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Estimating the plausibility of RNA self-reproduction is central to origin-of-life
scenarios. However, this property has been shown in only a handful of catalytic
RNAs. Here, we compare models for their generative power in diversifying a

reference ribozyme, based on statistical covariation and secondary structure
prediction, and experimentally test model predictions using high-throughput
sequencing. Leveraging statistical physics methods, we compute the number
of ribozymes capable of autocatalytic self-reproduction from oligonucleotide
fragments to be over 10*°, with sequences found up to 65 mutations from the
original sequence and 99 mutations away from each other, far beyond the 10
mutations achieved by deep mutational scanning. The findings demonstrate

an efficient method for exploring RNA sequence space, and provide quanti-

tative data on self-reproducing RNA that further illuminates the potential
pathways to abiogenesis.

The RNA world hypothesis surmises that early evolving systems con-
sisted of reactions between RNAs catalyzed by RNAs'. In this scenario,
the first ribozymes (catalytic RNAs) would have arisen by chance from
random polymerization, possibly helped by covalent assembly reac-
tions between partially complementary RNAs**. Among those, certain
ribozymes could catalyze their own production, a process called
autocatalysis*®, which has been tested experimentally. For instance,
ligase ribozymes selected in vitro were shown to catalyze the joining of
two RNA oligonucleotides, such that the product forms an additional
copy of the ribozyme®’. In another system, naturally occurring self-
splicing group I intron RNAs were engineered to make copies of
themselves by splicing together four oligonucleotide substrates®. It is
envisioned that a gradual process of evolution could have led from
autocatalytic RNAs’ to template-based replication of RNA catalyzed by
polymerase ribozymes'*", thereby initiating a mode of evolution
similar to biological evolution. While some ribozymes relevant to the
origin of life still need to be discovered, another important question is
whether there exists a diversity of sequences that can carry out a given

activity among all possible sequences (the sequence space), an
ensemble called the neutral network, or neutral set”. In particular, the
larger the diversity of self-reproducing RNAs, the more likely are
transitions between self-reproducing systems, thus enabling pri-
mordial modes of evolution®.

One challenge to studying the neutral set of ribozymes is the
extremely large number of sequences that need to be tested to
determine which ones can perform a specific function. A strategy is
to diversify RNAs known to have the desired property, and assess
how many of the resulting sequences conserve this property. Neutral
sets of RNA have been explored computationally using secondary
structure prediction algorithms'", and experimentally using deep
mutational scanning (random mutagenesis combined with a func-
tional assay)'®**. The latter studies demonstrated the existence of
connected neutral sets in the neighborhood of reference sequences,
but remain limited to a few mutations away from it. More recently,
machine learning approaches were combined with experimental
testing to reach larger diversification, mutagenizing a 20-nucleotide-
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long region of a ribozyme® and reproducing the diversity of naturally
occurring ribozymes®. However, despite the progress made in the
case of protein design**%, generative models still perform poorly for
larger RNAs that are the size of the autocatalytic ligase and group |
introns”. Furthermore, predicting catalysis remains difficult in gen-
eral, and none of these studies have characterized the neutral set for
autocatalytic RNA self-reproduction.

Yet, the two autocatalytic RNAs mentioned above have been
slightly diversified to create several sequences that collectively
reproduce through cross-reactivity networks**". In these experiments,
sequence changes were made primarily to the substrate-binding
regions of the ribozyme to change interactions between sequences
and cause them to make copies of other sequences more efficiently
than their own sequence. However, the majority of the ribozyme
sequence outside of the substrate-binding sites remained unchanged
in these experiments, and the vast number of sequences capable of
these types of reactions remains unknown, limiting our understanding
of this type of RNA reproduction. Analysis of evolutionary conserva-
tion and structure in naturally occurring self-splicing group I introns
(Fig. 1a) suggests a large potential neutral set that has not yet been
experimentally evaluated®. Here, we devised generative probabilistic
models based on statistical learning and structure prediction (Fig. 1b),
validated with a high-throughput catalytic assay that serves as a proxy
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Fig. 1| Computational and experimental workflow for the design of artificial
group | introns. a Azoarcus ribozyme secondary structure. More conserved posi-
tions among homologous sequences of the Multiple Sequence Alignment appear in
darker red. b RNAs were designed using evolutionary models (DCA, VAE, PRO),
structural models (SB, SB-3D, BPR), and a combination thereof (DCA-SB). The input
of evolutionary models is a Multiple Sequence Alignment. The input of structural
models is ab initio predictions of secondary structure or experimental 3D contacts
of Azo. Designs are generated based on probabilistic scores and/or structure
scores, depending on the model. ¢ Assay mimicking self-splicing: candidate ribo-
zymes (black) are synthesized with an exon sequence (yellow); RNAs are mixed and

HT screening

for autocatalytic reproduction (Fig.1c, d). This combination of pre-
diction and experimentation enabled the exploration of a very large
neutral space of catalytic RNAs derived from Group I Introns, together
with estimations of its size. The results demonstrate the potential of
this type of generative model and apply it to better understand the vast
number of sequences that could contribute to the origin of life.

Results

High-throughput assay for self-splicing

To assess the generative power of computational models, we devel-
oped a deep sequencing assay, with which we analyzed 24,220 unique
RNA sequences (Fig. 1c, d, “High-throughput self-splicing assay” sec-
tion in Methods). This assay mimics the two steps of the natural self-
splicing activity of Group I Introns, from which autocatalytic self-
reproduction has been engineered®*°. RNA candidates are first syn-
thesized together with a tRNA fragment exon at their 3’ end (yellow in
Fig. 1c). The RNA libraries are then incubated together with two sub-
strate RNAs (gray and red in Fig. 1c) at 37°C. As a proxy for auto-
catalysis, the RNA is considered active if it transfers its exon to a first
substrate, exchanges it for a second substrate, and attaches the
extremity of the latter to its own 3’ end (plain red in Fig. 1c). Active
RNAs are thus distinguished from inactive ones by deep sequencing,
based on the fragment carried at their 3’ end (Fig. 1d). For each variant,
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incubated with the gray and red substrates; In Step 1, the ribozyme covalently
attaches its 3’ yellow to the gray substrate; Then, the product, consisting of the
covalently joined gray and yellow sequences, is exchanged for the red substrate; In
step 2, the ribozyme ligates the red substrate onto its 3’ extremity. d Screening
workflow: after computational generation (b), the ribozymes are transcribed from a
DNA pool, and tested by the screening assay (c); after screening, the active ribo-
zymes are amplified with a substrate complementary primer before being
sequenced; the frequency of active sequences (carrying S2) post-assay is normal-
ized by the variant frequency pre-assay.
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Fig. 2 | Comparison of the generative power of computational models.

