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Near-global spawning strategies of large
pelagic fish

Kristine Camille V. Buenafe 1,2,3 , Sandra Neubert 1,2,3,4,5, Kylie L. Scales 6,
Daniel C. Dunn 1,2, Jason D. Everett 1,2,3,7, Jason Flower 8,9,10,
Iain M. Suthers 7,11, Pablo Granados-Dieseldorff12, Alvise Dabalà 1,2,
Kris Jypson T. Esturas 1, James Mercer7 & Anthony J. Richardson1,2,3

Understanding the spawning strategies of large pelagic fish could provide
insights into their underlying evolutionary drivers, but large-scale information
on spawning remains limited. Here we leverage a near-global larval dataset of
15 large pelagic fish taxa to develop habitat suitability models and use these as
a proxy for spawning grounds. Our analysis reveals considerable consistency
in spawning in time and space, with 10 taxa spawning in spring/summer and 9
taxa spawning off Northwest Australia. Considering the vast ocean expanse
available for spawning, these results suggest that the evolutionary benefits of
co-locating spawning in terms of advantageous larval conditions outweigh the
benefits of segregated spawning in terms of reduced competition and lower
larval predation. Further, tropical species spawn over broad areas throughout
the year, whereas more subtropical and temperate species spawn in more
restricted areas and seasons. These insights into the spawning strategies of
large pelagic fish could inform marine management, including through fish-
eries measures to protect spawners and through the placement of marine
protected areas.

Large pelagic fish, such as tuna and billfish, are key species in marine
food webs1. They are important socioeconomically, supporting
valuable fisheries in subtropical and tropical national waters and in
the high seas2. These fisheries provide income and food for many
countries, particularly island nations of the Global South2,3. Many
large pelagic fish also play important ecosystem roles in carbon
cycling through predation, diel vertical migration, and sinking of
feces and carcasses4. Their highmobility,migrating across vast ocean
expanses and traversing both national boundaries and the high seas,
presents challenges for their effective fisheries management and

conservation. A deeper understanding of their life history—including
how these species reproduce in time and space—could ultimately aid
their management.

Life history strategies of pelagic fishes are highly variable and can
be inferred from co-variation in traits, such as body size, longevity,
growth rates, and fecundity. In scombrid fishes (tunas, bonitos,
mackerel), most life history variation is explained by traits describing
body size, swimming speed, and reproductive schedule, with body size
being the most influential5. At one end, opportunistic strategists, such
as tropical tunas (e.g., skipjack tuna - Katsuwonus pelamis), have a fast
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life history strategy. These species are often small to medium in size,
grow rapidly, mature early, and have short life spans. At the other end,
periodic strategists (e.g., Atlantic bluefin tuna - Thunnus thynnus)
predominantly inhabiting temperate waters have a slow life history.
These species are often large in size, growslowly,mature late, andhave
long life spans, leading to slower population turnover5–7. Similarly,
billfishes such as marlin, spearfish (Istiophoridae) and swordfish
(Xiphiidae), also have a slow life history strategy because they are large
bodied, late-maturing and slow-growing8.

Fundamental to the life history strategy of large pelagic fish is
their spawning strategy in time and space. Tropical scombrid species
with a fast life history generally have a longer spawning season than
subtropical and temperate scombrids with a slow life history5.
Although, it is unknown whether this trend is followed more generally
by other large pelagic fish. By contrast, there is much more limited
information on the extent of spawning grounds of large pelagic fish in
relation to life history variation. Muhling et al.9 interestingly noted the
tendency for three bluefin tuna species with slow life histories to
spawn in spatially restricted spawning grounds. A synthesis of the
spawning strategy in time and space of large pelagic fish could provide
valuable insights into evolutionary processes governing spawning.
Many species tend to return to one or several natal grounds to spawn
at similar times each year. For example, some spawning grounds host
aggregations of multiple large pelagic fish species, such as off North-
west Australia for skipjack and Southern bluefin tuna, and off Japan for
skipjack and Pacific bluefin tuna10–12. This co-location of spawning is
despite these species having contrasting life history strategies. The
extent to which this strategy of co-location of spawning in space and
time is prevalent among a broader suite of large pelagic fish taxa
remains unknown.

The best data on near-global spawning dynamics is restricted to
key commercial tuna and billfish species, with limited information for
other non-targeted species. Multiple studies have found restricted
temperature preferences for large pelagic fish, suggesting co-location
of spawning. Reglero et al.13 found that seven tuna species preferred
spawning inwarmwaters and Schaefer14 found that tuna species spawn
in waters >24 °C. Muhling et al.9 suggested that tuna larvae tend to be
found within narrower temperature windows than adults, suggesting
that there could be considerable overlap in larval distributions.
Reglero et al.13 also found that most tuna spawned in waters of inter-
mediate values of mesoscale activity from eddies, supporting the triad
hypothesis of Bakun (2006)15 that links favorable spawning areas to the
physical environment, and suggests that co-location might be a valu-
able strategy. This evidence for common environmental drivers of
many species and the co-location of their spawning in time and space
indicates that large pelagic fish could exploit advantageous environ-
mental conditions for adults and larvae9,16.

There could also be substantial evolutionary benefits for large
pelagic fish species if their spawning is segregated in time and space.
This could reduce density-dependent food limitation and thus com-
petition for food by adults, potentially increasing spawning and
enhancing recruitment17. Such segregated spawning could also
enhance the food availability for developing larvae, reduce egg and
larval cannibalism by conspecifics, and decrease predation on eggs
and larvae by other large pelagic fish species and invertebrates, all of
which could lead to an increase in survivorship, a major factor limiting
recruitment18. Therefore, both strategies—species either segregating
or co-locating spawning in time and space—could have evolutionary
benefits for large pelagic fish species.

A deeper understanding of the variation in life history strategies
of large pelagic fish could provide the foundation for their improved
management. For example, if many species co-locate their spawning in
time and space, then this could be used in fisheries management to
help avoid harvesting spawning females and to elucidate stock
structure19,20. Detecting co-located spawning grounds, could also

inform the location of marine protected areas (MPAs) or other effec-
tive area-based conservation measures (OECMs). Although debates
persist on the potential benefits of MPAs for highly migratory fish
species21,22 and challenges exist in protecting such species throughout
their long migrations23, species such as tunas and billfish are likely to
receive some benefit from the protection of their spawning areas. As
countries seek to meet the Global Biodiversity Framework target of
conserving 30% of land, waters and seas by 203024, knowledge of the
spawning areas of commercial and non-commercial species are likely
to be valuable, especially considering the lack of data available for
pelagic ecosystems25.

