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A high-resolution, nanopore-based artificial
intelligence assay for DNA replication stress
in human cancer cells

Mathew J. K. Jones 1,2 , Subash Kumar Rai 1, Pauline L. Pfuderer 3,4,
Alexis Bonfim-Melo 1, Julia K. Pagan5, Paul R. Clarke1,6,
Francis Isidore Garcia Totañes 7, Catherine J. Merrick 3,
Sarah E. McClelland 8 & Michael A. Boemo 3,9

DNA replication stress is a hallmark of cancer that is exploited by che-
motherapies. Current assays for replication stress have low throughput and
poor resolution whilst being unable tomap themovement of replication forks
genome-wide. We present a new method that uses nanopore sequencing and
artificial intelligence to map forks and measure their rates of movement and
stalling in melanoma and colon cancer cells treated with chemotherapies. Our
method candifferentiate between fork slowing and fork stalling in cells treated
with hydroxyurea, as well as inhibitors of ATR, WEE1, and PARP1. These dif-
ferent therapies yield different characteristic signatures of replication stress.
We assess the role of the intra-S-phase checkpoint on fork slowing and stalling
and show that replication stress dynamically changes over S-phase. Finally, we
demonstrate that thismethod is applicable and consistent across twodifferent
flowcell chemistries (R9.4.1 andR10.4.1) fromOxfordNanopore Technologies.
This method requires sequencing on only one nanopore flow cell per sample,
and the cost-effectiveness enables functional screens to determine how
human cancers respond to replication-targeted therapies.

DNA replication stress is characterised by frequent slowing, stalling,
and collapse of replication forks which causes unreplicated regions of
the genome, DNA damage, mutations, and chromosomal instabilities
that drive tumourigenesis1,2. Many important chemotherapeutic
agents target the replication stress response (RSR) pathway3 including
inhibitors of ATR4, PARP15, WEE16, and dNTP synthesis with hydro-
xyurea (HU)7,8 or 5-fluorouracil9, as well as DNA crosslinkers like
cisplatin10. How these agents affect the movement and fidelity of
replication forks across the genome remains unknown due to the low
throughput and/or insufficient resolution of current assays. The

location of DNA breaks that result from replication fork stalls can be
mapped with techniques such as BLESS11, Break-seq12, and TrAEL-seq13

but thesemethods require the fork to stall such that it results in a break
and no information about origin firing or fork movement prior to the
break is captured. DNA fibre analysis is a single-molecule method that
can measure fork velocity, origin density, and the frequency of fork
stalling14,15, but the throughput and spatial resolution are both low and
fibres cannot be mapped to the genome without resorting to fibre-
fish16 which is not scalable to the whole genome. Recently, optical
replication mapping (ORM) provided a high-throughput, single-
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molecule approach to map origin firing genome-wide17, but the 15-kb
resolution is too low to detect fork stalling. Long-read sequencing
using the Oxford Nanopore Technologies (ONT) platform has enabled
the detection of replication origins and fork movement in budding
yeast18–22 as well as the malaria parasites Plasmodium falciparum23,24

and Plasmodium knowlesi25. It has also been used to measure the
replication rates of human mitochondrial DNA26 as well as replication
origins in the human genome27. Here, we introduce a method that
measures fork speed and stalling on singlemoleculeswith up to single-
nucleotide resolution and use it to show that chemotherapies create
different “replication stress signatures”. Our method can clearly dis-
tinguishbetween replication fork slowing and stalling, andbymapping
thesemolecules to the genome, we assess the role of the intra-S-phase
checkpoint and show that replication stress dynamically changes over
S-phase.