a Experimental activity as a function of the number of mutations relative to Azo, by
bins of 5 mutations (N =150 per bin). Top: Statistical learning and hybrid models;
Bottom: structure-based models. Per bin, dots are the mean activity, and quartile
bars correspond to the first and third quartiles. N per bin per model provided in
Source Data file. The red dashed line is the active threshold set at a z-score of 3.09
or equivalently a p-value =107, which corresponds to an activity of —2.76.

b Fraction of designs that were catalytically active for each model (Active Fraction)
as a function of the number of mutations, by bins of 5 mutations. Dots are the active
fraction. Error bars upper (lower) bound is the active fraction including (excluding)
activity scores within the 98.5 percentile of the measurement error distribution
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around the threshold. N per bin per model is provided in the Source Data file.

c Effective support size of models as a function of mutational distance, showing
how many different sequences the model can generate at any given distance. The
star indicates the estimation at L,,,,. The star values have been corrected with the
experimental active fraction at Ly,,x, Which is of order 1%. Inset: zoom on the
experimental correction at L, for DCA T=1. d Principal Component Analysis
(PCA), with the first two principal components, PC1 and PC2, shown for the gen-
erated sequences (gray) overlayed with active sequences (color). All panels are
projected on the same axis system, which is the first two principal components of
chimeric sequences (analogs of natural Group I introns), with the Azoarcus
sequence located at the origin. Source data are provided as a Source Data file.

we defined the activity score as the logarithm of the fraction of active
sequences after screening, divided by the fraction of sequences before
incubation, setting as zero the Azoarcus ribozyme reference score
(Fig. 2a). The assay was highly reproducible with a Pearson correlation
of 0.99 between independent triplicates (p<10~) (Supplementary
Fig. 1). As the reaction consists of attaching fragments to the catalysts
themselves via specific binding to substrates, cross-catalysis is expec-
ted to be negligible, which is supported by the absence of activity for a
large number of mutations (see below). Additionally, we verified a
posteriori that cross-catalysis negligibly affected the activity score by
assaying variants separately by denaturing gel electrophoresis (Sup-
plementary Fig. 2) and sequencing in separate batches (Supplementary
Fig. 3), finding that band intensities significantly correlated with
sequencing scores (Pearson correlation of 0.61, p-value=0.008,
N=17). Consistently, mutants that displayed no visible product on the

gel had a sequencing score below the activity threshold (Supplemen-
tary Fig. 3). We furthermore tested that incubation in sub-pools yielded
the same sequencing scores as within the total pool (Supplementary
Fig. 3, “Cross-catalysis tests” section).

We next tested several models by evenly populating bins of 10
mutations up to 150 mutations away from the Azoarcus ribozyme
(Fig. 2a, 150 sequences or more per model per bin). All models dis-
played a loss of activity as more mutations were introduced in Azo,
with the score reaching a lower plateau corresponding to inactive
sequences (Fig. 2a, Supplementary Fig. 4). For random uniform
mutagenesis (denoted RUM, see Table 1 for model acronyms), activity
was indetectable after 15 mutations, confirming previous studies”. The
measurement noise distribution was taken as the distribution of scores
at more than 100 mutations overall all models (Supplementary Fig. 4),
and the threshold for significant activity was set at a z-score of 3.09
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Table 1| Acronym list of the computational models

Acronym Description

RUM Mutations are introduced by randomly selecting positions and assigning with uniform probability one nucleotide.

BPR Mutations with the Base-Pair Replacement method are introduced following the WT structure: at paired positions, both nucleotides are mutated
simultaneously into G-C, G-U, or A-U pairs; otherwise, mutations are random.

BPR +3D Mutations are introduced as in BPR except positions involved in tertiary interactions (detected by analyzing the tertiary structure), which are kept
unchanged.

SB Mutations are introduced with the MCMC algorithm following the Structure-Based (SB) score, which penalizes mispairing under the thermodynamic
folding model.

SB-3D Mutations are introduced as in SB except positions involved in tertiary interactions (detected by analyzing the tertiary structure), which are kept
unchanged.

PRO Mutations are introduced by randomly selecting positions and assigning nucleotides according to the frequency of the mutation observed in the MSA.

DCAT=1 Mutations are introduced with the MCMC algorithm at T =1 following the DCA model trained on the MSA of homologs, ensuring designs match single
and pairwise frequencies observed in the MSA.

DCAT=0.3 Mutations are introduced with the MCMC algorithm at T=0.3 following the DCA model, which concentrates the sampling onto the most likely
sequences under the DCA model.

DCA-SB Mutations are introduced with the MCMC algorithm at T=0.3 following the DCA model combined with the SB score, optimizing simultaneously the
DCA score and the folding into the WT fold.

VAE Mutations are introduced with the neural network called Variational AutoEncoder (VAE), which is trained on the MSA of homologs. Similarly to DCA, it
is trained to maximize the likelihood of the observed MSA.

CHI Chimeric sequences are derived from natural sequences aligned to Azoarcus by replacing deletions with Azoarcus nucleotides, using only aligned

positions to maintain the same length.

corresponding to an activity score of -2.76 (corresponding to
10727=0,17% of the Azoarcus ribozyme activity) and a p-value <107
for strict positivity (“Activity threshold and active fraction” section).
Figure 2b displays the active fraction, defined as the fraction of variants
from each model that are above the noise threshold, plotted as a
function of the number of mutations introduced relative to the refer-
ence Azoarcus ribozyme. For each generative model, we report Lsq as
the number of mutations relative to Azoarcus that maintains an active
fraction of 50% and L.« as the number of mutations that maintain 1%
(Fig. 2, Supplementary Table 1, ‘Definitions of Lso and L.y, significance
levels’ in Methods). Lso can be interpreted as the mutational distance
that can be accurately predicted by a given model, beyond which its
predictive power rapidly decreases. L,.x represents the maximum
number of mutations that we could reliably assess given our experi-
mental resolution per bin. Note that deeper sequencing of larger RNA
pools may allow assessment of functional sequences at frequencies
below 1%, which would lead to larger L, values.

Populating the neutral space with Direct Coupling Analysis

We first explored the neutral space covered by Group I Introns using
Direct Coupling Analysis (DCA), which has been proven to generate in
vivo neutral variants of protein enzymes®. DCA is a statistical learning
approach that accounts for nucleotide conservation and covariation
via networks of pairwise couplings®. It describes a probability dis-
tribution over the space of functional nucleotide sequences. Our
model was trained on a Multiple Sequence Alignment of 815 Group |
introns sequences that share the same domain composition and sec-
ondary structure as the Azoarcus ribozyme (Supplementary Fig. 5a).
Although sequences of the alignment may differ in length due to
deletions or insertions relative to Azo, nucleotide covariations can be
learned at positions aligned with the Azoarcus ribozyme. Sequences of
the same length as the Azoarcus ribozyme (197 nucleotides) were
sampled by Markov Chain Monte Carlo up to 90 mutations. We used
the sequencing-based assay to identify active variants at increasing
mutational distance.

