
amount of training data and the associated computational costs for
learning PDE solution operators without knowledge of the underlying
PDEs. This motivates our focus on an intriguing scenario: one-shot
learning, which involves network training based on only a single
data point.

One-shot learning methods have been proposed to learn from a
single example usually by utilizing previously acquired knowledge24–27.
One-shot learning is mainly used in the computer vision field and its
usage in scientific machine learning (SciML) is very limited28,29. To the
best of our knowledge, no one-shot learning method has been devel-
oped for learning PDE solution operators. In this work, we propose a
one-shot learning approach to learn PDE solution operators from only
one data point, and there are no existing methods that address the
aforementioned challenges. In our method, we abstract some “general
knowledge” from only one PDE configuration and its solution, and
make it possible to predict PDE solutions with other parameters or
conditions.

We define the scope of problems and highlight the challenges we
aim to address as follows.

• Our goal is to learn the solution operator of an unknown under-
lying PDE system that maps variable inputs to the corresponding
solutions.We only consider PDEs that arewell-posedwith suitable
initial and boundary conditions (IC/BCs). We do not consider
nonlocal PDEs such as integral equations and fractional differ-
ential equations.

• We address scenarios where obtaining a large amount of paired
input-output function data points are infeasible, but a single data
point is available. Hence, existing data-driven methods (which
require large datasets) are inapplicable. Moreover, there is no
extra information (e.g., relevant tasks) available for transfer
learning or meta-learning.

• While the explicit PDE form is unknown, the IC/BCs are known, as
is typical when dealing with physical systems. In such cases, tra-
ditional numerical methods and physics-informed machine
learning (which require the PDE form) are inapplicable. We
explainwhy theexistingdata-efficientmethods (physics-informed
operator learning, multi-fidelity operator learning, meta-learning,
transfer learning, and self-supervised learning) cannot be applied
to our setting in Supplementary Section S1.

From another perspective, our method can also be viewed as an
approach for discovering PDEs. When discovering PDEs, in one sce-
nario, where we know all the terms of the PDE and only need to infer
unknown coefficients from data,many neural network-basedmethods
have been proposed. For example, we can enforce physics-based
constraints to train neural networks that can solve inverse problemsof
PDEs3,5,30–35. In the second scenario, where we do not know all the PDE
terms, but have a prior knowledge of all possible candidate terms,
several approaches on PDE discovery have also been developed36,37.
The kernel frameworks for learning PDEs38,39 are proposed with kernel
smoothing followed by kernel regression to learn the functional form
of the differential operator with low training data requirements. In a
general setup, discovering PDEs only from data without any prior
knowledge is much more difficult40,41. To address this challenge,
instead of discovering the PDE in an explicit form, we use a neural
network as an implicit representation of the physics laws.

Our one-shot learning method first leverages the locality of (par-
tial) derivatives and uses a neural network to learn the local solution

operator of the PDE system defined at a small computational domain.
Then for a new PDE condition (e.g., a new source/forcing term or PDE
coefficient field), we find the global PDE solution by coupling all local
domains using the following mesh-based or neural network approa-
ches, constrained by the IC/BCs. Specifically, a mesh-based fixed-point
iteration (FPI) approach is proposed to obtain the PDE solution that
satisfies the boundary/initial conditions and local PDE constraints. In
this iterative approach, the computation on local stencil of mesh ele-
ments is in the same spirit as traditional PDE solvers. We also propose
two versions of local-solution-operator informed neural networks
(LOINNs), which aremeshfree, to improve the stability andflexibility of
finding the solution. Moreover, our one-shot learning method has
been applied to solve multi-dimensional linear and nonlinear PDEs,
PDEs defined on a complex geometry, a spatial infection spread pro-
blem, and has been generalized to a new geometry. In this paper, we
demonstrate our one-shot learning method for solution operators on
different PDEs for a range of conditions in “Results” section, and then
describe the details of our method.

Results
Wedemonstrate the capability and potential of our proposed one-shot
learningmethod through various problems, and discuss choices of the
local solution operator eG, variations inΔf, effectiveness of ourmethod,
different mesh resolutions, and generalization. We first introduce the
problem setup of learning solution operators for PDEs using one-shot
learning method and then present the results.

Learning solution operators for PDEs
We consider a physical system governed by a PDE defined on a spatio-
temporal domain Ω � Rd :

F ½uðxÞ; f ðxÞ�=0, x= ðx1, x2, . . . , xdÞ 2 Ω

with suitable initial and boundary conditions

BðuðxÞ,xÞ=0, ð1Þ

where u(x) is the solution of the PDE and f(x) is a forcing term. The
solution u depends on f, and thus we define the solution operator as

G : f ðxÞ7!uðxÞ:

For nonlinear PDEs, G is a nonlinear operator.
In many problems, the PDE of a physical system is unknown or

computationally expensive to solve, and instead, sparse data repre-
senting the physical system is available. Specifically, we consider a
dataset T = fðf i,uiÞgjT j

i = 1, and (fi, ui) is the i-th data point, where ui =Gðf iÞ
is the PDE solution for fi. Our goal is to learn G from the training dataset
T , such that for a new f, we can predict the corresponding solution
u=Gðf Þ. When T is sufficiently large, then we can learn G straightfor-
wardly by using neural networks, whose input and output are f and u,
respectively. Many networks have been proposed in this manner such
as DeepONet12 and Fourier neural operator19. In this study, we consider
a very challenging scenario where we have only one data point for
training, i.e., one-shot learning with jT j= 1, and we let T = fðf T ,uT Þg.
Note that here “one-shot” represents one input-output data pair in the
context of operator learning.

One-shot learning method based on the principle of locality
It is impossible in general to learn the PDE solution operator G from a
single data point. To address this challenge, here we consider that T is
not specified, and we can select f T . In addition, instead of learning G
for the entire input space, we only aim to predict Gðf Þ in a neighbor-
hood of some f0.
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To overcome the difficulty of training a machine learning model
based on only one data point, we leverage the principle of locality
that (partial) derivatives in the PDEs are mathematically defined
locally, i.e., the same PDE is satisfied in an arbitrary-shaped small
domain insideΩ. Based on this fact, instead of considering the entire
computational domain, we consider a “canonical” small local domain
~Ω, and we define a local solution operator ~G at ~Ω. In our method, we
can place ~Ω at any specific location inside Ω, and each placement/
realization leads to one training point for ~G. In this way, we could
easily generate a large training dataset for ~G. Therefore, we transform
the one-shot learning of G into a classical learning of ~G. Once ~G is well
trained, we predict Gðf Þ for a new f by applying ~G as a constraint at

arbitrary local domains of the PDE solution u=Gðf Þ. We enforce IC/
BCs in this process by hard or soft constraints, which ensure that the
predicted solutions are not only locally accurate but also globally
consistent across the entire domain. Specifically, our method
includes the following four steps (Fig. 1). The details of each step can
be found in “Methods” section.