Results
DNAscent detects replication forks on single molecules from
human cancer cells
Our DNAscent software can detect two thymidine analogues, BrdU and
EdU, on single nanopore-sequenced molecules23. When these base
analogues are sequentially pulsed into S-phase cells, they are incorpo-
rated into the nascent strand by replication forks, leaving a “footprint”
of fork movement. Therefore, we pulsed A2058 human melanoma cells
and human RPE1 cells expressing PIP-FUCCI28 with EdU, then BrdU, and
followed by a thymidine chase. We then enriched for S-phase cells by
fluorescence-activated cell sorting, extracted ultra-high-molecular
weight DNA, and sequenced it on the Oxford Nanopore MinION plat-
form (Fig. 1a, b; Figure S1). As shown previously in S. cerevisiae18,20, fork
stalling manifests as a sharp drop-off in analogue incorporation into
nascent DNA (Fig. 1c) andwe observed stalled forks in A2058melanoma
cells (Fig. 1d). The length (in base pairs) of the base analogue tracks,
divided by the total pulse length, yielded a measure of fork speed that
was reproducible between biological replicates with fork speeds of
~1.4 kb/min in RPE1 cells that are consistent with studies measuring fork
speeds in RPE1 cells via DNA fibres29–31 (Fig. 1e). We performed DNA fibre
analysis for A2058 cells where we observed a difference of approxi-
mately 0.3–0.5 kb/min between fork speedsmeasured by DNAscent and
fork speedsmeasured by DNA fibre (Figure S2). This difference could be
due to variation in fibre stretching or differences in the resolution and
sensitivity of analogue detection32. Our optimised ultra-long sequencing
protocol yielded over 180,000 total reads with a mapping length
greater than 20 kilobases (kb), an N50 read length of ~90 kb, and 4100
called forks from a single MinION flow cell (averages: 150,000 reads
longer than 20kb, 90kb N50, 2050 fork calls; Table S1) with a false
positive rate of fork calls less than 0.004% (Table S2). This read length
and throughput allowed us to capture complex replication dynamics
across the entire human genome with multiple forks, origins, and ter-
mination sites on the same molecule (Fig. 1f).

DNAscent distinguishes between fork stalling and slowing under
chemotherapies
We treated A2058 cells with either a PARP inhibitor (Olaparib), WEE1
inhibitor (MK1775), ATR inhibitor (VE-821), or hydroxyurea (HU)
(Fig. 2a). These treatments had a marked effect on replication fork
dynamics that was clearly visible on single molecules (Fig. 2b). As
expected, HU15, ATR inhibition33, andWEE1 inhibition34 all slowed forks
(Fig. 2c). To test the method further and provide an internal control,
we added HU with the BrdU pulse and verified shortening of the BrdU
track but not the EdU track (Figure S3). The dose and treatment timeof
Olaparib mirrored that of Maya-Mendoza and colleagues35 and, con-
sistent with their findings using DNA fibre analysis, we observed a 30%
increase in fork speed. Fork speeds fromall conditionswere consistent
across biological replicates (Figure S4) and, for each agent, the treat-
ment effect exceeded expected variation between replicates

(Figure S5). To create a quantitative measure of fork stalling, we
defined a “stall score” to measure how abruptly BrdU incorporation
ends. Stall score is a measure between 0 and 1 of the proportional
decrease in the frequency of positive BrdU calls at the BrdU end of the
replication fork track. Forks assigned a stall score near 0 are unlikely to
be stalled and forks assigned a stall score near 1 are likely to be stalls or
pauses (Fig. 3a). Stall score provides an additional layer of information
about replication mobility that has the potential to distinguish
between fork stalling and slowing: compared to untreated cells, HU
and WEE1 inhibition resulted in fork slowing, and PARP inhibition
resulted in a fork speed increase (see Fig. 2c), but all three of these
chemotherapies resulted in a similar distribution of stall scores to that
of untreated cells (Fig. 3b). ATR inhibition did not slow forks as much
as HU, but treatment with ATR inhibitors resulted in amarked increase
in stall score indicative of frequent fork stalling. While HU is generally
thought to rapidly stall replication forks, multiple DNA fibre analysis
studies have shown slow but continued fork progression during short
and prolonged HU treatment36,37. Our approach builds on these DNA
fibre methods by discriminating between fork slowing in cells treated
with HU and rapid stalling in cells treated with ATRi. As before, stall
scores from all conditions were consistent across biological replicates
(Figure S6). Notably, only ATRi showed strong evidence of a treatment
effect beyond the expected variation between replicates (Figure S7).

