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DECIPHER for learning disentangled cellular
embeddings in large-scale heterogeneous
spatial omics data

Chen-Rui Xia 1,2,3, Zhi-Jie Cao 1,2,3 & Ge Gao 1,2

The functional role of a cell, shaped by the sophisticated interplay between its
molecular identity and spatial context, is often obscured in current spatial
modeling. In efforts to model large-scale heterogeneous spatial data in silico
effectively and efficiently, we introduce DECIPHER, which disentangles cells’
intra-cellular and extra-cellular representation through a novel cross-scale
contrast learning strategy. In addition to superior performance over state-of-
arts, systematic benchmarks and various real-world case studies showed that
the disentangled embeddings produced by DECIPHER enable delineating cell-
environment interaction across multiple scales. Of note, DECIPHER is highly
scalable, capable of handling spatial atlases with millions of cells which is
largely infeasible for existing methods.

Inmulticellular organisms, cellsmust interact to organize into three-
dimensional tissue structures. The spatial context of an individual
cell is as critical as its intrinsic properties in determining its phy-
siological function and potential pathological alterations1,2. While
spatial omics technologies enable systematic characterization of
both these aspects, their proper in silico representation remains a
serious challenge3–5.

Embedding, or the procedure of representing original high-
dimensional spatial data as low-dimensional vectors, has been
widely adopted to enrich biologically relevant signals while simul-
taneously removing technical artifacts6,7. Inspired by its great suc-
cess in single-cell omics6, current methods often aim to generate a
holistic embedding for spatial data by encoding both the cellular
transcriptome and spatial context into a single low-dimensional
space3–5 as the backbone of downstream analyses. For example,
STAGATE4, Banksy5, BASS8, and scNiche9 are designed for spatial
domain clustering to identify the spatial niches of cells; GraphST10

and STADIA11 additionally support correcting batch effects from
different experiments and biological conditions; SLAT can align
multiple spatial slices. While this holistic embedding approach eases
model design and implementation, it effectively introduces intrinsic
entanglement between the molecular identity and spatial context,
obfuscating direct dissection of their interplay. This approach is also

hard to connect with cell-cell communication, where embedding-
free methods such as NicheNet12 and CellChat13 are commonly used
to find active ligand-receptor across given cell types. Besides, scal-
ability remains a significant limitation, e.g., graph neural network
(GNN)-based methods (STAGATE, GraphST, SLAT, scNiche) often
need to load entire spatial graphs into memory (or GPU memory),
which is impractical for datasets containing millions of cells.

Here, we present DECIPHER, a context-aware deep learning
model designed for large, heterogeneous spatial datasets. DECI-
PHER employs a novel cross-scale contrastive learning framework to
learn disentangled representations as separate intra- and extra-
cellular embeddings (Fig. 1). Notably, benefiting from a transformer-
based architecture14, DECIPHER’s scalability is significantly
improved compared to previous methods, which is crucial in the
context of increasing throughput of spatial omics. In addition to its
outstanding performance showed by systematic benchmarks,
DECIPHER’s disentangled embeddings enable quantitative char-
acterization of intra- and extra-cellular interactions which is crucial
for various real-world applications, such as calling cell interaction
molecules for B cell localization in Germinal Center (GC) and iden-
tifying key genes for immune cells infiltration in tumor micro-
environments (TME). DECIPHER is publicly available at https://
github.com/gao-lab/DECIPHER.
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Results
DECIPHER for learning disentangled intra- and extra-cellular
embeddings
Unlike current spatial omics embedding methods seeking to find a
holistic embedding3–5, DECIPHER employs two separate but inter-
connected components to preserve both shared and specific infor-
mation in gene expression and spatial context. In particular, the
“Omics Encoder” is a multi-layer perceptron (MLP) that learns an
intracellular, molecular identity-oriented embedding from the
expression profile. The “Spatial Encoder” is based on the transformer
architecture, which treats each neighboring cell as a token, and pro-
jects the cell’s spatial information into an independent latent space
(Fig. 1, Methods). Both components are optimized simultaneously
through a dedicated cross-scale contrastive learning procedure: aug-
mented views from the samemolecular profile or spatial neighbors are
considered positive samples for molecular or spatial embedding,
respectively (Supplementary Fig. 1, Methods). Additionally, the con-
trastive learning strategy is also used to remove batch effects (Meth-
ods). After training, the disentangled embeddings can be applied to
downstream tasks (Fig. 1). Specifically, the molecular identify embed-
ding is suitable for omics-oriented tasks like cell typing, while the
spatial context embedding can be applied to spatial-oriented tasks,
such as spatial domain identification.

Benchmarks show DECIPHER’s superior performance
To evaluate the quality of the resulting embeddings, we first compared
themwith several state-of-the-artmethods (Banksy5, STAGATE4, SLAT3,
scNiche9, GraphST10, BASS8 for spatial data modeling; scVI6, Scanpy15

for single cell modeling and integration, STADIA11 and Harmony16 for
spatial and single cell data batch correction). The selected methods
adopt diverse strategies to incorporate spatial information: STAGATE,
SLAT, GraphST and scNiche are based on GNN; Banksy uses an azi-
muthal Gabor filter to weight neighbor expression; BASS utilizes a
Bayesian hierarchical model. Only scNiche requires cell type

annotation as input, while all other methods operate in a fully unsu-
pervised manner. Notably, a key distinction of DECIPHER is its simul-
taneous optimization of disentangled embeddings, in contrast to
other approaches that generate a single holistic embedding. We
applied thesemethods to twowell-curated single cell resolution spatial
datasets (Supplementary Data 1): the Xenium breast cancer dataset17

(single slice,164,079 cells with 313 genes), and the MERFISH brain
dataset18 (31 slices, 378,918 cells with 374 genes).We also used two 10x
PBMC datasets to simulate a synthetic spatial dataset (2 slices, 8405
cellswith 31,915 genes)with unambiguous ground truths for cell types,
spatial domains and batch effects (Methods). Harmony and STADIA are
designed for single cell or spatial databatchcorrection. They require at
least twobatches and not applicable to XeniumandMERFISHdatasets.