Assessing the spawning strategies in time and space is compli-
cated by the paucity of available data. Collecting spawning data during
field surveys is labor-intensive and expensive. It usually involves sam-
pling individual females to assess gonadal state or eggs and larvae
from the water column and is sometimes complemented by local
knowledge and observations26. Realized spawning areas—defined by
the presence of eggs—are difficult to identify because they are patchy
and ephemeral, particularly for highly migratory species27. For these
species, the presence of larvae is often used as an indicator of
spawning events9. Larval data and habitat suitability models can then
be used to identify potential spawning times and locations28.Most data
on the larvae of large pelagic fish species are collected from one-off
surveys, involve individual species, cover local-to-regional scales, and
use different methods29. A notable exception is the extensive dataset
of Nishikawa et al.30, which provides an unprecedented window into
the spawning strategies of largepelagicfish species. This data set spans
40°N to 40°S at 1° × 1° resolution, includes seasonal data collected
during surveys from 1956 to 1981, and has 63,017 samples collected
with similar methods. The seminal work of Reglero et al.13 on envir-
onmental requirements for spawning habitats also used the Nishikawa
et al.30 observations and other data sets at a coarser resolution (5° × 5°)
and investigated seven tuna species. However, they did not assess
spawning seasonality, nor did they address the question of the co-
location of spawning by different species.

Herewe leverage previously digitized30,31 larval data as a proxy for
spawning to answer questions about the generality of spawning stra-
tegies—over time and space—for 15 taxa of large pelagic fish of both
commercial and non-commercial value. We match these larval data
with environmental variables from Earth SystemModel (ESM) outputs
to build larval habitat suitability models and thus identify potential
seasonal larval hotspots in the Indian and Pacific Oceans. To provide
insights into spawning strategies, we assess the degree to which larvae
for multiple species are segregated versus those that are co-located in
hotspots across time and space. We investigate how consistent these
spawning patterns are across hemispheres and across a slow-fast
continuum of life history strategies5. Finally, we test the influence of
latitude—specifically,whether the spawning seasonof largepelagicfish
is longer5 and their spawning grounds are more restricted spatially9 at
higher latitudes than those at lower latitudes. This work could help
inform conservation and sustainable use of these large pelagic fish,
through informed fisheriesmanagementmeasures and protected area
placement.

Results
Larval habitat suitability
Using larval habitat suitabilitymodels for the pelagic fish taxabased on
Boosted Regression Trees (BRTs, see Methods), the optimal models
(Area Under the receiver operator Curve, AUC>0.80; Supplementary
Table 1) showed that high-probability areas of larval occurrence across
the 15 taxa were mostly located in the tropics and subtropics of the
Western Pacific and the Eastern IndianOceans (Figs. 1–4). However, the
BRTs showed notable similarities and differences in the spatio-
temporal distributions of different species of larvae (Figs. 1–4). For
example, habitats conducive to skipjack (Fig. 1a–d) and yellowfin tuna
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larvae (Fig. 1e–h) were concentrated across the Indo-Pacific, particu-
larly in the Northwestern Pacific in boreal spring/summer, and east of
Papua New Guinea and northwest of Australia in austral spring/sum-
mer. Suitable habitats for Southern bluefin tuna larvae (Fig. 2m–p)
were concentrated off Northwest Australia in austral spring/summer,
whereas suitable habitats for larval Pacific bluefin tuna were in the East
China Sea in boreal spring/summer. Shortbill spearfish (Fig. 3e–h),
albacore (Fig. 1i–l), and bluemarlin (Fig. 4e–h) showed a similarly wide
distribution, with larvae mostly around 20°N and 20°S in the Pacific,
but also in the Indian Ocean off Northwest Australia. Suitable habitats
for sailfish (Fig. 4i–l) and frigate tuna (Fig. 2a–d) were concentrated in
the Indo-Pacific region and off Japan, as well as the equatorial Eastern
Pacific. The sauries (Fig. 2i–l), however, were confined to the extre-
mities of the modeled region— 25–40°N in boreal winter/spring and
25–40°S west of South America in austral winter/spring.

Biophysical drivers of larval suitability
Despite spatial differences in larval habitats for each taxon, we found
prominent similarities in their ranges of suitable biophysical environ-
ments, and this varied little across seasons. Most of the larvae were
found in warm surface waters (Supplementary Fig. 1). The tropical
tunas (e.g., skipjack and yellowfin tunas) preferredwarmerwaters than
the temperate tunas (e.g., Southern and Pacific bluefin tunas). Most
larval taxa generally preferred temperatures >25 °C, especially yel-
lowfin and skipjack tunas, albacore, shortbill spearfish and bluemarlin.
However, slender tuna was generally found between 20 and 25 °C,
sauries observed in waters <25 °C, and frigate tuna had a broad tem-
perature range, but with the greatest presence in waters >25 °C.
Probabilities of larval occurrence were higher for most taxa in waters
of moderate large-scale flow activity (generally <5m2 s−2) measured
using mean kinetic energy (see Methods). However, some taxa, like

frigate tuna and sailfish were found across broad ranges of mean
kinetic energy (Supplementary Fig. 2). Probabilities of larval occur-
rencewere generally higher in areaswith: pH levels between8.1 and8.2
(Supplementary Fig. 3, except for sauries and frigate tuna found across
broader ranges of pH levels); lower concentrations of chlorophyll-a
(<0.2 gm−3; Supplementary Fig. 4), nitrate (<5mmolm−3; Supplemen-
tary Fig. 5), phosphate (<0.5mmolm−3; Supplementary Fig. 6), and
ammonium (<0.4mmolm−3; Supplementary Fig. 7); higher salinities
(>30ppt; Supplementary Fig. 8); weak thermal (<0.01 °C km−1; Sup-
plementary Fig. 9) and salinity (<0.001 ppt km-1; Supplementary
Fig. 10) gradients; and dissolved oxygen levels from 6.0 to 8.0mgL−1

(Supplementary Fig. 11, except for frigate tuna found in broad ranges
of dissolved oxygen concentrations). Probabilities were also higher in
regions with surface mixed layer depths of ~50m (Supplementary
Fig. 12), in areas ~500 km from the nearest coastline (Supplementary
Fig. 13), and in mean water depths of 0–6 km (Supplementary Fig. 14).