Chemotherapies create distinct signatures of replication stress
DNA replication stress is an umbrella term that refers to frequent fork
slowing and/or stalling. DNAscent can measure each of these attri-
butes, and to unify them into an overall measure of replication stress,
we represented each fork as an 8-dimensional point consisting of
features pertaining to fork speed, level of analogue incorporation, and
stall score (see Methods for details) and reduced points on this
8-dimensional manifold to two dimensions using Uniform Manifold
Approximation and Projection (UMAP)38. Forks measured from cells
treated with each chemotherapy clustered together, showing that
disrupting different elements of the DNA replication stress response
pathway creates a replication stress signature in this 8-dimensional
space (Fig. 3c). To demonstrate that our new method captures fun-
damentallymoremeaningful information aboutDNA replication stress
than existing methods that just measure fork speed, we repeated the
procedure in a 5-dimensional space that excluded any measurement
related to fork speed (the track lengths of EdU, BrdU, and the overall
fork; see Methods). We found that stall score and the level of base
analogue incorporation alone were sufficient to create distinct stress
signatures of disruption to different elements of the RSR pathway
(Fig. 3d).Whilewe anticipate variation due to the timing and dosage of
treatment, these results show that different chemotherapies can cre-
ate a characteristic replication stress signature based on the pathway
that they target.

Mapping stressed forks to the genome reveals checkpoint-
dependent changes over S-phase
To investigate whether fork stress changes across S-phase, we applied
our method in HCT116 colon cancer cells to leverage existing high-
resolution Repli-Seq replication timing data39. We assessed both wild-
type HCT116 cells and HCT116 cells with a CDK2AF/AF mutation that
prevents intra-S-phase checkpoint activation byWEE140. Ourmeasured
fork speed in wild-type cells was consistent with DNA fibre analysis41.
While we observed a higher variability between repeats than in A2058
(wild-type median fork speed of 1.7 k/min with stall score median 0.3;
CDK2AF/AF median fork speed of 1.26 kb/min with stall score median
0.39; Figure S10) the CDK2AF/AF cells showed a slower fork speed and
higher stall score than the wild-type within each repeat (Fig. 4a, b).
Moreover, there was moderate support for a treatment effect of the
CDK2AF/AF mutation (Figure S11). This was consistent with the effect of
WEE1 inhibition on fork speed and stall score in A2058 cells, as WEE1
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inhibition functionally mirrors a CDK2AF/AF mutation (Fig. 2c; Fig. 3b).
We calculated the median replication time in S-phase (Trep) for the
genomic position of each called fork using high-resolution Repli-Seq
replication timing data for HCT116 cells39 in order to show how the
change in fork speed and stall score over S-phase can be measured
from a single sequencing run. In wild-type cells, fork speed increased
(in agreement with single-cell studies42) and stall score decreased in
genomic positions that tended to replicate later in S-phase (Fig. 4c, d).
This relationship vanished in the CDK2AF/AF mutant, as these cells
maintained a constant slow fork speed and high stall score across
regions of the genome that replicated both early and late in wild-type

cells. These trends in stall score and fork speed over S-phase for both
wild-type and CDK2AF/AF HCT116 cells were consistent across biological
replicates (Figure S10).

