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Understanding the link between unseasonal land cover changes and CO,
emissions can indicate the decarbonization progress of a region, but limited
modeling tools exist for analysis in near-real-time. Here, we developed a
modeling framework to reveal a strong and robust relationship between the
two quantities. By applying the Butterworth filter, unseasonal changes in land
cover and fuel-consuming sectors are extracted for Autoregressive Distributed
Lag regression analysis in major economies. Among all investigated econo-
mies, Russia has demonstrated the strongest co-relationship (R-squared value
of 0.730) between unseasonal CO, emissions and land cover changes, indi-
cative of its heavy reliance on fossil fuels. Both Brazil (1200 km?/MtCO,e on
average) and Russia (10,700 km*/MtCO-e) exhibit greatest sensitivity in land
cover changes to CO, emission changes. This research provides an effective
tool to assess the coupling between unseasonal land cover change and CO,
emitting economic activities, presenting an alternative indicator to monitor

decarbonization in real-time.

Land cover change is a critical facet of environmental research.
Undeniably, land cover change relates notably to human economic
activities. Studies have demonstrated the connections between chan-
ges in urban'?, forest*®, grassland®’, snow cover®’, and other land
cover patterns with human economic activities. The connection
between land cover change and economic activities can be observed
through fossil fuel consumption, a reliable proxy for economic
activities', and its associated CO, emissions'. Recent application of
advanced tools of geospatial modeling has also been able to verify
such connection™ Land cover change, in turn, can also drive envir-
onmental issues', which will further impact on economic activities and
hence energy use'. In some studies, direct and strong correlation has
already been observed between land cover change and fluctuations in
specific energy consumption®. A comprehensive analysis of these
connections can reveal the strength of the link between land cover
changes and human-driven fossil fuel emissions'. This information can
inform stakeholders about the extent of carbon decoupling in differ-
ent regions”, enabling more effective strategies for environmental and
socioeconomic planning,.

On the other hand, both land cover changes™ and human eco-
nomic activities” are profoundly influenced by the Earth’s seasonal

cycles. Extensive studies® ™ have highlighted this phenomenon and
stressed the need to examine how seasonal shifts create impacts on the
changes of land cover vegetations and human economies. However,
the substantial impact of seasonal climate fluctuations often over-
shadows isolated weather anomalies and economic shocks, leading to
strongly synchronized changes in land cover, economic activities, and
energy-related CO, emissions®?**. By effectively filtering out pre-
dictable seasonal patterns from time series data, more meaningful
connections, independent of seasonal influences, can be identified,
thus helping to reveal the true corelated sensitivities between
land cover changes and CO, emissions related to fossil fuel
consumption®?, In the recent investigation of climate anomalies,
researchers have employed the Butterworth filter, a signal processing
tool designed to retain signals of certain frequency bands in time-
series signals”, to leave out the cyclical El Nifio-Southern Oscillation
(ENS0)*°, Recent studies have successfully studied the abnormal
annual sea level’** and temperature changes™ using Butterworth filter.
Similar approaches have also been applied to remote sensing data
from the GRACE satellite on water cycles*** ¢, Despite these metho-
dological advancements, time resolutions of similar research are lim-
ited at an annual level and periods of study span over decades. Only
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recently has it become feasible to zoom into what happens within each
year with near-real-time (NRT) data available on land cover’” and
emission®,

Here we utilized the Autoregressive Distributed Lag (ARDL) model
to carry out a detailed quantitative analysis of the relationships
between the Butterworth filtered unseasonal NRT land cover change
(ULC) and fossil fuel-related CO, emissions in a high temporal reso-
lution spanning from 2019 to 2023 for ten major economies which
covers just over a half of global CO, emissions®. The ARDL model is
particularly relevant in these contexts due to its ability to show how
the delayed and often complex effects of policy unfold over
extended periods'®*. It has been applied across a diverse range
of fields including macroeconomics*, finance***, environmental
economics'®?, and public health*®. The results of this framework
uncover the time-lagged correlations in high temporal resolution to
provide insights into how shifts in land cover can be connected with
fossil fuel CO, emissions. Furthermore, our analysis revealed apparent
disparities in the strength of link between fossil fuel CO, emissions and
ULC across different countries. Countries such as Russia have shown a
stronger co-relationship between ULC and CO, emissions, implying
their higher reliance on fossil fuels. Both Brazil and Russia exhibit
greater sensitivity in land cover changes to fossil fuel CO, emissions
due to their extensive land resources. This research lays a solid
foundation for NRT modeling of land cover change and economic
activities, presenting an effective indicator to policy makers on
abnormal land cover alterations and level of CO,-economy decoupling
in real time.