For spatial-oriented benchmarks, we quantify the consistency of
embeddings with ground-truth spatial region annotations via nor-
malized mutual information (NMI) and adjusted rand index (ARI).
DECIPHER’s spatial context embedding outperformedothers across all
three datasets (Fig. 2a and Supplementary Fig. 2a), fully demonstrating
the advantages of its disentangled design. STAGATE is a representative
GNN-based model and ranked second in both the simulation and
Xenium dataset. In contrast, another GNN-based model, scNiche-
minibatch, performedwell only on theMERFISH dataset. Interestingly,
the simplest GNN model, SLAT, which contains no learnable para-
meter, achieved overall best performance among GNN-based models
(Fig. 2a and Supplementary Fig. 2a). These results suggested that no
single GNN-based model consistently outperforms others across all
datasets.

We found that lack of scalability prevents the application of sev-
eral methods on real datasets, even with abundant computational
resource (A100-80GB GPU and 64 CPU cores equipped with 256GB
RAM). For example, althoughGraphST and BASS are top-ranked in 10x
PBMC simulation dataset (BASS is 2nd in spatial ARI, GraphST is 3rd in
spatial NMI), they both failed in larger Xenium and MERFISH datasets:
GraphST failed due to memory overflow (capping at 256 GB) while

Fig. 1 | Overview of DECIPHER. Architecture of DECIPHER. DECIPHER models the
disentangled intracellular molecular identity and extracellular spatial context of
cells, respectively. Augmented views of Celli and its spatial neighbors are obtained
by random dropout (Methods). Then, DECIPHER uses an omics encoder (MLP) to
obtain the molecular identity embedding of Celli, and uses a spatial encoder
(transformer-based) to obtain the spatial context embedding based on Celli ’s

spatial neighbors. The model is optimized by contrastive learning to get positive
pairs closer and pushed apart negative pairs (Supplementary Fig. 1). The right panel
shows downstreamapplications basedon cell identity or/and context embeddings,
such as batch correction, clustering in both cell type and niche levels, as well as
finding ligand-receptors/genes contributing to cell localization (see Fig. 3a, b for
details).
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BASS did not finish within a reasonable time limit (72 h), consistent
with an independent benchmark work19. STAGATE failed in MERFISH
datasets due to GPU memory overflow. The vanilla scNiche failed in
Xenium and MERFISH datasets due to GPU memory overflow, we had
to run a subsampling-based version by adopting the “subgraph-based

batch training strategy” suggested by the original authors (denoted as
‘scNiche-minibatch’, Methods) for all benchmarks.

In the simulation dataset, cell types and spatial domains are
designed to be independent (Method, Supplementary Data 2). Under
the setting, spatial-awaremethods outperformed non-spatial methods

Fig. 2 | Benchmarking of DECIPHER and state-of-the-art methods. a Spatial-
oriented benchmark results, in which NMI and ARI were reported against the ori-
ginal spatial region annotations. From left to right are results on the 10x mimic
dataset, the MERFISH brain dataset and the Xenium breast tumor dataset. The
UMAP visualization of spatial regions are shown in Supplementary Fig. 3. b Omics-
oriented benchmark results, in whichNMI and ARI are reported against the original
cell typeannotations. From left to right are the results on the 10xmimicdataset, the
MERFISH brain dataset and the Xenium breast tumor dataset. STAGATE failed on
MERFISH brain dataset because of GPU memory overflow (capping at 80 GB).
GraphST failed on MERFISH brain and Xenium breast dataset because of memory
overflow (capping at 256 GB). BASS failed on MERFISH brain and Xenium breast
dataset because of overtime (capping at 72 h). Hamrony and STAIDA are not

applicable to MERFISH brain and Xenium breast datasets which do not contain
batch effects. The UMAP visualization cell types are shown in Supplementary Fig. 4.
c Benchmark results for batch correction on 10x simulation dataset. batch ASW,
batch GC, batch iLSI, and batch kBET were calculated against spatial region anno-
tations (first row) and cell type annotations (second row), respectively. The UMAP
visualization of batches were shown in Supplementary Fig. 6. n = 8 repeats with
different random seeds. The error bars indicate the means ± s.d. Raw data was
provided as Supplementary Data 6. These methods can be mainly divided into
three groups: spatial modeling (DECIPHER, Banksy, STAGATE, SLAT, scNiche,
BASS), single cell modeling/integration (scVI, Scanpy, Harmony), and spatial batch
correction (STADIA, GraphST). Source data are provided as a Source Data file.
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overall (Fig. 2a, left panel). However, in the Xenium breast tumor
dataset where cell types and spatial domains are interrelated (Sup-
plementary Data 2), a non-spatial method (e.g. scVI) performed com-
parably to spatially-aware methods. Notably, DECIPHER consistently
achieved the best performance (Fig. 2a, right panel).

Existing spatial omics embeddingmodels generally exhibit subpar
performance in omics-oriented metrics (Fig. 2b, Supplementary
Fig. 2a), especially two GNN-based models STAGATE and scNiche-
minibatch, likely due to resolution degradation from the holistic
embedding strategy (Supplementary Figs. 3–4). DECIPHER avoids this
issue by its disentangled design (Fig. 1). We also computed spatial-
oriented metrics using the molecular identity embeddings (and vice
versa) as a negative control, and found significant performancedecline
(Supplementary Fig. 5). This suggests each embedding captures dis-
tinct and complementary aspects of spatial omics data as designed.

We found that DECIPHER showed superior batch correction per-
formance (Fig. 2c, Supplementary Fig. 2b and Supplementary Fig. 6,
Methods). The subsampling-based scNiche (scNiche-minibatch) ranked
second-best, coming at the cost of declined performance for both cell
typing and spatial region annotation, which is consistent with the
intrinsic information loss during graph subsampling. GraphST and
STADIA outperformed non-batch correction spatial methods (such as
SLAT, STAGATE and Banksy), but still worse than DECIPHER and single
cell batch correction methods scVI, and Harmony (Fig. 2c).