A transition to R10.4.1 nanopore chemistry
To future-proof our method and show that our results hold across dif-
ferent generations of Oxford Nanopore flow cell chemistries, we devel-
oped and trainedDNAscent toworkonOxfordNanopore flowcells using
the latest R10.4.1 flow cells. Building upon the strategies we developed to
train DNAscent v220 and DNAscent v323, we developed a new version of
DNAscent (v4) for theR10.4.1 chemistry. Theneural network inDNAscent
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Fig. 1 | Replication dynamics on ultra-long nanopore reads from human
cancer cells. a Cells expressing PIP-FUCCI were sequentially labelled with a
5-minute EdUpulse, a 10min BrdUpulse, and a thymidine chase. The asynchronous
population of cells was enriched for S-phase cells using FACS (mCherry+mVenus-),
and high molecular weight (HMW) DNA was extracted and sequenced on the
Oxford Nanopore MinION platform. b PIP-FUCCI gates on high levels of geminin
(Gem)and low levels of the PCNA-interacting protein (PIP) degron enabling S-phase
enrichment without the cellular stress caused by arresting the cell cycle. cDiagram
showing that fork stalling manifests as a sudden drop in BrdU incorporation into
the nascent strand. d Two nanopore-sequenced molecules from A2058 melanoma

cells analysed with DNAscent that show the patterns in (c). Tracks show the
probability of BrdU (red) and EdU (blue) at each thymidine position along the
molecule. e Distribution of fork speed measured by DNAscent in untreated
RPE1 cells (upper) and A2058 cells (lower) for two biological replicates. Vertical red
line median, IQR interquartile range, N number of fork calls. f Three ultra-long
singlemolecules, each represented as a group of two tracks of bar graphs. The top
track shows the DNAscent-called probability of BrdU (red) and the bottom track
shows the DNAscent-called probability of EdU (blue). Each read is annotated with
arrows to show forkdirection. Readsweremovedonto the sameaxis fromdifferent
regions of the genome. Source data are provided as a Source Data file.
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v4 was trained using BrdU and EdU incorporated into human RPE1 cells
(Figure S12; Table S3 for model architecture). We observed cleaner fork
tracks with DNAscent v4, particularly a very low false positive rate fol-
lowing the thymidine chase (Fig. 5a). DNAscent v4 was benchmarked on
human RPE1 reads as well as reads from themalaria parasite Plasmodium
falciparum to stress test the model’s performance on an outlier 81% AT-
rich genome. For both human cells and P. falciparum, DNAscent
v4 showed considerably higher positive BrdU and EdU calls for a much
lower false positive rate (Figure S13; Table S4). To ensure that our
observations of fork speed and stall scores were consistent across R9.4.1
and R10.4.1, we used DNAscent v4 to measure fork speed in human

RPE1 cells and found that fork speed on R10.4.1 (Fig. 5b) was consistent
with fork speed on R9.4.1 as measured with DNAscent v3 (Fig. 1e). As
expected, fork stalling was low. On treatment with ATRi, we again
observed a decrease in fork speed and an increase in stall score when
using R10.4.1 and DNAscent v4. Taken together, these data show that we
can consistently estimate replication fork speed and stalling fromOxford
Nanopore data across different nanopore chemistries.

Discussion
We have developed a new method for the high-throughput, high-
resolution measurement of DNA replication stress across the human
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either HU, ATR inhibitor, WEE1 inhibitor, or PARP inhibitor at the specified time-
points relative to the BrdU and EdU pulses. b Five single molecules analysed by
DNAscent, each showing a rightward-moving fork from untreated cells as well as
from each of themonotherapies. Forks were from different regions of the genome,
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of BrdU at that position on the read, the probability of EdU at that position on the
read, and DNAscent’s segmentation of the read into EdU- and BrdU-positive

regions. Fork length was measured by computing the genomic distance, in kilo-
bases, between far endsof the EdU andBrdU segments (shown for the top fork) and
dividing this distance by the 15min total pulse duration. c Distribution of fork
speeds for untreated cells and cells under eachmonotherapy. Forks near the end of
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Bayesianmodel (seeMethods), is reported in Figure S5. Sourcedata areprovided as
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genome; demonstrated that an inexpensive handheld device produces
enough data to create replication stress signatures that can accurately
stratify cells according to the part of the replication stress response
pathway that was inhibited; and used a single sequencing run to show
how replication fork speed changes across replication timing domains.
The result is a major step change over the previous “gold standard” of
DNA fibre analysis for measuring replication stress in cancer cells: Our
method categorically supersedes DNA fibre in throughput, resolution,
cost-effectiveness, and automation, all while enabling us to map
stressed forks to the genome which DNA fibre analysis is fundamen-
tally unable to do.