We found that the DCA-generated sequences retained activity at
higher mutational distances, with Lso=20 and L, =60. This was a
large improvement as compared to random mutations, for which
Lso=5 and L,,x=10 (Fig. 2b, Supplementary Table 1). We also com-
pared the DCA-generated sequences to “chimeric sequences” (CHI),
which were generated by adding increasing numbers of mutations to

the Azoarcus ribozyme, but only using nucleotide diversity at positions
found in other group I introns in our data set, while also removing
insertions and deletions to keep a constant length (Supplementary
Fig. 5b). These chimeric sequences never reached the 50% success rate
per bin (Fig. 2b). Overall, only 6% of them were active, possibly due to
the disruption of base-pairs, where this percentage on average corre-
sponds to 7 over the 59 base-pairs found in the Azoarcus ribozyme
structure. From these comparisons, it is clear that the DCA model can
generate active ribozymes at high mutational distances, far beyond
what is obvious from random mutagenesis or a naive application of
evolutionary conservation.

We next set out to use this DCA model to estimate the size of the
neutral set of this type of autocatalytic self-reproducing RNA. It is
important to note that the number of potential autocatalytic self-
reproducers Qpca predicted from the DCA model cannot be simply
calculated by multiplying the total number of possible sequences at
mutational distance L by the measured active fraction generated by
DCA. Indeed, the DCA model generates predictions focused on a
restricted subset of sequences x as compared to random uniform
mutagenesis, namely the sequences to which DCA assigns a high
probability P(x). Thus, the number of sequences among which the DCA
model samples is, in practice, smaller than the total number of possible
sequences. On the other hand, to restrict the size of space given the
distribution P is not straightforward because any sequence may have a
non-zero, however small, probability.

In information theory, the “effective support size” is a term used
to define the effective size of a sampling set®. The effective support
size can be defined for any probability distribution P over all sequen-
ces x as Q=exp(S), where S= — > P(x)logP(x) is the Shannon
entropy, the sum being taken over all sequences x. This definition
relies on the following mathematical result: when sampling N
sequences x from the probability distribution P, the sample probability
behaves like (é)N for large enough N (see Supplementary Information
for more technical details®>*°). Intuitively, this means that sampling
from the model follows the same statistics as if one were sampling
uniformly from a subset of size Q. In other words, the vast majority of
the probability is concentrated in a subset of size Q, interpreted as the
effective number of different sequences that the model can generate.

The full process consists of computing the effective number of
sequences Q(L) that can be generated by the model (e.g., DCA) at a
mutational distance L, then multiplying it by the active fraction
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experimentally measured at L. The maximum of the number at the
particular distance L constitutes a lower bound for the whole neutral-
set size Q. In practice, this maximum was determined as the largest L
such that we could measure the active fraction to be significantly larger
than zero. Although it is not generally known how to compute Q for
probabilistic or generative models, we devised a semi-analytical
method exploiting the structure of DCA (Supplementary Table 2,
Supplementary Information “Support size computations”)*, which we
applied at each L to obtain Q(L). This theoretical number increases sub-
exponentially with L, reaching 10" sequences at 60 mutations (Fig. 2c).
The success rate at L, =60 mutations was determined to be larger
than 1% with p<4.10~° confidence. Thus, correcting Qpca with the
experimental success rate leads to Qpca ~10%.

We next set out to further evaluate the diversity of the sequences
generated by DCA. First, we used a Principal Component Analysis (PCA)
projection of the DCA-generated sequences and chimeras. We found
that the chimeras (representative of natural diversity) clustered near the
Azoarcus ribozyme in these projections (Fig. 2d), while the DCA-
generated sequences bridge the sequence space between the Azoarcus
ribozyme and natural chimeras, from the perspective of the first two
principal components. We note that PCl1 strongly correlates with the
distance to the Azoarcus ribozyme (Pearson p=0.86, two-sided p-
value =107 corresponding to the numerical precision, under the null
hypothesis p =0 using the Beta distribution). To further compare the
variety of sequences generated by each model, we computed two dif-
ferent mutational distance distributions. First, we computed the dis-
tance from each DCA sequence to the closest chimera, including Azo.
This can be interpreted as a measurement of how different the samples
are from any natural sequences (Fig. 3a, top). Second, we computed the
distances between all pairs of sequences within each model (Fig. 3a,
bottom). Experimentally active DCA sequences were found to be on
average 25 mutations away from each other (Fig. 3a, bottom), on
average 18 mutations away from any chimera, and up to 55 mutations
away from any chimera (Fig. 3a, top, Supplementary Table 3). These
distances were comparable to those found between all chimeras (active
and non-active), which had 32 mutations between them on average and
up to 59 mutations away from each other (Fig. 3a, Supplementary
Table 3). It thus appears that DCA achieves a form of interpolation, by
generating a diversity of experimentally active sequences similar to the
diversity of natural Group I introns (Fig. 3b, c), as well as a form of
extrapolation, by generating active sequences as far away from any
chimeras as the latter are from each other. Extrapolation is further
confirmed by the largest distance between active DCA designs and
chimeras being 99 mutations (Supplementary Table 3), well beyond the
largest distance between any two chimeras.

Generative power of statistical and structural methods

These initial results suggest a trade-off between extensively exploring
all regions of genotype space and increasing the probability of suc-
cessfully finding active sequences. For instance, random mutagenesis
considers all possible mutations and would theoretically yield the
highest possible Q, but its success rate decreases very quickly below
our ability to experimentally detect active fractions. In general, a less
restricted model should eventually discover a larger total number of
active sequences, but with a much lower success rate, leading to
inefficient experiments. In contrast, more constrained models like DCA
generate functional sequences with a higher number of mutations, but
at the cost of exploring more limited regions of the sequence space.
This further suggests that for a given model, different choices could be
made to fine tune the model to achieve a desired outcome, such as
identifying active sequences with a larger number of mutations (as
quantified by Lsp and L), or to yield a larger effective number of
generated sequences at a given distance (as quantified by Q(L)).
Overall, the estimation of the number of active sequences by calcu-
lating effective support size is not obvious because, for any given

model, it depends on how Q increases with the number of mutations as
well as on the L., that can be validated experimentally.

