
Article https://doi.org/10.1038/s41467-025-63155-1

scIVNL-seq resolves in vivo single-cell RNA
dynamics of immune cells during Salmonella
infection

Zhen Xiong1,6, Runyuan Wu1,2,6, Yuanxin Wang1,2,6, Yuwei Xu1, Cunzhen Li1,2,
Deyuan Kong3, Ziqi Xiao1,2, Peikang Zhang1,2, ZhonglongWang1,2, Peng Zhang 1,
Ying Du1, Hui Guo1, Pingping Zhu4, Shunmin He 1,2 & Zusen Fan 1,2,5

The immune response against pathogens involves multiple cell state transi-
tions and complex gene expression changes. Here, we establish a single-cell in
vivo new RNA labeling sequencingmethod (scIVNL-seq) and apply it to survey
time-resolved RNA dynamics during immune response to acute enteric
infection with Salmonella. We show that the detection of new RNA synthesis
reflects more realistic information on cell activation and gene transcription
than total RNA level. Interplay of RNA synthesis and degradation modulates
thedynamics of total RNA. Thebonemarrowmacrophages arefirst primedat a
very early stage upon Salmonella infection. In contrast, the innate immune
responseofmacrophages in intestine is limited.Notably, intestinal CD8+ T cells
and plasma cells are rapidly and specifically activated at the early stage post
infection. Intestinal late enterocytes quickly express MHC-I molecules and
present Salmonella antigen to CD8+ T cells for their activation, serving as
antigen presenting cells for the initiation of adaptive immunity. Our findings
reveal the RNA control strategies and the dynamic activation rules of immune
cells in response to Salmonella infection, challenging the doctrine boundary
between innate immunity and adaptive immunity against bacterial infection.

All information that directs an organism’s development and main-
tenance are encoded in its genomic DNA. Dynamic changes of mam-
malian cellular mRNA decoding from DNA are determined by the
interplay of RNA synthesis, processing and degradation1. It is believed
that cells prefer the mRNA control strategy of high RNA synthesis and
degradation rate to rapidly respond to environmental stimuli, while
using low RNA degradation rate to integrate transcriptional informa-
tion over time2–4. Single-cell RNA sequencing (scRNA-seq) provides a
powerful tool for disentangling RNA levels and identifying hetero-
geneity in cell types and states5,6. However, the current scRNA-seq
methods only capture a snapshot of total RNA expression at the
moment of measurement, ignoring the dynamic changes in RNA

transcription and degradation2. Genes presenting the same total RNA
level can have different RNA synthesis and degradation rates, for
example, where decreased transcription counteracts a slowdown in
degradation. Thus, mixing of pre-existing (‘old’) RNAs and newly
transcribed (‘new’) RNAs obscures the real temporal dynamics7. Exo-
genous nucleoside analogs such as 4-thiouridine (S4U) are commonly
used for RNA metabolic labeling to distinguish new RNAs from old
RNAs8–10. S4U is incorporated into new RNAs during transcription and
then chemically converted to a cytidine analog. Labeled new RNAs can
be distinguished from old RNAs by U-to-C conversion11,12. Integrating
with single-cell RNA sequencing, these RNA metabolic labeling meth-
ods can simultaneously profile new and total RNA transcriptomes at
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single-cell resolution2,13. However, in vivo and time-resolved surveys of
RNA dynamic changes are still absent.

Immune response to pathogenic stimuli can occur within hours
and extend to a timescale of weeks, involving complex gene regulation
and multiple cell state transitions14. The ideal immune response to
pathogen infection would be primed rapidly to control the spread of
pathogenic microorganisms and eliminate the potential threat, while
also avoiding damage to the body itself caused by excessive and sus-
tained immune responses15,16. Previous studies have utilized scRNA-seq
with unprecedented resolution to quantify cell-type compositions and
explore gene expression programs of immune cells under infection,
especially viral infection17,18. However, the initial priming of immune
cells and the RNA kinetics of transcription and degradation over
immune responses in vivo upon infection have not been delineated.
How does the interplay of RNA transcription, degradation and splicing
modulate the mRNA level in a dynamic immune response? Whether
genes with different functions utilize different mRNA control strate-
gies? Do RNA transcription and degradation rates vary in different cell
types under steady and stimulated conditions? These questions have
not been clearly revealed, especially in an in vivo context.

Enteric Salmonella infection is a major public health hazard, which
causes 180 million diarrheal illnesses and nearly 300 thousand deaths
globally each year19. Beyond causing gastrointestinal symptoms such
as abdominal pain and diarrhea, some serovars (for example, S. enterica
subsp. enterica serovar Typhi) cause a systemic infection known as
typhoid20. However, the overall survey with time-resolved dynamic
changes of RNA in bone marrow (BM) and intestinal immune cells in
response to Salmonella infection is still missing. Innate immunity serves
as the first defense line against enteric pathogens, exhibiting rapid
activation within hours of infection. In contrast, adaptive immune
components such as T cells and B cells are considered to require a
period of ~one week to be activated following pathogen exposure14. In
this work, we establish single-cell new RNA sequencing scIVNL-seq
to survey immune cell activation patterns and new RNA transcription
and degradation kinetics upon Salmonella Typhimurium (Salmonella)
infection. Our findings reveal in vivo RNA dynamics of immune cells
during Salmonella infection and immune response kinetics of innate
versus adaptive immunity, which challenges the doctrine boundary
between innate and adaptive immunity against bacterial infection.

Results
scIVNL-seq detects in vivo single-cell new RNA and total RNA
transcriptome
To measure newly transcribed RNA in vivo, we administrated mice with
S4U through tail vein injection to label newRNA. S4U integrated into new
RNA was then converted into cytidine analogs, introducing T-to-C
mutations during reverse transcription (Fig. 1A). Sequencing reads
containing T-to-C substitutions were identified as newly transcribed
RNA, and reads without T-to-C substitutions were identified as old RNA.
Total RNA was the sum of newly transcribed RNA and old RNA. Given
that the sequencing was based on poly-(d)T capture and priming, nas-
cent RNAs bound on the chromatin without poly-A tails could not be
detected by our current approach. As expected, S4U labeling caused T-
to-C substitutions (Supplementary Figs. 1A and B). In addition, due to
the limited S4U incorporation efficiency and the sequencing read length,
there were some reads with the same UMI that had T-to-C substitutions,
and others that had not (Supplementary Fig. 1C). In that case, the UMI
was defined as labeled if therewas at least one T-to-C substitution in any
one of the reads linked to the same UMI index, since these reads were
derived from the same transcript. New RNA presented an average of
around 17% per gene and 7% per cell (Supplementary Fig. 1D). S4U
integration and throughput expansion did not disturb the cell dis-
tribution (Supplementary Fig. 1E).

Bonemarrow, as a main hematopoiesis source, is important for the
immune system. We applied scIVNL-seq to detect transcriptional

activation in BM immune cells at a steady state. To visualize new RNA,
we established a fluorescent labeling method based on click chemistry
(Supplementary Fig. 2A). We found a significant proportion of BM cells
were labeled, indicating active transcription of new RNA (Fig. 1B). To
profile transcriptomeof newRNA and total RNAof BMcells, S4U reagent
was injected into mice through tail vein injection 2h before sample
collection for labeling newly transcribed RNA. Incorporation of S4U did
not disturb total RNA profiles, and cell type clusters based on total RNA
were similar to other canonical scRNA-seq data21 (Fig. 1C). We calculated
the numbers of new RNA UMIs as well as the new-to-total RNA ratios
(NTRs) to reflect the extent of transcriptional activation in different
cells. In fact, numbers of new RNA UMIs showed similar patterns with
NTRs (Fig. 1C). Of note, new RNA transcription in hematopoietic stem
cells and progenitors (HSPCs) was highly activated compared to that in
differentiated cells (Fig. 1C, D). In addition, immature cell subsets, such
as Ki67+ monocytes, Ki67+ neutrophils and pre-B cells possessed higher
new RNA proportion than mature Ki67− monocytes, Ki67− neutrophils
and mature B cells (Supplementary Fig. 2B). The numbers of genes that
actively transcribing new RNA were also decreased along with cell dif-
ferentiation (Supplementary Fig. 2C). These data suggest that stem
progenitor cells harbor open and accessible chromatin compared to
differentiated cells, and the gene expressions are gradually closed over
cell differentiation, which is consistent with previous findings22.

We next defined signature genes with new and total RNA for each
cell type. Some genes vital to certain cell types were highlighted, and
these genes were actively transcribed in the indicated cell types
(Fig. 1E). For example, Myb regulates hematopoietic stem cell (HSC)
proliferation and differentiation. Myb knockout causes a loss of self-
renewal in HSCs. Klf4 is a critical regulator of monocyte and macro-
phage differentiation, and Gata2 is important for basophils23. We also
noticed that some signature genes displayed low expression of
new RNA, while total RNA levels were relatively high (e.g., S100a8
and Camp) (Fig. 1E). Then we compared the expression of new RNA
and total RNA levels of genes in each cell type. We computed pseudo-
bulk levels of genes and calculated Spearman’s rank correlations
between labeled and total transcript levels across cell types (Supple-
mentary Fig. 2D). Ptprc encoding CD45 is widely expressed in immune
cells, and we found that new RNA expression pattern of Ptprc in dif-
ferent cell types was consistent with total RNA (Fig. 1F and Supple-
mentary Fig. 2D). Both new RNA and total RNA of Ccr2 were highly
expressed in monocytes and macrophages, indicating that Ccr2 gene
harbors active transcription for maintaining high levels of total RNA in
these two cell types. By contrast, some genes, such as antimicrobial
peptide gene (Camp) and ribosomal protein L13 gene (Rpl13), had
high levels of total RNA, whereas their new RNA was low (Fig. 1F and
Supplementary Fig. 2D).

We then calculated the transcription rate (α) andhalf-life ofmRNA
(t1/2) for these genes. We observed that Ccr2 displayed a high rate of
transcription as well as a short mRNA half-life. In contrast, S100a9,
Camp, Rpl13 and Rpl29 were opposite to Ccr2, indicating low RNA
turnover rates (Fig. 1G). We next wanted to determine whether new
RNA expression patterns were sufficient to cluster cell types. Although
post-transcriptional regulation could also modulate mRNA levels,
unsupervised graph clustering with newly transcribed RNAwas able to
separate cell types into respective groups, which were similar to the
clusters generated from total RNA. These data indicated that the
synthesis of new RNA could reflect differences and characteristics of
cell types (Fig. 1H and Supplementary Fig. 2E). Of note, T cells and NK
cells showed highly similar new RNA transcription patterns. We
noticed that basic life processes such as mRNA processing and cell
cycling occupied most transcription resources in HSPCs (Supple-
mentary Fig. 2F). Monocytes and macrophages highly expressed
cytokine-mediated signaling genes. Neutrophils highly expressed
respiratory burst genes, and B cells actively transcribed B cell receptor
(BCR) signaling and immunoglobulin production related genes.
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Collectively, these data confirm that scIVNL-seq is able to measure
in vivo new RNA and total RNA transcriptome characters of cells.

New RNA transcription changes in response to Salmonella
infection
Gene expression regulation is elaborately modulated during immune
response, breach of which can cause pathological phenomena.

Although several reports have described transcriptomes of immune
cells in response to pathogen infection24–26, the RNA dynamics and
initial priming regulation of immune cells were still unclear. Thus, we
applied scIVNL-seq to detect RNA dynamics of immune cells upon
Salmonella infection. Specific pathogen-free (SPF) mice were never
infected with Salmonella (Supplementary Fig. 3A). To evaluate Sal-
monella invasion, we infected mice with mcherry-expressing
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Salmonella by oral gavage. We found that many Salmonella attached
on intestinal villus epithelial cells at 2 h post infection, and then Sal-
monella invaded into the intestinal lamina propria at 6 h post infection
(Supplementary Fig. 3B). Salmonella further disseminated from thegut
to systemic sites. We measured bacterial load in the ileum, liver and
spleen at different time points, and found remarkable increase of
bacterial load after infection (Supplementary Fig. 3C). In addition,
Salmonella infection caused rapid morbidity and mortality in mice,
with dramatic body weight loss and death of mice (Supplementary
Fig. 3D and E).