Result

Unseasonal land cover changes

The findings of this study demonstrate a strong ability to accurately
reconstruct specific ULC patterns from fossil fuel-related CO, emis-
sions. In this study, a total of 90 ARDL models were trained for the nine
types of land cover across ten countries.

The processed seasonal totals for ULC across the ten countries
balance out to zero as shown in Fig. 1, corroborating the logical pre-
mise that the total territorial size of the countries remains constant.
The results in Fig. 1 also validate several trends observed in ULC,
aligning with recent independent research findings on human-induced
land cover changes. Crucially, the analysis captures anomalies in land
cover change driven both by climate change and anthropogenic fac-
tors. For example, a progressive decrease in forest cover in Russia
points to ongoing deforestation and re-cultivation of abandoned
land*~*°. Similarly, statistics also support our findings of continuous
urban expansion in China’®, marked by consecutive increases in built-
up areas. In France, the apparent cropland degradation aligns with
reports”, and Brazilian data indicate a recent slowdown in deforesta-
tion rates™. In addition, the sudden spike in Snow & Ice of Spain in the
first season of 2021 corresponds accurately with Storm Filomena in Jan
2021, which brought record breaking snowfall to the entire
Iberian Peninsula®. These findings underscore the effectiveness of
the Butterworth filter applied in our study for isolating and analyz-
ing ULC.

However, Fig. 1 also highlights some limitations of the Butter-
worth filter in recovering ULC. First, there is a dip in the Snow & Ice for
Spain at the end of 2020, right before a spike at the beginning of 2021.
This occurs because the filter order is set high to achieve a sharp cut-
off frequency, effectively filtering out unwanted cyclical patterns.
Setting a high order for Butterworth filter causes phase distortion,
which degrades the quality of the output signal. As a result, the But-
terworth filter introduces oscillations before the impulse caused by
Storm Filomena, seen as a dip before January 2021. Additionally, a
strong annual pattern is still visible in the data for Russia, particularly
for Shrub & Scrub and Snow & Ice. This happens because the same
filter settings are used for all land types across all countries, leading to

uniform suppression strength for seasonal signals. However, the
annual changes in these two land covers in Russia are much more
substantial than in other land covers, meaning that the same sup-
pression strength retains some noticeable cyclical patterns in the
output signal.

To visually demonstrate the efficacy of ARDL models in this study,
Fig. 2 is plotted to present the outcomes of our analysis with Russia as a
case study, illustrating both filtered and reconstructed data across all
nine types of land cover examined. The ARDL reconstructed ULC for all
ten countries are presented in Supplementary Information. This visual
representation highlights the ARDL model’s robust capability in
accurately reconstructing ULC from CO, emissions data associated
with activities of the six economic sectors, which serve as independent
variables in the model. Of particular note is the consistency in model
performance; the comparison between the training and verification
sets reveals little variation in error levels. This consistency underlines
the efficacy and reliability of the ARDL model for this research.

Implications of disparity

The R-squared values of these models vary, with the 75th percentile,
25th percentile, and mean values recorded as 0.632, 0.398, and 0.500,
respectively, demonstrating the varied degree of connections between
fossil fuel CO, emissions and land cover changes. All R-squared values
of the 90 models are presented in Fig. 3.

To more effectively compare the efficacy of the ARDL models
across different countries, we combined the modeled and actual data
for each country and recalculated the R-squared values for the coun-
tries studied, as presented in Table 1. The aggregated R-squared values
exhibit discrepancies among different nations, with countries like
Russia (0.845), China (0.602), and Germany (0.667) displaying sub-
stantially higher R-squared values compared to others (visual com-
parison presented in Supplementary Information, Figure S1). This can
be attributed to the unique economic characteristics of these coun-
tries in relation to fossil fuel consumption.