In addition, our method distinguishes between slow-moving and
stalled forks. This distinction is critical for characterising the effect of
chemotherapies on replication forks, as wehave shown that HU causes
the former while ATR inhibition causes the latter. We have demon-
strated that the ability to map replication forks to genomic positions
makes it possible to leverage pre-existing high resolution Repli-Seq

data to investigate how replication timing impacts fork movement.
This can naturally be extended to datasets measuring other genomic
features such as epigenetic regulation and the chromatin landscape.

The sensitivity of our approach is highlighted by its ability to
identify increased fork stress and reduced fork speed in HCT116
CDK2AF/AF cells that proliferate with a viable disruption of the intra-S-
phase checkpoint40. Ourfindings provide a quantitativemeasure of the
increased replication stress previously described in these cells and
demonstrates how restricting CDK2 activity is important for suppres-
sing fork stress and ensuring replication fork speeds rise throughout
S-phase. Our study has not accounted for any potential changes in
replication timing in the HCT116 CDK2AF/AF and could have been
improved by generating equivalent high resolution Repli-Seq timing
reference for this cell line.

With future development, we anticipate further improvements to
this method’s throughput, utility, and scope. The 15min analogue
pulse represents 3% of an 8 h human cell S-phase, hence many of
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molecules sequenced do not include a fork track. A pulldown of EdU
prior to sequencing would enrich the percentage of reads with a fork
track and would also negate the need for S-phase enrichment with
reporter systems. We have also observed a slight bias towards mea-
suring leading strand synthesis, which may be due to 3’ overhangs on
lagging strands reducing capture by transposase during ultra-high
molecular weight library preparation. In addition, we envisage the
future detection of 5-methylcytosine and 5-hydroxymethylcytosine

alongside BrdU and EdU to show replication fork movement, origin
firing, and epigenetic markers on the same molecule. This study
focused on three cell lines and four treatments, but the method is
usable for any human cell line and is extensible to tumour organoids
and suspension cell cultures.Whilewehave used the detectionof BrdU
and EdU for the purposes of studying DNA replication, the accurate
detection of base analogues in single molecules carries much broader
utility, with an example of future work being the incorporation of base
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Fig. 4 | Replication stress dynamics change over S-phase and are checkpoint-
dependent. Left column shows results for HCT116 wild-type cells and right column
shows results for the HCT116 CDK2AF/AF mutant. a Distribution of fork speeds and
stall scores forHCT116wild-type cells.bDistribution of fork speeds and stall scores
for the HCT116 CDK2AF/AF mutant. Vertical red line: median; IQR interquartile range,
N number of fork calls. The equivalent analysis for a biological replicate is shown in
Figure S10 and the effects of the mutation on both fork speed and stall score is
reported in Figure S11. c Distribution of fork speeds and (d) stall scores of forks
grouped by the median replication time (Trep) of their genomic position. Fork
speeds and stall scores mapping to each hour in S-phase are shown as strip plots,

violin plots, and box plots with the horizontal black line indicating the median and
boxes showing the IQR. Whisker length is 1.5⋅IQR. The Pearson correlation coeffi-
cient (R), slope, and p-value for each panel was computed via linear least-squares
regression on the median at each time point. For fork speed, the alternative
hypothesis was that the slope of the regression line was greater than zero; for stall
score, the alternative hypothesis was that the slope was less than zero. The corre-
lation was significant for both fork speed (p =0.00018) and stall score (p =0.0020)
for wild-type cells and not significant for fork speed (p =0.98) or stall score
(p =0.69) for the CDK2AF/AF mutant. Source data are provided as a Source Data file.
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analogues during nucleotide excision repair or long-patch base exci-
sion repair.