To explore this trade-off, we tested more relaxed models, which
we expected to access a larger diversity but at a lower mutational
distance. The profile model (PRO) was a randomization approach
where each nucleotide was replaced according to its position-specific
frequency in the Multiple Sequence Alignment. It is less constrained
compared to DCA, but still more constrained than random (RUM)
because it utilizes some evolutionary information from nucleotide
conservation. This PRO model was only marginally more accurate than
RUM, with Lso=5 (Fig. 2b, Supplementary Table 1), Ly.x=15, and
Qpro =10% Recall that the success rate of random mutagenesis (RUM)
was nearly identical to this with Lso =5, Lnax =10, and Qpyn =10%, and
these metrics were much lower for both models than for DCA (Fig. 2b,
Supplementary Table 1). Limitations of the profile model likely result
from a high probability of disrupting the secondary structure when
selecting nucleotides independently, as 60% of Azoarcus ribozyme
positions are base-paired (Fig. 1a). To assess the impact of base pairing,
we tested the random replacement of base pairs of Azoarcus ribozyme
with other canonical pairs, combined with randomized nucleotides at
unpaired positions, which we termed the Base-Pair Replacement
model (BPR). This model performed significantly better than the pro-
file model, with Lsg=15, Lmax =20, and Qgpg = 10%°. Further constrain-
ing the model by forbidding variations at tertiary contacts (30
positions in Azo, Supplementary Fig. 6a, BPR-3D model) better popu-
lated the tail of the distribution of active RNAs, with Lso=15 and
Limax = 35. Ultimately, Qgpr.3p =10%, which was still smaller but near-
ing Opca.

Because the base-pair replacement model (BPR) improved pre-
diction success at higher mutational distances, we next explored the
impact of using secondary structure prediction. We generated
sequences that were predicted to form the correct secondary structure
from a thermodynamic model (SB model for ‘structure-based’)**°,
using a heuristic that retained the pseudo-knot as a probabilistic sig-
nature in the contact map (Supplementary Fig. 6e)**. This model
performed only slightly better than RUM, with Lsg =10 and L. = 20.
This limited performance could be due to discrepancies between the
predicted and the actual structure (Supplementary Fig. 6c) or to
structure energy minimization being non-optimal for catalysis (Sup-
plementary Fig. 7). Fixing positions involved in 3D contacts** (SB-3D
model) again improved the performance at higher distances, with
Lso =10 and L,,,,x = 40. The higher L,,,.x was beyond that of the BPR-3D
model, suggesting that cooperative effects that determine structure
stability in the SB model may make a cumulative difference, but only
when critical tertiary interactions are unperturbed.

Despite the success of the DCA model, we considered that pair-
wise statistical covariation alone might miss the importance of higher-
order interactions of three or more nucleotides. Such higher-order
interactions are known to be important for group I intron ribozyme
catalysis. For example, there are several base-triples in the “G-binding
pocket” of the active site®. To further explore more constrained
models, we used Variational AutoEncoders*® (VAE) to encode high-
order interactions in a neural network and generated sequences from
this model. Overall, VAE covered a similar diversity to DCA as shown by
PCA projections (Fig. 2d) and only a slightly lower capacity for muta-
genesis, with Lso=15 and L,,x=60. The absence of improvement
compared to DCA may be explained by the modest number of training
sequences (N=816), which might be insufficient to resolve higher-
order couplings®.

We next set out to further improve the DCA-based models by
introducing some constraints. We sampled sequences with higher
probability according to DCA by lowering a parameter termed “sam-
pling temperature”, which controls the degree of random diversifica-
tion during Monte Carlo sampling, from T=1 to T=0.3. This alone
showed a dramatic improvement in model success at higher
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Fig. 3 | Diversity explored by the generated sequences. a Upper panel: Violin
plots of minimal distance to the set of chimeric sequences for generated sequences
(light shades) and active sequences (solid shades), per model, with identical colors
as in Fig. 2b; The average of distances for chimeric sequences is represented by a
dashed line. Lower panel: Violin plot of distances between all pairs for generated
sequences (light shades) and active sequences (solid shades), per model.

b Mutational enrichment from chimeric sequences. Top: At each position (x-axis),
Azoarcus ribozyme nucleotides are marked by a black dot, and shades are the log
ratio of mutation frequencies relative to Azoarcus ribozyme in chimeras (green) and
in active variants over all models (red). Bottom: effective number of nucleotides in

chimera (green), candidate designs (black), and active designs (red). ¢ Mutational
enrichment due to the structure: Effective number of nucleotides per position in
DCA T=1(blue) and DCA-SB (purple). d Top: PCA projection of DCA (left) and DCA-
SB sequences (right), on the 2 principal components of the DCA T=1 set. Active
sequences are colored and inactive ones are gray. Bottom: same but in the principal
components of the DCA-SB set, revealing an upper cluster (C") populated by DCA-
SB only, distinct from the cluster below (C%) that comprises all DCA sequences.
Inset: Distribution of structure scores in the two clusters, showing that C" has a
significantly better structure score (***, one-sided t-test, p-value =10, numerical
precision). Source data are provided as a Source Data file.

mutational distances with Lso=45 and L;,,x=60. In a separate
approach, we combined the simple secondary structure maintaining
approach (SB) with DCA to generate the DCA-SB model, where DCA is
sampled at 7= 0.3. This model also showed a very high success rate at
higher mutational distances, with Lso=55 and L,x=65, with a

significantly higher success rate in the range 60-70 compared to DCA
alone (two-sample t-test, p <107°). Interestingly, the DCA-SB sequences
introduced diversity in the loops P5 and P6 (Figs. 1a, 3¢), a diversity that
was not found in DCA alone. The better exploration by DCA-SB was
confirmed by PCA projections, where the DCA-SB sequences covered
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mutations from the Azoarcus ribozyme is indicated in their name, and their activity
score for the self-splicing assay in the last column. The molecular scale in nucleo-
tides. The red arrows are pointing at the recombined covalent ribozymes. For other
designed ribozymes with 15-60 mutations, see Supplementary Fig. 8. ¢ Four-
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fragment self-reproduction assay for one design and Azo, assayed for 1, 2, 4 and
24 h. The dca.T03.19.1 design and Azoarcus ribozyme are first fragmented into four
fragments (W, X, Y and Z) at the positions 62, 99 and 145. The molecular scale in
nucleotides. Two conditions were assayed: the four fragments in the absence of the
covalent ribozyme; and the four fragments in the presence of the covalent ribo-
zyme (condition +). The red arrow shows the presence of the fully recombined
covalent ribozymes. d The dca.T03.19.1 ribozyme. The colors represent the 4 dif-
ferent fragments, and the nucleotides colored with a darker shade highlight the
position of mutations compared to the Azoarcus ribozyme.

the DCA cluster plus an additional cluster that was characterized by a
better structure score (Fig. 3d).