To explore this further, we compiled additional economic indi-
cators in Table 1 and visualized their relationships in Figure S3 to
provide a quantitative visualization for the observed disparities in
modeling performance. In countries like Russia and China, which are
heavily involved in fossil-intensive manufacturing industries, unsea-
sonal shocks such as extreme weather events or public health emer-
gencies tend to result in more synchronized changes in fossil fuel
consumption and, consequently, CO, emissions. While Germany
appears as an anomaly in Figure S3, other countries generally follow a
pattern where a lower fossil fuel-to-GDP ratio corresponds to lower
R-squared values, suggesting that the R-squared values in this research
are closely related to the strength of CO, decoupling from economic
outputs. However, since the linkages of CO, emissions to ULC and
economic outputs are based on different rationales, anomalies like
Germany do not follow this trend. Factors such as urban planning, local
climate, and cultural influences can all contribute to variations in the
performance of CO, decoupling from ULC and economic output.
Further studies are recommended to include multiple variables and
develop a generalized theory or relationship.

Similarly, as visually presented in Figure S2 of Supplementary
Information, the aggregated R-square values are substantially
higher for Snow & Ice (0.846) and Shrub & Scrub (0.898) land
cover types. It is because that Shrub & Scrub and Snow & Ice ULC
are more sensitive to abnormal events such as weather fluctua-
tions when compared to other land cover types such as Crops and
Built Area. Having abnormal weather condition as a commonly
linked variable, fossil fuel consumption is thus highly likely
associated to these two types of ULC. In addition, both types of
land cover are also timely responsive to weather condition
changes, meaning that a sudden change in weather conditions
may quickly introduce ULC in these two types of land cover.
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Fig. 1| Unseasonal landcover change (ULC) for the ten investigated countries
obtained from Butterworth filtering of this research. Filtered ULC are divided
into (a) Brazil, Russia, India, and China (BRIC) countries and (b) selected Organi-
zation for Economic Co-operation and Development (OECD) countries. The scale of

y-axis of (a) and (b) are set differently to fit the plot. Each grouped stacking bar
shows seasonal (3-month) change from 2019 to 2023, with gaps added in-between
years to present yearly changes in smaller clusters for each investigated country.

On the contrary, built areas are less linked to fossil fuel con-
sumptions induced CO, since urbanization and construction
activities are less flexible to irregular events such as sudden var-
iation in weather conditions. Hence modeling built area ULC with
fossil fuel induced CO, emissions is less accurate as illustrated by
the low R-squared value.

The highest R-squared value of 0.907 is observed for the Shrub &
Scrub land cover in Russia, indicating the highest accuracy in recon-
structing and predicting ULC patterns from CO, emissions in Russia.
We believe the differences in ARDL model efficacy are partially
attributed to variations in the effectiveness of decoupling CO, emis-
sions from human activities across the countries studied. Specifically, a
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Fig. 2 | The filtered versus reconstructed Unseasonal Landcover Change (ULC)
for the nine land types of Russia. The filtered versus reconstructed Unseasonal
Landcover Change (ULC) for (a) Water, (b) Trees, (c) Grass, (d) Flooded

Vegetations, (e) Crops, (f) Shrub & Scrub, (g) Built Area, (h) Bare Ground, (i) Snow &
Ice land cover in Russia. To the left of the vertical red dotted lines are the training
data set. To the right of the vertical red dotted lines are the verification data set.

contributing factor to the better model performance in the context of
Russia could be as well attributed to the country’s colder climatic
conditions. Existing research has highlighted that in regions experi-
encing more extreme weathers, there tends to be a shift towards
greater fluctuation on fossil fuels consumptions™. For instance, a
sudden snowstorm can trigger a substantial and immediate surge in
the demand for fossil fuels. Contrastingly, a sequence of warmer days
during the winter might lead to brief thawing of lands, revealing cold-
resistant vegetation such as shrubs and bushes. These climatic attri-
butes are more likely scenarios in the context of Russia, thereby con-
tributing to the enhancement of the modeling outcomes through
more accurately capturing the dynamics of land cover change within
this specific environmental context.