Select a “canonical” local domain ~Ω. We consider a virtual back-
ground equispaced mesh and select a polygon on this local mesh.
We denote the set of all the mesh nodes that lie on the edges and
within the interior of the chosen polygon (marked as black nodes in
Fig. 1) as ~Ω. We show a general choice of ~Ω in Fig. 2a (left) by
black nodes.

Fig. 1 | Workflow of the one-shot learning method for solution operators.
(Step 1) We select a suitable polygon, such as a rectangle, on a local meshwith step
size Δx1 and Δx2, and thus define a local domain ~Ω (the black nodes). (Step 2) We
select a target mesh node x* and define a local solution operator ~G. (Step 3) We
learn ~G using a neural network from a dataset constructed from T = ðf T ,uT Þ. (Step
4) For a new PDE condition (i.e., a new input function f), we utilize the pre-trained ~G
to find the corresponding PDE solution by using one of the following approaches.

(Approach 1, FPI) We consider points on an equispaced global mesh. Starting with
an initial guess u0(x), we apply ~G iteratively to update the PDE solution until it is
converged. (Approach 2, LOINN) We use a network to approximate the PDE
solution. We apply ~G at different random locations to compute the loss function.
(Approach 3, cLOINN) We use a network to approximate the difference between
the PDE solution and the given u0(x).
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Select a local solution operator ~G. We choose a specific location x*

(the red node in Fig. 1) from the local domain ~Ω in step 1, and then
theother points ~Ωaux = fx 2 ~Ωjx≠x*g are called “auxiliary points” (the
blue nodes in Fig. 1). We construct a local solution operator

~G : fuðxÞ : x 2 ~Ωauxg, ff ðxÞ : x 2 ~Ωg
� �

7!uðx*Þ:

This local solution operator ~G is learned by a fully-connected neural
network that takes u values of auxiliary points and f values in ~Ω as
inputs and output u values of x*, which captures the local
relationship of the PDE. The choice of the shape and size of ~Ω
and ~G is problem dependent. In Figs. 2b–f, we present several
choices of ~Ω and ~G used in this paper. The principles for selecting
the local domain ~Ω and local solution operator ~G are summarized as
follows. First, the shape of ~Ω should align with the dimensional
structure of the data. For example, one-dimensional problems, ~Ω
couldbe a line segment,while in two-dimensional scenarios, it could

be a polygon. Second, for time-dependent system, in additional to
spatial domain, ~Ω should also include past temporal states.

Train the local solution operator ~G. Utilizing the dataset
T = ðf T ,uT Þ, we place the local domain ~Ω at different locations ofΩ,
which can be either a global structured mesh or randomly sampled
locations (Figs. 2g andh). This processgeneratesmany input-output
data pairs for training ~G.
Predict the solution u for a new input function fwith suitable IC/
BCs. For a new PDE condition f, we choose one of the three
approaches to find the global PDE solution using the pre-trained
local solution operator ~G: fixed-point iteration (FPI), local-solution-
operator informed neural network (LOINN) or local-solution-
operator informed neural network with correction (cLOINN).

FPI is a mesh-based approach, and we can only use the structured
equispaced global mesh to predict the solution. In contrast, with

Fig. 2 | Selecting local domains and learning local solution operators. a A
general choice of the local domain ~Ω is a set of nodes on a polygon. ~Ω can have
different shapes and sizes according to a specific PDE. A local solution operator ~G is

defined on ~Ω. b–f Examples of local domains and local solution operators used in
this paper. g, h When learning ~G, the training points based on ~Ω are either (g)
selected on a global mesh or (h) randomly sampled.
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LOINN and cLOINN, it is possible to train the neural networks using
randomly sampleddata points in thedomain.Whenweuseequispaced
global grid in LOINN and cLOINN, we denote the methods as LOINN-
grid and cLOINN-grid, respectively. When we use randomly sampled
point locations, we denote the methods as LOINN-random and
cLOINN-random. The technical and implementation details of each
step are provided in “Methods” section and the Supplementary
Section S2.

Our numerical experiments cover a range of representative sce-
narios, includingmulti-dimensional, linear and nonlinear PDE systems,
PDEs with f either as a source term or a coefficient field, and PDEs
defined in a complex geometry. Notably, thereare noexistingmethods
to compare with for the problem we are addressing. In each experi-
ment, we first obtain the training dataset via finite differencemethods
on an equispaced densemesh. The parameters for generating datasets
and the hyperparameters of pre-trained neural networks are listed in
Supplementary Section S2. To test the developed method, we ran-
domly sample 100 new f by f = f0 +Δf, in which Δf is sampled from a
Gaussian random field (GRF) with a correlation length ltest = 0.1 and
various amplitude σtest.We compute the geometricmeanand standard
deviation of the L2 relative errors for the 100 test cases (Table 1). For all
experiments, the Python library DeepXDE3 is utilized to implement the
neural networks.

Learning the solution operator for a linear PDE
We first demonstrate the capability of our method with a pedagogical
example of a one-dimensional Poisson equation

Δu = 100f ðxÞ, x 2 ½0, 1�

with the zero Dirichlet boundary condition, and the solution operator
is G : f 7!u.

As described in the one-shot learning method based on the
principle of locality, we first need to select a “canonical” local domain
~Ω, which is a line segment in 1D case. We choose the simplest local
solution operator using 3 nodes (Fig. 2b) eG : fuðx �
ΔxÞ,uðx +ΔxÞ, f ðxÞg7!uðxÞ with Δx = 0.01 from ~Ω. The training dataset
T only has one data point ðf T ,uT Þ (Fig. 3a), where f T is generated
based on f 0 = sinð2πxÞ. Using the training dataset, we place ~Ω at dif-
ferent locations to generate data points and train the local solution
operator. For a new PDE condition f, we apply our trained eG and
enforce the zero Dirichlet boundary condition at x =0 and x = 1 to find
the solution. In Fig. 3c, we show examples of testing cases f = f0 + Δf
with different σtest. When σtest is larger, there is a more significant
discrepancy between f0 and f.

We evaluate the performance of FPI, LOINN and cLOINN approa-
ches on the grid data, as well as LOINN and cLOINN using randomly
sampled data points (Fig. 3b). For FPI, LOINN-grid, and cLOINN-grid,
we use a mesh with 101 equispaced points. For LOINN-random and
cLOINN-random, we use 101 random points. We report the geometric
mean of L2 relative errors of all cases in Table 1 for different σtest. As
expected, the smaller σtest we use, the better the performance. When
σtest = 0.02, all approaches achieve an L2 relative error of around 1%. In
Fig. 3d, we showprediction examples of using FPI and cLOINN-random
approaches. For this simple case, the results of using different
approaches and data sampling are similar. It is observed that in this
experiment, cLOINN converges faster than LOINN and FPI.