Focusing on the models that identified activity at higher muta-
tional distances than the standard DCA, namely DCA 7=0.3 and DCA-
SB, we computed the support size for these models over a limited
range of mutational distances (Supplementary Table 2). Over the
explored range of mutations, Qpca t-0.3 and Qpca.sg Were found to be
many orders of magnitude below Qpca, consistent with stronger
design constraints (Supplementary Table 2). This result illustrates how
models better for introducing many mutations at once are also more
constrained, resulting in a reduction in the total effective number of
sequences that can be discovered.

Robustness and generality of the approach

We have used a two-step splicing assay as a proxy for the self-
reproduction from fragments because it uses the same catalytic
mechanism. To confirm that the DCA-generated sequences can, in fact,
self-reproduce from fragments, we chose individual sequences at
varying distances from the Azoarcus ribozyme up to 60 mutations
(Supplementary Material ‘Self-reproduction assay’). We split sequen-
ces into either two or four RNA fragments, allowed them to react,
and monitored the appearance of the full-length ribozyme (Fig. 4,
Supplementary Fig. 8)°. More than 60% of the sequences (N=17) that
had a score larger than the activity threshold were found to covalently
self-reproduce from fragments. Importantly, we observed self-

Nature Communications | (2025)16:7836


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63151-5

Frequency
Active fraction

s RUM
I DCA-SB
— 60mM Mg
-=- 5mM Mg
I+ T I 1
70 80 90 100
Mutation to wild type
c d
1 —
@]
S S
8 O pre
Il Y
= S
% -1 P
g 2 B DCAT=1
=] [*}
S -2+ < —— Reaction at T=37°C
2 === Reaction at T=60°C
-3 Y
T T T T 1 . T T I T 1
-3 -2 =1 0 1 0 10 20 30 40 50 60 70 80 90 100

Reaction at T=37°C

Fig. 5 | Robustness and generality. a Designed DCA sequences at 60 mutations
from the WT. The histogram shows the activity scores of 991 detected designs (out
of 1000 designs) with 22 active sequences beyond the activity threshold (equal to
-2.76, red dotted line), corresponding to 2% of the pool. b Comparison of active
fraction as a function of the number of mutations for the RUM and DCA-SB models,
for different MgCl, concentrations: 60 mM as our standard condition (solid lines)
and a lower concentration of S mM (dashed lines). N per bin per model provided in
the Source Data file. Dots are the active fraction. Error bars upper (lower) bound is
the active fraction including (excluding) activity scores within the 98.5 percentile of
the measurement error distribution around the threshold. ¢ Sequencing score at
37°C versus 60 °C for the same DCA pool. Due to lower sequencing depth as
compared to assays of Fig. 2, a more stringent activity threshold of -1.5 was used
(see “Methods” section). The Pearson correlation is 0.64, two-sided p-value =107

Mutation to wild type

(numerical precision). N =558, comprising 484 active for both conditions (upper-
right quadrant), 25 inactive for both (lower-left), 19 active at 60 °C but not 37 °C, 30
active at 37 °C but not 60 °C. d Active fraction as a function of the number of
mutations for the DCA model at 37 °C (plain line) and 60 °C (dashed line).
Sequences with a score below the activity threshold in at least one condition are in
light color. Note that the fraction is computed over all designed sequences,
including those that were not active enough to be detected by sequencing (thus
counted as inactive). N per bin per model provided in the Source Data file. Dots are
the active fraction. Error bars upper (lower) bound of vertical bars is the active
fraction including (excluding) activity scores within the 98.5 percentile of the
measurement error distribution around the threshold. Source data are provided as
a Source Data file.

reproduction for DCA sequences with up to 60 mutational differences
from the Azoarcus ribozyme. We note that the self-reproduction
reaction can be sensitive to the structural context of the CAU tag
sequences, and many more sequences might be able to self-reproduce
with minor changes to the precise tag location. These results confirm
that a majority of catalytically active group I intron ribozymes artifi-
cially generated by DCA are capable of covalent self-reproduction
from fragments.

We next thought to strengthen our estimation of the size of the
neutral set obtained with the DCA model. As mentioned, the estima-
tion is based on the support size curve combined with the number of
active sequences found at different mutational distances (Fig. 2), and is
sensitive to deviations at the largest mutational distances. To better
establish our estimation of Qpca, we generated a DCA pool of 1000
sequences at 60 mutations and experimentally determined the active
fraction. The results showed that 2.2% of the sequences were func-
tional, consistent with our initial estimate. The larger sample size
enhances the level of significance, leading to a p-value < 107 for having
active sequences in the 60-mutation bin (Fig. 5a).

To relate our findings to possible prebiotic scenarios, we assessed
the impact of environmental conditions, magnesium concentration,
and temperature, which are both known to affect structural stability
and catalysis in RNA. While the experiments reported so far were done
at 60 mM magnesium concentration, we used a 5mM magnesium

concentration to run the assay for the pools of the RUM and DCA-SB,
the models that introduced the least and the most mutations,
respectively. As expected, the active fraction decreased in both cases,
consistently in each mutation bin (Fig. 5b). The impact on the RUM was
dramatic, with Lso=0 and L.« =5, due to initially low metrics. How-
ever, the maximum diversification was found to be robust for the DCA-
SB model, with Ls5 =30 and L, = 60.

Regarding the effect of temperature, the Azoarcus ribozyme
strongly degrades above 70 °C (half-life shorter than 30 min). We thus
tested the standard DCA model pool at 60 °C, below this upper limit,
but well above the 37 °C of the initial test. Sequencing scores corre-
lated well between the 2 conditions (r=0.64, p-value <107, Fig. 5¢).
The region below the x=y diagonal appears more populated than
above it (Fig. 5¢), confirming the expectation that a given sequence
should have a better activity at 37 °C than at 60 °C. Qualitatively, a large
majority of the mutants detected by sequencing were found to be
above the activity threshold for both temperatures (484 over 558
detected sequences, those below the threshold or non-detected being
considered inactive). Consistently, the active fraction as a function of
the number of mutations was slightly lower at 60 °C than 37 °C, yet
both temperatures followed the same trend (Fig. 5d), leading to Lso =15
and L, =45 at 60 °C (compared to Lso =20 and L., =60 at 37 °C).