The disentangled embeddings enable delineating cell-
environment interaction across multiple scale
Cell-environment interactions often orchestrate cell localization
mediated by ligand-receptors (LR) pairs, and further contribute to
organismal development and homeostasis20. The disentangled
embeddings produced by DECIPHER enable direct modeling of such
sophisticated interactions which is rather challenging with canonical
holistic embedding-based approaches. We focus on identifying key LR
pairs or genes that contribute to the spatial localization of cells. The
key idea is to learn a mask from a cell’s molecular identify embedding
to select specific LRs/genes that can reconstruct the edge in kNNgraph
based on spatial context embedding (Fig. 3a, b, Methods). In other
words, the selected LRs/genes are associated with the spatial envir-
onment of the cell.

Firstly, we used a lymph node Xenium 5k dataset to investigate
key cell-cell communication (CCC) molecules contributing to the
localization of maturing B cells within GCs (Fig. 3c, Supplementary
Fig. 7a, b, Methods). It is well established that the LR pairs
CXCL12_CXCR4 and CXCL13_CXCR5 play critical roles in B cell
maturation and localization21–24: CXCL12_CXCR4 is essential for loca-
lizing follicular B cells within the dark zone, whereas CXCL13_CXCR5
guides the migration of dark zone B cells towards the light zone
(Fig. 3d, e and Supplementary Fig. 7c). DECIPHER successfully identi-
fied CXCL12_CXCR4 and CXCL13_CXCR5 as the top two most impor-
tant LR pairs (Fig. 3f). In comparation, neither CXCL12_CXCR4 nor
CXCL13_CXCR5 was ranked at the top by NicheNet12 (Fig. 2g).
CellChatV213 (Fig. 2h) and simple DEGs (differentially expressed genes)
via canonical holistic embedding-based methods consistently missed
CXCL13_CXCR5 (Supplementary Fig. 7d, e). Considering that CellChat,
NicheNet and DEG baselines focus more on genes with larger differ-
ences between groups by design, we speculated that the small differ-
ence cause by low expression level of CXCL13_CXCR5 led to it being
overlooked (Supplementary Fig. 7f, g). In contrast, by identifying LRs
most correlated with cells’ spatial embeddings, DECIPHER is insensi-
tive to gene expression levels. Meanwhile, we also applied DECIPHER
to a well-explored human skin dataset, and found that it accurately
identified the important LR pairs GAS6-TYRO3 and PROS1-TYRO3,
consistent with the results of NicheNet (Supplementary Fig. 8).

For spatial technologies with limited gene detectability, ligand
and receptor pairs could hardly be detected simultaneously (Fig. 3i).

DECIPHER’s high-fidelity embeddings empower calling key
localization-related genes in such case. As demonstrated in a breast
cancer Xenium dataset covering only 313 genes, lipocalin-type
prostaglandin D2 synthase (PTGDS) emerged as the most relevant
gene for the localization of both T and B cells (Fig. 3j). T and B cells
expressing high levels of PTGDS were either enriched at the tumor
interface or found infiltrating the tumor (Fig. 3k). A previous breast
cancer study using IMC imaging independently identified PTGDS
as a crucial marker for infiltrating lymphocytes (CD4 + /CD8 + /
CD19 + )25, confirming our findings. Among the remaining top-
ranked genes, CXCL1226, CD8627, SFPR428 and CXCR429 have also
been linked to lymphocyte activation and recruitment (Supple-
mentary Fig. 9a, b). On the contrary, differential expression analysis
based on canonical holistic embeddings (SLAT, Banksy) failed to
identify PTGDS and others (Supplementary Fig. 9c–f). Additionally,
CCC methods (NicheNet, CellChatv2) failed due to the limited
number of LR pairs detected in this dataset (Fig. 3i).

Profiling of atlas-level spatial data via DECIPHER
Technological advances have enabled the generation of hetero-
geneous spatial omics atlas exceeding millions of cells30, raising sig-
nificant challenge to the scalability of computational methods.
DECIPHER’s advantages in both performance and scalability facilitate
global analysis of such complex data. For instance, the human pan-
cancer spatial atlas consists of 8.7million cells spanning eight different
cancer types31 (Fig. 4a), with significant batch effects across slices.
DECIPHER successfully corrected batch effects, distinguished cell
types in the molecular identity embeddings, and produced high-
quality spatial context embeddings (Fig. 4b, Supplementary Fig. 10a).
Unlike regular tissues, spatial patterns in cancer lack distinct bound-
aries formed by specific cell types. Instead, they typically exhibit a
continuous variation in cell type density (Supplementary Fig. 10b)
reflecting the dynamic nature of tumor growth, invasion, and lym-
phocyte infiltration. DECIPHER captured such continuous cell type
composition variation globally and identified three classes of niches
(Fig. 4c): the tumor core (dominated by tumor cells), lymph-low infil-
trated tumor, and lymph-high infiltrated tumor (where T cells and B
cells are significantly colocalized with the formation of tertiary lym-
phoid structures, Supplementary Fig. 10c, d).

We further identified genes most associated with T-cell localiza-
tion and identifiedCCR7 andCCL5 as the top twogenes (Fig. 4d). T cells
with high CCR7 expression tend to reside in lymph-high infiltrated
regions, consistent with its key function in naïve T-cell activation32

(Fig. 4e). In contrast, T cells with high CCL5 expression are more likely
to infiltrate into the tumor core (Fig. 4e), and also exhibit high
expression of immunosuppressive checkpoint genes including PD-1,
LAG-3, andCTLA-4,whichalignswith the “terminally exhaustedT cells”
(Tex terminal, characterized by PD-1 + , LAG3+ , CTLA4 + , GZMA+ ,
GLNY+ , GZMB+ and IFNG+ ) as defined in a non-spatial pan-cancer T
cell study33 (Supplementary Fig. 10e). These findings are consistent
with CCL5’s well-known role in promoting T-cell infiltration and
exhaustion34 in the TME. Our findings underscore a strong association
between T cell state and their spatial localization in the TME.

Notably, even using a single GPU, the total running time of
DECIPHER is under 4 h, and can be further accelerated through multi-
GPU parallelization (Fig. 4f). In contrast, state-of-the-art spatial mod-
eling methods not only failed to process the entire datasets but also
produced suboptimal results on down-sampled data (Fig. 4g and
Supplementary Fig. 11).