Then we treated Salmonella infected mice with S4U through tail
vein injection 2 h before sample collections at different time points
post infection (0, 2, 6, 12, 24, 48 and 72 h), and performed scIVNL-seq
(Supplementary Fig. 3F). We observed that numbers of new RNA UMIs
were similar between 0 and 2 h post infection and few genes changed
expression significantly, suggesting no obvious response at such an
early phase (Supplementary Fig. 3G and H). From 6h to the later time
points, NTR patterns were obviously changed (Fig. 2A). We found that
innate immune cells such as macrophages, neutrophils and DCs
enhanced the NTR early after infection (6 and 12 h), and then in later
phase (24, 48 and 72 h), NTRs gradually declined (Fig. 2A), indicating a
burst of new RNA transcription at early phase post infection followed
by attenuation of transcription at later phase. New RNA dynamic
changes of BMmacrophages during Salmonella infection were further
validated using the new RNA fluorescence imaging method (Fig. 2B).
To verify the changes of NTR, we conducted biological replicates
independently (batch 2) for the four key timepoints (0, 12, 24, and 72 h
post Salmonella infection). Cell type clusters between the two batches
were similar (Supplementary Fig. 4A). While the distribution patterns
of NTR were comparable, we found that some subpopulations such as
B cells and T/NK cells did show differences (Supplementary Fig. 4B).
This divergence might be attributable to the heightened sensitivity of
scIVNL-seq, capturing in vivo new RNA atop total RNA quantification,
combined with inherent biological variability in murine responses. We
then compared the changes in NTR of various cell types from the two
batches at different time points after infection (Supplementary
Fig. 4C). In batch 2, the NTRs of innate immune cells such as macro-
phages, monocytes and neutrophils were upregulated after infection,
indicating the increased proportion of newly transcribed RNA, and
then NTR were decreased. These trends of change after infection was
consistent in the twobatches (Supplementary Fig. 4C). However, there
were some differences: batch 1 displayed a sharp peak of NTR at
6 h post infection followed with a dramatic decline, whereas
batch 2 seemed to exhibit gentler and delayed kinetics, NTR upregu-
lating at 12 h with much slower decline (Supplementary Fig. 4C). In
addition, NTRs in stem and progenitor cells (HSPCs, Ki67+ monocytes
and Ki67+ neutrophils) in batch 1 were decreased at early phase and
then seemed to be recovered to some extent (Fig. 2A and Supple-
mentary Fig. 4D). However, this variation of NTRs was different in
batch 2, in which NTRs were increased at 12 and 24 h after infection
(Supplementary Fig. 4D).

Total RNA describes current transcription state, while new RNA
provides the vector topredict the futureexpression state of single cells
on short timescales27. To describe the transcription state transition
trajectory of immune cells in response to infection, we combined the
total RNA and new RNA data by using Dynamo framework28. Velocity
flows deduced by new RNA accurately recapitulated transcription
variation ofmacrophages andmonocytes,moving from theuninfected
state (0 h) to the early activation phase (12 h) (Fig. 2C). However, cells
at later infection time points (24, 48 and 72 h) were mixed with non-
response state (0 h), reiterating the presence of an early phase tran-
scriptional burst followed with deceleration to restore the transcrip-
tion rate to the steady state in later phases.

We next profiled the expression of genes with upregulated new
RNA transcription after Salmonella infection in the BM immune cells.
We observed that new RNA transcription of macrophages and mono-
cytes was dramatically evoked at 6 and 12 h (Fig. 2D). Genes related
with NF-κB signaling (Nfkbia and Tlr2), pro-inflammatory cytokines
(Tnf and Il1b) and chemokines (Ccl3 and Cxcl10), and antibacterial
substances (Serum amyloid A 3, Saa3) were actively transcribed at 6
and 12 h, followed by down regulation at later phases. Neutrophils and
DCs actively transcribed some chemokine receptors (Cxcr2 and Ccr9)
at 6 h and 12 h. At later phases (24, 48 and 72 h), monocytes expressed
proliferation genes (Mki67, Ccnb2 and Ccnd3). Macrophages, mono-
cytes and DCs upregulated expression of genes involved in antigen
processing and presentation (Tap1, Tapbp and B2m). Notably, B cells
highly expressed some neutrophil signature markers at 72 h, such as
granule genes (Camp, Ngp and Ltf) and phagosome and endosome
genes (Rac2,Cybb andNcf1), suggesting someundiscovered innate-like
functions of B cells in response to bacterial infection (Fig. 2D). We
made a heatmapof batch 2 datawith the samegene set, and the results
showed a consistent expression pattern between the two batches
(Fig. 2D and Supplementary Fig. 4E). However, in line with NTR varia-
tions, the newRNAexpression heatmap also showed a delayed kinetics
in batch 2. Transcription peaking at 12 and 24 h in batch 2 were similar
with 6 and 12 h in batch 1 (Fig. 2D and Supplementary Fig. 4E). Speci-
fically, we analyzed the total and new RNA expressions of some typical
bacterial infection responding genes (Il1b, Tnf, Tlr2 and Saa3). The
results showed similar expression variation trends but lower level of
transcriptional activity (Il1b and Tnf, at 12 h) and delayed post-
activation inhibition (Tlr2 and Saa3, at 24 h), indicating a weaker
immune response in batch 2 (Supplementary Fig. 4F). We propose that
these differences between the two batches might stem from different
infection severity of mice between the two batches. Although we
treated mice with the same CFU, bacteria were stored in −80 °C, some
bacteria could gradually lose their viability and infection activity,
leading to the attenuated actual infectious burden in batch 2, thereby
dampening host immune activation and delaying transcriptional reg-
ulation. The inconsistency of NTR in stem and progenitor cells
between the two batches (Supplementary Fig. 4D)might also be linked
to the differences in the infection severity. Bacterial infection can
mobilize HSPC proliferation, while excessive inflammation can

Fig. 1 | scIVNL-seq detects single-cell newRNA in vivo. AOverview of scIVNL-seq.
S4U was injected into mice via tail vein injection. BM cells were collected and re-
suspended. Single-cell suspensions were loaded ontomicrofluidic device, followed
by cell lysis and mRNA capture. S4U integrated in new RNA was converted into
cytidine analogs and was further recognized as cytosine by reverse transcriptase.
cDNAs were amplified and libraries were sequenced. New RNA was identified by T-
to-C substitutions. The schematic diagrams were created with Adobe Photoshop
(Version 22.0.0) (B) New RNA (red) imaging of femur sections, co-stained with
CD45 (green), CD31 (cyan) antibodies and DAPI (blue). Scale bar, 100 μm. C UMAP
showing cell type clusters (left), UMI counts of new RNA and NTRs (right) in bone
marrow CD45+ immune cells. The uniformmanifold approximation and projection
(UMAP) method was used for dimension reduction. Unique molecular identifier
(UMI) counts per cell are shown as ln(count+1). Ratios of new RNA to total RNA are

shown as NTRs. HSPC, hematopoietic stem and progenitor cell; Mono, monocyte;
Mφ, macrophage; Neu, neutrophil; Baso, basophil; NK, natural killer cell; DC,
dendritic cell; Pre B, Pre-B cell; B, B cell; T, T cell.D Violin plot of NTR for each BM
cell type. E Signature gene expression of new RNA (left) and total RNA (right) for
each cell type. Genes in the heatmap were the same between new RNA and total
RNA. Expressions were log-normalized. F Total RNA and new RNA expression (log-
normalized) of Ptprc, Ccr2, Camp and Rpl13. G Scatter plot of transcription rate (α,
normalized RNA counts per cells/h) and RNA half-life (t1/2, h) of genes expressed in
BM cells. H UMAP projection of BM cell types with new RNA. Cells with new RNA
data were clustered by unsupervised classification. Cell types identified with total
RNA data were mapped back on UMAP projection. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-025-63155-1

Nature Communications |         (2025) 16:7937 4

www.nature.com/naturecommunications


C

E

A

0 h
2 h
6 h
12 h
24 h
48 h
72 h

Mφ Mono

F

0.0
0.1
0.2

NTR

UMAP 1

U
M

AP
 2

Ki67high Neu

Ki67high Mono
Mk

Pre BB

Mono

HSPC

Neu

Baso

Mφ

DC

TNK

0
1
2
3

0
1  
2

0
1
2
3

0
1
2

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

UMAP 1

U
M

AP
 2

N
ew

 R
N

A
To

ta
l R

N
A

TnfIl1b Ccl4 Saa3

G

D

−2
−1
0
1
2
3

0
2
6
12
24
48
72

Time (h)

Expression

Inflammatory response Defense response

Sc
or

e

Mφ
Mon

o
Neu NK DC B T

0 h 2 h 6 h 12 h 24 h 48 h 72 h

0

0.05

0.10

0.15

0

0.05

0.10

0.15

Mφ
Mon

o
Neu NK DC B T

Sc
or

e

Tap1
Tapbp

B2m

Ccnd3

Mki67
Ccnb2

Il1r2
Cybb

Ltf
Ncf1

Camp
Ngp

Rac2

Ccr9

Cxcr2

Il1b
Ccl4
Tnf

Ccl2
Saa3

Tlr2

Irf1
Cxcl10

Ccl3

Nfkbia

Mφ      Mono      Neu        NK        DC         B           T

IL-1β

TN
F-

α

0 h 6 h 12 h

CD11b+CD11c−F4/80+ gated

0

1

2

3

4

0 6 12
Time (h)

p=0.0106

TN
F-

α+ IL
-1

β+  M
φ

in
 B

M
 c

el
ls

 (%
)

N
ew

 R
N

A 
F4

/8
0 

D
AP

I 

0 h 2 h 6 h 12 h 24 h 48 h 72 h

N
ew

 R
N

A 
D

AP
I

B

24.2 44.8 51.7

p<0.0001

0

200

400

600

800

0 2 6 12 24 48 72
Hours post infection

 M
FI

 o
f n

ew
 R

N
A

Fig. 2 | New RNA is rapidly transcribed in BM macrophages post Salmonella
infection. A UMAP plot of CD45+ immune cells in BM and NTR at each time point
post Salmonella infection. All cells from the indicated time points were combined
to identify cell types (left). Ratio of new RNA to total RNA (NTR) was mapped onto
UMAP plots (right). B New RNA imaging of femur sections (left) and mean fluor-
escence intensities (MFIs) of 5-EU labeled new RNA (right). New RNA was labeled
with EU (red). Macrophages were stained with anti-F4/80 (green) antibody. Nuclei
were counterstained with DAPI (blue). Scale bar, 50μm. n = 5 biologically inde-
pendent replicates.CRNAvelocityflowprojected in PCA space.Macrophages (left)
ormonocytes (right) fromdifferent time points were combined. Dynamowas used
to quantify time-resolved RNA velocity. Cells are color-coded by time points.
Streamlines represent integration paths connecting local projections from
observed state to inferred future state.DHeatmap showingnewRNA expressionof
genes with significantly up-regulated new RNA (fold change > 1.5; FDR<0.05) in

the main BM cell types. Expression levels were scaled.Mφ macrophage; Mono
monocyte; Neu neutrophil; NK natural killer cell;DC dendritic cell; B B cell; T T cell.
E New RNA and total RNA expression (log-normalized) of indicated genes from
sample at 6 h after infection. F Flow cytometry showing IL-1β andTNF-α expression
of BMmacrophages (CD11b+CD11c−F4/80+) at indicated post-infection time points.
Proportions of IL-1β+TNF-α+ macrophages to BM cells are shown (left). n = 6 bio-
logically independent replicates. Results are shown as mean± SEM. p values were
determined by one-way ANOVA. G Functional scores (inflammatory response and
defense response) of new RNA for each cell type at 6 h post infection. In the box
plot, the lower and upper hinges are defined as the first and third quartiles. The
center represents the median, and the whiskers extend from the hinges to the
largest or smallest values within 1.5× the interquartile range. Data in (B) and (F) are
representative of at least three independent experiments. Source data are pro-
vided as a Source Data file.
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simultaneously induce programmed cell death in these cells. The
opposing effects, potentially varying with infection intensity, might be
presented as differences in the NTR patterns (Supplementary Fig. 4D).