Discussion on the choice of training data. Given that we use only one
training data point, the selection of f T in T is critical. Ideally, f T should
exhibit patterns similar to those we aim to predict, yet contain some
randomness to enrich the information to be extracted. In our experi-
ments, we use f T ðxÞ= f randomðxÞ+ f 0ðxÞ, where f randomðxÞ �
GPð0, kðx1, x2ÞÞ (see “Methods” section for more details). We now
study the effect of f T chosen with different amplitude σtrain and length

scale ltrain different from the test datasets, as well as the influence of
changing the general shape of training forcing function f T .

First, we explore how the amplitude σtrain influences prediction
accuracy for various σtest (Fig. 3e). We randomly sample frandom with a
fixed ltrain = 0.01 across different σtrain = 0.02, 0.05, 0.10, 0.15, and train
one local solution operator for each σtrain. We then fix ltest = 0.10, and
test 100 cases using σtest = 0.02, 0.05, 0.10, or 0.15. Here we only show
the results of FPI, since performance of other methods is similar. We
find that the errors are generally larger for test functions with larger
σtest (i.e., higher variability). Furthermore, we observe that the pre-
diction accuracy is robust against different σtrain.

Second, we are interested in how different ltrain impact the per-
formance of local solution operators (Fig. 3f). We train one local
solution operator for each ltrain = 0.005, 0.01, 0.05, 0.10, 0.15 and
σtrain = 0.10, then test them using FPI on 100 test cases with σtest = 0.10
and ltest = 0.10. When ltrain is too small (e.g., 0.005) or too large (e.g.,
0.15), the prediction errors tend to increase with large standard
deviations. The reasonable range of ltrain for frandom is between 0.01 to
0.1 in this example. These results suggest that effective training data
should have a length scale ltrain that introduce sufficient randomness
without inducing overly rapid fluctuations.

Next, we study the influence of training forcing function f T . Instead
of using local solution operators trained from the sine wave
f T ðxÞ= f randomðxÞ+ sinð2πxÞ, we consider three alternatives: (1) a phase-
shifted sine wave, f T ðxÞ= f randomðxÞ+ sinð2πx +πÞ (Supplementary
Fig. S3a), (2) a cosine wave, f T ðxÞ= f randomðxÞ+ cosð2πxÞ (Supplemen-
tary Fig. S3b), and (3) a fully random function f T ðxÞ= f randomðxÞ with
σtrain = 1.0 and ltrain =0.01 (Supplementary Fig. S3c). In both (1) and (2),we
randomly sample frandom(x) with ltrain =0.01 and σtrain =0.10 for training
local solution operators. We test them on 100 test cases with σtest =0.10
and ltest = 0.10. For the phase-shifted sinewave, the overall shape remains
similar but is flippedwith respect to the x-axis.We observe a similar error
3.58 ±6.40% with a larger standard deviation, compared to 3.71 ± 2.96%
for the original sinewave. For the cosinewave, the phase is different, and
the error is 8.73 ±2.78% which is larger. For the fully random function
without any information of f0, the error further increases to 9.68 ±0.73%.
These results suggest that variations of the training data can affect pre-
dictive accuracy. Nonetheless, our method performs reasonably suc-
cessful, demonstrating robustness to such changes.

Effectiveness of our method and comparison with the baselines.
Our approach solves a unique challenging scenario where traditional
numerical methods, which depend on known PDE forms, and traditional
data-drivenmethods, which typically require large datasets, do not apply.
There arenoexistingmethodsdirectly comparable toours for this setting.
Nonetheless, it would be helpful to provide baselines as comparisons.

Since a new test case is f = f0 +Δf, u0 in the data pair (f0, u0) can be
used as a baseline. Notably, u0 serves as the initial guess of FPI
approach, so the convergence of the L2 relative errors in FPI itself
reflects the effectiveness of our approach. Take the 1D Poisson equa-
tion as an example, when σtest = 0.10, the L2 relative errors for the
baseline u0 is 16.29 ± 10.77%, which is significantly higher than the
errors achieved by our method (all below 5% in Fig. 3e).

We also consider DeepONet12 as the second baseline. With only
one data pair ðf T ,uT Þ, the error in predicting u from f with σtest = 0.10
using DeepONet is very large at 20.73 ± 14.02%. Even when using both
(f0, u0) and ðf T ,uT Þ as the training data, the error remains high at
15.83 ± 10.26%.

Learning the solution operator for a time-dependent PDE
We then consider a time-dependent linear diffusion equation

∂u
∂t

=D
∂2u
∂x2 + f ðxÞ, x 2 ½0, 1�, t 2 ½0, 1�
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with zero boundary and initial conditions, where D =0.01 is the diffu-
sion coefficient. We aim to learn the solution operator G : f 7!u for a
class of f = f0 + Δf with f 0 =0:9 sinð2πxÞ.

We select the simplest local solution operator defined on a local
domain with 4 spatial-temporal nodes (Fig. 2d):

eG : fuðx, t � ΔtÞ,uðx � Δx, tÞ,uðx +Δx, tÞ, f ðx, tÞg7!uðx, tÞ:

Since it is a time-dependent problem, we also include the previous
temporal node. To generate the training dataset T , we randomly
sample f T shown in Supplementary Fig. S2a. FPI and LOINN/cLOINN-
grid use an equispacedmesh of 101 × 101, and LOINN/cLOINN-random
use 1012 random point locations.

We test these approaches forΔf sampled fromGRFwith σtest = 0.1,
0.3, 0.5, and 0.8. The details of error convergence are shown in Sup-
plementary Fig. S2b. For a fixed σtest, FPI and cLOINN-grid both work

Table 1 | L2 relative errors of one-shot learning method

σtest FPI cLOINN-random cLOINN-grid LOINN-random LOINN-grid

1D Poisson 0.02 0.98 ±0.49% 0.98 ±0.58% 1.02 ± 0.47% 0.98 ±0.49% 0.98 ±0.49%

0.05 1.67 ± 1.28% 1.88 ± 1.64% 1.71 ± 1.28% 1.67 ± 1.28% 1.67 ± 1.28%

0.10 3.71 ± 2.96% 4.33 ± 3.30% 3.82 ± 3.12% 3.71 ± 2.96% 3.71 ± 2.96%

0.15 5.55 ± 5.17% 6.33 ± 5.57% 5.69 ± 5.19% 5.54 ± 5.18% 5.55 ± 5.17%

Linear diffusion 0.10 0.45 ±0.11% 0.62 ± 0.11% 0.92 ± 0.40% 0.82 ±0.23% 2.90 ±0.85%