On the contrary, although both the UK and Russia experience cold
winters, the UK’s land cover types, including Shrub & Scrub (0.528),
have substantially lower R-squared values compared to Russia. This
suggests that the ULC in the UK is less associated with anthropogenic
CO, emissions, indicating better effort in decarbonization of energy
consumption. In fact, the UK uses a much higher proportion of
renewable energy than Russia®, which partly supports the explanation
given in the previous paragraph.

Another interesting case is the substantially lower R-square value
(0.265) for Trees land cover in Brazil. Due to Brazil's economic
dependence on extracting resources from its rainforests*®, deforesta-
tion trends are likely to be more rigid, irrespective of fossil fuel
activities that increase CO, emissions. Hence, the association between

ULC for Trees and anthropogenic CO, emissions in Brazil weaker,
resulting in less effectiveness in the model framework.

Sensitivity analysis

To further understand the linkage between CO,-emitting sectors and
ULC, our study extended its analysis through a series of sensitivity
assessments by investigating how 1 MtCO, unseasonal emission
alteration within each of the six sectors could be linked to marginal
alterations in different types of land cover in Fig. 4. The outcomes of
our sensitivity analysis revealed that countries like Russia and Brazil
exhibit the strongest marginal changes across all types of land cover in
connection with unit emission alterations in the six sectors. Reflected
in Table 1, Russia and Brazil both possess expansive land areas and
abundant per capita land resources, making land resources a com-
paratively cheaper factor in their economic activities. Hence, the same
quantity of CO, emissions stemming from economic activities may be
linked to larger ULC in these regions.

In fact, the vast land resources in Russia and Brazil may have
resulted in less strict regulations on land type conversion. In Russia,
the abandonment of farmland and its conversion to forest vegetation
have sparked social controversies in recent years”. Meanwhile, ongo-
ing deforestation in Brazil has been a major international concern’®.
These two opposite trends contribute to the strong yet opposite
sensitivity of Tree ULC to human activities and CO, emissions in these
countries. Specifically, the continuous expansion of ground transport
infrastructure in Brazil has led to a steady increase in fossil fuel
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Fig. 3 | R-squared values for the models. A complete heatmap display of R-squared value for models trained for the respective country and land cover.

Table 1| Comparison between energy consumption intensity”
and the effectiveness of ARDL models measured in country-
aggregated R-squared values for the investigated countries
in 2020

Entity Fossil GDP per Fossilfuels/ Landper R?

fuels per capita, GDP (kWh/$)  capita

capita PPP ($) (km?)

(kwh)
Russia 47.80 26583.80 0.001798 01174 0.845
China 24.39 16296.78 0.001497 0.0068 0.602
India 5.61 6114.03 0.000918 0.0021 0.480
Japan 32.88 39935.47 0.000823 0.0030 0.465
Germany 30.70 51840.33 0.000592 0.0043 0.667
Spain 20.57 35967.89 0.000572 0.0107 0.545
Brazil 8.00 14021.96 0.000571 0.0399 0.431
Italy 22.20 39065.28 0.000568 0.0051 0.541
United 21.66 41984.11 0.000516 0.0036 0.495
Kingdom
France 18.65 42233.14 0.000442 0.0085 0.560

consumption in this sector®. Conversely, the aviation industry in
Russia has experienced a rebound since the start of the Russo-Ukraine
war®, These distinctive changes in both emissions and ULC of Russia
and Brazil are captured in (b) and (a)&(d) of Fig. 4 respectively, high-
lighting the potential of this research to offer an additional quantita-
tive indicator to identify the intriguing and varied patterns in ULC and
human activities, depending on each country’s specific circumstances.

Furthermore, among the various land covers analyzed, Grasslands
and Forests stood out for higher marginal changes in connection with
unit emission alterations. This may be attributed to the inherent eco-
nomic value ascribed to forests and grasslands within national
economies. Studies have emphasized the significance of Forests® and
Grasslands®? in providing readily accessible resources, such as raw
materials and recreational services. The economic value they offer is

directly linked to their size, meaning that economic shock events can
induce changes in the size of these land types over a short period. In
contrast, other land types, such as cropland and built areas, also pro-
vide economic benefits but do not typically change in size over short
periods, as their dimensions are planned in advance and are less flex-
ible. Consequently, they exhibit smaller marginal changes in response
to unit CO, emissions.