Seasonality
Mean probabilities of larval occurrence varied seasonally, but often
with similar patterns in both hemispheres (Fig. 5). Three seasonal
patterns were clear: spring/summer peaks, winter/spring peaks, and
little seasonality. The most common seasonality was a spring/summer
peak in themean larval probability (Fig. 6) for albacore, stripedmarlin,
and sailfish in both hemispheres. Peaks in warmer months for skipjack
tuna, yellowfin tuna, bigeye tuna, and bluemarlinweremore evident in
the n5rthern hemisphere. Although Pacific bluefin tuna and swordfish
larvaeweremostly observed in the northernhemisphere and Southern
bluefin tuna larvae in the southern hemisphere, all three species also
followed a spring/summer pattern. Other species exhibited a winter/
spring peak, including larvae of sauries, which had higher mean larval
probabilities during winter/spring in both hemispheres. Frigate and

Fig. 1 | Seasonal larval suitability maps for. a–d skipjack tuna; (e–h) yellowfin
tuna; (i–l) albacore; and (m–p) bigeye tuna. Taxa are categorized according to life-
history strategy (“fast” are in orange, “slow” are in purple, and “unknown” are in

black; Table 1). Relativemean probabilities across longitude and latitude are shown
on the top and right of each panel, respectively. Seasons are January–March,
April–June, July–September, and October–December.
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slender tuna larvae exhibited the same pattern but only for the
northern and southern hemispheres, respectively. Some species dis-
played little seasonality, such as longfin escolar and shortbill spearfish.

Spatiotemporal life-history and interhemispheric patterns
Spatial and temporal spawning patterns across hemispheres were
revealed by evaluating the relationship between the Spatial Aggrega-
tion Index and Seasonal Index (see Methods) for each taxon (Fig. 6; F-
statistic (25 degrees of freedom) = 11.14, p =0.002649, r2 =0.28, 95%
confidence intervals = [0.20, 1.19]). Some taxa spawned seasonally but
were spatially dispersed, such as striped marlin and swordfish. Frigate
tuna exhibited spatially aggregated spawning patterns with little sea-
sonality. Finally, spawning patterns of Pacific and Southern bluefin
tunas were both spatially aggregated and seasonal. The Spatial
Aggregation and Seasonality Indices were strongly related to the lati-
tudinal preference of taxa. There was a significant positive relationship
between the Spatial Aggregation Index and the mean latitude across
taxa (Fig. 7a; F-statistic (25 degrees of freedom) = 11.8, p =0.002014,
r2 =0.32, 95% confidence intervals = [0.71, 4.26]; considering each
hemisphere separately for each taxon). Thus, tropical taxa (e.g., yel-
lowfin tuna, skipjack tuna and bigeye tuna) generally had dispersed
spawning areas, whereas subtropical and temperate taxa (e.g., sauries,
slender tuna, Pacific bluefin tuna, and Southernbluefin tuna) hadmore
tightly aggregated areas. There was an even stronger relationship
between the Seasonality Index and mean latitude across taxa (Fig. 7b;
F-statistic (25 degrees of freedom) = 32.42, p =0.000006266, r2 =0.56,
95% confidence intervals = [0.11, 1.10]). Thus, tropical taxa (e.g., yel-
lowfin tuna, skipjack tuna and bigeye tuna) spawned broadly
throughout the year, while subtropical and temperate taxa (e.g., Pacific
bluefin tuna, slender tuna, sauries) exhibited more concentrated
spawning periods. Generally, taxa found across both hemispheres had

similar values for both Spatial Aggregation and Seasonality Indices in
each hemisphere.

We found clear relationships between the Spatial Aggregation and
Seasonality Indices and major taxonomic groups as well as with dif-
ferent life history strategies (Table 1). Tuna spawning areas are more
spatially aggregated than billfish (Fig. 8a), whereas the degree of sea-
sonality of tuna spawning was more variable than billfish (Fig. 8b).
Further, we observed similar degrees of spatial aggregation between
slower- and faster-growing taxa (Fig. 8b), but slower-growing taxa
generally had greater seasonality in their spawning than faster-growing
ones (Fig. 8d).

Larval hotspots
We did a Principal Component Analysis (PCA) based on the habitat
suitability model outputs (i.e., probabilities of occurrences of each
taxon) to identify the primary seasonal larval hotspots (see Methods).
We used the first two PC axes and found similarities and differences in
spatiotemporal patterns among taxa and between hemispheres
(Fig. 9). Areas with high PC scores reflect areas with high probabilities
of occurrences across different taxa, signifying potential larval hot-
spots. Also shown are the correlations of the PC axes across the taxa,
where high, positive correlations correspond to taxa likely spawning in
areas with positive PC scores and high, negative correlations corre-
sponding to taxa likely spawning in areas with negative PC scores. In
thenorthernhemisphere, therewere high PC1 (Principal Component 1)
scores in boreal spring/summer, particularly in the East China Sea
south of Japan (Fig. 9c, e). In the southern hemisphere, high PC1 scores
were found off Northwestern Australia in austral spring/summer
(Fig. 9a, g). We observed generally high, positive correlations between
PC1 scores andmany taxa (redgrids on the left in Fig. 9), indicating that
these taxa could have co-located spawning in areas of high PC1 values.

Fig. 2 | Seasonal larval suitability maps for. a–d frigate tuna; e–h striped marlin;
i–l sauries; andm–p Southern bluefin tuna. Taxa are categorized according to life-
history strategy (“fast” are in orange, “slow” are in purple, and “unknown” are in

black; Table 1). Relativemean probabilities across longitude and latitude are shown
on the top and right of each panel, respectively. Seasons are January–March,
April–June, July–September, and October–December.
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Fig. 3 | Seasonal larval suitabilitymaps for. a–d Pacific bluefin tuna; e–h shortbill
spearfish; i–l swordfish; andm–p longfin escolar. Taxa are categorized according to
life-history strategy (“fast” are in orange, “slow” are in purple, and “unknown” are in

black; Table 1). Relativemean probabilities across longitude and latitude are shown
on the top and right of each panel, respectively. Seasons are January–March,
April–June, July–September, and October–December.