Pro-inflammatory signaling is one of themost important signaling
for eliciting the immune system to eliminate detrimental stimuli in the
early phase of infection.We found Il1b andTnf, two essentialmediators
of inflammatory response, were most highly expressed in macro-
phages, both in newRNAand total RNAat6 h (Fig. 2E). ChemokineCcl4
was highly expressed in macrophages and DCs. Saa3 exerting direct
antibacterial activity was mainly expressed in macrophages and
monocytes (Fig. 2E). Real-time qPCR and flow cytometry data verified
that IL-1β and TNF-α in macrophages were remarkably increased at 6
and 12 h post Salmonella infection (Fig. 2F and Supplementary Fig. 5A
and B). ELISA showed the quick increase of IL-1β and TNF-α cytokines
in serum (Supplementary Fig. 5C). We further quantified the extent of
gene expression upregulation by calculating average fold changes of
upregulated genes in different cell types. Macrophages showed the
highest gene upregulation at 6 and 12 h (Supplementary Fig. 5D).
Moreover, GO pathway analysis showed that macrophages were the
most activated cells that expressed inflammatory and defense
response genes in early infection (Fig. 2G). Taken together, BM mac-
rophages as innate immune cells are initially activated early upon
Salmonella infection.

scIVNL-seq reveals distinct mRNA metabolic control strategies
of different genes in response to infection
Since mRNA levels are determined by the interplay of RNA synthesis,
processing, and degradation, we investigated whether the change of
total RNA was in accordance with new RNA variation during the
immune response to infection. In macrophages, we found that new
RNA was mainly upregulated at 6 h and 12 h post infection, and then
numbers of upregulated newRNAwere reduced over time (Fig. 3A and
Supplementary Fig. 6A). Meanwhile, the number of upregulated total
RNA reached a minor peak at 6 h and 12 h, and then dramatically
increased at 72 h (Fig. 3A). These data suggest that in the early phase,
new RNA transcription was enhanced, contributing to the rise in total
RNA levels. However, in later phases, the gradually declined tran-
scription made only a minor contribution to the elevated total RNA.
We supposed that the reduced RNA degradation rate likely made a
primary contribution to the riseof total RNA in later phases. Therefore,
we calculated Spearman’s rank correlations betweennewly transcribed
RNA and total RNA of the genes that were upregulated post infection.
Correlation of new versus total RNA showed a drift to high correlation
at 6 and 12 h, and then declined at 24, 48 and 72 h (Fig. 3B and Sup-
plementary Fig. 6B). We then presented fold changes of new RNA and
total RNA and NTR for each gene. Many genes upregulated new RNA
transcription at 6 and 12 h post infection compared to 0 h. Parallelly,
these genes tended to possess higher NTR, suggesting that transcrip-
tion contributed to a large part of the increasedRNA levels (Fig. 3C and
Supplementary Fig. 6C). In contrast, in the late phases of infection, new
RNA transcription and NTR were declined. However, there were still
many upregulated total RNA at that time points (Fig. 3C), suggesting
that other factors exist to regulate total RNA levels besides
transcription.

Next, we listed the upregulated genes at each time point upon
Salmonella infection and ordered these genes into several clusters
based on the total and new RNA expression pattern. As previously
mentioned, expression patterns of new and total RNA were similar
early post infection, but became more different in the later phases
(Fig. 3D and Supplementary Fig. 6D). Genes related to inflammatory
response (Nfkbia, Il1rn) and cytokines (Il1b, Ccl5) were highly expres-
sed in both new and total RNA in the early phase (cluster 3 and 4 in
batch 1, cluster 2 and 3 in batch 2). Genes related to antigen processing
and presentation (Stat1, Tap1, Tap2) were highly expressed in both
new and total RNA in the late phase (cluster 6 and 7 in batch 1, cluster

4 in batch 2). In contrast, genes related to membrane receptors (Ccr1,
Tlr4), protein stability (Usp3, Mkrn1) were highly expressed in total
RNAbut not in newRNA at later phases (cluster 8 in batch 1 and cluster
5 in batch 2). We further analyzed GO pathways of new and total RNA
that were upregulated post infection. As expected, Toll-like receptor
(TLR), IL-1, and macrophage chemotaxis related signaling pathway
were enriched both in new and total RNA in the early phase of infec-
tion. Meanwhile, protein stability, response to oxidative stress, cell
death andphagocytosis relatedpathwayswere enriched in total RNA in
a later phase, but not in new RNA (Fig. 3E and Supplementary Fig. 6E).
We conclude that genes involved in different processes aremodulated
with distinct mRNA control strategies.

Wenext estimated the transcript kinetic parameters for each gene
at different time points: new RNA transcription rate (α), RNA degra-
dation rate (γ) and RNA half-life (t1/2). As a typical representative, the
pro-inflammatory cytokine Il1b and chemokine Ccl4 had very similar
expressionpatterns betweennewRNAand total RNA (Fig. 3F). The new
RNA synthesis of Il1b and Ccl4was rapidly activated at early phase and
rapidly declined subsequently. As for Psmb9, a proteasome gene, total
RNA level gradually rose up along with minimal changes in new RNA
synthesis, and its RNA half-life was dramatically lengthened upon
infection (Fig. 3F). Besides these specific genes, we then explored
whether transcription rates and RNA half-lives were different for the
entire pathways at each time point post infection. We performed GO
enrichment analysis on upregulated genes at 6 h and 72 h, and calcu-
lated the average transcription rates and RNA half-lives of upregulated
genes included inGO.We found that the genes upregulated in the early
phase were mainly concentrated in TLR and NF-κB signaling, response
to TNF and IL-1 cytokines, and leukocyte activation and chemotaxis
pathways with high transcription rates and short RNA half-lives. In
contrast, the genes upregulated in late phase were mainly enriched in
cell-cell adhesion, protein stabilization and phagocytosis, whose
transcription rates were relatively low and RNA half-lives were rela-
tively long (Fig. 3G and Supplementary Fig. 6F). In addition, due to the
delayed and weaker variation of gene expression, data in batch 2
tended to present the expression change patterns in early phase
(Supplementary Fig. 6A–C). Expression patterns of new and total RNA
at 12 and 24 h in batch 2 were similar to the patterns at 6 and 12 h in
batch 1 (Supplementary Fig. 6D, E). However, expression patterns at
72 h in batch 2 still, to some extent, followed the regulatory mode
presented in batch 1 (Supplementary Fig. 6D-F). These data suggest
that the coordination between RNA transcription and degradation
regulates mRNA dynamics during infection. Genes with different
functions utilize different strategies to regulate mRNA levels. Our
findings are in line with several previous pioneering works4,29.

It should be noted that due to the methodological limitations,
such as the deviation of real labeling time (S4U diffusion and cellular
uptake time) and the inherent constraints in S4U incorporation effi-
ciency and T-to-C conversion rates, newly synthesized RNAs could not
be completely identified and the calculated synthesis rates and RNA
half-lives might deviate from the absolute physiological values.
Moreover, for long-lived RNAs, it could be inaccurate to estimate their
RNA half-lives with only 2 h of pulse labeling. In addition, genes with
very low new RNA levels as well as long RNA half-lives could be more
susceptible to the sequencing noise. It could not be ignored that these
methodological limitations may affect our results, especially the esti-
mated lengthened RNA half-lives in the late phase post infection.
However, comparedwith all genes, thosegenes in cluster 8 actually did
not all extremely distribute in the upper left corner in the scatter plot,
where genes have very low labeled RNAs and long RNAhalf-lives. Many
of genes in cluster 8 had high levels of new RNA with short RNA half-
lives (Supplementary Fig. 7A). Thus, only sequencing noise could not
explain the phenomena of lengthened RNA half-lives in the late
infection phase that we found. Moreover, GO enrichment further
reflected the biological significance of different functional genes
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Fig. 3 | Different genes harbor various mRNA metabolic control strategies
during immune response inmacrophages.ANumbers of genes that upregulated
(log2 (fold change) > 0.25, p value <0.05,WilcoxonRank Sum test) in newRNA and
total RNA in macrophages at the indicated time points after infection compared
with 0 h. B Ridgeline plot of new and total RNA expression correlations in mac-
rophages. Genes highly expressed at the indicated time points were selected for
Spearman’s rank correlation analysis of new and total RNA. C Scatter diagrams
showing NTR and fold change of new RNA in infectedmacrophages to new RNA in
uninfectedmacrophages (top); total RNA expression and fold change of total RNA
in infected macrophages to total RNA in uninfected macrophages (bottom). Red
spots indicate upregulated genes (log2(fold change) > 0.25); blue spots indicate
downregulated genes (log2(fold change) < −0.25); grey spots indicate no change.
D Heatmap of new and total RNA expression pattern in macrophages at the indi-
cated time points. Genes highly expressed at each time point were selected and

ordered into 8 clusters by their total RNA expression patterns, and rank of genes
wasmapped to newRNA. Expressionswere scaled.EHeatmapshowing enrichment
scores of selected GOpathways in newRNA and total RNA at each time points post
infection. F Line graph showing new and total RNA expression (upper) and new
RNA transcription rate (α, normalized RNA counts per cells/h) and RNA half-life
(t1/2, h) (lower) of Il1b, Ccl4 and Psmb9 at each time point in macrophages. G Dot
plot showing average new RNA transcription rate (α) and RNA half-life (t1/2) of
genes in GO pathways in macrophages. Genes significantly upregulated at 6 h or
72 h compared to 0 h were selected for GO enrichment analysis. Average values of
α and t1/2 of these upregulated genes in the indicated GO were calculated and
shown in the dot plot. Each dot shows an average value of α and t1/2 in a GO. The
size of each dot represents the number of genes in the GO term. Source data are
provided as a Source Data file.
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adopting different regulatory modes (Fig. 3E, G and Supplementary
Fig. 6E, F).

To confirm the RNA dynamics during infection, we generated
pseudo-bulk datasets from our data and computed the RNA tran-
scription anddegradation rate andRNAhalf-life through themethod in
the TT-seq30. The conclusions were consistent between these two
methods. Pro-inflammatory genes such as Il1b and Ccl4 upregulated
their transcription rates at the early phase after infection and then
declined. Genes like Psmb9 that upregulated at the late phase after
infection did not obviously increase the transcription rate, but their
RNA half-lives were dramatically extended (Supplementary Fig. 7B). Of
note, the estimated RNA half-lives were biased since it takes about 10-
20min for the nucleoside analogs to enter into the cells in vivo (Sup-
plementary Fig. 7C). Furtherly, our in vitro RNA metabolic labeling
assay verified that Salmonella treated macrophages exhibited sig-
nificantly prolonged Psmb9 RNA half-life compared to untreated con-
trols (Supplementary Fig. 7D).

Given that new-to-total ratiosdependedonboth transcriptionand
degradation rates, using NTR to describe the transcriptional state of
cells might not be accurate. We normalized new RNA counts with total
transcripts of non-responding genes (those genes that were not sig-
nificantly upregulated or downregulated at any timepoints).We found
that the plots of normalized labeled RNAwere similar to the NTR plots
previously shown (Supplementary Fig. 8A and Fig. 2A). In addition, we
calculated the average rates of transcription and degradation in
groups of genes (responders vs non-responders). Consistent with the
previous findings, average transcription and degradation rates of
responding genes were significantly increased at early stages (6 and
12 h) and then decreased at late stages (24, 48 and 72 h). By contrast,
transcription and degradation rates of non-responding genes were
relatively constant at different time points (Supplementary Fig. 8B
and C).