In order to assess the reliability and robustness of the model
approach, we conducted an uncertainty analysis by manipulating the
parameter t, which denotes the number of days of lags incorporated
into the ARDL model. The findings of this uncertainty analysis are
aggregated and presented in Table 2 to provide a comprehensive
overview of the uncertainties associated with different lag settings.
Our analysis unveiled that setting the ARDL model with no lags effec-
tively reduces it to a basic multivariate regression model, devoid of
temporal dynamics. It resulted in an unacceptably low R-squared
value, rendering the model invalid for our analytical purposes. Con-
versely, as the lag settings were progressively increased, the ARDL
model essentially expanded in the number of independent variables
incorporated, thereby capturing more complex chronological
interactions.

By systematically adjusting the lag parameter ¢ and observing its
impact on the model’s performance, the uncertainty analysis under-
scored the critical role of temporal dynamics in capturing the linkages
between fossil fuel induced CO, emissions and ULC. In Table 2, it
reveals a diminishing gain in model performance as the value of ¢
increases. Hence, considering a compromise between model perfor-
mance and cost, the lag of the ARDL model is set as 25 days (¢t =5) in
this study. This empirical exploration again confirmed and highlighted
the importance of temporal considerations in the study of NRT
emission-land change nexus.

Limitations in data sources may introduce uncertainty into this
study. The accuracy of Dynamic World for individual LULC classifica-
tion is mostly above 70%, with an overall accuracy of 73.8% (Table S2)*".
Missing pixels in the Dynamic World dataset could be a consequence
of satellite sensing restrictions, possibly due to weather conditions,
occupying a certain proportion of the dataset. The extrapolation
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Fig. 4 | The sensitivities for land cover change to CO, emissions. The connection
between land cover change and 1 MtCO2e emissions in (a) Domestic Aviation, (b)
Ground Transport, (c) Industry, (d) International Aviation, (e) Power, and (f)

Residential sectors in the countries studied. Y-scales are adjusted so that they are
best fitted to data points and anomalies are omitted. Source data can be found in
Table SI1.

method described in the methodology reduces the overall missing
data proportion to 6.5%, but this procedure also introduces additional
uncertainties into the analysis. The Carbon Monitor reports CO,
emission data with varying levels of uncertainty across different sec-
tors, resulting in an overall uncertainty level of +6.8%°.

Discussion
Understanding the complex nexus among carbon, economics, and
ecology is challenging for process-based modeling due to complex
interaction mechanisms. Additionally, setting parameters requires
quantitative evidence, adding another layer of uncertainty. The ARDL
analysis conducted on NRT data in this research offers a com-
plementary approach to process-based modeling for exploring the
carbon-economic-ecology nexus. By comparing the sensitivities and
R-squared values of different ARDL models, it provides an empirical,
data-driven method to understand this nexus, with real-world impli-
cations, thereby enriching scientific databases essential for robust
policy formulation and future research. As a result of this research, a
framework to quantitatively assess how susceptible anthropogenic
CO2 emissions are to environmental anomalies in different countries
using readily accessible NRT datasets has been established.
Specifically, this methodological framework allows for a rapid
assessment of carbon decoupling strength across different countries
and sectors through comparative analysis of model performance. As
previously explained, smaller R-squared values indicate a weaker link
between CO, emissions from various regional sectors and types of

ULC. This research suggests that both ULC and CO, emissions respond
to irregular events, such as weather anomalies. In economies heavily
reliant on fossil fuels, these anomalies cause ULC and CO, emissions to
change in a synchronized manner. Thus, R-squared values can serve as
dynamic indicators, updating in real-time to reflect the degree of CO,
decoupling within regions and economies. This provides valuable
insights for policymakers to develop more targeted carbon mitigation
strategies. For instance, a higher correlation between residential car-
bon emissions and snow and ice conditions might suggest great
potential for decarbonization in the heating sector, as fossil fuel-
related CO, emissions in this region are more affected by snowfall and
thus temperature drops. Additionally, the sensitivity of ULC to changes
in CO, emissions has important implications, too. In regions with
abundant land resources and less stringent land management
policies, land conversion occurs more rapidly and substantially in
response to fossil fuel-driven economic activities. This can serve as an
indicator of the strictness of land management policies across differ-
ent regions.