Fig. 4 | Seasonal larval suitability maps for. a–d slender tuna; e–h blue marlin;
and i–l sailfish. Taxa are categorized according to life-history strategy (“fast” are in
orange, “slow” are in purple, and “unknown” are in black; Table 1). Relative mean

probabilities across longitude and latitude are shown on the top and right of each
panel, respectively. Seasons are January–March, April–June, July–September, and
October–December.
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Fig. 5 | Seasonality of mean larval probability for. a skipjack tuna; b yellowfin
tuna; c albacore; d bigeye tuna; e frigate tuna; f striped marlin; g sauries;
h Southern bluefin tuna; i Pacific bluefin tuna; j shortbill spearfish;
k swordfish; l longfin escolar; m slender tuna; n blue marlin; and o sailfish.
The bars represent the mean larval probability for 15 fish taxa across the

northern (blue, above) and southern (orange, below) hemispheres. Points
represent the overall global mean ± SD. Note that a taxon will be found in a
different number of grid squares in each hemisphere, so the global mean will
not generally be the average of the mean of the probabilities in each hemi-
sphere. Sample sizes across taxa (n) per season are also reported.
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Thus, spawning of skipjack tuna, yellowfin tuna, blue marlin, and
swordfish were consistently co-located across seasons, although
swordfish did not follow the general pattern in boreal summer.

PC2 revealed spatial patterns unobserved in PC1. Positive PC2
scores revealed hotspots in the eastern tropical Pacific in boreal
autumn and winter (Fig. 9b, h), north and east of Papua New Guinea in
austral spring (Fig. 9h), and south of Japan in boreal winter to summer
(Fig. 9b, d, f). Frigate, yellowfin, and bigeye tuna were most strongly
positively correlated with PC2 across all seasons indicating that these
taxa co-occur in the PC2 hotspots. Negative PC2 scores were observed
in latitudinal bands at ~20°N and ~20°Sacross seasons in thewestern to
central Pacific, but this extended to the Southern Indian Ocean in
austral summer, which appear to be larval hotspots for taxa like alba-
core and shortbill spearfish across seasons, striped marlin in austral
summer, and blue marlin in boreal spring.

Discussion
This study reveals interhemispheric larval hotspots for 15 ecologically
and commercially important pelagic taxa at ocean-basin scales. Based
on the largest synthesis of larval data for large pelagic fish, we found
evidence for spawning synchrony amongst large pelagic fish, with ten
taxa spawning in spring/summer, two in winter/spring, and only three
with little seasonality. We also found hotspots were often co-located
across taxa, with nine taxa spawning extensively off Northwest Aus-
tralia (tuna: skipjack, yellowfin, albacore, bigeye, and Southern bluefin
tunas; billfish: blue marlin, striped marlin, shortbill spearfish, and
swordfish), nine taxa off Japan (tuna: skipjack, yellowfin, bigeye, fri-
gate, and Pacific bluefin tunas; billfish: striped marlin, sailfish, blue
marlin, and swordfish), and seven in a broad band around 20°N and
20°S (tuna: albacore and slender tuna; billfish: blue marlin, striped
marlin, swordfish, and shortbill spearfish; others: sauries). We found
that tropical taxa spawn over broader areas throughout the year,

whereas subtropical and temperate species spawn in more restricted
areas and seasons. Species with slower growth were more seasonally
restricted compared to species with faster growth. Considering the
vastness of the ocean area where these large pelagic fish can spawn,
these results suggest considerable co-location of spawning in time and
space, rather than taxa predominantly segregating their spawning.
This implies that the evolutionary benefits of spawning in similar areas
and at similar times likely outweighs the additional competition and
predation that co-locating their spawning in time and space would
generate.

The reliability of larvae as a proxy for spawning
We assume that larval data can be used to understand spawning, but
this depends on factors such as the age of larvae sampled30 and local
currents32. Although the age of sampled larvae is unknown, the con-
currence between the observation-derived predictions of larval hot-
spots in the current work and independent spawning studies provides
some confidence that Nishikawa larval data can offer insights into
spawning strategies. For example, Southern bluefin tuna are known to
spawn off Northwest Australia12 and across the tropical southeast
Indian Ocean33; skipjack, yellowfin, and bigeye tunas spawn east of the
Philippines34; Pacific bluefin tunas spawn between the Philippines and
Japan32; skipjack tuna spawn in the tropical Eastern Pacific Ocean14;
blue marlin in the northwestern to central Pacific Ocean35; and tuna
larvae have been reported north ofMadagascar36. Further, our findings
on the timing of peak larval presence broadly agree with current
information on the timing of spawning of large pelagic fish from the
region of this study, specifically on the tunas and billfish whose
spawning information are known. For instance, bigeye tuna spawning
peaks in the PacificOcean from spring through to early autumnboth in
the northern37 and southern37,38 hemispheres. Peak Southern bluefin
tuna spawning is in spring and summer37,39. Striped marlin spawning

Fig. 6 | Relationship of Spatial Aggregation Index and Seasonality Index
across taxa. This relationship (F-statistic (25 degrees of freedom) = 11.14,
p =0.002649, r2 =0.28, 95% confidence intervals = [0.20, 1.19]) is assessed using a
two-sided linear model. Data points are by taxon for each hemisphere (North
Hemisphere points are shown as circles and SouthHemisphere points are shown as
triangles): SKP skipjack tuna, YFTyellowfin tuna,ALB albacore, BETbigeye tuna, FRI

frigate tuna, STRM striped marlin, SAU sauries, SBFT Southern bluefin tuna, BFT
Pacific bluefin tuna, SHOS shortbill spearfish, SWO swordfish, LESC longfin escolar,
SLT slender tuna, BLUM blue marlin, and SAIL sailfish. Data are presented as the
mean values ± SEM of the calculated Spatial Aggregation Index (x-axis) against the
Seasonality Index ± SEM for each taxon (y-axis; See Methods). Quadrants are
defined using the medians of the indices.
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peaks in spring in the northern hemisphere40, and in spring and sum-
mer in the southern hemisphere40,41. Skipjack tuna spawning has been
reported from spring to autumn in the subtropical Indian and Pacific
oceans37,38. Albacore spawning peaks in the southern hemisphere in
spring and summer38, and we found considerable spawning then but
also in autumn. Finally, yellowfin tuna in the southern hemisphere
spawn predominantly in spring and summer38,42, although we also
reported considerable spawning in autumn.