RNA transcription and degradation rates change during
immune response in neutrophils
Apart frommacrophages, neutrophils are another innate immune cell
type that act as the first responder to bacterial infection. Neutrophils
harbor unique short lifespans and require constant replenishment
from BM precursors. Neutrophils in BM are heterogeneous31. Using
unsupervised graph clustering with the new RNA transcriptome, neu-
trophils were divided into three subsets: neutrophil precursors (pre-
neutrophils), immature neutrophils and mature neutrophils. Under an
uninfected state, new RNA transcription was higher in precursors and
immature neutrophils than in mature neutrophils (Supplementary
Fig. 9A). RNA velocity analysis showed developmental trajectory from
precursors to mature neutrophils (Supplementary Fig. 9B). We found
the signature genes highly transcribed in each subset were similar to
the findings of previous scRNA-seq studies32,33. For example, the pri-
mary granule gene Mpo, proto-oncogene gene Kit and cell cycle gene
Cdk6 were highly transcribed in pre-neutrophils; secondary granule
genes Ltf and Ngp were highly transcribed in immature neutrophils;
and tertiary granule gene Mmp8 and chemokine receptor Cxcr2 were
highly transcribed in mature neutrophils (Supplementary Fig. 9C).
After Salmonella infection, mature neutrophils presented transcrip-
tion activation, though the NTR in mature neutrophils was relatively
low.Neutrophil precursorsdeclinednewRNA transcription at the early
phase of infection (Supplementary Fig. 9D). Similar to macrophages,
innate immune pathways such as TLR signaling and IL-1 response
pathway were activated both in new RNA and total RNA in the early
phase followed by decline (Supplementary Fig. 9E and F). In addition,
some genes of neutrophil granule enzymes (Cybb, Camp) and neu-
trophil extracellular traps (H3f3b,Hmgb1) were also upregulated in the
early phase and subsequently downregulated (Supplementary Fig. 9E).
Of note, total RNA of genes related to phagocytosis and ribosome
biogenesis reached a high level in a later phase while new RNA was

decreased at that time (Supplementary Fig. 9F), suggesting similar
mRNA metabolic control strategies as in macrophages. Thus, we fur-
ther calculated the transcription kinetic parameters of genes inmature
neutrophils at each time point. Despite a similar variation tendency of
new RNA and total RNA (upregulated at early phase and down-
regulated at late phase), transcription rates of Klf7, H3f3b and Ripor2
justmildly increased in the early phase (Supplementary Fig. 9G), which
wasdifferent from the ‘sharp’ increased expression patterns of Il1b and
Tnf in macrophages. This might be because new RNA transcription
rate was lower and RNA half-life was longer in neutrophils than in
macrophages. These genes might not be as strictly controlled as Il1b
and Tnf. By contrast, total RNA of the ubiquitin ligase gene Rnf8 was
upregulated in a later phase post infection, whichwas due to extended
RNA half-life. Altogether, the cooperation of new RNA transcription
and RNA degradation regulates neutrophil response to bacterial
infection.

Histone acetylation and m6A RNA methylation are changed
after Salmonella infection
To reveal the mechanism underlying dynamic changes in RNA tran-
scription and degradation during infection, we analyzed expression
patterns of genes involved in regulating transcription and mRNA
degradation. We found that many histone deacetylase genes (e.g.,
Hdac1, Hdac2, Hdac3, Hdac4 and Hdac6) were obviously increased at
late time points after infection, while the expression of Crebbp (a his-
tone acetyltransferase and transcriptional coactivator) dramatically
declined (Supplementary Fig. 10A). Histone acetylation is capable of
marking genes for future activation andhistonedeacetylation is always
linked to gene suppression34. We further confirmed the decrease of
histone H3K27 acetylation after infection in both bone marrow and
small intestines (Supplementary Fig. 10B and C).

In addition, for the prolonged RNA half-lives, we also noticed that
expression of enzymes mediated m6A RNA methylation (e.g., Mettl3
and Mettl4) was upregulated at late stages. On the contrary, the m6A
eraserAlkbh1 increased at the early stage and thendecreased later. The
variation of m6A RNA modification might affect the mRNA stability
during infection35 (Supplementary Fig. 10D). The changes of histone
modification and RNA modification might represent either an active
host countermeasure against pathogenic invasion or a passive result
from pathogen-mediated regulatory manipulation of host cellular
processes. We hypothesize that the dynamic alterations in cellular
epigenome (e.g., histone acetylation) and epitranscriptome (e.g., m6A
RNA modification) may be one of the mechanisms of RNA transcrip-
tional and degradational regulation.

CD8+ T cells are initially activated early after Salmonella
infection
The intestinal mucosa is the first line of defense against harmful
pathogens, and large numbers of various immune cells colonize the
intestine36. Thus, we detected new RNA and total RNA of intestinal
immune cells after Salmonella infection. We surveyed early phases (2
and 6 h) and a late phase (72 h) to explore the initial activation of
immune cells. In contrast to macrophages and DCs in BM, intestinal
innate immune cells did not show obvious enhancement of tran-
scription activity in response to infection and transcription rates were
dramatically decreased at 72 h post infection (Fig. 4A and Supple-
mentary Fig. 11A). We then inspected new RNA expression of genes
with critical functions of each immune cell type. We noticed that pro-
inflammatory cytokines (Il1b, Il6, Tnf) were not upregulated in early
phases in macrophages and DCs (Fig. 4B and Supplementary Fig. 11B).
GSEA analysis showed innate immune response in the gut was not
elicited, and NF-κB signaling was even suppressed after infection
(Supplementary Fig. 11C). In contrast, newRNA involved in response to
interferon was upregulated in the early phases (Supplementary
Fig. 11C). Therefore, we conclude that the innate immune response,
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especially its pro-inflammatory role, was limited in the intestinal
macrophages upon Salmonella infection.

Intriguingly, we noticed the elevated expression of T cell activa-
tion related genes (Gzma, Gzmb, Ccl5, Nkg7) as early as 2 h after
infection (Fig. 4B). New RNA imaging confirmed the increased tran-
scriptional activation in CD8+ T cells after infection (Fig. 4C and Sup-
plementary Fig. 12A). GSEA of new RNA in CD8+ T cells showed an
enrichment of immune response and activation of T cell-mediated
cytotoxicity (Fig. 4D). Besides new RNA, the expression of total RNA of
T cell activation related genes (Gzma, Gzmb, Ccl4, Ccl5, Trbc2, Nkg7)
were also increased (Fig. 4E). Furthermore, Gzma and Ccl5 were spe-
cifically and highly expressed in CD8+ T cells (Fig. 4F). Granzymes are a
family of serine proteases that contain several members, including
GzmA, GzmB, GzmH, GzmK and GzmM in humans. Granzymes cleave
target proteins to induce target cell death through diverse, non-
redundant pathways36. We found that Gzma and Gzmb were the two
main components expressed in intestinal CD8+ T cells in mice (Sup-
plementary Fig. 12B). Flow cytometry analysis showed that GzmA was
much higher than GzmB (Fig. 4G). Compared with blood, most CD8+

T cells in the intestine highly expressed GzmA (Supplementary
Fig. 12C). When cytotoxic lymphocytes recognize target cells and form
immunological synapses, granzymes are then delivered into target
cells to trigger cell death, leading to the elimination of transformed or
infected target cells37,38. 3D imaging showed that Salmonella infection
induced the expansion of GzmA expressing CD8+ T cells (Fig. 4H). In
addition, many GzmA+ granules were released outside of CD8+ T cells
upon infection (Fig. 4I). Collectively, GzmA expressing CD8+ T cells are
initially activated in the intestine rapidly, only 2 h after bacterial
infection, suggesting an innate-like quick response to an external
stimulus.

IgA producing plasma cells rapidly expand after Salmonella
infection
The intestinal mucosal barrier consists of mucus, antimicrobial
peptides, and immunoglobulin A (IgA), separating the epithelium
from both microbiota and pathogens in the lumen. In mammals,
most IgA is produced by plasma cells residing in the intestine.
Despite its abundance, the function of IgA still needs to be explored
under homeostatic and disease conditions39,40. Thus, we analyzed the
variation of new RNA transcription in intestinal B cells and plasma
cells upon Salmonella infection. These two cell types from lamina
propria were effectively separated with new RNA clustering (Sup-
plementary Fig. 13A, B). RNA velocity analysis showed the develop-
ment trajectory from B cells to plasma cells, and this trend was
enhanced early after infection (Fig. 5A). In addition, plasma cell
proportions were dramatically increased along with reduced B cell
proportions at 72 h (Fig. 5B), indicating B cells differentiated into
plasma cells upon Salmonella infection. Moreover, GSEA analysis
with new RNA showed enrichment of immunoglobulin production
and B cell activation gene sets at 72 h post infection (Supplementary
Fig. 13C). Notably, IgA-producing plasma cells expanded after infec-
tion, while B cell numbers were reduced with flow cytometry analysis
(Fig. 5C). We then analyzed the immunoglobulin repertoire of B cells
and plasma cells at different time points. We observed that Igha was
the main immunoglobulin expressed in plasma cells whereas B cells
expressed Ighm and Ighd (Fig. 5D and Supplementary Fig. 13B, D).
Total RNA of Igha in plasma cells was increased at 72 h post infection,
whereas new RNA transcription was decreased, and the computed
RNAhalf-life was extended (Fig. 5D and Supplementary Fig. 13D, E). In
the early infection phase (2 and 6 h), total RNA co-expression of Ighm
and Ighd was increased in B cells and then declined in the late phase
(72 h) (Fig. 5D). Then we verified RNA levels of Ighm and Ighdwith RT-
qPCR and their protein levels with FACS. Although changes in protein
seemed to lag behind RNA, these data showed similar variation
trends that Ighm and Ighd in B cells were gradually upregulated till to

24 h after infection and then declined (Supplementary Fig. 13F
and G).

IgA producedbyplasma cells is transported into the enteric cavity
through intestinal epithelial cells, where it protects against the adhe-
sion of pathogens, blocks microbial antigens and neutralizes toxins,
thereby assuring the homeostasis of intestinal microbiota and pro-
tecting the host from pathogen infection41,42. We noticed many more
bacteria were coated by IgA after Salmonella infection (Fig. 5E). This
coating by IgA antibody helps limit diffusion of intestinal luminal
microbiota after epithelium damage43. In contrast, IgG coated bacteria
showed no obvious change (Fig. 5E). Of note, we found IgA also coated
Salmonella (Fig. 5F), suggesting IgA shows specificity to Salmonella
antigens. Importantly, we found IgA-producing plasma cell numbers
were much higher in the ileums of Crohn’s patients than in those of
healthy people (Fig. 5G), suggesting IgA+ plasma cells might be impli-
cated in the regulation of human intestinal inflammation. Taken
together, IgA-producing plasma cells rapidly expand at an early stage
after Salmonella infection.