Finally, we wondered if the results were specific to the Azoarcus
ribozyme model system, or if it could be extrapolated to other
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ribozymes. First, we applied the DCA model using a group lintron from
Phormidium sp. as a starting point for mutagenesis (Supplementary
Fig. 9, Supplementary Information ‘Phormidium’). We measured
Lmax =25 for the DCA model and Ly.x=35 for the DCA-SB model.
Although the degree of diversification was lower than for Azoarcus, this
indicates that the diversification approach can be generalized to
extend the neutral set from other starting points. The next question is
whether these findings might be applied to ribozymes that differ by
their activity, structure, or length. A recent analysis shows that the
effective number of RNAs with a given activity within a family of
structural analogs can be estimated, according to DCA, using a power
law d*, where L is the length of the RNA and d is an effective nucleotide
diversity per position found to be 1.74*. Following this analysis, we
computationally examined three other ribozyme families with diverse
lengths: Hammerhead (66 nucleotides), glmS (167 nucleotides), and
Bacterial RNase P class A (367 nucleotides). We observed comparable
trend of the support size versus number of mutations, which further-
more matched the scaling law of support size versus length formerly
found on a large number of naturally occurring RNAs* (Supplemen-
tary Fig. 10). These results confirm the generality of generative
approaches for functional RNAs, also found by a deep learning
method?®, and indicates a rule of thumb to extrapolate our DCA-based
estimation of diversity to other ribozymes.

Discussion

The mapping of molecular function to sequence space is important
for understanding many biological questions, ranging from bio-
technology applications to the origin of life. Sequence space
increases exponentially with the length of a genetic sequence (DNA,
RNA, or protein), and this presents several challenges for studying
larger RNA molecules that are important models for origins of life
research. For the 197-nucleotide-long Azoarcus group I intron RNA
studied here, there exist 10"® possible sequences that make up the
sequence space. It is not possible to synthesize all of these RNA
sequences, and we must therefore develop methods to maximize
information gained from experiments. Here, we demonstrated an
approach that allows an efficient exploration of this sequence space
to map genotypes capable of an autocatalytic self-reproduction
reaction. By comparing several statistical models and reporting the
consistency of their predictive power over thousands of measure-
ments each, we provided a method for future applications of this
approach to other systems.

Based on the best-performing DCA model and the measured
activity of randomly sampled sequences, we suggest that there exist
over 10* autocatalytic self-reproducers that make up the neutral set
for this function. This estimation is based on our experimental
detection limit and therefore represents a lower bound. While this is a
lower bound of potentially autocatalytic sequences, it provides a
quantitative evaluation of the sequence space to guide future ques-
tions and research. At the moment, the frequency of other ribozyme
activities may be estimated from randomization techniques. Ligase
ribozymes, from which replicases were derived, were selected from
random pools of size 10 sequences*®. The diversification potential of
aminoacylation ribozymes, relevant to the origin of translation, was
explored by mutagenesis in a subregion of length 21 nucleotides,
showing that 10° sequences were active among the 4.10 possible
ones®. In general, these studies and the current work suggest that
ribozymes are abundant in sequence space, but suggest that different
structures and functions likely have different frequencies.

The Direct Coupling Analysis approach can be applied to addi-
tional RNA systems to further advance origins of life research or other
RNA research. We found that diversification was equally efficient when
starting from different group I intron ribozymes (Azoarcus and Phor-
midium ribozymes). Smaller group I intron analogs are also known to
exist, such as a 140-nucleotide-long ribozyme derived from a

shortened SunY ribozyme. In the long term, generating RNAs with the
same activity but much less sequence identity or without length con-
straints should be possible, and has been demonstrated in proteins*.
Beyond group | intron analogs, relaxing the structural constraints
would further expand the range of RNAs capable of self-reproducing.
For instance, the family of group Il intron ribozymes is structurally
distinct but also catalyzes splicing reactions between RNAs. Further,
smaller and simpler instances of autocatalytic RNAs exist, but have not
been extensively characterized experimentally. For instance, engi-
neered autocatalytic ligase ribozymes are 67 nucleotides long, overall
relying on an enzyme-substrate complex of 134 nucleotides®. Even
smaller ribozymes were recently found to emerge from random mix-
tures of activated oligomers, with lengths as short as 20 nucleotides™,
relying on 40-nucleotide complexes. By studying reproducing ribo-
zymes of different sizes and structures, it should be possible to
determine scaling laws relating ribozyme length and diversity, and
allow estimates of the size and connectedness of the neutral sets®”. We
started with only 815 unique sequences to train our models, suggesting
that any RNA structure could be similarly studied with only minimal
known natural examples, or by generating a good initial data set
experimentally. We note that the choice of training data is important,
but the optimal criteria might change for different sequences and
structures. The methods for selecting training data remain an active
area of research in itself*,

Autocatalytic RNAs should also be considered in the larger picture
of prebiotic environments, which would likely alter the activity of
certain sequences and impact the mapping of genotype to function®.
Certain prebiotic processes could have actually facilitated the pro-
duction or preservation of autocatalytic RNA. For instance, interac-
tions with the mineral surfaces can favor structured RNAs that are
prone to catalysis®*. Peptide-RNA interactions have been shown to
form coacervate structures that can improve RNA functions>>°. On the
other hand, the prebiotic milieu could be constraining. In particular,
the concentrations of different metal ions can impact ribozyme
activity. Lower magnesium concentration tends to reduce the fraction
of active molecules, although we found that magnesium concentration
in the millimolar range had a limited impact on our identification of
active sequences.

Generative approaches, as developed in this work, could uncover
the full extent of RNA sequences capable of achieving functions rele-
vant to the RNA world. The highly active developments in artificial
intelligence, including large language models, for RNA structure?**"
and function®”*° hold the promise to systematically design RNAs and
ultimately reveal the variety of accessible pathways for prebiotic
evolution.

Methods

High-throughput self-splicing assay

The assay aims at discriminating against an activity similar to self-spli-
cing, the reaction catalyzed by the wild-type Azoarcus GII. For the natural
self-splicing reaction, the GlI binds a free GTP, allowing the attack of A.
Then, the 3’ of A attacks the 3’ of the GII to allow the formation of a
covalent bond between the two exons, while releasing the GII.

To mimic this self-splicing mechanism, we devised an experi-
mental assay comprising two steps, as shown in Fig. 1c. All ribozymes
were produced with a 15-nt-long sequence at their 3’ extremity, called
sequence A (yellow region in Fig. 1c), which corresponds to the wild-
type exon of Azoarcus GII. First, the sequence A is transferred at the
end of the substrate called S1 (grey region in Fig. 1c). Then, a second
substrate called B-S2 (red substrate in Fig. 1c) binds into the recogni-
tion site of the RNA, leading to the transfer of a cleaved section S2 of B-
S2 at the 3’ end of the ribozyme and the release of a smaller B frag-
ment (fraction of the red substrate that remains attached to the 5 GUG
extremity of the ribozyme, right-most panel of Fig. 1c). The ribozymes
with the sequence S2 (fraction of the red substrate attached to the 3’
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extremity of the ribozyme, right-most panel of Fig. 1c), thus considered
active, were selected during the later steps.