Environmental conditions at larval hotspots
The co-location of spawning inmany large pelagic fish could be driven
by their shared environmental preferences. Consistent with other
studies, we found that most of the fish larval taxa preferred warmer
temperatures (25–29 °C)28, while sauries and slender tunaprefer cooler

temperature (20–25 °C)43. As larvae can develop at cooler tempera-
tures and would require less food to sustain their metabolism, warmer
temperatures could be required to initiate spawning9 and accelerate
larval growth rates44. Further, despite the risk of starvation, we found
that pelagic fish larvae were often found in oligotrophic environments
where theremight be less food available but potential predatorsmight
be less abundant9,45. Additionally, the probability of larval occurrence
was highest in areas with moderate mean kinetic energy values, char-
acterized by intermediate large-scale dynamic flow. This is consistent
with the optimal environmental window hypothesis, which suggests
spawning habitats are found in areas of moderate ocean mixing15,46. In
areas of low kinetic energy, and thus low turbulence, limited mixing
leads to lowproductivity and encounter rates between larvae and their
prey, leading to poor feeding conditions and recruitment13,47. Con-
versely, in areas of high kinetic energy and thus turbulent conditions,
there is greatermixing of nutrients into the euphotic zone, but the lack
of stability causes larvae to struggle to capture prey in these turbulent
environments13,47,48. However, at intermediate kinetic energies, there is
moderate mixing and sufficient nutrients to promote primary pro-
ductivity, and larval encounter rates are sufficiently high and suc-
cessful for favorable feeding conditions and strong recruitment.
Further, strong advection associated with high kinetic energy can
reduce recruitment through larval advection into poor feeding and
recruitment areas48,49. Thus, larval survival is generally higher in areas
characterized by moderate flow15, but can also be reduced by preda-
tion, as predators can also aggregate in these areas50.

Spawning strategies of large pelagic fish are driven by plankton
productivity
Spawning strategies, as reflected by the seasonal and spatial aggre-
gation of larval distributions, reveal clear latitudinal patterns likely
driven by oceanic productivity. In tropical regions, large pelagic fish
generally spawn year-round across extensive areas. By contrast,
spawning in subtropical and temperate waters is seasonal and takes
place inmore restricted areas. This pattern is not only reflected across
species, but also within individual species. For example, skipjack tuna,
which has a fast life history, tends to spawn year-round over vast tro-
pical areas, but shifts to seasonal spawning in spring and summer in its
spatially restricted subtropical spawning grounds off Japan and
Northwest Australia. Broad-scale spawning patterns observed in this
study are likely to be driven by the availability of nutrients and its
impact on plankton productivity. In oligotrophic tropical regions,
nutrient concentrations are generally low and reasonably stable
throughout the year, with ephemeral nutrient and productivity pulses
due to wind-driven mixing, including monsoon-driven changes,
introducing localized variability51,52. Because these productivity pulses
are sporadic in time and space in the tropics, fish spawn benefit from
an opportunistic spawning strategy, spawning over vast areas to
exploit transient productivity pulses.

By contrast, productivity is more strongly seasonal and pre-
dictable in temperate regions52,53. In these more eutrophic temperate
regions, nutrient concentrations vary substantially throughout the
year, with predictable seasonal productivity pulses driven by large-
scale and reliable shifts in large-scale weather patterns such as
movements of atmospheric pressure systems52,54. These predictable
productivity pulses at higher latitudes51 (Mann and Lazier 2006)
make a periodic spawning strategy more advantageous, where large
pelagic fish spawn in recurrent productivity hotspots at particular
times of year.

Leveraging information on spawning strategies in fisheries
management
Enhanced knowledge of spawning locations and behavior can help
support fisheries management. Specifically, identifying spawning
grounds can help elucidate stock structure55 and thus improve

Fig. 7 | Spatial aggregation and seasonality of spawning is greater at higher
latitudes. The relationship between: a the Spatial Aggregation Index and Latitude
(F-statistic (25 degrees of freedom) = 11.8, p =0.002014, r2 =0.32, 95% confidence
intervals = [0.71, 4.26]) and b the Seasonality Index and Latitude (F-statistic (25
degrees of freedom) = 32.42, p =0.000006266, r2 =0.56, 95% confidence inter-
vals = [0.11, 1.10]) assessed using a two-sided linearmodel are shown across all taxa
for each hemisphere. Data points are by taxon for each hemisphere (North Hemi-
sphere points are shown as blue circles and South Hemisphere points are shown as
orange triangles): SKP skipjack tuna, YFT yellowfin tuna, ALB albacore, BET bigeye
tuna, FRI frigate tuna, STRM striped marlin, SAU sauries, SBFT Southern bluefin
tuna, BFT Pacific bluefin tuna, SHOS shortbill spearfish, SWO swordfish, LESC
longfinescolar, SLT slender tuna,BLUMbluemarlin, andSAIL sailfish. Data in (a) are
presented asmean values ± SEM of the calculated Spatial Aggregation Index across
seasons for each taxon. Data in (b) are presented as the calculated Seasonality
Index ± SEM for each taxon.
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assessments56, reduce the likelihood that particular stocks are
overfished57, and potentially aid understanding of stock-specific
responses to climate change58,59. Spawning grounds can also be
incorporated directly into area-based fisheries management60 to pro-
tect spawning adults61. Such measures can help rebuild depleted fish
stocks and improve overall stock resilience9,62.

The co-location of spawning of many taxa of large pelagic fish
could inform where fishing could be restricted during spawning
periods63. This is especially critical for highly migratory species man-
aged by Regional Fisheries Management Organizations (RFMOs)
whose jurisdictions span regions of international waters across both
hemispheres. Although the use of spatial management measures by
RFMOs remains rare64, implementing pelagic closures around spawn-
ing aggregations could be an effective tool in fisheries management65.
Targeted fishing closures in spawning grounds of overfished or
declining fish stocks—such as the bigeye tuna in the western and
central Pacific Ocean66, the striped marlin in the western and central
northern Pacific Ocean67, and albacore in the South Pacific Ocean68—

could help rebuild populations and increase stock resilience. Current
efforts, however, are limited. For example, there is only a single Con-
servation Management Measure (CMM 2023-01) in the Western and
Central Pacific Fisheries Commission with a spatiotemporal compo-
nent for either target or non-target species. This Conservation and
Management Measure for bigeye, yellowfin and skipjack tuna includes
a banon settingfish aggregatingdevices in the high seas between20°N
and 20°S in the western and central Pacific Ocean from July to mid-
August, with a further onemonth ban formost countries. Themeasure
does not mention protection of spawning aggregations as a rationale
for the closure69.

Information on spatiotemporal variation could also contribute to
the development of general theoretical considerations to inform
appropriate and targeted fisheries management approaches for spe-
cific taxa. For example, taxa with spatially aggregated spawning
grounds that had little seasonality—such as frigate tuna—might benefit
more from permanent spatial closures than taxa that spawn over a
more dispersed area70. However, taxa that are temporally aggregated
but spatially dispersed—such as striped marlin and swordfish in the

northern hemisphere—could benefit more from seasonal closures of
some areas in their potential spawning grounds70. Conversely, taxa
that are both spatially and temporally aggregated—such as Pacific
bluefin tuna and Southern bluefin tuna—could benefit from seasonal
spatial closures, dynamic time-area, or event-triggered fisheries
closures71. Such time-area closures are likely to have fewer benefits for
taxa that are both spatially and temporally dispersed, such as skipjack
and yellowfin tuna. For these species, traditional management mea-
sures such as input (e.g., gear restrictions) or output controls (e.g.,
quotas) may be more beneficial.