Intestinal epithelial cells rapidly transcribe immune factors
upon Salmonella infection
The intestinal surface is covered with a single layer of intestinal epi-
thelial cells (IECs) that form a physical barrier. IECs not only play an
important role in nutrient absorption but also participate in resistance
to intestinal bacterial invasion and maintenance of intestinal home-
ostasis. Various types of IECs have spatial distribution characteristics44.
We found that the intestinal stem cells (ISCs) and transit amplifying
(TA) progenitors in crypts actively transcribed new RNA at a steady
state. New RNA levels of mature cells in upper villi were much lower
(Supplementary Fig. 14A). Under Salmonella infection, new RNA tran-
scription was rapidly enhanced in upper villus cells at early stage (2, 6
and 12 h), then lowered and restored to the uninfected state (24, 48
and 72 h) (Fig. 6A). These observations were verified by our scIVNL-seq
data (Fig. 6B and Supplementary Fig. 14B). We noticed that late
enterocytes obviously increased new RNA ratios at 6 h (Fig. 6B). We
then determined new RNA transcription of functional genes that were
upregulated post infection in each epithelial cell type (Fig. 6C and
Supplementary Fig. 14C). Paneth cells are considered to be a primary
source of various antimicrobial peptides that protect the host from
bacterial infection45. However, we found new RNA transcription of
lysozyme C (Lyz1) and α-defensins (Defa22,Defa24) in Paneth cells was
even downregulated in early phase of infection (Fig. 6C and Supple-
mentary Fig. 14D). However, some other types of antimicrobial pep-
tides such as RegIII lectins (Reg3b, Reg3g) and Lypd8 were highly
transcribed and upregulated in enterocytes upon infection (Fig. 6C
and Supplementary Fig. 14E). Lysozyme C and some α-defensins were
highly expressed at 72 h, whereas Reg3b, Reg3g and Lypd8 were
downregulated at that time (Fig. 6C, Supplementary Fig. 14E), sug-
gesting dynamic expression of various antimicrobial peptides across
IEC types is necessary for bactericidal effect.

Goblet cells secrete mucus to form a protective mucus layer to
restrict the infiltration of food particles, digestive enzymes, and
microorganisms. Muc2, a core component of mucus gel, was upre-
gulated in goblet cells at 72 h post infection. In addition, goblet cells
highly expressed chemokines Ccl6 and Ccl9 at 72 h (Fig. 6C and
Supplementary Fig. 14C), suggesting a regulatory link with immune
cells. Intestinal enteroendocrine cells (EECs) are specialized as sen-
sory cells with neuron-like features. We found that EECs upregulated
transcription of several neuropeptides and hormones (Pyy, Gcg, Cck)
post infection (Fig. 6C and Supplementary Fig. 14C), suggesting that
EECsmight activate nerve cell-mediated defensive responses, such as
reduced food intake, nausea and vomiting46. Intriguingly, Tuft cells
highly transcribed several cytosolic nucleic acid sensors, including
Zbp1 recognizing DNA in cytoplasm, Znfx1 sensing double-stranded
RNA, and genes associated with RIG-I RNA sensors such as Oasl1 and
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Source data are provided as a Source Data file.
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Ddx60 at a very early stage (2 h and 6 h) post infection (Fig. 6C and
Supplementary Fig. 14C), suggesting Tuft cells might participate in
innate recognition of invasive bacteria. Taken together, intestinal
epithelial cells rapidly transcribe immune factors at an early stage
upon Salmonella infection, which implies IECs are involved in the
priming of immune response against bacterial infection.

Intestinal late enterocytes process and present Salmonella
antigens to CD8+ T cells for their early activation
Epithelial-immune cell crosstalk is essential for intestinal barrier
homeostasis. We next performed a cell-cell communication analysis.
Cell-chat analysis of ligand-receptor pairs between epithelial cells and
immune cells showed that late enterocytes displayed strong
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interaction with CD8+ T cells at 2 h post infection (Fig. 6D and Sup-
plementary Fig. 15A). Furthermore, MHC-I was the most prominent
signaling that was dramatically enhanced at 2 h post infection (Fig. 6E
and Supplementary Fig. 15A). Through analysis of incoming and out-
going signals with each cell type, we observed that late enterocytes
output MHC-I signaling, whereas CD8+ T cells received MHC-I signal

(Fig. 6F). Of note, outgoing of MHC-I signaling in the late enterocytes
was even higher than that in professional antigen presenting cells such
as DCs and macrophages (Fig. 6F).

Thenwe analyzedMHC-I expression in late enterocytes and found
that MHC-I antigen presentation associated genes (H2-D1, H2-K1,
Tapbp, Tap1, Tap2) were highly transcribed and upregulated in late
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enterocytes at early stages post Salmonella infection (Supplementary
Fig. 15B and C). In addition, GO analysis showed newRNA transcription
enrichment of antigen processing and presentation pathway at 2 h
post infection (Supplementary Fig. 15D). We also found new RNA
transcription enrichment of IFN-γ signaling pathway post infection
(Supplementary Fig. 15D), which is essential for the antigen presenta-
tion of colonic epithelial cells47. In contrast, organic hydroxy com-
pounds, fatty acid metabolic process and organic anion transport
pathways were obviously downregulated, suggesting late enterocytes
suppressed nutrient absorption and transport function but enhanced
immune function upon Salmonella infection. In addition, late enter-
ocytes also highly expressed IL-15 (Fig. 6G), which is essential for the
priming of CD8+ T cell activation and proliferation.

Based on the above observations, we supposed that late enter-
ocytes might present Salmonella antigens to CD8+ T cells post Sal-
monella infection.We next identified that the oligopeptide transporter
Slc15a1 was specifically and highly expressed in late enterocytes
(Supplementary Fig. 14B and Supplementary Fig. 15E). Late enterocytes
were able to be isolated using Slc15a1 surface marker (Supplementary
Fig. 15F). As expected, the upregulated expression of MHC-I molecules
in late enterocytes post infection was further validated by flow cyto-
metry (Fig. 6H) and immunofluorescent imaging (Fig. 6I). Of note,
MHC-I molecules were mainly expressed on the basal membrane of
late enterocytes (Fig. 6I), whichwasphysically close toCD8+ T cells.We
then sorted late enterocytes and tested their capacity to endocytose
and process exogenous ovalbumin antigen. DQ-OVA, a self-quenching
conjugate of ovalbumin, exhibits green fluorescence upon proteolytic
degradation. We found that late enterocytes were able to process DQ-
OVA, and Salmonella infection increased DQ-OVA processing ability
(Fig. 6J). Interestingly, the antigen processing capacity of late enter-
ocytes was similar to that of professional DCs (Fig. 6J). To explore
whether late enterocytes could present bacterial antigens, we infected
mice with ovalbumin expressing Salmonella (S.T-Ova) by gavage
(Supplementary Fig. 15G). We noticed that late enterocytes could
rapidly present Ova peptide-MHCI complex onto their surface at 12 h
post S.T-Ova infection (Fig. 6K). We next tested whether late enter-
ocytes could activate naive CD8+ T cells in an antigen-specific manner.
We co-cultured naive CD8+ T cells that recognize the Ova257-264-MHC-I
complex fromOT-I mice with late enterocytes or DCs from uninfected
or S.T-Ova infected mice. We observed that late enterocytes from S.T-
Ova infected mice could activate naive CD8+ T cell proliferation,
whereas late enterocytes without S.T-Ova infection did not initiate
naive CD8+ T cell proliferation (Fig. 6L). Treated DCs were used as a
positive control. Altogether, intestinal late enterocytes express MHC-I
molecules as well as process and present Salmonella antigens to acti-
vate CD8+ T cells at an early stage after Salmonella infection, serving as
antigen presenting cells for priming of adaptive immunity against
bacterial infection.

Discussion
Here we established the scIVNL-seq method to disentangle the new
and total RNA of immune cells in vivo and resolve RNA dynamic
changes upon Salmonella infection. Although gene expression is
involved in the interplay of RNA transcription, processing and degra-
dation, RNA abundance is still usually measured as a proxy for tran-
scription activity, and current RNA-seq approaches miss information
on real temporal dynamics. Our work has demonstrated that total RNA
is not always in correspondence with new RNA transcription and that
RNA transcription and degradation together orchestrate mRNA levels.
Under homeostatic state, new RNA levels aremuch higher in stem and
progenitor cells than in differentiated cells, both in BM and intestine.
Most genes are silenced except for some functional genes in each
mature cell. Indeed, chromatin in stem cells is considered to be more
open and accessible compared to differentiated cells48. During lineage
commitment and cell differentiation, chromatin architecture under-
goes dynamic switch, which is essential for spatiotemporal regulation
of key gene transcription49. The half-life of RNA is markedly variable
among different genes. Thus, new RNA levels reflect more realistic
information about chromatin openness and the transcription activa-
tion state compared to total RNA.

Upon Salmonella infection, BM macrophages rapidly elicit tran-
scription activation and new RNA reaches a peak level in an early
phase, followed by a reduction to the uninfected state. Of note, genes
related to TLR, NF-κB signaling and pro-inflammatory cytokines IL-1β
and TNF-α followed this transcription pattern. Both RNA transcription
rates and degradation rates are high, and total RNA levels are strictly in
line with new RNA. On the contrary, in the late phase post infection,
even though new RNA transcription is decreased, total RNA of some
genes related to phagocytosis, protein stabilization and ribosome
assembly are still up-regulated. Therefore, we conclude that genes
involved in complex processes that contain multiple steps and are
sustained for a period of time tend to transcribe at a low rate with slow
RNAdegradation for integrating transcriptional informationover time.
Our data showed that RNA degradation and stability control are also
essential to regulate mRNA levels besides RNA transcription. We
revealed the mRNA metabolic control mechanism that guarantees a
rapid and efficient response for eliminating external stimuli, and
meanwhile avoiding persistent inflammation and excessive tissue
damage. However, it should be noted that this metabolic labeling
approach for in vivo single-cell new RNA detection has inherent
methodological limitations, which may lead to inaccuracies in calcu-
lated RNA synthesis rates and RNA half-lives. Key contributing factors
include temporal discrepancy between the labeling and actual RNA
metabolic time (e.g., the time required for S4U diffusion and cellular
incorporation, as well as inconsistent in vivo S4U concentrations),
limited efficiency of S4U integration into new RNA resulting in
incomplete labeling, and the susceptibility of half-life calculations

Fig. 6 | Intestinal late enterocytes process and present Salmonella antigens to
CD8+ T cells for their early activation. A New RNA imaging of small intestines.
Mice were infected with Salmonella and new RNA was labeled with EU (red). Scale
bar, 100μm. B UMAP plot of intestinal epithelial cells and NTR of each Salmonella
infection time points. ISC, intestinal stem cell; TA, transit amplifying cell; EEC,
enteroendocrine; E enterocyte. C Bubble plot showing log-normalized new RNA
expression in IECs. D Intercellular communication network between IECs and
immune cells at 2 h post Salmonella infection. Line width was proportional to the
number of interactions. E Comparison of signaling pathways between 2 h and 0h
state based on the relative information flow. F Scatter plots showing outgoing and
incoming interaction strength ofMHC-I pathway at 2 h post infection.G Expression
of Il15 in IECs. Late E was marked. H Flow cytometry showing MHC-I expression in
CD45+ immune cells and Slc15a1+ late E at 0 h and 6 h post Salmonella infection.
Mean fluorescence intensities (MFI) were calculated. n = 5 biologically independent
replicates. Results are shown as mean ± SEM. p values were determined by two-way

ANOVA. I Immunofluorescence imaging of MHC-I expression in enterocytes and
CD8+ T cells at 6 h post Salmonella infection. Scale bar, 50μm. J Late E or DCs from
uninfected or Salmonella infected mice (6h) were sorted and incubated with DQ-
Ova. DQ-OVA antigen processing ability was detected via flow cytometry. n = 5
biologically independent replicates. Results are shown as mean ± SEM. p values
were determined by one-way ANOVA. K Flow cytometry analysis showing pre-
sentation of SIINFEKL-H2Kb complex in late E and DCs at each time points post S.T-
Ova infection.MFIwas calculated.n = 6biologically independent replicates. Results
are shown as mean ± SEM. p values were determined by two-way ANOVA. L Late
E induced CD8+ T cell proliferation in vitro. Flow cytometry analysis showing CFSE
signals of naive CD8+ T cells fromOT-Imice that were cultured alone or co-cultured
with late E or DCs from uninfected and S.T-Ova infected mice. n = 5 biologically
independent replicates. Results are shown as mean ± SEM. p values were deter-
mined by one-way ANOVA. Results are representative of at least three independent
experiments. Source data are provided as a Source Data file.
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for low-abundance new RNAs to sequencing noise interference. Con-
sequently, the RNA regulatory patterns observed in this study require
further validations, and the functional investigations will help to elu-
cidate the underlying molecular mechanisms.