Replication stress induced by inhibiting different parts of the RSR
pathway is not created equally: the impact on replication forks will be
highly dependent on the chemotherapy, dose, and timing which will
become even more complex when treatments are given in combina-
tion. Our replication stress signature framework can scale with this
complexity by incorporating further genomic features into the sig-
nature. This includes features from the sequenced single molecule
such as mismatches and epigenetic markers, as well as population-
level features such as chromatin accessibility, replication timing, and
gene expression.

Our approach to developing the DNAscent software has been
guided by DNA fibre assays to measure fork dynamics. We have tuned

the fork detection algorithm to call the start and end of replication
tracks at the peaks of EdU and BrdU detection because this is the
strategy that aligns closest to DNA fibre analysis. We do not expect
DNAscent to report fork speeds that are consistent with DNA fibre
assays in all experimental conditions, as they are fundamentally dif-
ferent analogue detection strategies. For example, one of our engi-
neering considerations was that DNAscent would find it challenging to
assess fork speed and stall score in regions of weak or variable analo-
gue incorporation. Therefore, while the increased resolution and
sensitivity of analogue detection with DNAscent identifies small
stretches of low-level analogue incorporation, only regions of high
analogue incorporation were used to calculate fork speed (Fig. 2b).
Stall scores are calculated in a manner that is unique to the nanopore
sequencing platform and differences in stall scores cannot be easily
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Fig. 5 | DNAscent v4 onR10.4.1 chemistry. a Two representative origin calls from
RPE1 cells. As in Figs. 1–3, a 5-minute EdU pulse was followed by a 10-minute BrdU
pulse and tracks show the probability of BrdU (red) and EdU (blue) at each thy-
midine position along the molecule. The upper molecule was sequenced using the
R10.4.1 chemistry with BrdU and EdU probabilities annotated with DNAscent v4
while the lower molecule was sequenced using the R9.4.1 chemistry with analogue

probabilities annotated with DNAscent v3.1.2. b Distribution of replication fork
speeds and stall scores for untreated RPE1 cells and (c) RPE1 cells treated with the
ATR inhibitor VE-821. Both samples were sequenced on the R10.4.1 chemistry.
Vertical red line median, IQR interquartile range, N number of fork calls. Source
data are provided as a Source Data file.
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validated with another approach. While the biological explanation for
the large increase in the fork stall score observed with ATRi is not
completely understood, we speculate that it could be due to increased
stalling or pausing of forks during ATR inhibition but cannot rule out
that ATR dependent regulation of nucleotide synthesis is also a con-
tributing factor to this phenotype43–45.

When engineering DNAscent, our design choices were made
to prioritise the accuracy of replication fork speed and stall score.
This necessarily required trade-offs in other areas, particularly on
the location of the boundary between the EdU and BrdU regions
of a fork track. We often observe noise at the EdU-to-BrdU tran-
sition whereby EdU incorporation is elevated within the BrdU
region, as well as ambiguity over where this boundary should be
placed. These two phenomena are visible, respectively, in the
representative ATRi and WEE1i fork tracks of Fig. 2b. Our design
choices were made to minimise risk of the major segmentation
error that would occur if, for example, a short segment of ele-
vated EdU incorporation within a BrdU region was mistakenly
called as an origin rather than ignored as noise. By making the
calling of EdU and BrdU regions conservative to avoid these
errors, DNAscent tends to leave a gap between the EdU and BrdU
regions of a fork track. This can sometimes result in a ratio of
BrdU-to-EdU track lengths that do not match the expected 2:1
ratio given the 5min EdU pulse and 10min BrdU pulse. Therefore,
while we have added HU with the BrdU pulse in this study to serve
as an internal control to verify shortening of the BrdU track
relative to the EdU track (Figure S3), we would not generally
recommend this experimental setup to test the effectiveness of
an inhibitor on replication fork dynamics. We instead suggest
adding the inhibitor with or before the first analogue pulse.