3D-oriented global analysis is essential for accurately modeling
tissue architecture. DECIPHER natively supports 3D spatial data. Spe-
cifically, we used the mouse brain 3D atlas, which comprises 151 con-
secutive slices of a single brain with 3.5 million cells, depicting the
complex central nervous system35. These slices were registered to 3D
CCF coordinates by the original authors (Fig. 5a, Supplementary
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Fig. 12a). Powered by 3D-oriented analysis, DECIPHER successfully
produced high-fidelitymolecular embeddings (Fig. 5b), and the spatial
embeddings correspond accurately to Allen brain anatomical regions
(Fig. 5c, left panel). Closer inspection shows that the spatial embedding
accurately restores the spatial distribution of cells across different
brain regions35,36 (Fig. 5d). Of interest, when only the 2D coordinates of
cells within slices were used, even basic brain regions could not be

distinguished (Fig. 5c, right panel), underscoring the importance of 3D
information for uncovering complex tissue spatial patterns37. We also
compared with 2D-only spatial methods (Banksy, SLAT, STAGATE).
Considering that these other methods do not scale to such data size,
we randomly down-sampled the dataset to 200k cells. They con-
sistently produced suboptimal results similar to the 2D version of
DECIPHER (Supplementary Fig. 12b).

Article https://doi.org/10.1038/s41467-025-63140-8

Nature Communications |         (2025) 16:7991 5

www.nature.com/naturecommunications


Discussion
Intra- and extra-cellular factors in spatial biology are interconnected
but should not be conflated. To model spatial data properly, we pro-
pose DECIPHER for learning high-fidelity, disentangled embeddings of
molecular identity and spatial context, through a novel cross-scale
contrastive learning framework. We demonstrated superior perfor-
mance of DECIPHER in various benchmarks and real-world case stu-
dies. More importantly, DECIPHER’s unique ability to quantify omics
factors highly correlated with spatial locations enhances the under-
standing of intracellular and extracellular regulation.

Given the rapidly increasing throughput of new spatial
technologies38,39, scalability becomes a critical challenge for existing
method. For example, BASS, GraphST performed well on the 10x
simulation dataset (Fig. 2), but failed to scale to larger datasets such as
Xenium and MERFISH datasets, consistent with previous benchmark
studies19. By employing a transformer-based spatial encoder, DECI-
PHER scales to datasets of arbitrary sizes. Additionally, DECIPHER only
uses shallow networks and low embedding dimensions, as we found
more layers and larger dimension brings marginal improvement. This
lightweight architecture appears sufficient to capture the key features
present in current spatial omicsdata. Additionally, DECIPHER supports
multi-GPU parallelization for further acceleration.

DECIPHER’s contrastive self-supervised learning strategy com-
bined with the transformer architecture is well suited for large-scale
heterogeneous spatial pretraining40. While current spatial data’s lim-
ited quantity and quality (in terms of resolution, gene coverage and
drop-out ratio) makes it more difficult to benefit from the “scaling
law”41, we anticipate that with continued technological advances, high-
quality spatial data covering entire transcriptome, entire organs or
organisms will eventually emerge. Once such data become available,
DECIPHER could serve as the backbone of pretrained spatial founda-
tion model, providing a reliable starting point for addressing various
biological questions involving cellular functions within native
contexts.

We also quantitatively compared the divergence between the two
embeddings by calculating the coefficient of determination (R2)
(Methods). Interestingly, the R2 values appeared to be cell-type-
specific (Supplementary Data 3). For instance, in the mouse brain 3D
atlas dataset (Supplementary Fig. 13), higher R2 values were observed
in certain neuron subtypes (e.g., IT-ET Glut, HY GABA, HY Glut), sug-
gesting their conservedmolecular-spatial profiles (Fig. 5d). In contrast,
lower R² values were found for OPC–oligodendrocyte, immune, and
vascular cell typeswhich aremorebroadly distributed across thebrain.

We’d note that the current study has some limitations. Model-
wise, DECIPHER only use randomdropout as data augmentation,more
diverse data augment approaches may improve the performance42. In
terms of benchmarking, our evaluation only contains two technolo-
gies, Xenium and MERFISH. Although DECIPHER is broadly applicable
to various single-cell resolution spatial technologies other than

Xenium and MERFISH, e.g., CosMx and CODEX, we could not incor-
porate them into the current benchmark partly due to the lack of high-
quality annotation of cell types and spatial regions. Thus,more diverse
and gold-standard spatial datasets are still required for the systematic
evaluation of methods in the community.

In summary, DECIPHER is a high-performance, high-scalable tool
whichprovides a newanalytical perspective for exploring spatial omics
data. To promote its application by the research community, the
DECIPHER package, along with detailed tutorials, are available at
https://github.com/gao-lab/DECIPHER.

Methods
Framework
DECIPHER requires one or multiple single cell spatial omics datasets
consisting of the rawexpressionmatrix and spatial coordinates of cells
(supporting 2D or 3D coordinates). At the omics level, the raw
expression matrix undergoes standard processing15, including log-
based normalization, top 2000 highly variable gene selection (via
‘seurat_v3’mode of the scanpy.pp.highly_variable_genes function), and
scaling. At the spatial level, for each cell i, k-nearest neighbors in the
spatial coordinate space are considered the spatial neighbors of cell i,
denoted as N n (with k defaulting to 20).

The DECIPHER model is composed of an “omics encoder” and a
“spatial encoder” (Fig. 1), which are used to learn intra-cellular mole-
cular identity and extra-cellular spatial context embeddings, respec-
tively. Permutation invariance is an important feature of spatial
neighborhoods, due to the spatial neighbors of a cell not having a
meaningful order. Self-attention mechanism suits spatial data model-
ing since it is naturally permutation invariant, i.e., each token can
access any token through attention operation43. Thus, the “spatial
encoder” adopts a transformer architecture14,44 without the position
embedding procedure (by default, 3 layers with 1 attention head). It
takes the omics features of all spatial neighbors of celli (excluding celli
itself) and a trainable token (CLS token) as input tokens. The “omics
encoder” is a multilayer perceptron (MLP) that projects high-
dimensional single-cell expression data into the molecular identity
latent space (by default, 32 dimensions), denoted as zomics

i . We do not
use a Transformer-based architecture here because its high compu-
tational cost. To reduce computational complexity, the input tokens of
spatial encoder are not high-dimensional expressions but rather latent
representations learned by the omics encoder. The output embedding
of the CLS token is ultimately used as the spatial context embedding
zspatiali of celli (by default, 32 dimensions).