Without RNA metabolic labeling, newly transcribed RNA can be
identified by the presence of introns. Then, the RNA velocity can be
estimated by distinguishing between unspliced and spliced RNAs in
traditional single-cell RNA sequencing data. However, the RNA velocity
estimated by this method has several critical limitations when applied
to specific genes with no polyA/T-enriched intron regions or low
expression. The conventional RNA velocity method treats transcrip-
tion rates as a state-dependent constant, and the degradation rate
constant is intrinsically scaled relative to the splicing rate, resulting in
estimating relative velocity values rather than absolute quantities. By
reconciling RNA metabolic labeling and intrinsic splicing kinetics,
Dynamo overcomes the intrinsic limitations of conventional splicing-
based RNA velocity and estimates accurate and absolute velocities by
modeling transcription rates as a gene-/cell-dependent variable.
Applying Dynamo to analyze our data accurately describes dynamic
changes in transcription and degradation rates during the immune
response to infection.

It is considered that innate immunity acts as the first defense line
against enteric pathogen infection and is quickly activated within hours.
However, which innate immune cells upon infection are initially acti-
vated is still unclear. Over infection, activation of T cells and B cells
requires a period of time, usually a week14. In this study, we showed that
BM macrophages are first primed at a very early stage upon infection.
We noticed that the innate immune response in intestinal macrophages
was limited compared with BM macrophages. Il1b and Tnf expression
are not upregulated post infection, andNF-κB signaling is suppressed. In
contrast, IFN signaling is early activated, which might be caused by
Salmonella invasion into macrophages, leading to disturbance of the
host transcriptome25,50. Importantly, intestinal CD8+ T cells are rapidly
activated at an early stage, and T cell-mediated cytotoxicity genes such
as Gzma are highly transcribed. Previous reports have shown that CD8+

T cells eliminate intracellular bacteria and parasites through perforin-
mediated delivery of granzymes51. Whereas the lytic capacity of intest-
inal CD8+ T cells is weak in rectal CD8+ T cells compared to their blood
counterparts52. How intestinal CD8+ T cells participate in killing intra-
cellular Salmonella or clearing infected cells needs further investigation.
In addition, we found that IgA-producing plasma cells rapidly expand at
an early phase over Salmonella infection. We observed that IgA binds
Salmonella bacteria, suggesting IgA shows specificity to Salmonella
antigens. We conclude that Salmonella antigens elicit specific B cells to
generate IgA-producing plasma cells, leading to specific IgA production.
How B cells are activated by antigen presenting cells still needs further
investigation.

Recent reports have showed that Lgr5+ ISCs present antigens and
activate naive T helper cells via MHC-II53. Besides ISCs, MHC-II mole-
cules are also expressed in other types of IECs. Food antigens induce
MHC-II expression in IECs, which in turn induces Tr1 cells in the small
intestine54. Intestinal microbiota also regulates MHC-II expression in
IECs55. In addition, IFNγ sensing is required for antigen presentation by
colonic epithelial cells to mediate the development of pathogenic
CD4+ T cell responses47. Here, we found intestinal epithelial cells
rapidly transcribe immune factors at an early stage upon Salmonella
infection. However, how IECs are involved in the priming of the
immune response against bacterial infection needs further investiga-
tion. We also observed that intestinal late enterocytes highly express
MHC-I molecules and dramatically increase transcription of MHC-I
genes rapidly after Salmonella infection. Late enterocytes are able to
process and present Salmonella antigens to activate CD8+ T cells at an
early stage after Salmonella infection. Therefore, late enterocytes
serve as antigenpresenting cells for the initiationof adaptive immunity
at an early stage upon bacterial infection.

In summary, our findings show that new RNA levels reflect more
realistic information about chromatin openness and the transcription
activation state compared to total RNA. The interplay of new RNA
transcription and degradation regulates the immune response pro-
cess. BM macrophages are first primed at a very early stage upon
Salmonella infection. The innate immune response in intestinal mac-
rophages is limited compared with BM macrophages. Notably, intest-
inal CD8+ T cells and plasma cells are rapidly and specifically activated
at the early stage post Salmonella infection, and late enterocytes serve
as antigen presenting cells for the initiation of adaptive immunity. Our
findings challenge the doctrine boundary between innate immunity
and adaptive immunity against bacterial infection.

Methods
All experiments in this article comply with all relevant ethical regula-
tions and are approved by the Institutional Committee of Institute of
Biophysics, Chinese Academy of Sciences. Allmicewere housed under
a specific pathogen-free environment, with 12 h dark/light cycle, 20 ± 2
°C, and 50%humidity conditions, andwereused for experiments at the
age of 8–10 weeks. The animal experimental protocols were approved
by the Institutional Animal Care and Use Committee of Institute of
Biophysics, Chinese Academy of Sciences.

Antibodies and reagents
FITC TNF-α (Cat# 11-7321-81, Clone# MP6-XT22, 1:100 for FC), PE IL-1β
(Cat# 12-7114-80, Clone# NJTEN3, 1:100 for FC), eFluor450 CD11b (Cat#
48-0112-80, Clone#M1/70, 1:100 for FC), eFluor450 CD3 (Cat# 48-0032-
80, Clone# 17A2, 1:100 for FC), APC-eFluor780 CD11c (Cat# 47-0114-80,
Clone# N418, 1:100 for FC), FITC CD8a (Cat# 11-0081-81, Clone# 53-6.7,
1:100 for FC), PE GzmA (Cat# 12-5831-80, Clone# GzA-3G8.5, 1:100 for
FC), PE GzmB (Cat# 12-8898-80, Clone# NGZB, 1:100 for FC), eFluor450
B220 (Cat# 48-0452-82, Clone# RA3-6B2, 1:100 for FC), FITC IgA (Cat#
11-4204-81, Clone# mA-6E1, 1:100 for FC), PerCP-Cyanine5.5 CD45.2
(Cat# 45-0454-80, Clone# 104, 1:100 for FC), eFluor450 CD45 (Cat# 48-
0451-80, Clone# 30-F11, 1:100 for FC), PE-Cy7 IgM (Cat# 25-5890-80,
Clone# eB121-15F9, 1:100 for FC), Percp-eFluor710 IgD (Cat# 46-5993-80,
Clone# 11-26c (11-26), 1:100 for FC), eFluor450 CD326 (EpCAM) (Cat#
48-5791-82, Clone#G8.8, 1:100 for FC, 1:500 for IF), F4/80 (Cat# 14-4801-
82, Clone# BM8, 1:500 for IF) and PE MHC Class I (H-2Kd/H-2Dd) (Cat#
12-5998-81, Clone# 34-1-2S, 1:100 for FC, 1:300 for IF) antibodies were
purchased from Thermo Fisher Scientific. Alexa Fluor 647 CD31 (Cat#
102515, Clone# MEC13.3, 1:300 for IF), APC IgG1 (Cat# 406609, Clone#
RMG1-1, 1:100 for FC), APC IgG2a (Cat# 407109, Clone# RMG2a-62,
1:100 for FC), APC IgG2b (Cat# 406711, Clone# RMG2b-1, 1:100 for FC),
PE CD138 (Cat# 142503, Clone# 281-2, 1:100 for FC) and PEOVA257-264-H-
2Kb (Cat# 141604, Clone# 25-D1.16, 1:100 for FC) antibodies were pur-
chased from BioLegend. Anti-Slc15a1 antibody was purchased from
Abcam (Cat# ab203043, 1:300 for FC). Anti-Ovalbumin antibody was
purchased from Proteintech (Cat# 67614-1-Ig, Clone# 1D3D5, 1:3000 for
WB). 5-ethynyluridine (EU) (69075-42-9) and 4’,6-Diamidino-2-pheny-
lindole dihydrochloride (DAPI) (D8417) were purchased from Sigma-
Aldrich. 4-thiouridine (S4U) was purchased from Singleron Biotechnol-
ogies. DQ-Ovalbumin (D12053), Monensin Solution (1000X) (00-4505-
51), 7-AAD (00-6993-50) and CellTrace CFSE Cell Proliferation Kit
(C34570) were purchased from Thermo Fisher Scientific. IntestiCult
Organoid Growth Medium (06005) was purchased from STEMCELL
Technologies

Animals and Crohn’s disease samples
All mice were C57BL/6 background and were kept under specific
pathogen-free conditions. Routine random sampling of mice is per-
formed through serological testing, microbial culture, and histo-
pathological examination to ensure pathogen-free status. To confirm
the absence of Salmonella in SPF conditions, we collected fecal sam-
ples, extracted microbial DNA, and performed quantitative PCR
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targeting the Salmonella-specific invA gene. OT-I and Lgr5-EGFP-IRES-
creERT2mice were purchased from The Jackson Laboratory. Male and
female mice aged 8 to 10 weeks were used. Human resected ileum
tissues were obtained from the Sixth Affiliated Hospital, Sun Yat-sen
University (Guangzhou, China) with informed consent, according to
the Institutional Review Board (IRB) approved protocol.

S4U in vivo labeling and cell dissociation
S4U in vivo labeling and scIVNL-seq processes were shown in Fig. 1a.
The schematic diagrams were created using Adobe Photoshop (Ver-
sion 22.0.0) or Adobe Illustrator (Version 25.0.0). In brief, mice were
administrated with S4U (1% of body weight) through tail vein injection.
2 h later, mice were euthanized. Femurs and small intestines were
collected. For collecting BM cells, muscles from the femurs were
removed, and epiphyses of the bones were cut off. BM cells were flu-
shed out from the femurs using a 12 cc syringe filledwith ice-coldRPMI
culture medium. Red blood cells were lysed with red blood cell lysis
buffer (eBioscience), and BM cells were washed twice with ice-cold
PBS. In order to collect epithelial cells and immune cells in the
intestinal lamina propria, Peyer’s patches were removed. Then intest-
inal tissueswereopened longitudinally andwashed four timeswith ice-
cold PBS to remove intestinal contents and mucus. Tissues were cut
into small pieces and then incubated in digestive buffer (SCelLiVe
Tissue Dissociation Kit, Singleron Biotechnologies) at 37 °C with
shaking at 100 rpm. Samples were vigorously pipetted every 5min.
30min later, the single-cell suspension was passed through a 40μm
filter. Red blood cells were lysed, and cells were washed twicewith ice-
cold PBS.

scIVNL-seq library preparation
We used DynaSCOPETM Single Cell Dynamic RNA Library Kit (Singleron
Biotechnologies) to construct scIVNL-seq libraries according to the
operating manual. Briefly, small intestine tissues were isolated and
dissociated into single cells after S4U labeling. Single-cell suspension
was loaded ontomicrowell chips for single cell partition, followedwith
bead loading and cell lysis. After 20min incubation at room tem-
perature (RT), mRNA in each well was captured on a magnetic bead
coated with oligonucleotides, each containing a primer sequence, a
cell barcode, a unique molecular identifier (UMI), and a poly-T tail.
After collecting all beads that captured mRNA, S4U integrated into the
new RNA was converted into cytidine analogs. mRNA was incubated
with the conversion reagent at 25 °C for 60min. Mutations were
inserted at the indicated sites on reverse transcription. For reference
control samples, mRNA was incubated under the same conditions but
without the conversion reagent. The reverse transcription reactionwas
incubated at 42 °C for 90min. cDNA amplification was performed by
PCR using 13 cycles. PCR amplification products were purified using
AMPure XP beads. After cDNA fragmentation and adaptor ligation,
products were purified and amplified by PCR. After size selection,
libraries were sequenced on the Novaseq 6000 with 150 bp paired
end reads.