0.30 1.26 ± 0.43% 1.33 ± 0.46% 1.61 ± 0.50% 1.85 ±0.56% 3.36 ± 1.03%

0.50 2.66 ± 1.48% 2.70± 1.46% 2.89 ± 1.64% 3.59± 2.42% 4.58 ± 1.60%

0.80 5.22 ± 3.63% 5.21 ± 3.61% 5.59 ± 4.09% 5.99 ± 3.57% 7.15 ± 3.34%

Nonlinear diffusion–reaction 0.10 0.30±0.06% 0.34 ±0.11% 0.54 ±0.21% 0.32 ± 0.07% 0.46 ±0.14%

0.30 0.78 ± 0.23% 0.99 ±0.49% 0.94 ±0.25% 0.81 ± 0.23% 0.99 ±0.30%

0.50 1.39 ± 0.49% 1.61 ±0.87% 1.46 ±0.46% 1.41 ± 0.49% 1.57 ± 0.55%

0.80 2.32 ± 1.32% 3.24 ± 2.33% 2.38 ± 1.30% 2.34 ± 1.31% 2.45 ± 1.31%

Advection 0.50 0.81 ± 0.32% 0.96 ±0.33%

1.00 1.91 ± 1.88% 2.14 ± 1.80%

1.50 4.32 ± 4.31% 4.57 ± 4.26%

2.00 8.25 ± 9.47% 8.70 ± 9.32%

2D nonlinear Poisson eG1
0.05 2.58 ± 0.63% 4.82 ± 1.60%

0.10 3.62 ± 1.35% 9.43 ± 3.69%

0.20 5.88 ± 2.97% 17.71 ± 5.97%

0.30 9.11 ± 4.03% 27.16 ± 10.40%

eG2
0.05 1.68 ± 0.81% 4.29 ± 1.75%

0.10 2.75 ± 1.32% 9.16 ± 3.82%

0.20 4.49 ± 2.43% 17.69 ± 5.94%

0.30 8.02 ± 4.52% 28.06 ± 10.60%

2D nonlinear Poisson with a circle
cutout

0.05 2.20 ±0.93% 2.14 ± 0.95%

0.10 3.21 ± 1.82% 2.88 ± 1.85%

0.20 6.59 ± 3.55% 6.23 ± 3.66%

0.30 14.11 ± 7.62% 13.86 ± 7.93%

Generalization to a smaller circle
cutout

0.10 3.84 ± 2.00% 4.74 ± 1.66%

Diffusion-reaction in porous media CA 0.10 0.57 ± 0.23% 3.31 ± 1.28%

0.30 1.50 ±0.71% 9.20 ± 3.07%

0.50 2.14 ± 1.40% 13.56± 4.74%

0.80 4.07 ± 3.36% 16.01 ± 3.78%

CB 0.10 0.54 ±0.17% 3.14 ± 1.14%

0.30 1.49 ±0.91% 9.13 ± 4.29%

0.50 2.48 ± 2.41% 15.13 ± 9.80%

0.80 4.68 ± 4.22% 24.08 ± 17.22%

Spatial infection spread S 0.10 1.18 ± 0.16% 1.82 ± 0.59%

0.15 1.18 ± 0.37% 2.28 ± 0.80%

0.20 1.46 ± 1.16% 3.03 ± 1.09%

0.30 2.50 ± 2.80% 4.18 ± 1.62%

I 0.10 1.46 ± 0.21% 1.74 ± 0.30%

0.15 1.40 ±0.28% 1.89 ±0.36%

0.20 1.61 ± 0.72% 2.25 ±0.50%

0.30 2.62 ± 1.99% 2.96 ±0.82%

σtest is theamplitudeof theGRF fromwhich the testΔf is sampled. LOINN-grid/randomrepresent LOINNapproachusinggridpoints and randomly sampledpoints, respectively. The same forcLOINN.
Since cLOINN-randomperforms the best among LOINN/cLOINNmethods, we only show FPI and cLOINN-random for some examples. Some errors in the table are the samewhen using twodecimal
places.
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well and outperform LOINN-grid (Table 1). LOINN-random and
cLOINN-random both achieve better accuracy than LOINN/cLOINN-
grid (e.g., an L2 relative error smaller than 1% when σtest = 0.1). When
σtest is increased from 0.1 to 0.8, all approaches can an achieve an L2

relative error smaller than 8%. In this experiment, we conclude that
cLOINN performs better and converges faster than LOINN. Also, the

performance of LOINN and cLOINN with randomly sampled points are
better than that withmesh points. In Supplementary Fig. S2c, we show
a test example for σtest = 0.8 and the predictions and pointwise errors
using FPI, LOINN-grid, cLOINN-grid, LOINN-random, and cLOINN-
random.

Fig. 3 | 1D Poisson equation. a The training data includes a random f T generated
from GRF and the corresponding solution uT . b The convergence of L2 relative
errors of different approaches for various test cases. The shaded regions represent
one standard deviation of the L2 relative errors from 100 test cases. c Testing
examples of random f = f0 + Δf with Δf sampled from GRF of
σtest = 0.02, 0.05, 0.10, 0.15 and ltest = 0.1. d Prediction example of different

approaches for various test cases. e Prediction errors (the geometric mean and
standard deviation) when training by frandom with amplitude σtrain and testing on
functionswith amplitudeσtest. The length scales ltrain= 0.01 and ltest = 0.10 are fixed.
f Prediction errors (the geometric mean and standard deviation) when training by
frandom with different length scale ltrain and amplitude σtrain = 0.10, and testing on
functions with amplitude σtest = 0.10 and ltest = 0.10.
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Learning the solution operator for a nonlinear PDE
We have shown the capability of our one-shot operator learning
method on linear PDEs. Now we consider a nonlinear diffusion-
reaction equation with a source term f(x):

∂u
∂t

=D
∂2u
∂x2 + ku2 + f ðxÞ, x 2 ½0, 1�, t 2 ½0, 1�

with zero initial and boundary conditions, where D = 0.01 is the
diffusion coefficient, and k = 0.01 is the reaction rate. The solution
operator we aim to learn is G : f 7!u, where f = f0 + Δf
with f 0 = sinð2πxÞ.

We select the same eG as the previous linear diffusion equation
example (Fig. 2d), and randomly sample f T shown in Fig. 4a to train a
local solution operator. FPI and LOINN/cLOINN-grid use an equispaced
mesh of 101 × 101, and LOINN/cLOINN-random use 1012 random point
locations.We also test these approaches forΔf sampled fromGRFwith
σtest = 0.1, 0.3, 0.5, and 0.8 (Fig. 4b). FPI and LOINN/cLOINN-random
achieve better accuracy than the others (e.g., L2 relative error smaller
than 0.5% when σtest= 0.1). When σtest is increased from 0.1 to 0.8, all
the approaches can achieve an L2 relative error smaller than 5%. In
Fig. 4c, we show a test example for σtest= 0.8 and the predictions and
pointwise errors using FPI, LOINN-grid, cLOINN-grid, LOINN-random,
and cLOINN-random.