Training process
The DECIPHER model is optimized through novel cross-scale con-
trastive learning we proposed (Supplementary Fig. 1). Specifically, two
contrastive losses from omics scale and spatial scale are used to
optimized the whole model simultaneously:

Fig. 3 | DECIPHER enables identifying localization-related LR pairs/genes.
aDetailed illustration of the LR/gene selectionmodel. Thismodel uses aMLPwith a
Gumbel-sigmoid layer to generate a learnable LR/gene mask from the molecular
identity embedding. Then the product of selected LRs/genes ofCelli andCellj were
used to reconstruct the edge of k-NN graph from spatial embedding: if Celli and
Cellj were connectedby anedge, theproduct is expected to be larger, otherwise, to
be smaller (Methods). � means Hadamard product. b Illustration of LR activity
calculation, which is the production of LR expression48 (Methods) and an extra LR
mask: if cell i expresses the receptor gene of one LR pair and cell i’s neighbors
within 100 µm express the corresponding ligand gene, the corresponding value in
themask is set to “1” (green); otherwise, it is set to “0” (red). cSpatial visualizationof
cell types on lymph node slices (left panel) and the marker of each cell type (right
panel). d Schematic diagram illustrating the well-studied process of B cell
maturation in germinal center, with the regulation of specific ligand-receptors23.

e Visualization of a typical GC; the dark zone and light zone were annotated by an
anatomical expert. The experiment was repeated three times with similar results.
The left panel shows theoriginalH&E-stained imageof theGC, and the rightpanel is
colored by cell types. f Bar plot showing the top 10 LR pairs most important for
B-cell localization calculated by the LR selection model. g NicheNet result on the
lymph node dataset. h CellChatV2 result on the lymph node dataset. i Barplot
showing the number detected and undetected LR pairs in Xenium (313 genes in
total), Xenium 5k (4624 genes in total) and 10x v3 (31,915 genes in total) dataset, LR
pairs information came from CellChatDB. j Bar plot showing the top 5 localization-
related genes of T cells (left panel) and B cells (right panel) identified by the gene
selectionmodel in the breast cancer Xeniumdataset.k Spatial expressionof PTGDS
in T cells (left panel) and B cells (right panel). Pink circles indicate the DICS tumor
region annotated by the original author. Source data are provided as a Source
Data file.
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Fig. 4 | Profilinghumanpan-cancer spatial atlas. aDiagram illustrating the cancer
type and cell numbers of the human pan-cancer spatial atlas. b UMAP visualization
of DECIPHER molecular identity embedding (left panel) and spatial context
embedding (right panel) of the atlas. c Cell type composition in different spatial
regions defined in (b). d Bar plot showing the top 5 localization-related genes of
T cells in the human pan-cancer spatial atlas. g Expression of CCR7 and CCL5 in
T cells located in different spatial regions defined in (e). f Time taken of DECIPHER

with different number of GPUs for the atlas. g Results of state-of-the-art spatial
modeling methods on down-sampled human pan-cancer spatial atlas. UAMP
visualizations of SLAT, STAGATE and Banksy embeddings on a randomly down-
sampled human pan-cancer spatial atlas with 200,000 cells, colored by cell type
(first row), spatial region (second row) and tissue source (third row), respectively.
Source data are provided as a Source Data file.
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Fig. 5 | Profilingmouse3Dbrain atlas. aDiagram illustrating themouse brain atlas
in 3D CCF coordinates54. b UMAP visualization of DECIPHER molecular identity
embeddings on the mouse brain atlas. c UMAP visualization of DECIPHER spatial
context embeddings on the mouse brain atlas when using 3D coordinates (left
panel) or only 2D coordinates (right panel).dDistribution density of every cell type
on UMAP result based on DECIPHER spatial context embedding. Astro astrocyte,
AQ aqueduct of Sylvius, CB cerebellum, CGE caudal ganglionic eminence, CNU
cerebral nuclei, CR Cajal–Retzius, CT corticothalamic, CTX cerebral cortex, CTXsp
cortical subplate, DG dentate gyrus, EA extended amygdala, Epen ependymal, EPI
epithalamus, ET extratelencephalic, GC granule cell, HB hindbrain, HPF hippo-
campal formation, HY hypothalamus, HYa anterior hypothalamic, IMN immature

neurons, IT intratelencephalic, L6b layer 6b, LGE lateral ganglionic eminence, LH
lateral habenula, LSX lateral septal complex, MB midbrain, MGE medial ganglionic
eminence, MHmedial habenula, MMmedial mammillary nucleus, MY medulla, NP
near-projecting, OB olfactory bulb, OEC olfactory ensheathing cells, OLF olfactory
areas, Oligo oligodendrocytes, OPC oligodendrocyte precursor cells, P pons, PAL
pallidum, STR striatum, TH thalamus, V3 third ventricle, V4 fourth ventricle, VL
ventral lateral nucleus, CM centromedian nucleus, EPS entorhinal-perirhinal-
solitary complex, IFBS internal fiber bundles, MFBS medial forebrain bundles,
SCWM sub-cortical white matter. Neurotransmitter types: DOPA dopaminergic,
GABA GABAergic, Glut glutamatergic, Nora noradrenergic, Sero serotonergic36.
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For each training batch, we randomly selected n cells according to
the batch size (defaulting to 256). Once a cell is sampled as the central
cell, all its spatial neighbors are also loaded. Then we augmented all
sampled cells in both omics and spatial terms. In omics terms, we
simulated dropout events to obtain augmented views of single-cell
omics data. Specifically, for each cell, we randomly mask genes twice
on the basis of probability p (defaulting to 0.6) to obtain two different
“dropout views” of the same cell. NT-Xent loss45 (Formula 1) is used to
move the twodropout views of the same cell close to each other, while
views of different cells are pushed apart45.

lomics = � log
exp

sim zm , znð Þ
τ

� �

P2N
k = 11 k≠m½ � exp

sim zm , zkð Þ
τ

� � ð1Þ

Here, zm and zn are two views of the same cell, zm and zk are two
views of different cells, N is the batch size, and τ is the temperature
coefficient. Data augmentation occurs only during training. The com-
plete omics feature of each cell is used directly as the input in the
inference stage. Additionally, to handle batch effects across multiple
slices, we include mutual nearest neighbor (MNN) pairs across differ-
ent batches as extra positive pairs in addition to the positive pairs
obtained through the above data augmentation strategy.