Immunofluorescence imaging and New RNA imaging
EU (150mg/kg) was injected into mice via tail vein injection. 2 h later,
femurs and small intestines were collected. Femurs were fixed with 4%
paraformaldehyde (PFA) (Sigma) at room temperature for 12 hours.
Then femurs were decalcified in decalcifying buffer (10% EDTA in PBS,
pH 7.4) for 72 h, changing newdecalcifying buffer every 24 h. Intestinal
samples were coiled into a ‘Swiss roll’ and fixed with 4% paraf-
ormaldehyde (PFA) (Sigma) atRT for 2 h. Tissuesweredehydratedwith
30% sucrose in PBS at 4 °Covernight. Then, sampleswere embedded in
OCT compound (Tissue-Tek) and stored at−80 °Cbefore sectioning (8
μm) on a Cryostat (Leica). For immunofluorescence staining, sections
werepermeabilized in PBS containing 1%TritonX-100 for 30min atRT,
followed with blocking with 10% BSA for 30min at 37 °C. Primary

antibodies were dilutedwith PBS containing 1% BSA, and sections were
incubated with primary antibodies on a shaker at 4 °C overnight. Then
sections were washed 3 times with PBST (0.05% Tween-20 in PBS),
5min each, and then were incubated with secondary antibodies and
DAPI for 1 h at RT. Sections were then washed 3 times with PBST. For
new RNA imaging, EU integrated into new RNA were covalently linked
with Alexa Fluor 594 via copper-catalyzed click reactionusing theClick
reaction kit (Beyotime Biotech Inc). Samples were imaged using the
confocal laser scanning microscope (A1R+, Nikon) or the all-in-one
fluorescence microscope (BZ-X800LE, KEYENCE). Imaging was ana-
lyzed with Imaris 9 software.

Bacterial strain
Salmonella Typhimurium (SL1344) was from the Institute of Micro-
biology, Chinese Academy of Sciences. For mCherry-expressing Sal-
monella Typhimurium (S.T-mcherry) and Ovalbumin-expressing
Salmonella Typhimurium (S.T-Ova) construction, mCherry and Ova
expression cassettes promoted by the Tac promoter were cloned into
the pBBR1MCS2 vector. Then pBBR1MCS2-Tac-mCherry and
pBBR1MCS2-Tac-Ova vectors were transfected into Salmonella
respectively via electransfection. Briefly, Salmonella was aerobically
cultured in Luria Broth (LB) medium at 37 °C temperature on a shaker
(220 rpm) overnight and 3ml bacteria solution was centrifuged at 4 °C
for 10min at 3000g. Then discard the supernatant, and the bacterial
pellet was resuspended with 5ml ice-cold sterile ddH2O and cen-
trifuged. Repeat wash with 5ml ice-cold sterile H2O containing 10%
glycerin for three times and finally resuspended the bacterial pellet
thoroughly in 100μl ice-cold sterile H2O containing 10% glycerin. 2μg
of plasmid DNA was added in to 100μl bacterial suspension and
mixture was transfered into a pre-cold, sterile 0.2 cm gap cuvette.
Insert the cuvette into the MicroPulser electroporator (BIO-RAD) and
electroporate at 1.8 kV, 25 μF for 5ms. The cell suspension was quickly
recovered by resuspending into 1ml LB medium and incubated at
37 °C for 30min. Then bacteria were plated onto LB agar plates with
kanamycin. Plates were incubated at 37 °C for 17 h. mCherry fluores-
cence of Salmonella cloneswas checkedwith fluorescencemicroscope
(Nikon). Ovalbumin expression was checked by western blot.

Salmonella infection
Salmonella infection was performed as previously described56. In
detail, 8-10 week old mice were deprived of food and water for 4 h.
Then mice were gavaged with 20mg streptomycin sulfate in 200ml
PBS. 24 h later,micewere again deprived of food andwater for 4 h, and
then were gavaged with 108 CFUs of Salmonella. Samples were col-
lected at the indicated time points after Salmonella infection. We
gavaged mice with sterile PBS buffer (the carrier of Salmonella sus-
pension) as the 0-time point. Other operations (such as 4 h starvation
and streptomycin pretreatment) were kept consistent with the Sal-
monella infection group.

Flow cytometry
BMcells wereflushed out with ice-cold PBS. Red blood cells were lysed
with red blood cell lysis buffer, and BM cells were washed twice with
ice-cold PBS. For flow cytometry analysis of the whole intestinal epi-
thelial cells and immune cells, small intestines were cut open long-
itudinally, and Peyer’s patches were removed. Intestines were cleaned
and cut into small pieces and incubated in digestive buffer (SCelLiVe
Tissue Dissociation Kit, Singleron Biotechnologies) at 37 °C with
shaking at 100 rpm for 30min. Samples were vigorously pipetted
every 5min. Then the single-cell suspension was passed through a 40
μm filter. Red blood cells were lysed, and cells were washed twice with
ice-cold PBS. To collect the immune cells in lamina propria (LP), epi-
thelial layers were removed by incubation three times in 5mM EDTA
Ca2+ and Mg2+ free Hank’s medium for 20min each at 37 °C, and the
epithelial cells were collected if needed. Then, intestines were cut into
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pieces and digested twice for 40min each at 37 °C with Collagenase II
and III (1mg/ml; Worthington), DNase I (200mg/ml; Roche) and dis-
pase (4U/ml; Sigma). Mononuclear cells were isolated with 40%–80%
Percol gradient, and washed twice. Isolated cells were blocked with
anti-CD16/32 antibody for 30min on ice. Cells were then stained with
surfacemarkers for 45min on ice. 7-AADwas stained for 10min before
analysis to exclude dead cells. For cytokine analysis, cells were incu-
bated with Monensin for 4 h at 37 °C. Cells were fixed and permea-
blized by Intracellular Fixation & Permeablization buffer set
(eBioscience) after surface marker staining, followed by staining with
antibodies against intracellular antigens for flow cytometer (FACS Aria
III, BD). FlowJo v10 (TreeStar) was used to analyze flow cytometry
results.

Antigen processing and presentation
For the antigen processing assay, mice were infected with Salmonella.
6 h later, small intestines from uninfected and infected mice were
collected and dispersed into single cells. 5 × 104 CD11c+ DCs and 5 × 104

EpCAM+Slc15a1+ intestinal late enterocytes were sorted. Cells were
culturedwith 10mg/mlDQ-Ovalbumin at4 °Cor 37 °C for 2 h, and then
were washed and analyzed via flow cytometry.

For the antigen presentation assay, mice were infected with
Ovalbumin-expressing Salmonella (S.T-Ova). At the indicated time
points, small intestine tissues were collected and dispersed into single
cells. Intestinal DCs (CD11c+) and late enterocytes (EpCAM+Slc15a1+)
were analysed for the presentation of H2Kb:Ova complex on the sur-
face detected by PE-conjugated H-2Kb-OVA257-264 antibody via flow
cytometry. For naive CD8+ T cells in vitro activation, 5 × 104 intestinal
DCs or 5 × 104 intestinal late enterocytes from S.T-Ova infected and
uninfected mice were sorted. 5 × 104 naive CD8+ T cells were sorted
from the spleen inOT-Imice. NaiveCD8+ T cells were stainedwith 5μM
CFSE at 37 °C for 20min, and then washed with complete culture
medium to quench dye remaining in the solution. DCs or IECs were co-
culturedwith naive CD8+ T cells in the organoid culturemedium. Naive
CD8+ T cells only sample and naive CD8+ T cells treatedwith heat killed
S.T-Ova sample were as control. 3 days later, cells were stained with
anti-CD8 antibody, and cell proliferationwas analyzedbydetecting the
attenuation of the CFSE fluorescence intensity via flow cytometry.

scIVNL-seq data preprocessing
Paired-end sequencing reads of scIVNL-seq were processed to gen-
erate gene expression profiles using the scIVNL-seq pipeline (https://
github.com/singleron-RD/CeleScope/blob/master/doc/assay/multi_
dynaseq.md). Briefly, raw reads were processed with fastQC and
fastp to remove low quality reads, such as those without poly T tails,
cell barcode and UMI. Adapters and poly A tails were trimmed by
Cutadapt before aligning paired reads to the mouse reference gen-
ome (GRCm38 with ensemble version 92 gene annotation) using
STAR (version 2.5.3a). We then acquired gene counts and UMI counts
by assigning uniquely mapped reads to genomic features with Fea-
tureCounts (version 1.6.2). To quantify S4U labeled and unlabeled
reads, we got T-to-C substitutions in each read. Sites with back-
ground T-to-C substitutions (present in the reference sample without
T-to-C conversion treatment) were determined and excluded for T-
to-C substitution identification. Reads with the same cell barcode,
UMI and gene were grouped together to count the numbers of
labeled and unlabeled UMIs for each gene per cell. A UMI/transcript
was defined as labeled (new RNA) if there was at least one T-to-C
substitution in any one of the reads linked to the same UMI index
(even if there existed reads, with the same UMI covering other cDNA
fragments, that did not have T-to-C substitution). If the reads with
the same UMI did not have any T-to-C substitution, then this UMI/
transcript was identified as unlabeled (old RNA). By categorizing
UMIs as either labeled or unlabeled for each gene within each cell, we
assigned two distinct expression values to each gene: one that

corresponded to the count of new RNAs, and another that corre-
sponded to the count of old RNAs. Consequently, for each sample,
we generated two separate gene expression matrices: one detailing
the new RNA counts and the other detailing the old RNA counts.
Total RNAs were calculated as the sum of new RNAs and old RNAs.

Estimation of fractions of newly synthesized transcripts
Metabolic labeling strategies cannot generally label all new RNA in a
single cell with S4U. We implemented a binomial mixturemodel-based
statistical correction strategy to adjust the observed fractions, which
has been adapted for scSLAM-seq, NASC-seq and scNT-seq
datasets2,7,13. In brief, the probability of observed number of T-to-C
substitutions yi for each gene transcript i containing ni possible sub-
stitution positions are based on the following function:

f θ,p,qð Þ= θBinom yi;p,ni

� �
+ 1� θð ÞBinom yi; q,ni

� � ð1Þ

where θ is the estimated fraction of new transcripts in each gene, q is
the background T-to-C mutation rate that is estimated the fraction of
T-to-C mismatches in a paired control sample and p is the T-to-C
substitution rate introduced by metabolic labeling in new transcripts.

The Expectation-Maximization algorithm described in the pre-
vious work57 was implemented to estimate the parameter p by con-
structing a sparse matrix A where each element ak,n is the number of
reads with k T-to-C conversions and n T bases in the genomic region
that each read aligns to. This setup allowed us to test the Null
hypothesis that the background T-to-C mutation rate q < p using a
Binomial test on k~Binom(n, q). For a specific combination of k and n, if
the expected value calculated based on the backgroundmutation rate
q exceeds the threshold multiplied by the current element value, that
is, ek,n > 0.01*ak,n, the proportion of unlabeled RNA in the reads at that
position is considered too high and can be excluded. For each n and k
we computed:

ek,n =B k;n, qð Þ �
X

k0
ak0 , n ð2Þ

During the iterations of the EM algorithm, this operation is per-
formed only on those indices that have passed the above preliminary
screening.

Then the Bayesian inference approach was employed to directly
estimate fractions of new RNA. The estimated fraction of new reads θ
is derived from the generative model built in the STAN modeling
language (the STAN model code can be viewed in NASC-seq
pipeline13, https://github.com/sandberg-lab/NASC-seq/blob/master/
data/NASCseqModel.stan). The STAN model defines the prior dis-
tribution that θ follows the Beta distribution. And the model uses
binomial distribution to describe the probability of observing a
specific number of conversions under a given substitution prob-
ability (p) and background substitution rate (q). In order to realize
the Bayesian inference of this model, the proportion of labeled RNA
are estimated through Markov Chain Monte Carlo (MCMC) method.
Last, α defined as a ratio between labeled and estimated fractions of
new transcripts was calculated to correct new RNA count matrix. In
detail, α is defined as the average estimated detection rate of all
genes for each cell with the constraint α < 1. The correction is applied
by adjusting the counts of new RNAs based on the ratio α. For each
gene in the cell, the new RNA level is determined by selecting the
minimum value between the total RNA count and the number of
labeled transcripts for that gene divided by α.