Fig. 4 | Learning the nonlinear diffusion-reaction equation. a The training data
includes a random f T generated from GRF and the corresponding solution uT .
b The convergence of L2 relative errors of different approaches for various test

cases. c Prediction example of different approaches for a test case with σtest = 0.8.
d L2 relative error of different test functions with σtest = 0.1, 0.3, 0.5, 0.8 when using
different numbers of point locations to show the effect of mesh resolutions.
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Generalization of the local solution operator to very different
testing functions.We evaluate the generalization capability of the local
solution operator eG, which is trained from the sine wave
f T ðxÞ= f randomðxÞ+ sinð2πxÞ and the corresponding uT ðxÞ. We test it on
various new f, including (1) a phase-shifted sine wave, f = sinð2πx +πÞ
(Fig. 5a), (2) a cosinewave, f = cosð2πxÞ (Fig. 5b), (3) a higher-frequency

sine wave, f = sinð3πxÞ (Fig. 5c), (4) a sine wave with very high fre-
quency, f = 2 sinð9πxÞ (Fig. 5d), (5) a sumof two sinewaves atmoderate
and high frequencies, f = sinð6πxÞ+ sinð14πxÞ (Fig. 5e), and (6) a
sum of multiple weighted sine waves at different frequencies,
f =0:8 sinð6πxÞ+0:6 sinð14πxÞ+0:4 sinð26πxÞ+0:2 sinð42πxÞ (Fig. 5f).
The corresponding test errors for these cases are 0.18%, 2.19%, 1.80%,

Fig. 5 | Testing the local solution operator on diverse testing functions. a A
phase-shifted sine wave, f = sinð2πx +πÞ. b A cosine wave, f = cosð2πxÞ. c A higher-
frequency sine wave, f = sinð3πxÞ. d A sine wave with very high frequency,
f = 2 sinð9πxÞ. e A sum of two sine waves at moderate and high frequencies,
f = sinð6πxÞ+ sinð14πxÞ. f A sum of multiple weighted sine waves at different

frequencies, f =0:8 sinð6πxÞ+0:6 sinð14πxÞ+0:4 sinð26πxÞ+0:2 sinð42πxÞ. The
first column is various new f; the second column is the corresponding ground truth
u; the third column is the FPI prediction for each f; and the last column is the
absolute error between the ground truth u and the prediction.
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6.01%, 5.20%, 2.66%, respectively. Despite these f have a wide range of
frequencies and phases (very different from the training data), the
prediction errors remain low. The results indicates that the local solu-
tion operator has a good generalizability and effectively captures the
local relationship of the nonlinear diffusion-reaction equation.

Generalization of the local solution operator to noisy testing input
functions. We apply the same trained local solution operator eG to the
noisy testing functions of the cosinewave f = cosð2πxÞ.We corrupt the
testing function with 5%, 10%, 20%, and 30% Gaussian noise (Supple-
mentary Fig. S5a). The test errors increase with the noise level (Sup-
plementary Fig. S5b). Notably, even when the added noise is 30%, the
error remains relatively small (8.90%).

Discussion on the choice of training data. Similar to that in the
Poisson equation example, we study the influence of training function
f T . We consider three alternatives for f T : (1) a phase-shifted sine wave,
f T ðxÞ= f randomðxÞ+ sinð2πx +πÞ (Supplementary Fig. S4a), (2) a cosine
wave, f T ðxÞ= f randomðxÞ+ cosð2πxÞ (Supplementary Fig. S4b), and (3) a
higher-frequency sine wave f T ðxÞ= f randomðxÞ+ sinð3πxÞ (Supplemen-
tary Fig. S4c). In all the cases, we randomly sample frandom(x) with
σtrain = 0.10 and ltrain = 0.01 for training local solution operators. We
evaluate performanceon 100 test caseswith σtest = 0.80 and ltest= 0.10.
For the phase-shifted sine wave, the error slightly increases to
3.28 ± 2.18%, compared to 2.32 ± 1.32% for the original sine wave. The
cosine wave, which differs in phase, yields a error of 3.99 ± 3.37%. For
the higher-frequency sine wave, the error increases to 4.61 ± 3.44%.
These results further demonstrate that the method is robust to varia-
tions in the training data.

One-shot operator learning on a coarse mesh. In all the previous
examples, we use a local mesh with resolution Δx =Δt =0.01 for
learning the local solution operator ~G. In this section, we investigate
the performance of our methods using different mesh resolutions
when training eG and predicting solutions inΩ. For FPI, LOINN-grid, and
cLOINN-grid, we generate input-output pairs for training ~G on a
structured equispaced global mesh Ω̂ with mesh size Δx =Δt =0.01,
0.02, 0.04, 0.05, and 0.07 (i.e., the numbers of points are
1012, 512, 262, 212, and 162), which matches the local mesh resolutions.
For LOINN-random and cLOINN-random, we randomly sample
1012, 512, 262, 212, 162 point locations inΩ. We compare L2 relative errors
with different σtest and resolutions. With denser mesh resolutions or
more points, all approaches perform better (Fig. 4d). Even using a
coarse mesh of 0.05, our methods can still achieve errors around 10%
for all cases, which demonstrates the computational efficiency of our
proposed methods.

Learning the solution operator for a PDE with parametric
coefficient fields
We illustrate the choice of local domain using an advection equation

∂s
∂t

+aðxÞ ∂s
∂x

=0, x 2 ½0, 1�, t 2 ½0, 1�

with initial condition s(x, 0) = x2 and boundary conditions
sð0, tÞ= sinðπtÞ, where a(x) is the velocity coefficient. We learn the
solution operator mapping from the coefficient field to the PDE solu-
tion: G : a7!s for a class of a = a0 + 0.1Δf with a0 = 1.

The training dataset T with one data point ðaT , sT Þ is shown in
Fig.S6a. We use the local solution operator (Fig. 2c)

eG : fsðx, t � ΔtÞ, sðx � Δx, tÞ, sðx � Δx, t � ΔtÞ,aðx, tÞg7!sðx, tÞ:

The training dataset T with one data point ðaT , sT Þ is shown in Fig. S6a.
Since FPI and cLOINN-random have shown better performance

compared to LOINN and cLOINN-grid in previous experiments, we
only present the results of FPI and cLOINN-random here (Fig. S6b). FPI
uses an equispaced mesh of 101 × 101, and cLOINN-random use 1012

random point locations. The errors of FPI and cLOINN-random both
achieve less than 1% with σtest = 0.50 (Table 1), with FPI outperforming
cLOINN-random slightly.When σtest is increased from0.50 to 2.00, the
L2 relative errors are smaller than 10%. We show a test example for
σtest = 0.50 and the prediction using FPI and cLOINN-random
approaches in Fig. S6c.