In spatial terms, since each neighbor of cell i has two “dropout
views”, we naturally obtain two views of the spatial context embedding
of cell i via the spatial encoder (Supplementary Fig. 1).Weused another
NT-Xent loss (same as Formula 1) term to encourage positive spatial
context embedding pairs to be close to each other and to push
negative pairs apart.

Finally, the total loss of the model is the weighted average of the
contrastive losses at the omics and spatial scale:

l=α � lomics + ð1� αÞlspatial ð2Þ

where α is 0.5 by default. According to our evaluation, the default
setting of α =0:5 achieves the best balance in gene expression and
spatial context (Supplementary Data 4). It is expected because the
omics encoder and spatial encoder were optimized synergistically
through lomics and lomics. The imbalancedweight of the two lossesmay
desynchronize these two components.

DECIPHER is built on the PyTorch framework and supports multi-
GPU parallelization. By default, DECIPHER first warms up the omics
encoder for 3 epochs with a learning rate of 0.01 and then trains the
omics encoder and spatial encoder synergistically for 5 epochs or
10,000 steps with a decayed learning rate of 0.00001.

We tested DECIPHER with different hyperparameters in the 10x
PBMC simulation dataset, including (1) dropout ratio, (2) the latent
space dimension, (3) the layer of the transformer, (4) the number of
attention heads, (5) the neighbor size k, and (6) the loss weight α; the
results are reported in Supplementary Data 4.

Localization-related genes/LR pairs selection model
For the gene selection model, we employed a parameterized MLP to
quantify the importance of each gene to the of cell localization. The
input and output dimension of MLP were the same as molecular
embedding and HVG-filtered expression matrix, respectively. It also
contained a hidden layer with dimension of 256. The output was then
differentiably binarized as a mask vector through Gumbel-sigmoid
sampling46. Then mask vector was subsequently applied to the gene
expression of cell to obtain the selected genes only:

mask=Gumbel MLP zspatiali

� �� �
selectedi = expression�mask ð3Þ

Thus, selectedi contains only the selected gene set S of cell i
(Fig. 3a). � means the Hadamard product.

The training objective is to optimize the selected gene set S to
identify genes most associated with cell localization (spatial context
embedding). We framed this problem as the reconstruction of the
spatial context embedding similarity graph and constructed a k-near-
est neighbors graph Gspatial on the basis of spatial context embedding.
During training, we used the selected gene set S to reconstruct the
edges ofGspatial (Fig. 3a) following the graph auto-encoder loss47: ifCelli
and Cellj were connected in the kNN graph, the product of selectedi

and selectedj should be larger, and vice versa. The loss function is the
negative log-likelihood of edge reconstruction:

lg = �
XN

i= 1

XN

j = 1

yij log ŷθ, ij + 1� yij
� �

log 1� ŷθ, ij
� �� �

ð4Þ

In the above equation, yij indicates whether there is an edge
between celli and cellj in Gspatial, ŷθ, ij is the predicted value. Addition-
ally, tofilter out irrelevant genes,weadded anextra L1 regularization to
the size of S. The overall loss is written as:

l= lg + λjSj1 ð5Þ

λ is set to 1 by default. During training, the model applies back
propagation to learn the gene mask, gradually filtering out genes that
do not contribute to predicting the spatial context embedding. By
default, the model is trained for 300 epochs with a learning rate of
0.01. After training is complete, the resulting Si represents the key
genes for the spatial positioning of single cell i. As for a group inter-
ested cells (e.g., cell types, cells in specific niches, or any custom
groups), we determined the localization-related score of gene g for
these interested cells as the frequence it is selected:

scoreg =
Xg

N
ð6Þ

whereN is number of cells, Xg is the number of cells select the gene g.
The ligand-receptor selection model uses the same framework,

but instead of genes, the basic units are LR pairs (Fig. 3b). The activity
of each LR pair in cell i (elri ) is defined as the product of expression
between the receptor genes ereceptor in cell i and the sum of the ligand
gene expression eligand48 within the 100 µm radius (a typical cell-cell
interaction distance49), denoted as N n:

elri = ereceptori *
X
j2N n

eligandj ð7Þ

Coefficient of determination between embeddings
To quantitatively compare the divergence between the molecular
identity and spatial context embedding spaces,we used the coefficient
of determination (R2). Inspired by a previous work50, we split cells into
training (80%) and testing (20%) subsets. An MLP (1 hidden layer with
dimension of 256) was trained to predict the spatial context embed-
ding from themolecular identity embedding. TheMLP was trained for
100epoches usingmeansquared error loss, with a learning rate of 1e-3.
R2 values were then calculated on the held-out testing set as following:

R2 = 1�
P

i yi � ypred
� �2

P
i yi � ymean

� �2 ð8Þ

where ypred is the predicted value and ymean is themean of actual value.

Benchmark
Public datasets. The MERFISH brain dataset18 and Xenium breast
cancer dataset17 are publicly available. The MERFISH brain dataset
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contains 378,918 cells and 374 genes, and the Xenium breast tumor
dataset contains 164,079 cells and 313 genes.We used the cell type and
spatial domain annotations from the original publications.