Harnessing spawning information in biodiversity conservation
Identifying spawning grounds for multiple pelagic fish species could
inform and enhance conservation measures. For example, the criteria
for Ecologically or Biologically Significant Areas in the Convention on
Biological Diversity emphasizes the role of critical life history stages,
particularly for threatened species, in identifying key conservation
areas72. The cross-taxa spawning hotspots could be integrated into the
design of fisheries closures as part of fisheries management
strategies65. Such closures could provide benefits beyond commer-
cially valuable fish species, including non-target biodiversity. When
such closures deliver long-term conservation benefits beyond their
primary purpose related to fisheries management, these closures
could potentially qualify as OECMs73. Further, these spawning areas
could inform the design of MPAs. While the effectiveness of MPAs in
conserving highlymigratory tuna species is debated21, protecting their
spawning areas from intense fishing is likely to yield conservation
benefits74,75. Incorporating larval hotspots in the design of MPAs could
potentially lead to increases in fishbiomass and associated ecosystems
services such as food provisioning57,76. It could also increase the resi-
lience of tuna and billfish fisheries61, and provide broader biodiversity
protection to less-monitored non-target populations.

Caveats
This study has several caveats. First, fish larvae were not identified
through genetic analyses, so some misidentification is possible for
species that aremore difficult to identifymorphologically. Second, the

Table 1 | Taxonomic, life-history and sampling information of the 15 large pelagic fish taxa

Common name Speciesa Family Oceanic environmentb Life-history
strategyb

Number of
presencesc

Skipjack tuna Katsuwonus pelamis Scombridae Tropical Fast 1695

Yellowfin tuna Thunnus albacares Scombridae Tropical Fast 1327

Albacore Thunnus alalunga Scombridae Subtropical Slow 539

Bigeye tuna Thunnus atlanticus, Thunnus obesus Scombridae Subtropical Fast 476

Frigate tuna Auxis rochei, Auxis thazard Scombridae Tropical Fast 415

Southern blue-
fin tuna

Thunnus maccoyii Scombridae Temperate Slow 105

Pacific bluefin tuna Thunnus orientalis,Thunnus thynnus Scombridae Temperate Slow 104

Slender tuna Allothunnus fallai Scombridae Tropical, Subtropical,
Temperate

Fast 75

Blue marlin Makaira Mazara, Makaira nigricans Istiophoridae Cosmopolitan Slow 1697

Shortbill spearfish Tetrapturus angustirostris, Tetrapturus
pfluegeri

Istiophoridae Tropical, Subtropical,
Temperate

Slow 556

Swordfish Xiphias gladius Xiphiidae Tropical, Subtropical,
Temperate

Slow 517

Striped marlin Kajikia albida, Kajikia audax Istiophoridae Temperate Slow 362

Sailfish Istiophorus platypterus Istiophoridae Cosmopolitan Slow 215

Longfin escolar Scombrolabrax heterolepis Scombrolabracidae Tropical, Subtropical,
Temperate

Unknown 204

Sauries Cololabis saira, Scomberesox saurus Scomberesocidae Temperate Unknown 166
aSpecies names are italicized.
bInformation from: Juan-Jordá et al.5.
cInformation from: Buenafe et al.31.

Article https://doi.org/10.1038/s41467-025-63106-w

Nature Communications |         (2025) 16:8146 9

www.nature.com/naturecommunications


status of the exploited fish stocks could have influenced the observed
spatiotemporal spawning patterns. Some species could have suffered
declines in abundance before or during the period of sampling77. For
example, fishing activities during the sampling period (1956–1981) of
the Nishikawa dataset led to range contractions in several species,
including blue marlin, sailfish, Southern bluefin tuna, skipjack tuna,
and striped marlin78. Notably, areas of range contractions identified in
Worm and Tittensor78 overlap with areas of low probabilities of
occurrence for the sailfish and skipjack tuna BRTmodels. However, 10
out of the 15 taxa in our study were not listed as highly exploited78.
These larval distributions are a historical record of spawning grounds
under the stock status at the time, providing a valuable reference for
current and future comparisons.

Third, while BRTs are a robust approach for building habitat
suitability models, it has its limitations. For example, habitat suit-
ability models built using BRTs may detect interactions among pre-
dictors better than other methods but are prone to overfitting due to
the sequential fitting of the model79. Additionally, BRTs can also have
problems when extrapolating to areas where the relationship
between response and predictors is unknown. To minimize these
problems, we have: (1) balanced the number of trees, tree complex-
ity, and learning rate of themodels, as well as including a bag fraction
that introduces stochasticity to decrease overfitting79; and (2)
restricted the extrapolation of the models to 10° × 10° grid cells with
at least 5% of its area having sampling data. However, there is still the

potential for overfitting of non-causal predictors when using BRTs.
Thus, the role of environmental drivers in explaining larval dis-
tributions should be interpreted with some caution, as should the
use of the predictions for climate-impact studies.

Fourth, we used output from ocean models from OMIP2 instead
of observations such as satellite data13 or in-situ data recorded during
tows. Although model outputs have greater uncertainty than
observations80, it was not possible to obtain observations for envir-
onmental variables in the 1956–1981 period. OMIP2 models had the
best temporal overlap with the larval dataset compared to other
environmental databases available. Fifth, the spatial resolution of the
calculated mean kinetic energy is 1°, which might not adequately
reflect finer-scale local mixing processes. Thus, relationships between
species occurrence and mean kinetic energy should be interpreted
with caution. Last, we built the models using only a single dataset, and
many taxa had relatively few positive records, resulting in low prob-
abilities of occurrence, and some had too few positive records where
the BRTs did not converge (e.g., little tuna, bonitos). Subtle seasonal
patterns and habitat preferences could therefore have been missed in
these taxa.

Concluding remarks
We found that large pelagic fish exhibit diverse spawning strategies in
both location and timing. Generally, species in tropical regions spawn
broadly across time and space, whereas those in subtropical and

Fig. 8 | Variation in spatial aggregation and seasonality of spawning. a–c across
taxonomic groups (Tuna: n = 8; Billfish: n = 5; Other: n = 2, where n represents the
number of taxa in this category) and b–d across life history strategies (Slow: n = 8;
Fast:n = 4;Unknown: n = 3,wheren represents the number of taxa in this category).