In this study, strong R-squared values and larger sensitivities are
observed across almost all types of ULC in Russia, indicating a stronger
coupling of fossil fuel-induced CO, emissions with ULC and less
stringent land management under external shocks. This finding sug-
gests that Russia should devise more targeted strategies to decouple
fossil fuel consumption with land use policies. For instance, as a
resource reliant economy®, Russia’s resource extraction activities
such as open mining should consider transition to renewable energy
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Table 2 | Aggregated R-square for all ARDL models when varying lag from O days (t = 0) to 25 days (t =5)

Lags 0 days 5 days 10 days 15 days 20 days 25 days
R? 0.0453 0.7490 0.8014 0.8063 0.8168 0.8226
Adjuested R? -0.0559 0.7223 0.7802 0.7856 0.7971 0.8035
No. observations 366 365 364 363 362 361

source. Land restoration should also follow to prevent extensive land
degradation.

From an academic perspective, this research contributes to
the methods and data in geography and climate mitigation inter-
disciplinary studies. When combined with consumption-based land
cover change inventories and related research®>®, this study serves as
a validating framework that reinforces existing knowledge in the field.
Moreover, the filtering methodology used for satellite sensing is a
promising monitoring tool for policy enforcement, enabling the timely
detection of abnormal land cover changes and supporting regulatory
actions when needed. Additionally, the concept of directly interpreting
a set of regression models and evaluating their effectiveness through
R-squared values offers a promising direction in econometric studies
to provide empirical insights.

Nevertheless, it is important to acknowledge the limitations in this
study. One notable limitation lies in the assumption of linear rela-
tionships between emission sectors and land cover changes, which
may oversimplify the interactions between human activities and land
dynamics. The actual interplay between these variables is much more
complex. It is also crucial to recognize that the associations observed
are correlative rather than causal, emphasizing the need for caution in
interpreting the results and development of a more coherent process-
based model framework that integrates the domain of physical
meteorology. Econometric research of this kind often lacks explana-
tory power for observations; therefore, process-based modeling can
complement this study to verify or refute the hypotheses proposed.
Furthermore, since Carbon Monitor database only provides CO,
emission by sectors at national level, the geographic information in
Dynamic World dataset cannot be retained for the analysis. It limits this
research to only examine the relationship between emission sectors
and land cover changes at an aggregated national level and forgoes the
geospatial interactions that exist. In addition, as explained in the
“Method section”, Dynamic World data utilized in this study contains
anomalies, which may persist when applied with filtering and propa-
gate errors into the processed dataset. It will have an advert impact on
the accuracy of the modeling outcomes. Care should thus be given
when interpreting the results. Lastly, the temporal dynamic nature of
economic structures implies that the relationships between emission
sectors and land cover changes are subject to change over time. As
economic structures evolve, the model coefficients may no longer
hold true, necessitating continual updates and revisions to ensure the
model reflects the current environmental and economic landscape
accurately.

In response to the limitations of this study, subsequent research
should aim to enhance the modeling framework by preserving geos-
patial information related to emission activities and land cover chan-
ges. For instance, utilizing gridded results can offer a more diverse
array of data for scientific analysis and policy formulation, particularly
at a higher territorial resolution. This approach can retain the enriched
geospatial information contained in the Dynamic World database and
thus provide a high geospatial resolution gridded database to com-
plement similar database®’. If geospatial resolution can be improved,
this framework could be applied at a subnational level to provide more
insights into regional carbon decoupling strategies. In addition, there
is a critical need to incorporate meteorological and economic
mechanisms into the modeling process to establish causal and precise