We performed three large pooled experiments, wherein we
assayed thousands of sequences simultaneously. For each computa-
tionally designed pool of RNA sequences, we ordered the corre-
sponding DNA templates with the exon at the 3’ end and the T7
promoter in the 5" end. The single-strand DNA oligo pools containing
12,000 or 18,000 sequences were purchased from Twist Bioscience.
We amplified the DNA pools by PCR (-15 cycles) with the KAPA HiFi
HotStart ReadyMix (Roche), and purified the samples with the
NucleoSpin Gel and PCR cleanup (Macherey Nagel). The DNA tem-
plates were then transcribed using the HiScribe T7 High Yield RNA
Synthesis Kit (New England Biolabs) for 4 h at 37 °C to produce RNA
molecules. The samples were then subjected to phenol-chloroform
extraction and ethanol precipitation using 0.1 volume of 3 M Sodium
Acetate (Sigma) and 2.5 volumes of cold 100% ethanol. After extrac-
tion, the samples were treated with the DNAse I (New England Biolabs)
and PAGE purified on an 8% urea PAGE.

For each designed RNA pool, we performed two sub-experiments.
The first sub-experiment is the self-splicing assay. The second one is a
control experiment to correct for the biases of the relative quantity of
each synthesized ribozyme within the corresponding pool (before
reaction), used to compute the activity scores. For the self-splicing
assay, 2 uM of ribozymes were incubated with 25 uM of substrates S1
and B-S2 in a buffer (30 mM EPPS, pH 7.5, 60 mM MgCl2) at 37°Cin a
final volume of 20 uL. Two samples were taken during the incubation,
at 0 and 60 min, mixed with loading solution (70% formamide, 130 mM
EDTA, 0.1% xylene cyanol, 0.1% bromophenol blue), and loaded on an
8% Urea PAGE. The reaction was quenched by adding 60 mM of EDTA,
and the ribozymes were cleaned using the Monarch RNA cleanup kit
(New England Biolabs) with an adjusted volume of ethanol and binding
buffer. For the control experiment, no substrate was used, and the
ribozyme pool was directly cleaned with the Monarch RNA cleanup kit.

The RNA samples were then prepared for sequencing, using the
NEBNext Ultra Il Directional RNA Library Prep Kit for Illumina (New
England Biolabs). For the self-splicing experiment, the primer used
during the reverse transcription corresponds to the sequence com-
plementary to the S2 substrate, whereas the sequence complementary
to sequence A was used for the control experiment. The samples were
sequenced on a NovaSeq SP flow cell (2+250 nt, 2800 M reads) in
paired ends and with 25% of PhiX by the NGS platform at Institut du
Cerveau et de la Moelle épiniére (ICM, Paris).

To test the robustness of our experimental protocol across the 3
pools, we introduced a common set of 355 sequences, which showed a
very consistent activity computation across all pools (p= 0.99 corre-
lation between each pair of pools, Supplementary Fig. 1).

Cross-catalysis tests

Cross-catalysis within a pool would result in false positives (apparently
active ribozymes that are in reality inactive), which in turn could lead
to overestimation of the lower bound on the number of ribozymes. To
test for this, we performed a series of experiments ensuring that cross-
catalysis was negligible.

First, we assayed 24 sequences by denaturing gel electrophoresis,
individually (Supplementary Fig. 2). We used identical reaction con-
ditions as the pooled high-throughput assay: 2uM of ribozymes
incubated with 25 uM substrates at 37 °C for 1 h. These sequences were
selected among the pool designed by DCA to cover the range of
mutations 15-60 from Azo, with various scores of the assay as mea-
sured by sequencing. Overall, all the sequences that had a sequencing
score above the threshold also displayed a form of catalytic activity
visible on the gel. 1 in the 24 sequences was a false negative according
to sequencing;: it displayed products on the gel but a sequencing score
below the threshold. However, neither false negatives impact our
lower bound estimation of the number of ribozymes, nor do they

indicate the presence of cross-catalysis as the latter results in false
positives.

Second, we measured by the sequencing assay the activity score
of a set of sequences spanning a range of activity scores, comparing
the score obtained in a pool and as separate individual measurements.
The sequences were produced, purified, and tested separately. The
scores reproduced well the relative experimental activity measured in
the pool, with p=0.95 with p-value <107 (Supplementary Fig. 3b).

We further tested that active ribozymes did not affect the mea-
sured activity of each other within a pool as a function of their relative
concentration, by taking a subset of 12 only active sequences, tested as
a subpool. The activity score of this subset incubated as a separate,
smaller pool correlated strongly with the scores within the total pool,
with p = 0.98 with p-value <10~ (Supplementary Fig. 3c), showing that
the overall concentration of active variants did not affect the
activity score.

Self-reproduction assay

The fragmentation strategy previously reported for fragmenting the
Azoarcus ribozyme® was generalized to the artificial ribozymes. We
fragmented the ribozymes at the nucleotide positions 145-147, which
we referred to as the Y/Z junction. This fragmentation site is located in
the loop of the P8 paired region (Fig. 4a). For each ribozyme, two
fragments were produced with the addition of short sequence frag-
ments necessary for the recombination reaction to occur. For the first
fragment (WXY fragment), a ‘CAU’ tag was inserted at the 3-end, and
for the second fragment (Z fragment), a ‘GGCAU’ tag was inserted at
the 5-end by PCR.

The self-reproduction assays were carried out as follows. 1uM of
each ribozyme fragment was incubated in a buffer (30 mM EPPS, pH
7.5, 60 mM MgCI2) at 37°C. Samples were taken at different time
points during the incubation, mixed with loading solution (70% for-
mamide, 130 mM EDTA, 0.1% xylene cyanol, 0.1% bromophenol blue),
and loaded on an 8% Urea PAGE. The gels were stained with SyBr Gold
(ThermoFisher) diluted in TBE buffer.

To fragment a ribozyme into 4 fragments® (W, X, Y Z fragments,
Fig. 4d), the ‘CAU’ tag was inserted at the 3’-end of the fragments W, X
and Y and the ‘GGCAU'’ tag was inserted at the 5’-end of the fragments
X, Y and Z. Similarly, the self-reproduction reaction was performed by
incubating 1 uM of each 4 fragments in the incubation buffer (30 mM
EPPS, pH 7.5, 60 mM MgCI2) at 37 °C. The course of the reaction was
followed by analyzing samples on an 8% Urea PAGE.