Simulation datasets. We simulated spatial slices in which the ground
truths of the cell types and spatial patterns were clear. Specifically, we
selected one 10 × 5’ (named dataset 1) and one 10 × 3’ (named dataset
2) based PBMC dataset from the official 10x datasets from the same
donor. These two datasets contain technical batch effects (Supple-
mentary Fig. 14a). For each dataset, we annotated cell types via the
same criteria, retaining only three distinct cell types: T cells (5278 cells,
marked by CD3D), B cells (1068 cells, marked by CD79A), and mono-
cytes (2059 cells,markedbyCD14 andCD16) (Supplementary Fig. 14b).
The dataset 1 and 2 contained 4512 cells and 3893 cells (8405 in total),
and 31,915 shared genes.

Then we used dataset 1 and dataset 2 to simulate the slice 1 and
slice 2 following same procedure. In detail, three identical spatial
patterns were simulated in each slice (Supplementary Fig. 14c):
1. Pattern 1: Monocytes and T cells randomly mixed (x-axis bound-

ary is [0, 0.5], y-axis boundary is [0.5, 1]).
2. Pattern 2: Only contains T cells (x-axis boundary is [0.5, 1], y-axis

boundary is [0, 1]).
3. Pattern 3: B cells and T cells randomly mixed (x-axis boundary is

[0, 0.5], y-axis boundary is [0, 0.5]).

Thus, the two datasets are homogeneous in terms of cell types
and spatial patterns. Numbers of each cell type in eachpattern are kept
in Supplementary Data 2.

Methods
The benchmark methods Scanp y, Harmony, scVI, Banksy, STAGATE,
and SLAT were executed via the Python packages “Scanpy” (v1.10.1),
“harmonypy” (v0.0.6), “scvi-tools” (v1.1.2), “Banksy_py” (last commit
10770c2), “STAGATE_pyG” (latest commit 8b9c8ef), “scNiche” (v1.1.0),
“GraphST” (v1.0.0), and “scSLAT” (v0.2.1), respectively, in Python
(v3.11). Methods STADIA and BASS were executed via the R packages
“STADIA” (v1.0.1) and “BASS” (latest commit 7121c89), respectively, in
R (v4.4.1). Eachmethodwasallocated 8CPUcores (Intel XeonPlatinum
8358), 256 GB of memory, and one GPU (A100-80G) and 48 h for
running. For all benchmarkmethods, includingDECIPHER,weused the
default parameters and original data preprocessing steps. For scNiche,
we adopted the “subgraph-based batch training strategy” proposed by
the original authors, denoted as “scNiche-minibatch”, because the
default training strategy failed to scale to the Xenium and MERFISH
datasets. Additionally, in the simulation dataset where the default
scNiche strategy did run successfully, it exhibited embedding collapse,
with more than 80% cells/spots allocated the same latent embedding
(Supplementary Fig. 15). A possible cause is the insufficient mutual
information between different views (e.g., gene expression and spatial
neighborhoods) in scNiche’s multi-view consensus strategy in the
simulated dataset, where cell types within each “region” were ran-
domly distributed.

Metrics
For identity and context embedding, we used two common metrics:
the adjusted rand index (ARI) and normalized mutual information
(NMI). For batch effect removal, we used batch ASW, batch GC, batch
iLSI, andbatchkBET.Wealso recorded the run timeandmemory usage
of each method (Supplementary Data 5). The ‘overall score’ was the
average of each metric included in the current benchmark panel51. All
metrics were calculated following the standard procedures in scIB51:

NMI
NMI compares the overlap of two clusterings. The overlap was scaled
using the mean of the entropy terms for predicted and true cluster

labels. NMI scores of 0 or 1 correspond to uncorrelated clustering or a
perfect match, respectively.

ARI
The Rand index compares the overlap of two clusterings, considering
both agreements in cluster assignments and agreements in cluster
separations. The adjustment of the Rand index corrects for random
agreements. An ARI of 0 or 1 corresponds to random labeling or a
perfect match, respectively.

Batch ASW
For thebatchmixing,weconsider theabsolute silhouettewidthonbatch
labels per cell. The silhouette width measures the relationship between
thewithin-cluster distancesof a cell and thebetween-cluster distancesof
that cell to the closest cluster. Batch ASW of 1 represents ideal batch
mixing and a value of 0 indicates strongly separated batches.

Batch GC
The batch graph connectivity (GC) metric assesses whether the kNN
graph of the integrated data directly connects all cells with the same
label. The resultant score has a range of (0;1], where 1 indicates that all
cells with the same labels are connected in the integrated kNN graph
and the lowest possible score indicates a graph where no cell is
connected.

Batch kBET
The kBET algorithm determines whether the label composition of a
k-nearest neighborhood of a cell is similar to the expected (global)
label composition. The test is repeated for randomsubsets of cells, and
the results are summarized as a rejection rate over all tested
neighborhoods.

Batch LISI
LISI scores are computed from neighborhood lists per node from inte-
grated kNN graphs. Specifically, the inverse Simpson’s index is used to
determine the number of cells that can be drawn from a neighbor list
before one batch is observed twice. Thus, LISI scores range from 1 to N,
where N is the total number of batches in the dataset.

Calculation procedure of metrics
Spatial and omics clustering metrics (NMI and ARI): for DECIPHER, we
clustered themolecular and spatial embeddings and get themolecular
cluster and spatial cluster. Then we calculated ARI, NMI between
molecular cluster against ground truth cell type (provided by original
authors), as well as spatial cluster against ground truth spatial domain
(provided by original authors). For rest holistic embedding methods
(STAGATE, Banksy, SLAT, scVI, Harmony, Scanpy, STADIA, scNiche and
GraphST), we clustered the embedding and get the holistic cluster.
Then we calculated ARI, NMI between the holistic cluster against
ground truth cell type (provided by original authors) and spatial
domain (providedby original authors). The output of BASSwas the cell
cluster and spatial cluster labels, thus we directly calculated metrics
(ARI, NMI) between cell cluster against ground truth cell type (pro-
vided by original authors), as well as spatial cluster against ground
truth spatial domain (provided by original authors).

Batch correctionmetrics (batch ASW, batch GC, batch iLISI, batch
kBET): we calculated these metrics following similar manner in calcu-
lating spatial and omics clusteringmetrics. Notably, BASS only provide
the cluster labels rather than embedding, thus the batch correction
metrics were not applicable.