linkages between various factors. A crucial avenue for further
exploration involves developing methodologies that can isolate nat-
ural land cover changes from those induced by economic activities. By
disentangling human-induced alterations from naturally occurring
phenomena, researchers can gain a more comprehensive under-
standing of the complex nexus between human actions and environ-
mental outcomes in real time. Together with improved resolution on
sectorial economic activities®®, this could facilitate the dissection of
annual land use change databases such as EXIOBASE® into NRT series.
Furthermore, future investigations should revisit the coefficients
attributed to fossil fuel sectors obtained in this study. Reassessment on
these coefficients can reflect changes in efficiencies over time and
gauge countries’ progress in decoupling emissions from fossil fuel
consumption. By updating and refining these coefficients, researchers
can capture and assess the evolving trends and advancements in
emission decoupling efforts.

Methods

Near-real-time data

As noted in the introduction section of this article, energy consump-
tion and the associated CO, emissions serve as effective proxies for
assessing economic activities. Thus, having access to NRT emissions
datais crucial for the objectives of our research. To fulfill this need, we
utilized data from the Carbon Monitor database®, which is a recently
developed database with daily CO, emission resolutions in six key
sectors: Domestic Aviation, Ground Transport, Industry, International
Aviation, Power, and Residential. Many important studies have been
conducted using the data from Carbon Monitor. For instance, the
study conducted by Liu, et al.*® reveals a distinct annual pattern in the
NRT emissions data particularly related to fossil fuels. The clarity of
these patterns underscores the effect seasonal changes have on
human economic activities. This observation also affirms that seasonal
patterns have a strong influence on energy consumption patterns in
real-time.

Regarding NRT land cover (LULC) data, we adopted the Google’s
Dynamic World dataset® to extract temporal changes in land cover
area. This dataset leverages Sentinel-2 satellite imagery and deep
learning classification algorithms to generate 9 categories of LULC
maps globally, at a resolution of 10 m, with an update frequency
ranging from 2 to 5 days (varies according to latitude). Other avail-
able LULC datasets lack the capacity for NRT updates, exhibiting
coarse resolutions and high classification errors’®”". In contrast, the
Dynamic World dataset allows for NRT updates, presenting con-
siderable advantages in capturing fine temporal changes in land
cover and demonstrating superior classification accuracy compared
to similar products®. The dataset computed the producer and user’s
accuracies for 9 LULC classes using an expert consensus confusion
matrix, organized as Table S2. Most accuracies are above 70%, with
an overall accuracy of 73.8% across all classifications®. We extracted
the time series of area changes for the 9 LULC categories within
national borders, at a 5-day time resolution, using the Google Earth
Engine platform. Due to concerns regarding data quality, certain
pixels within the classified images may be missing. To mitigate area
statistical errors, we adopted a methodology where the non-null
value of the pixel is traced back to the most recent date for the
current value. Even though, Dynamic World is still currently one of
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the most reliable database on LULC as older satellites image based
database had higher error rates in classification’. Typically, the pixel
value can be traced within a time window of 1-2 weeks, with the
longest time span not exceeding 1 month. Post-analysis unveiled that
each LULC sequence displayed varying degrees of interannual
variability, suggestive of the intertwined effects of natural phenom-
ena and human activities.

The next essential step is to ensure the compatibility of data
specifications. The 5-day interval time resolution of the Dynamic World
database contrasted with the Carbon Monitor, which tracks CO,
emissions on a daily basis. To harmonize these datasets for a cohesive
analysis, we adapted the Carbon Monitor emissions data to a 5-day
resolution by aggregating the daily emissions data over each con-
secutive 5-day period. Consequently, this alignment resulted in a total
of 366 data points covering the five-year span from 2019 to 2023.
Further alignment was necessary regarding the geographical coverage
of the data. Both databases encompass a broad range of countries, but
for the purpose of this study, we limited our analysis to the 10 coun-
tries represented in both databases. These countries are China, France,
Germany, India, the United Kingdom, Japan, Russia, Brazil, Italy, and
Spain. In addition, since the Carbon Monitor database does not contain
pixelized geographical information on CO, emissions, we aggregate
the land cover change data in Dynamic World dataset to national level
to match the two database for the analysis.