Variation in the means of the two indices across taxa is illustrated using box plots
with bounds from 25th (Q1) to 75th (Q3) percentiles, a solid line indicating the
median, and whiskers extending to ±1.5 × Interquartile Range (IQR). Outliers are
represented as points beyond the whiskers.
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temperate regions spawn over a narrower time window and in more
localized areas. Further, many large pelagic fish taxa co-locate their
spawning in time and space. These spawning hotspots—south of Japan
in the East China Sea, in the eastern tropical Pacific Ocean north and
south of the equator, and off Northwest Australia—could inform the
development of area-based management tools. These areas have the

potential to deliver multiple benefits for fisheries and conservation.
These benefits include improving fisheries management approaches,
increasing fish biomass of commercially important species, and
achieving conservation outcomes for overfished species. Such mea-
sures could enable fisheries to contribute more actively towards
achieving globally agreed societal goals. With less than five years

Fig. 9 | Seasonal hotspots based on Principal Component Analysis (PCA).
a, b January–March (r2PC1 =0.30; r2PC2=0.14); c, d April–June (r2PC1 =0.30;
r2PC2 =0.17); e, f July–September (r2PC1 =0.22; r2PC2 =0.15); and
g,hOctober–December (r2PC1=0.31; r

2
PC2 =0.14). The left column shows PC1 scores

(a, c, e, g) and the right column shows PC2 scores (b, d, e, h). Below each panel is a

summary of the correlation of the PC axes with the seasonal probability maps of
each taxon. Grids of taxa are color-coded depending on the absolute value of their
Spearman correlation coefficients: high are red (≥0.6 or ≤ −0.6); moderate are
cream (0.3 to 0.6 or −0.6 to −0.3); and low are blue (−0.3 ≥ and ≤0.3).
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remaining to achieve the target of protecting 30% of the oceans by
203024, the cross-taxa larval hotspots identified in this paper provide
critical information to guide the development of MPAs and OECMs,
particularly in data-poor and under-protected areas beyond national
jurisdiction.

Methods
Preparing seasonal historical larval and environmental data
A 1° × 1° grid from 40°N to 40°S was created spanning the Indian and
Pacific Oceans and all data were resampled into this grid. The digitized
catch per unit effort (CPUE) categories from the Nishikawa data31 were
converted to presence-absence data (i.e., CPUE categories >0 were
considered presences) because there were few sampling points with
categories >1 (Supplementary Fig. 15). Following Nishikawa et al.30, we
defined seasons asonemonthdelayed from standard calendar seasons
(i.e., boreal summer is July–September and austral summer is
January–March). Historical climate data for the following surface pre-
dictors were downloaded from the Ocean Model Intercomparison
Project Phase 2 (OMIP2)81: (1) temperature (°C); (2) oxygen (molm−3);
(3) pH; (4) chlorophyll-a (mmolm-3); (5) salinity (ppt); (6) mixed layer
thickness (m); (7) nitrate (mmolm−3); (8) phosphate (mmolm−3); (9)
ammonium (mmolm−3); (10) zonal (east-west) velocity (m s-1); and (11)
meridional (north–south) velocity (m s−1) (Supplementary Fig. 16–26).
OMIP2 outputs are the result of six simulation cycles of a 61-year for-
cing dataset (1958–2018), resulting in 366-year simulation outputs.
While the Nishikawa dataset runs from 1956 to 1981, we prepared the
mean, seasonal layers of each surface predictor through 1963–1981
from the last simulation cycle of the OMIP2 ensemble members
(SupplementaryTable 2), removing thefirstfive yearsof the simulation
cycle to account for the possible overshoot from the previous simu-
lation cycle82. Using the temperature and salinity data, we calculated
broad-scale thermal (°C km−1; Supplementary Fig. 27) and salinity
(ppt km−1; Supplementary Fig. 28) gradients using VoCC R package83.
We calculated mean kinetic energy (m2 s−2) as a proxy for large-scale
surface flow dynamics84, using zonal (u) and meridional (v) geos-
trophic velocities (Supplementary Fig. 29):

MKE =
1
2

u2 + v2
� � ð1Þ

The mean depth layer was prepared using the current gridded,
sub-ice bathymetric dataset of General Bathymetric Chart of the
Oceans (GEBCO; Supplementary Fig. 30)85. The distance of each grid
cell to the nearest coastline was calculated using the rnaturalearth86

and sf87 R packages (Supplementary Fig. 31). Finally, we combined
larval and environmental data to prepare seasonal datasets following
the Nishikawa data (i.e., January–March, April–June, July–September,
and October–December).

We intersected all layers with the grid to provide response and
predictor values in each of the 15,551 cells of 1° × 1°. Values of pre-
dictors for each cell were assigned based on geographic location and
time period (for seasonal environmental predictors). Each grid cell
inherited the nearest known value for the predictors. Larval and
environmental data describedwerepreparedwith the sameresolution.
All analyses were done in the R statistical computing environment
(version 4.4.3)88 and the Climate Data Operators (CDO) software89.
Packages used to analyze the data are available in Supplementary
Table 3. All output from habitat suitability models is available at Bue-
nafe et al.90.

Building historical habitat suitability models
Many different techniques can be used to build habitat suitability
models91, including Generalized Additive Models for larval habitat
suitability models13,92. However, Boosted Regression Trees (BRTs)—a
machine learning technique—are generally more powerful at

detecting interactions between predictors79. Since our aim was to
describe seasonal, historical larval hotspots, we used BRTs to build
the habitat suitability models rather than other techniques. BRT
models were built using the dismo R package93. Predictors in the
BRTs were oceanographic and biophysical drivers that have been
identified as characterizing potential spawning locations of fish lar-
vae in previous studies: (1) longitude94,95; (2) latitude94,95; (3) season13;
(4) mean surface temperature28,95; (5) mean surface dissolved
oxygen96; (6) mean surface pH97; (7) mean surface chlorophyll-a28,45,95;
(8) mean surface salinity28,94; (9) mean mixed layer thickness95; (10)
mean surface nitrate concentration98; (11) mean surface phosphate
concentration98; (12) mean surface ammonium concentration98; (13)
broad-scale thermal gradients28,45; (14) broad-scale salinity
gradients28; (15) mean kinetic energy48; (16) mean depth95; and (17)
distance to the nearest coastline95. While many of the predictors co-
vary, BRTs, as do any other modeling approaches, are robust to a
moderate amount of covariation79.