Analyzing the effect of local domain size for the 2D nonlinear
Poisson equation
Next, we investigate the effectof the size of the local domainswith a 2D
nonlinear Poisson equation

∇ðð1 +u2Þ∇uÞ= 10f ðx, yÞ, x 2 ½0, 1�, y 2 ½0, 1�

with zero Dirichlet boundary conditions. We aim to learn the solution
operator G : f 7!u for a class of f = f0 +Δf with f 0ðx, yÞ= x sinðyÞ.

We choose two different local domains, including a simple local
domain with 5 nodes (Fig. 2e)

eG1 : fuðx, y� ΔyÞ,uðx � Δx, yÞ,uðx +Δx, yÞ,uðx, y+ΔyÞ, f ðx, yÞg7!uðx, yÞ

and a larger domain with 9 nodes (Fig. 2f)

eG2 : fuðx, y� ΔyÞ,uðx � Δx, yÞ,uðx +Δx, yÞ,uðx, y
+ΔyÞ,uðx � Δx, y� ΔyÞ,uðx � Δx, y+ΔyÞg,

fuðx +Δx, y� ΔyÞ,uðx +Δx, y +ΔyÞ, f ðx, yÞg7!uðx, yÞ:

For this example, the numerical solution is obtained via the finite
element method.

The training dataset T with one data point ðf T ,uT Þ is shown in
Fig. 6a. We compare the results of FPI and cLOINN-random using eG1

and eG2 (Table. 1). FPI performs well, and the L2 relative errors
achieve less than 2% when σtest = 0.05. Compared to FPI, the per-
formance of cLOINN-random is worse but still acceptable when σtest
is small, and the errors achieve less than 5% when σtest = 0.05.
(Fig. 6b). For both FPI and cLOINN-random, the local solution
operator eG2 outperforms eG1 for σtest = 0.05, 0.10, and 0.20. An
example of the prediction using FPI and cLOINN-random approa-
ches with eG1 is shown in Fig. 6c.

To deepen our understanding, we extend our analysis to four
additional different local domains with 13, 25, 49, and 81 nodes, in
addition to those with 5 and 9 nodes (Fig. 6d), and conduct experi-
ments for σtest = 0.20 using FPI. Definitions of the local solution
operators are detailed in Supplementary Section S8. Increasing the
sizes of local domains potentially improves the accuracy of FPI, though
improvements tend to plateau for domains larger than 49 nodes
(Fig. 6e and Supplementary Table S4). However, the training time for
the local solution operator increases with the number of nodes (Fig. 6f
and Supplementary Table S4). This suggests that employing a local
domain with more nodes can enhance accuracy, whereas a smaller
domain may benefit from simpler implementation and reduced train-
ing times.

Learning the solution operator for a PDE defined in an
irregular domain
Besides the regular domain, we also consider a 2D nonlinear Poisson
equation in a square domain with a circle cutout of radius 0.2 (Fig. 7)

∇ðð1 + u2Þ∇uÞ= 100f ðx, yÞ

with zero Dirichlet boundary conditions. We learn the solution
operator G : f 7!u for a class of f = f0 +Δf with f 0ðx, yÞ= x sinðyÞ.
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We choose a simple local domain

eG : fuðx, y� ΔyÞ,uðx � Δx, yÞ,uðx +Δx, yÞ,uðx, y +ΔyÞ, f ðx, yÞg7!uðx, yÞ

with 5 nodes (Fig. 2e). For this example, the numerical solution is
obtained using the finite element method. The domain is discretized
using triangular elements, and the maximum size is 0.005.

Fig. 6 | Learning the 2D nonlinear Poisson equation. a The training data includes
a random f T generated from GRF and the corresponding solution uT . b The con-
vergenceof L2 relative errors of FPI and cLOINN-random for various test cases usingeG1 and eG2. c Prediction example of different approaches for a test case with
σtest = 0.05. d Local domains with 5, 9, 13, 25, 49, and 81 nodes and corresponding

solution operators. e L2 relative errors of FPI for σtest = 0.20 for different local
domain sizes, compared to the baseline error betweenu and u0 (black-dashed line).
f Wall clock time (second) per epoch for training local solution operators for dif-
ferent domain sizes.
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The training dataset T is shown in Fig. 7a. When σtest = 0.05, the L2

relative errors achieve less than 3%. Also cLOINN-random performs
slightly better than FPI while FPI converges faster, as the values of
cLOINN-random solution near the circle boundary are more accurate.
The comparison between these two is shown in Fig. 7b, and one
example is shown in Fig. 7c. We have shown that our approaches can
work well in this complex geometry.

Generalizing to a different geometry. To verify the generalization of
our method, we now test the same Poisson equation in a square
domain with a smaller circle cutout of radius 0.18. We use the same
local solution operator eG trained from the previous geometry with
larger circle cutout.When σtest = 0.10, the L2 relative errors achieve less
than 5% for FPI and cLOINN-random. The convergences of FPI and
cLOINN-random are shown in Fig. 7d, and one prediction example is
shown in Fig. 7e. This demonstrate thatourmethod cangeneralizewell
on a smaller circle cutcut.

Learning the solution operator for a PDE system
We consider a diffusion-reaction system in porous media
(x ∈ [0, 1], t ∈ [0, 1])

∂CA

∂t
=D

∂2CA

∂x2
� kf CAC

2
B + f ðxÞ,

∂CB

∂t
=D

∂2CB

∂x2
� 2kf CAC

2
B

with initial conditions CA(x, 0) =CB(x, 0) = e−20x and zero Dirichlet
boundary conditions, where D =0.01 is the diffusion coefficient, and
kf= 0.01 is the reaction rate. The solution operator is G : f 7!ðCA,CBÞ.
Here we predict the solutions CA and CB for a new f = e�

ðx�0:5Þ2
0:05 +Δf .

Since there are two outputs for this case, we consider the local
solution operator (Fig. 2d)

eG : fCAðx, t � ΔtÞ,CAðx � Δx, tÞ,CAðx +Δx, tÞ,CBðx, t � ΔtÞ,CB

ðx � Δx, tÞ,CBðx +Δx, tÞ, f ðx, tÞg7!ðCAðx, tÞ,CBðx, tÞÞ:

We show the training dataset T in Fig. 8a.