In summary, our method is cost-effective, automated, and pro-
vides fundamentally more layers of information to differentiate
between stressed forks; all of these attributes are necessary to support
high-throughput screens of how cancer subtypes respond to
replication-based therapies.

Methods
Tissue culture, lentiviral transduction, and S-phase enrichment
via FACS
A2058 cells were grown in DMEM with 10% FBS and 1%
penicillin–streptomycin. HCT116 cells were grown in McCoy’s 5a
modified media with 10% FBS and 1% penicillin–streptomycin. pLenti-
CMV-Blast-PIP-FUCCI was a gift from Jean Cook (Addgene plasmid #
138715). RRID: Addgene_138715. The PIP-FUCCI lentiviral transfer
plasmid was cotransfected with psPAX2 pMD2.G into 293T cells. 48 h
later, supernatants were filtered, mixed 1:1 with fresh medium con-
taining polybrene (8μg/mL), and applied to target cells for 16–24 h.
A2058 and HCT116 cells expressing PIP-FUCCI were labelled with
50μM EdU for 5min, washed 3x in PBS (taking about 1min for each)
and labelled with 50μM BrdU for 10mins, washed 3x PBS and chased
with 100μM thymidine for 20min then trypsinized in 0.05% trypsin.
S-phase cells were isolated by FACS sorting (mCherry+,mVenus−) using
a BD FACS Aria Fusion or MoFlo Astrios EQ. Sorted cells were pelleted
and stored at −80c. Drug treatments: HU (2mM) added during BrdU
pulse, PARPi Olaparib (10 µM) for 24 h, Wee1i MK1775 (1 µM) 2 h and
ATRi VE-821 (10 µM) 30min.

General purpose S-phase enrichment
The PIP-FUCCI system was used in this study only to increase the
number of fork calls per MinION flow cell; it does not otherwise affect
the results. Other cell synchronisation techniques could also be used
to enrich S-phase cell, such as mimosine arrest or CDK4/6 inhibition
and release46. Cell synchronisation techniques may impact fork stall
scores depending on the end user’s application.

DNA preparation
Ultra-high molecular weight (UHMW) DNA was extracted using
Nanobind CBB Big DNA Kit (SKU NB-900-001-01, Circulomics) and
UHMW DNA Aux Kit (NB-900-101-01, Circulomics) according to the
manufacturer’s protocol (Document ID: EXT-CLU-001). DNA was
incubated at 37 °C for 1 h at the elution step. The DNA was eluted in
760 µLBuffer EB (6million cells for 6xMinION library sequencing) or in
506 µL (4–5.5 million cells for 4x MinION library sequencing). To
measure the recovery and the quality of viscus UHMW DNA in Qubit
and NanoDrop, the DNA sample was prepared according to the
method described by Koetsier and Cantor47. DNA purity was checked
by the ratio of DNA concentration measured in NanoDrop and Qubit
(1-1.5).

Library preparation and nanopore sequencing
libraries were prepared using Ultra-Long DNA Sequencing Kit (SQK-
ULK001, ONT) and Nanobind UL Library Prep Kit (NB-900-601-01,
Circulomics) according to the NanoBind Library Prep - Ultra Long
Sequencing protocol (Document ID: LBP-ULN-001; 03/24/2021, Cir-
culomics). UHMW DNA library was eluted in 225 µL (6 million cells)
or 150 µL (4–5.5 million cells) ONT Elution Buffer (EB; SQK-ULK001,
ONT). The loading library was prepared according to the manu-
facturer’s protocol and was loaded onto MinION Flow Cell R9.4.1(FLO-
MIN106D, ONT). Sequencing run was performed using MinKNOW
(v21.11.7–22.08.4) for 96 h run script with the sequencing kit set to
SQK-ULK001. To load the fresh loading library, the sequencing runwas
paused after 24 h and the flow cell was washed with Flow Cell Wash Kit
(EXP-WSH004, ONT) according to the manufacturer’s guidelines.