Butterworth filter

In an effort to refine our analysis by isolating specific influences from
broad, cyclical impacts, our research has adopted advances in signal
processing, drawing inspiration from recent studies on meteorological
cycles using Butterworth filter”®, In the referenced studies, Butter-
worth filter is recognized for its effectiveness as a high-pass filter in
studying the ENSO cycle where it is used to isolate higher frequency
cycles from annual ones.

However, the specific demands of our study required a different
approach. Given our research focus on non-seasonal fluctuations
which occur at lower frequencies than seasonal ones, we chose to use a
low-pass Butterworth filter. This methodological adaptation allows us
to effectively filter out high-frequency seasonal patterns, thereby
preserving the lower-frequency and non-cyclical fluctuations that are
independent of the usual seasonal impacts. In the application of But-
terworth filter, we selected the filter’s cutoff frequency to be three
times the annual occurrence frequency. This specific choice ensures
that any occurrences less frequent than annually are filtered out,
thereby focusing our analysis on the more irregular natural and eco-
nomic events. Since we are interested in the unseasonal changes in the
dependent and independent variables, namely NRT ULC and fossil fuel
CO, emissions, the Butterworth filter has been applied to both
Dynamic World and Carbon Monitor datasets for further correlation
analysis.

Autoregressive distributed lag model

In recent years, the field of data modeling has seen tremendous
advances with the advent of machine learning technologies. These
methods have been particularly effective in quickly developing models
that can forecast changes in various quantities, such as land cover,
using high-frequency time series data. This capability has been
extensively applied in the analysis of remote sensing data, where the
high temporal resolution of observations benefits from machine
learning algorithms™7*. While the ability of machine learning models
to forecast changes based on historical patterns is remarkably accu-
rate, a notable limitation exists. These models, primarily due to their
design and operational mechanics, often fall short in revealing why
those changes occur. Unlike traditional statistical models that can
provide insights into the relationships, machine learning models

typically act as black boxes. This fundamental drawback highlights a
critical trade-off between the depth of insight and predictive accuracy.

Hence, in this research, we selected the ARDL model as our
principal analytical tool, a decision informed by the specific require-
ments of our study. The ARDL model is a robust econometric techni-
que that is adept at capturing both the short- and long-term influences
of independent variables on a dependent variable within a dynamic
context. Its modeling capabilities are particularly suited for scenarios
where the effects of the independent variables on the dependent
variable do not manifest immediately, but rather unfold over time
through interactions with past values of the dependent variable. Fur-
thermore, the ARDL model incorporates autoregressive terms, which
involve the past values of the dependent variable itself. Thus, ARDL
allows for a deeper exploration of how historical trends and immediate
factors combine to shape current outcomes, providing a layered and
detailed understanding of the underlying economic processes. This
modeling approach aligns perfectly with the goal of our research to
dissect and comprehend the temporal dimensions of the relationships
between variables.

Mathematically, the current state of a specific land cover change
can be presented by the following equation using ARDL model.

n m n
Yijoy = Z a;j Vije-nt Z Z by i, (X k- T €
=1 k=11=0

In this research, m = 6 number of energy consumption sectors and
n=4number of lags are considered. y; ;, and y; j,_, is the value of the
Jjth type of land cover change of ith country at time ¢ and ¢ — [
respectively. x; ¢, is the past values of the CO, emissions induced by
fossil fuel energy consumption of the kth sector in ith country up [ lags.
a;;, and b, ; ; are the linear coefficients representing the immediate
and lagged effects of the variables. e, is the error term. ¢ is set to be 5,
meaning that 25 days of lags are considered in the ARDL modeling.

In this research, a data segmentation strategy was implemented
with the ARDL model. The initial segment comprising the first 250 data
points, spanning from January 2019 to June 2022, was utilized to
training the ARDL model. Subsequently, the remaining data points
encompassing the period from July 2022 to December 2023 were
reserved for verification purposes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The source data generated for the figures in this study have been
deposited in the Zenodo database under accession code (https://doi.
org/10.5281/zenodo.14407070).

Code availability

The Matlab code used to generate the analysis of this research has
been deposited on Zenodo (https://doi.org/10.5281/zenodo.
14407070).
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