Fig. 7 | Learning the 2D nonlinear poisson equation with a circle cutout. a The
training data includes a random f T generated from GRF and the corresponding
solution uT . b The convergence of L2 relative errors of FPI and cLOINN-random for
various test cases. c Prediction example of different approaches for a test case with

σtest = 0.05. d, e Test the method in a new geometry by using the local solution
operator trained on the previous geometry. d The convergence of L2 relative errors
of FPI and cLOINN-random for test cases with σtest = 0.10 for a smaller circle cutout.
e Prediction example of different approaches for a test case.
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In this experiment, FPI works well, and the L2 relative errors
achieves less than 1% when σtest = 0.10. FPI performs better than
cLOINN-random (Table 1). When σtest = 0.10, 0.30, the accuracy of
cLOINN-random is smaller than 10%. It is shown that, in this example,
FPI is not only more accurate than cLOINN-random, but also converge
faster (Fig. 8b). To better understand why cLOINN performs poorly
sometimes, we observe that, compared with higher-error test case, for
the case with low prediction error, the training loss decreases more
significantly and usually reaches a lower loss value by the end of
training (Supplementary Fig. S7). This observation indicates that the
neural network-based approach may encounter training difficulties,
which leads to poor performance for certain test cases. Given the the
similarity between our neural network-based approaches to physics-
informed neural networks, the training difficulties may due to opti-
mization difficulties associated with the PDE constraint and the spec-
tral bias42,43. We show examples of CA and CB prediction using FPI and
cLOINN-random approaches in Fig. 8c.

Application in spatial infection spread through heterogeneous
populations
Problem setup. We present an application of our one-shot learning
method to solve the spread of infectious diseases influenced by local
spatio-temporal factors. Infectious diseases remain a major public
health concern worldwide, particularly in the post-era of COVID-19.
Mathematicians and epidemiologists have studied the the dynamics of
infectious diseases and the spreading of the virus over the population.
The SIR epidemic model44 is widely used to model the spread of
infectious diseases. The population is divided into three disjoint clas-
ses: susceptible (S), infected (I), and recovered (R), where susceptibles
can be infected by those already infected and subsequently recover,
and recovered class are immune to the disease but lose immunity over
time. Various classes of individuals and their spatial interactions have
been studied actively, and PDE models are used to represent different
scales and interactions within the population45–47. Specifically, we
consider the PDE model in47 (x ∈ [0, L], t ∈ [0, T]):

∂S
∂t

= � DðxÞβS ∂2I
∂x2 � βSI,

∂I
∂t

=DðxÞβS ∂2I
∂x2 +βSI � γI,

where D(x) reflects the spatially variable daily travel rate due to
environmental factors,β is thedaily infection rate, and γ is the recovery
rate of infected individuals. The recovered class R can be computed
from S and I based on the population conservation in a closed system.
The details of the problem setup is in Supplementary Section S10.

One-shot learning is required for this practical problem. For an
infectious disease, collecting comprehensive data is challenging and
time-consuming. As the disease spreads, the underlying dynamics are
likely to change due to mutations in the pathogen, changes in popu-
lation behavior, or public health interventions like social distancing
and lockdowns. These changes affect the model parameter diffusion
coefficient D(x), which captures population movement patterns. Our
proposed one-shot learning approach is particularly suitable for this
scenario, requiring only a single data pair-for example, current travel
patterns reflected inD(x) alongwith the susceptible S(x, t) and infected
I(x, t) populations. A model trained from this data in one setting could
be quickly adapted to predict the spread for another D(x). Unlike tra-
ditional modeling approaches that generally require large datasets for
training, our proposed one-shot learning method enables predictions
even with limited data, which can be valuable for effective epidemic
response, especially in the early stages.

One-shot learning method setup and results. We then present the
setup and results of our one-shot learningmethod.We use L = 1, T = 10,

γ =0.2 and β = 0.8 to test our method. The initial conditions are
Sðx, 0Þ= 1� 0:5 cosð4πxÞ, representing the susceptible population
influenced by factors like population density or social behaviors, and
Iðx, 0Þ=0:3e�ðx�2=3Þ2

0:045 , modeling an initial localized infection (Fig. 9a). The
zero Neumann boundary conditions ensure no flux. We aim to learn a
solution operator G : D7!ðS, IÞ and predict the solutions S and I for a
new D =0:001e

�ðx�0:5Þ2
0:08 + 0:001ΔD. We show the training dataset

ðDT , ST , IT Þ in Fig. 9b.
We use the local solution operator eG defined in Supplementary

Section S10, and test the method for new cases with
σtest = 0.10, 0.15, 0.20, 0.30. In all cases, FPI works well, and the L2

relative errors achieves below 3% (Table 1). cLOINN-random performs
slightly worse than FPI. We show one example of S and I prediction
using FPI and cLOINN-random approaches in Fig. 9c.

Discussion
Learning solution operators for partial differential equations (PDEs)
usually requires a large amount of training data. In this study, we
propose a one-shot method to learn solution operators from only one
PDE solution, which remains underexplored and can potentially
address the challenge of data acquisition in real applications. Con-
sidering small local domains instead of the entire computational
domain of the PDE,wedefine and learna local solutionoperator, which
is then leveraged to predict a new solution via a fixed-point iteration
(FPI) or local-solution-operator informed neural networks. Our
method accommodates both unstructured data and grid data when
training LOINN and cLOINN model.

The effectiveness of our method is demonstrated in various
examples, including 1D/2D equations, linear/nonlinear equations,
advection equation in which f is an coefficient, diffusion-reaction sys-
tem in porous media, and complex domain with a cutout. Among the
proposed approaches, FPI and cLOINN-random are demonstrated to
have comparable good performance across all test cases. The neural
network-based approaches, LOINN and cLOINN, allow greater flex-
ibility on complex domains and random point locations, with cLOINN
generally outperforming LOINN in most situations and converges
faster. Our experiments show that using randomly sampled point
locations can improve the accuracy. Additionally,we show the effectof
different local solution operators, andwe find includingmore auxiliary
points improves the performance. Our method has proven effective
even on very coarse grids or a small number of point locations.

The limitation of our method lies in its diminished accuracy when
predicting solutions divergent from the known solution, which is an
inherent challenge arising from the constraints of utilizing minimal
data. In the future, we will carry out further validation on PDEs with
different boundary conditions or complex domains, and improve our
approaches for better accuracy, faster convergence and better com-
putational efficiency. Moreover, our method can potentially integrate
with graph neural networks (GNN)48,49 to construct local graphs and
train the local solution operator, and then combined it with FPI, LOINN
or cLOINN for learning the solution operator. As noted in the intro-
duction, our approach canalso be viewed as a formofPDEdiscovery or
representation learning. Incorporating differential terms as additional
features of the local solution operator is an interesting direction38,39.
Finally, the theoretical analysis on data-efficiency remains an open and
valuable problem50,51.

Methods
In the following sections, we delve into the details of each step in our
one-shot learning method for PDE solution operators.