We used the presence-absence data (i.e., 1 – presence; 0 –

absence) of the following fish taxa as the response: (1) skipjack tuna
(Katsuwonus pelamis); (2) yellowfin tuna (Thunnus albacares); (3)
albacore (Thunnus alalunga); (4) bigeye tuna (Thunnus obesus); (5)
frigate tuna (Auxis rochei and A. thazard); (6) Southern bluefin tuna
(Thunnus maccoyii); (7) Pacific bluefin tuna (Thunnus orientalis); (8)
slender tuna (Allothunnus fallai); (9) blue marlin (Makaira nigricans);
(10) shortbill spearfish (Tetrapturus angustirostris); (11) swordfish
(Xiphias gladius); (12) stripedmarlin (Kajikia audax and K. albida); (13)
sailfish (Istiophorus platypterus); (14) longfin escolar (Scombrolabrax
heterolepis); and (15) sauries (Cololabis saira, C. adocetus, and Scom-
beresox saurus). We categorized these taxa according to their oceanic
environment99 and life-history strategy5 (Table 1).We also reported the
number of presences of each taxon from 40°N-40°S as reported in
Nishikawa et al.31. All taxa had the same number of samples (n = 13,275)
in the Nishikawa dataset (i.e., CPUE for each taxon wasmeasured in all
the samples). As each taxon was modeled using individual BRTs,
models for taxa that were more common (i.e., larvae were present in
more samples) were more robust than for species that were relatively
rare (i.e., taxa that had more zeros) (Table 1). Although the larval
dataset has information on three more taxa (little tuna, bonitos, and
blackmarlin), the BRTs did not converge for these taxa because of too
few presence data.

The BRT method combines regression trees with boosting, an
ensemble learning method, iteratively aggregating individual weak
learners to a final strong learner79. We built the models using cells
with presence/absence data in our domain (n = 6,166), dividing them
into an 80–20 train-test split. Using the training data, we executed a
grid search to determine the configuration of hyperparameters that
would yield the optimal model for each taxon (i.e., model with the
highest Area Under the receiver operating Curve, or AUC, of the
testing data). We ran the grid search across this range of different
hyperparameters: (i) tree complexity (i.e., interaction depth): 1 or 2;
(ii) learning rate: 0.005 to 0.01 in increments of 0.001; and (iii) bag
fraction: 0.5 or 0.75. We reported the optimal model for each taxon
by employing a five-fold cross-validation to search for the optimal
number of trees while ensuring that each BRT was built with at least
1000 trees (Supplementary Table 1)79. Using the optimal models, we
presented the seasonal habitat suitability maps of each taxon (i.e., 15
taxa × 4 seasons = 60 maps).

To increase the confidence in the models, we overlaid a 10° × 10°
grid onto the Indian and Pacific Oceans. We then only retained 1° × 1°
grid cells found within the larger 10° × 10° cells that had at least 5% of
its area covered by 1° × 1° sampling cells. By doing so, we restricted the
extrapolations to areas relatively close to where larvae were sampled.
We also restricted the resulting habitat suitability maps of each taxa to
their respective adult distributions. The range of the adult distribu-
tions are defined using predicted occurrences from AquaMaps
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(probabilities of species occurrence ≥0.01 are considered as
presences100). Because not all taxa were identified to the species-level
in Nishikawa et al.30, we followed Buenafe et al.31 and calculated the
mean of the adult probabilities of species occurrence of the species
listed within each taxon. Spatial dependence among grid cells was not
considered in the models.

Describing interhemispheric seasonality and spatiotemporal
aggregation
To visualize interhemispheric seasonality across taxa, we calculated
the mean probabilities for each season in each hemisphere. As a
measure of spawning seasonality, we defined the “Seasonality Index”
for each taxon in each hemisphere as the standard deviation (across
seasons) of the mean probabilities. Higher Seasonality Index values
indicate greater seasonality in spawning. As a measure of spatial
aggregation in spawning, we defined the “Spatial Aggregation Index”
for each taxon in each hemisphere as the mean (across seasons) of
the coefficient of variation (i.e., standard deviation over the mean)
of the probabilities. The coefficient of variation scales the standard
deviation with the different magnitudes of probabilities for each
taxon. Higher Spatial Aggregation Index values indicate greater
aggregation in spawning (i.e., less uniformly distributed). The Sea-
sonal Index and the Spatial Aggregation Index are compared across
taxonomic groups and life-history strategies (Table 1). We assessed
the relationship between the Seasonality and Spatial Aggregation
Indices across taxa. Further, we quantified the relationships of the
indices across different predictors, such as latitude (specifically, the
absolute value of latitude), taxonomic groups, and life history
strategies (Table 1). These relationships were quantified by fitting
linear models for the different responses (typically, the indices) and
predictors (latitude, taxonomic groups, life history strategies)
(Supplementary Table 4).

Identifying historical larval hotspots
To summarize the major spatial patterns in larval distribution,
including the high-probability areas common to multiple taxa (i.e.,
larval hotspots), we performed a Principal Component Analysis (PCA)
for each season on the probability of occurrence for all larval taxa. The
input matrix for each season comprised the 15 larval taxa (as columns)
and the resulting probabilities for each of the grid points from the
BRTs (as rows). The PCA was performed on the correlation matrix of
this input matrix. The first two PC axes explained 35% of the total
variance (Supplementary Fig. 32), suggesting that the identified pat-
terns explained a substantial proportion of the larval distribution
patterns across taxa, although there remains considerable unex-
plained variation. Grid cells with high PC scores reflect areas with high
probabilities of occurrences across different taxa and are thus poten-
tial larval hotspots. Information on how to perform and interpret PCA
can be found in Legendre and Legendre101. We also calculated the
Spearman correlation coefficient between the individual seasonal lar-
val maps and each of the first two PCA axes to determine the rela-
tionship between each taxon and the major seasonal patterns of larval
distribution.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The environmental, oceanographic and larval data used to run the
models are available in the Zenodo database (https://doi.org/10.5281/
zenodo.14745329)90. The model outputs generated in this study have
been deposited in the Zenodo database (https://doi.org/10.5281/
zenodo.14745329)90.

Code availability
The up-to-date code used to generate the data, run all analyses, and
create the figures and plots are available in the GitHub repository
(https://github.com/SnBuenafe/LarvaDistModels) and archived in the
Zenodo database (https://doi.org/10.5281/zenodo.14745329)90.
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