Case studies
Identification of key CCC molecules contributing to cellular loca-
lization in the Xenium 5k data. The Xenium 5k lymph node dataset
includes 708,983 cells and 4624 elaborately selected genes52, covering
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important cell-cell communication and signaling pathways. The cor-
responding cell segmentation and H&E-stained images were provided
by 10x Genomics. First, we annotated the major cell types in the
Xenium 5k dataset according to the following classical markers
(Fig. 3c): T cells (CD3E), dendritic cells (DCs, ITGAX), B cells (CD79A),
endothelial cells (PLVAP), macrophages (MMP9), plasma cells (MZB1),
follicular dendritic cells (fDCs, CR2), plasmacytoid dendritic cells
(pDCs, IRF7), and vascular smooth muscle cells (VSMCs, NOTCH3). A
group of cells with significantly lower counts were annotated as
“low_quality” (Supplementary Fig. 7a). We also annotated the B cells
into three spatial-related groups (Follicular B cell, Dark zone B cell, and
Light zone B cell) based on (Fig. 3e). Ligand-receptor data is sourced
from the latest version of CellChatDB48 (http://www.cellchat.org/
cellchatdb/), which contains 3124 LR pairs, among which 1078 pairs
were detected in this dataset.

DECIPHER was run with the default parameters (Supplementary
Fig. 7b). We then ran LR selection model for all B cells and found
CXCL13_CXCR5 and CXCL12_CXCR4 were two most import LR pairs
(Fig. 3f). We further checked the paired H&E image to annotated the
light zone and dark zone in a typical GC by a pathologist, then visua-
lized CXCL13_CXCR5 activity and CXCL12_CXCR4 activity, and cell
types in theH&E image (Supplementary Fig. 7c).We also compared the
averaged ratio of CXCL13_CXCR5 to CXCL12_CXCR4 in B cells which
located in different regions: follicular B cell, dark zone B cell and light
zone B cell (Supplementary Fig. 7c).

We compared CCC methods and holistic spatial embedding
methods. As for CCC methods, we ran NicheNet12 and CellChatV213 fol-
lowing their standard protocols with default parameters. Neither
CXCL12_CXCR4 nor CXCL13_CXCR5was among the top-ranking LR pairs
by NicheNet (Fig. 3g). CellChatV2 missed the CXCL13_CXCR5 signal
(Fig. 3h). As for holistic spatial embedding methods, we clustered their
embeddings (Banksy, SLAT) to get spatial domains and then identified
differentially expressed LR pairs between the GC and non-GC regions
using the “scanpy.pp.rank_genes_groups()” function (activity of each LR
pair is calculated via Formula 7). They both missed the
CXCL13_CXCR5 signal (Supplementary Fig. 7d, e). STAGATE failed in this
dataset (capping at 1024 GB systemmemory and 80 GB GPUmemory).

Identification of key localization-related genes in the Xenium
breast tumor dataset. The Xenium breast tumor dataset contains
164,079 cells and 313 genes andwas annotated by the original authors.
We ran DECIPHER on this dataset with default parameters. Based on
DECIPHER embedding, the gene selection model was run separately
for T cells and B cells. For each cell type, genes were ranked according
to their localization-related scores and the top 5 ranked genes are
presented in Fig. 3j.

We comparedCCCmethods and embeddingmethods. Notably, we
were unable to run CCC methods (CellChatV2, and NicheNet) on this
dataset because only 313 genes were captured and did not contain
enough paired ligand-receptor genes for analysis (Fig. 3i). For embed-
ding methods, we clustered the embeddings from Banksy and SLAT to
obtain spatial domains (Supplementary Fig. 9c, d) and then identified
DEGs between tumor domains and non-tumor domains using the
“scanpy.tl.rank_genes_groups()” function (Supplementary Fig. 9e, f).

Human pan-cancer spatial atlas profiling. The human pan-cancer
spatial atlas includes 16 slices from 8 cancer types (2 colon cancer, 2
liver cancer, 2 melanoma, 4 ovarian cancer, 2 prostate cancer, 2 lung
cancer, 1 breast cancer, and 1 uterine cancer), containing a total of
8,696,580 cells and 500 genes, analyzed using the MERSCOPE plat-
form. We manually annotated the major cell types in the dataset via
following classical markers: T cell (CD3D), B cell (CD79A), TAM (C1QC),
DC (CD207), MAST (KIT), and cancer cell (VCAM1, MKI67).

Owing to the significant batch effects between slices, we used the
batch effect removal option in DECIPHER (as mentioned above). The

runtime included both data processing and algorithm execution,
which was performed on a server equipped with dual Intel Platinum
8358 CPUs, 8 A100-80G GPUs and 1024 GB system memory. Notably,
Other spatial modeling methods (SLAT, STAGATE, Banksy) failed to
process the entire dataset on the same server. Thus, we randomly
down-sampled the dataset to 200,000 cells (the maximum size for
STAGATE on our server) and subsequently ran each model with its
default parameters (Fig. 4g).

Mouse brain 3D atlas profiling. The mouse brain atlas consists of
~3.5M quality-controlled cells with 1122 detected genes, derived from
151 consecutive MERFISH slices of a single adult mouse brain35,
including detailed annotations of cell types and spatial domains. These
slices are also registered to 3D CCF coordinates by authors (Supple-
mentary Fig. 12a).

We trained DECIPHER using 3D CCF coordinates or only 2D
coordinates inside slices (Fig. 5b, c). Other spatial modeling methods
(SLAT, STAGATE, Banksy) failed to process the entire dataset (capping
at 1024GB system memory, 80GB GPU memory). Thus, we randomly
down-sampled the dataset to 200,000 cells (the maximum size for
STAGATE on our server) and subsequently ran each model with its
default parameters (Supplementary Fig. 12b).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study have already been published and were
obtained from public data repositories. Supplementary Data 1 pro-
vides the associated publications and download URLs. Source data are
provided with this paper.

Code availability
DECIPHER package, along with code and detailed tutorials for repro-
ducibility, is available at https://github.com/gao-lab/DECIPHER under
MIT license, and in Zenodo (https://zenodo.org/records/15860235)53.
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