Construction of the MSA

To build the MSA, we used the wild-type sequence (197 nucleotides
long) of Azoarcus Gl Intron and its known secondary structure derived
from the PDB X-ray structure 1G9B® in order to detect homologous
sequences from the RFAM database®. To account for similarity but
also secondary structure compatibility, we built a seed alignment
containing only the Azoarcus sequence and its secondary structure,
which we fed to the alignment algorithm implemented in the package
Infernal (version 1.1.4)** to search for homologs in the 2611 sequences
of the RFO0028 RFAM family. We filtered out all the sequences for
which the computed e-value is >1073, which is the probability of finding
the obtained alignment score randomly. 816 sequences were found
below the homology threshold of 10 and aligned using Infernal.
Supplementary Fig. 5a shows the diversity per position in this align-
ment, measured as the exponential of Shannon entropy, and the
frequency of gaps per nucleotide position.

Calculation of activities from sequencing results

To estimate the experimental activities, we computed the frequencies
of designed sequences in: (i) the reference condition before the cata-
lytic reaction, and (ii) the reacted condition where the substrate has
been mixed with the designs and then incubated. For both conditions,
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we mapped each paired-end read to the closest designed sequence
using the software Blast (version 2.12)*. Then, we selected the reads
that covered at least 70% of the mapped designed sequence with full
identity, which allowed us to obtain the occurrence of each design in
the sample. We computed the frequencies f ¢ of designs in each pool
before catalysis, allowing us to quantify the bias in RNA molecules in
the initially synthesized pool. Then, we computed the frequencies of
designs f ., in the sample with the substrate. To do so, we counted the
reads when the substrate was attached right after the 3’ end of the
design, which indicates that the ribozyme was able to excise the exon
and then ligate the substrate. Finally, we computed the experimental
activity act = log G—f’) Analyzing reverse reads was sufficient for cal-
culating the activity 'score. Sequences such that f >0 but f,, =0
were considered inactive. Sequences such that f,c <5 were excluded
from the analysis.

Activity threshold and active fraction

As depicted in Fig. 2a, as more mutations are introduced, the activity
score decreases from zero (the Azo score reference) to a lower plateau.
This plateau is reached for all models beyond 70 mutations, char-
acteristic of non-functional sequences. We considered the distribution
of scores at this plateau representative of the experimental noise,
taking the score distribution over the 543 sequences comprising at
least 100 mutations (red in Supplementary Fig. 4). The noise dis-
tribution is found to be Gaussian (Supplementary Fig. 4). Significant
activity was taken for a p-value <1073, resulting in a threshold of -2.76.
Note that this p-value guarantees a z-score larger than 3.09 (3 standard
deviations above the mean). For reference, activities greater than -2.45
corresponded to p-value <107, and activities greater than -2.16 to p-
values<107~. Those more stringent thresholds are verified for most of
the active sequences found in the L, bin, and the presence of mul-
tiple sequences above the threshold further lowers the level of evi-
dence, thus lowering the p-value (Supplementary Table 1). In the case
of incubation at different temperatures, we used a more stringent
threshold of —1.5 to account for the increased noise level due to shal-
lower sequencing, determined using the same reference pool mea-
sured at different sequencing depths. For each model, we computed
the active fraction per bin spanning 5 mutations of distance from Azo.
For each bin, the active fraction is defined as the number of designs
with activity levels above the threshold divided by the total number of
designs in that bin.

The error bars on the bins' active fraction are estimated using the
error on the individual sequence activity measurements. For this, we
used data from 355 overlapping sequences, whose activity has been
independently measured three times. As already pointed out, these
measurements displayed high consistency, with a correlation coeffi-
cient close to 0.99 across different experiments. For each of these
355 sequences, we calculated the standard deviation of the activity
measurements. The vast majority of the standard deviations are below
0.3 (with just 5/355 designs exceeding this value). Consequently, we
considered 0.3 as the error on the single activity measurement. Using
this error estimate, we computed the error bars for the active fraction
in each bin by counting the number of designs whose activity values
crossed the threshold, considering the +0.3 measurement error.

Definitions of Lso and L.y, significance levels
Lso was estimated as the largest number of mutations such that a given
model achieved at least 50% active sequences within a bin of 5 muta-
tions with p-value <107 (binomial test, Supplementary Table 1). Lax
was estimated as the largest number of mutations such that a given
model achieved at least 1% success rate within a bin of 5 mutations with
p-value <107* (binomial test, Supplementary Table 1).

However, as the L. bin generally comprises more than
1sequence, and with scores clearly above the threshold, we computed
and reported the p-value given all the available data, rejecting the

hypothesis that all sequence activities in this bin are drawn from the
noise, as explained below and reported in Supplementary Table 1. To
compute this actual p-value for L., we assumed a Gaussian null
model for the measured activities a of non-functional sequences,
a ~ N(u, o), which we call the noise model. As described above in the
“Activity threshold and active fraction” section, the model mean p and
standard deviation ¢ are estimated from a sample of 543 non-
functional sequences having at least 100 mutations. We assume here
that all measured activity is due to experimental noise.

Assume now a sample of N sequences {s;,i=1, ..., N} with experi-
mentally measured activities {a;,i=1, ..., N} (typically the sequences of
any bin in mutational distance to Azo). For any arbitrary z-value, we can
find the number n(z)={i,a;>u+zo}v of sequences with measured
activity being at least z standard deviations above the mean of the
noise model. We can also calculate the probability m(z)=P(a>u+z0)
that a randomly chosen activity a ~ N(u, 0) from the noise model is
beyond that activity threshold.

These two numbers, via a one-sided binomial test, give access to a
z-dependent p-value (which allows to refuse or not the hypothesis that
all data are drawn from the null model):

g LT R
P= 2 AN )

In coherence with our selection threshold chosen according to
the Method section “Activity threshold and active fraction”, we report
p-values for sequences above our standard threshold, i.e., for
m(z)=0.001, reached at. z ~ 3.09.

In principle, any z-value could be used for calculating p-values. For
smaller z, we would have more super-threshold activities (larger n(z))
but of smaller individual significance (smaller m(z)), while a larger z
would lead to fewer selected sequences of higher individual sig-
nificance. Note that fixing our activity threshold (and thus considering
one value of z) leads to an upper bound of the p-values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Source data for the figures are provided with this paper as a zip folder.
Additional data generated in this study have been deposited in the
Zenodo database under accession code https://doi.org/10.5281/
zenodo.16531362. Source data are provided with this paper.

Code availability

The code used in this study to generate and analyze sequences has
been deposited in the Zenodo database under accession code https://
doi.org/10.5281/zenodo0.16531362
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