Selecting a local domain and a local solution operator
In this section, we elaborate on the first two steps of our method. To
beginwith, we consider a virtual background equispacedmesh. This is
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not a real mesh for the solution prediction in the computational
domain; instead, it is a virtual mesh that guides us to select a local
domain. Taking a two-dimensional problem as an example, this local
equispacedmesh hasmesh sizeΔx1 andΔx2, where x1 and x2 are spatial
or temporal dimensions corresponding to the PDE. On this local mesh,
we then sketch a polygon with mesh nodes positioned on its edges or
within the interior of the polygon. We denote the set of these mesh
nodes as ~Ω, and a general choice of ~Ω is represented by black nodes in
Fig. 2a (left).

In the second step, we choose a location x* from the local domain
~Ω as the target node, and the remaining nodes surrounded x* are
denoted as auxiliary points ~Ωaux = fx 2 ~Ωjx≠x*g. We define a local
solution operator to predict the PDE solution at x* from the informa-
tion of auxiliary points and the PDE condition

~G : fuðxÞ : x 2 ~Ωauxg, ff ðxÞ : x 2 ~Ωg
� �

7!uðx*Þ,

which is learned by a neural network. The intuition of this definition is
that, for a well-defined PDE, if we know the solution u at the boundary
of ~Ω and fwithin ~Ω, then the solution u at x* inside ~Ω is determined.We
find that only using the value of f at x* is sufficient, so in this study the
local solution operator is chosen as

~G : fuðxÞ : x 2 ~Ωauxg, f ðx*Þ
� �

7!uðx*Þ:

Learning a local solution operator
To train the local solution operator ~G, we construct a training dataset
from T = fðf T ,uT Þg. To make the network generalizable to different f,
the selection of f T in T is important. In our study, we use
f T ðxÞ= f randomðxÞ+ f 0ðxÞ, where f randomðxÞ � GPð0, kðx1, x2ÞÞ is ran-
domly sampled from a mean-zero GRF with the covariance kernel
kðx1, x2Þ= σ2

train expð� k x1 � x2k2=2l2trainÞ (σtrain: amplitude; ltrain: length

Fig. 8 | Learning the diffusion-reaction system in porous media. a The training
data includes a random f T generated from GRF and the corresponding solution
CA, T and CB, T . b The convergence of L2 relative errors of FPI and cLOINN-random

for various test cases ofCA andCB. c Prediction example of different approaches for
a test case with σtest = 0.3.
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scale). The randomness in frandom(x) is used to induce amore “diverse”
training dataset so that we can extract more information from it.

Since ~G learns for the small local domain ~Ω, to generate many
input-output pairs for training ~G, we have two approaches. In the first
approach, we have a structured equispaced global mesh Ω̂ with mesh
size Δx1 and Δx2 (Fig. 2g). Note that the mesh size of the global mesh
matches the localmesh.We place ~Ω at different locations of the global
mesh Ω̂, and each placement would lead to one input-output data pair.
In the second approach, we randomly sample different locations in Ω
(Fig. 2h). Similarly, each location leads to one data point. These
approaches make it possible to learn a network from only one PDE
solution by converting one-shot learning to classical learning. For
example, for a PDE in a spatio-temporal domain, we may choose the
local domain Fig. 2d and generate a dataset

DT = uðx, t � ΔtÞ,uðx � Δx, tÞ,uðx +Δx, tÞ, f ðx, tÞ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Input

, uðx, tÞ|fflfflffl{zfflfflffl}
Output

8><
>:

9>=
>;

ðx, tÞ

,

where (x, t) is sampled from the aforementioned approaches. We
discuss the reasoning of using neural networks to learn the local
solution operators in Supplementary Section S3.

Since the inputs of the neural network eG also include the solution
tobepredicted,we cannotpredict solution for a new f= f0 +Δfdirectly.
To address this issue, we propose the following three approaches to
predict the solution of a new f, whose computational efficiency and
prediction accuracy depend on the choice of ~G.

Prediction via a fixed-point iteration (FPI)
In the step 4 of the one-shot learningmethod, we first propose amesh-
based fixed-point iteration approach (Algorithm 1; Fig. 1, Approach 1).
The solution is only considered on a equispaced global mesh Ω̂ with
the samemesh sizeΔx1 andΔx2 thatmatches the localmesh ~Ω. Because
f is close to f0, we use u0 =Gðf 0Þ as the initial guess of u, and then in
each iteration, we apply the pre-trained ~G at the current solution as the
input to get a updated solution.When the solution is converged, u and
f are consistent with respect to the local operator ~G, and thus the
current u is the solution of our PDE.

Fig. 9 | Learning the infection spread of susceptible (S) and infected (I) populations. a The initial conditions of S and I. b The training data includes a random f T
generated from GRF and the corresponding solutions ST and IT . c Prediction examples of FPI and cLOINN-random for a test case with σtest = 0.3.
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Algorithm 1. Predict the solution u=Gðf Þ for a new f via FPI

Prediction via a local-solution-operator informed neural
network
We also propose a neural network-based approach LOINN (Fig. 1,
Approach 2), which is meshfree and has more flexibility to handle
boundary/initial conditions and training points inside the computa-
tional domain. We construct a neural network with parameters θ that
takes the coordinates x as the input, and output the approximated
solution ûðx; θÞ. To train the network, we define the loss function that
constrains û to satisfy eG at some local domains:

LPDEðθÞ=
1

jT l j
X
x2T l

ûðx;θÞ � ~G fûðξÞ : ξ 2 ~Ωaux,xg, f ðxÞ
� �� �2

, ð2Þ

where T l is a set of point locations in the domain. The points can be
sampled on a globalmesh or randomly sampled (Hammersly sequence
used in this study). For the boundary and initial condition in Eq. (1),
similar to physics-informed neural networks2,3, we define another loss
function

LIC=BCðθÞ=
1

jT bj
X
x2T b

k Bðûðx;θÞ,xÞk22, ð3Þ

where T b is a set of point locations on the boundary or initial domain.
Then the total loss is

LðθÞ=LPDEðθÞ+LIC=BCðθÞ: ð4Þ

In some cases, the initial and boundary conditions can be directly
imposed by modifying the network architecture32, which eliminates
the necessity of the loss LIC=BC.

To improve the performance of LOINN, we develop LOINN with
correction (cLOINN). Specifically, we modify the network architecture
by using a last layer of adding u0 (Fig. 1, Approach 3), and then the
solution is ûðxÞ=N ðxÞ+ u0ðxÞ, where N ðxÞ is the original neural net-
work output.

Data availability
All the datasets in the study are generated directly from the code.

Code availability
The code used in the study is publicly available in the GitHub reposi-
tory https://github.com/lu-group/one-shot-pde.
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