All steps above are performed using the code from statistical
estimation procedure of dynast (https://github.com/aristoteleo/
dynast-release) described in the Dynamo study28 and scNT-seq
pipeline13 (https://github.com/wulabupenn/scNT-seq/).
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Quality control of scIVNL-seq
Seurat R package (version 4.0.6) was used to generate Seurat objects
from result files pre-processed by scIVNL-seq pipeline. Then we chose
the quickPerCellQC function in Scater R package (version 1.18.5) to
filter low-quality cells whose feature counts, numbers of expressed
features, percentages of mitochondrial genes, percentages of riboso-
mal genes or percentages of dissociation genes fell beyond 3 Median
Absolute Deviations (MADs). Cells with <200 genes or > 5000 genes
were also removed. Additionally, doublet detection and removal were
performed with software scDblFinder (version 1.13.6), and cells with
scDblFinder.class annotation defined as singlet were finally entered
into following analysis (Supplementary Data 1).

Data normalization
After quality filtering, all Seurat objects of bone marrow samples were
merged into a Salmonella infection time series (0, 2, 6, 12, 24, 48 and
72 h) object. All Seurat objects of small intestine (SI) samples (0, 2, 6
and 72 h) were merged into two main Seurat objects according to cell
types (epithelial cells and immune cells). For normalization, total RNA
countmatrices of themerged Seurat objectswere scaledby library size
(total UMI counts), multiplied by 10,000 and transformed to log space
(ln(gene total count*10000/library size +1)) using function Normal-
izeData with the parameter method = “LogNormalize”. The new RNA
count matrices were then normalized using the formula ln(gene total
count*10000*NTR/library size +1). NTR was denoted as the ratio of
new to total RNA.

Cell-type clustering and identification
For cell-type clustering, highly variable genes (HVGs) were identified
using function FindVariableFeatures in Seurat. Expression levels of
HVGs were scaled by function ScaleData before subjecting to Principal
component analysis (PCA). Then Harmony58 (https://github.com/
immunogenomics/harmony), an algorithm that aligns cells into a
shared embedding from different batches, was used to correct batch
effect. RunHarmony function was performed to integrate data. For
Seurat objects of BMand SI immune cells,most significant 30harmony
dimensions were selected and used for Uniform Manifold Approx-
imation and Projection (UMAP) projection. Next, we used function
FindCluster in Seurat with the parameter resolution = 2 to cluster cells.
DimPlot function was used to visualize cells in the first two UMAP
dimensions.

For cell-type identification, we used function FindMarkers in
Seurat to calculate clusters specific genes via differential expression.
we used the following canonical cell markers to identify the cell type:
Cd34, H2afy, Kit for HSPCs; Csf1r, Ccr2, Klf4 for monocytes; Adgre1,
Adgre4, Apoe for macrophages; Ly6g, S100a9, Ltf for neutrophils;
Prss34,Mcpt8,Cpa3 for basophils; Klrb1c,Ncr1, Klrd1 for NK cells; Itgax,
Siglech, Ctsl for DCs; Cd3d, Cd3e, Cd3g for T cells; Cd8a, Ccl5, Gzma for
CD8+ T cells; Vpreb3, Chchd10, Ebf1 for pre B cells; Cd79a, Cd79b, Cd19
for B cells; Igha, Jchain, Igkc, Mzb1 for plasma cells; Epcam for all
intestinal epithelial cells; Lgr5, Ascl2, Olfm4, Axin2 for intestinal stem
cells (ISCs); Mki67, Cdk4, Pcna, Hmgb2 for TA cells; Lyz1, Defa22,
Defa24, Ang4 for Paneth cells; Muc2, Tff3, Agr2, Zg16 for Goblet cells;
Dclk1, Trpm5, Gfi1b, Il25 for Tuft cells; Chga, Chgb, Tac1, Neurog3 for
Enteroendocrine cells (EECs); Krt19, Fabp1, Reg3g for early Enterocyte
cells (early E); Fabp6, Ada, Apoa4, Krt20 for late Enterocyte cells (late
E). Erythroid cells and erythroblast cells in bone marrow were
removed. We used function VlnPlot, FeaturePlot and DotPlot in Seurat
to verify the specific expression of thosemarker genes in the identified
cell types. Average gene expressions of total and new RNA in all cell
types were provided in Supplementary Data 2-4.

Metabolic labeling-based RNA velocity analysis
Scanpy (version 1.9.1) and Dynamo (version 1.2.0) were employed for
RNA velocity analysis. Normalized total RNA matrix and new RNA

matrix were used as data input for downstream analysis. We con-
ducted the analysis following the standard Scanpy workflow, resulting
in scaled data and identification of 2000 highly variable genes. From
these 2000 genes, we selected the top 1250 genes based on new RNA
expression levels. Scaled data and selected genes were used for sub-
sequent preprocessing in Dynamo. Next, we followed a standard
Dynamo workflow, which included generating streamline plots of
velocity vectors in PCA space. Specifically, we set the parameter
‘experiment_type’ = ‘one-shot’, maintain_n_top_genes = True and gen-
eset for parameter ‘genes_to_use’ and ‘n_top_genes’ in ‘dyn.pp.reci-
pe_monocle’, while keeping all other parameters at default in the
‘dyn.tl.dynamics’, ‘dyn.tl.reduceDimension’ and ‘dyn.tl.cell_velocities’.

Estimation of RNA half-life, RNA synthesis and degradation rate
We used Dynamo7,28 (version 1.1.0) to estimate RNA half-life (t1/2), RNA
synthesis (α) and degradation rate (γ). Normalized total RNA matrix
and new RNA matrix were used as the data input. The dyn.pp.reci-
pe_monocle module was used to perform the preprocessing steps.
Then, dyn.tl.dynamics was used to estimate RNA half-life, processing
and degradation rate with default parameters. Detailed description of
this algorithm is available at (https://github.com/aristoteleo/dynamo-
release).

Differential expression analysis
After cell typesweredetermined, cluster-specific geneswere identified
with the function FindAllMarkers in Seurat using Wilcoxon rank-sum
test. Differential expression analysis between different time points of
Salmonella infection (2, 6, 12, 24, 48 and 72 h) and non-Salmonella
infection (0 h) control were performed with the FindMarkers function
in Seurat using Wilcoxon rank-sum test. The threshold of bonferroni
adjusted P value for differential expression upon Salmonella infection
in each time point was set to 0.05. Additional requirements for dif-
ferential expression included genes expressed in more than 25% of
cells in a cluster (min.pct = 0.25) and with average log2 (Fold
Change) > 0.25. New RNA transcripts with parameters min.pct = 0.1
and logfc.threshold = 0.25 were considered to be differentially
expressed.

Spearman correlation analysis
To characterize the relationship between newly transcribed RNA and
total RNA of genes that were specifically highly expressed at each time
point post infection, we calculated the differentially expressed genes
(DEGs) at all time points. Then we took the highly expressed DEGs at a
certain time point as a group to calculate the Spearman’s rank corre-
lation between the new RNA and total RNA of the genes in the group.
Differentially expressed genes were selected by applying the fold
change cutoff of 1.5. Spearman’s rank correlation analysis was per-
formed with Hmisc R package (version 4.7-0).

GO enrichment analysis and Gene set enrichment analysis
Gene Ontology (GO) enrichment analyses examining significantly
changes of cellular formation, biological processes and molecular
functions in different time points of Salmonella infection were per-
formed using clusterProfiler R package (version 3.18.1). Significant
differentially expressed genes (DEGs) between control (0 h) and Sal-
monella treated samples (2, 6, 12, 24, 48 and 72 h) were calculated. We
then converted gene symbols of gene sets into ENTREZ ID and per-
formed GO enrichment pathway analysis through the enrichGO func-
tion. We mainly focused on enrichment results of Biological Process
(BP) in which pathways with Benjamini Hochberg (BH) adjusted P
values less than 0.05 were considered as significantly enriched. Gene
Ontology (GO) pathway scores were calculated using the function
AddModuleScore in Seurat (version 4.0.6). To estimate the average
RNA half-life (t1/2) and RNA synthesis rate (α) of genes in the indicated
GO pathways (Fig. 3G), upregulated DEGs at 6 h or 72 h compared to
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0hwere selected forGOenrichment analysis. Then average values ofα
and t1/2 of genes in the indicated GO were calculated and shown in the
dot plot. Each dot shows an average value of α and t1/2 in a GO, and the
size of each dot represents the number of genes associated with the
GO term.

Gene set enrichment analysis (GSEA) was performed using the
fgsea R package (version 1.16.0). Genes were ranked according to
area under the receiver operator curve (AUC) calculated by the wil-
coxauc function. MSigDB mouse gene sets were imported using
the msigdbr R package (version 7.5.1). GSEA was performed using the
fgsea function. Specifically, we set the parameter eps = 0 in the fgsea
function. GSEA results were displayed using the plotEnrichment
function.

Cell-cell communication
Based on cell types annotated in each sample, we used CellChat (ver-
sion 1.1.3)59 to analyze cell-cell communication and identified major
signaling changes as well as conserved and context-specific signaling
between uninfected SI sample and multiple samples with different
S.T infection time points. We followed the typical procedure of the
CellChat tutorial, which included several key steps: (1) data input,
processing and initialization of CellChat object; (2) inference of
cell-cell communication network; (3) comparison analysis of multiple
datasets; (4) visualization of cell-cell communication network. Speci-
fically, we began by preparing the normalized total RNA expression
matrices as input data for CellChat. The processed data were used
to initialize CellChat objects. Thenwe used the computeCommunProb
function to generate the presumed ligand–receptor interaction
pairs with “CellChatDB.mouse” data. To delve deeper into specific
cell-cell interactions, particularly between ‘late E’ and ‘CD8+ T’ cell
types on the MHC-I pathway, we applied the computeCommun-
ProbPathway function. Last, the results were visualized with the
functions in the CellChat full tutorial for comparison analysis of mul-
tiple datasets. (https://htmlpreview.github.io/?https://github.com/
sqjin/CellChat/blob/master/tutorial/Comparison_analysis_of_multiple_
datasets.html).

Data visualization
Plots were generated using the ggplot2 (version 3.4.2), cowplot (ver-
sion 1.1.1), ggridges (version 0.5.4), ggrepel (version 0.9.1), ggpubr
(version 0.4.0), circlize (0.4.15), ComplexHeatmap (version 2.11.1) and
pheatmap (version 1.0.12) packages in R (version 4.0.4).

Real-time PCR (qRT-PCR)
Total RNA was extracted from corresponding samples with RNAprep
Pure Micro Kit or TRIzol according to the manufacturer’s protocol.
Then cDNA was synthesized with the M-MLV reverse transcriptase
(Promega, Madison, USA). mRNA transcripts were analyzed with ABI
7300 qPCR system using indicated primer pairs. The experiment was
performed three times independently and the resultswere analyzedby
2-ΔΔCt method. Actb or 18 s were used as endogenous control. Primers
used in this study are listed in Supplementary Data 5.

Statistical analysis
Number of mice and experiments, and statistical tests are reported in
each figure legend. For statistical analysis, data were analyzed with
GraphPad Prism v10. Results are shown as means ± SEM. To compare
differences between two groups, two-tailed unpaired Student’s t-test
was used. Differences among multiple groups were assessed using
ANOVA with Tukey’s multiple comparison test. The p values were
provided in the figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data and count matrices associated with this study have been
deposited in the Gene Expression Omnibus (GEO) database under
accession codeGSE279651 (bonemarrowdata) (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE279651) and GSE280764 (small
intestine data) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE280764). The data used in the figures in this study are provided in
the Source Data file. Source data are provided with this paper.

Code availability
Custom code is available freely from Github (https://github.com/
wury24/scnewRNA-seq), (https://github.com/singleron-RD/CeleScope
/blob/master/doc/assay/multi_dynaseq.md), and Zenodo (https://doi.
org/10.5281/zenodo.15878358).
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