Basecalling and Genome Alignment
On R9.4.1, Oxford Nanopore sequencing reads were basecalled using
Guppy (v5.0.11) using the dna_r9.4.1_450bps_fast configuration. Base-
called reads were aligned to the human genome using minimap2
(v2.17-r941) using the map-ont setting. Reads from A2058 cells were
aligned to the chm13v2.0 human reference genome from the
Telomere-to-Telomere (T2T) Consortium48. Reads from HCT116 were
aligned to the hg38 (GRCh38.p13) assembly for consistency with the
high-resolutionRepli-Seq data fromZhao and colleagues39. On R10.4.1,
Oxford Nanopore sequencing reads were basecalled with Dorado
v0.7.2 using the dna_r10.4.1_e8.2_400bps_fast@v5.0.0model. Genome
alignments were done at the time of basecalling using Dorado, and
reads were aligned to the T2T chm13v2.0 human reference genome.

Fork calling with DNAscent
On the R9.4.1 chemistry, Oxford Nanopore reads were analysed with
DNAscent v3.1.2 which is available under GPL-3.0 at https://github.
com/MBoemo/DNAscent. Each basecalled sequencing run was
indexed with the DNAscent index subprogram, and the probability of
BrdU and EdU at each nucleotide along each sequenced read was
called using the DNAscent detect subprogram. DNAscent detect was
run using a minimummapping quality of 20 and a minimummapping
length of 20 kb. TheDNAscent forkSense subprogramsegmented each
read into EdU- andBrdU-positive regions. Tofinalise the locationof the
start and end of the EdU track, DNAscent computes the average
incorporation in the middle third of the track and trims back from the
start of the track and the end of the track until it meets a part of the
track with this average incorporation. The trimming then stops and
this is given as the final track. DNAscent then does the same for the
BrdU track. EdU and BrdU tracks are then matched into replication
forks such that, for a rightward-moving fork, the replication fork track
begins at the start of the EdU track and ends at the end of the BrdU
track which is where BrdU incorporation starts to decrease at the start
of the thymidine chase. Fork calls on each readwere thenmatched into
origins and termination sites. On the R10.4.1 chemistry, base analogue
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detection was done on DNAscent v4.0.3 with the same minimum
thresholds for read length and mapping quality.

Measurement of fork speed with DNAscent
DNAscent forkSense outputs replication fork calls as bed files indi-
cating the region of the genome each called fork moved through
during the 15min EdU-BrdU pulse. The length of each region (in kb)
was divided by 15min to compute the speed of each fork in kb per
minute. These fork tracks will be shorter if (i.) the forks are from an
origin that fired during the pulse, (ii.) the forks come together in a
termination site during the pulse, or (iii.) the fork track runs off the end
of the sequenced molecule. To present an accurate picture of fork
speed, fork tracks were excluded from the analysis if they were on a
readwith a called origin or termination site, or if they started or ended
within 3 kb of the end of the read.

Fork stall calling with DNAscent
The number of positive BrdU calls (probability > 0.5 called by DNAs-
cent detect) was calculated over a 2 kb window before (inside the
BrdU-positive segment) the BrdU end of fork track and divided by the
number of thymidine bases in the 2 kb window resulting in a fraction
between 0 and 1 (denoted B). This fraction of positive BrdU calls
divided by attempts was also calculated over a 2 kb window immedi-
ately after (outside the BrdU-positive segment) the BrdU end of the
fork (denoted A). A raw score was computed:

R =
B� A
B

A nonlinear scaling was applied to the raw score R to compute a
stall score between 0 and 1:

stall score =α log 1 + eβ R�1ð Þ
� �

� α log 1 + e�β
� �

On DNAscent v3.1.2, α = 1.55 and β = 3. This scaling is plotted in
Fig. 3a and serves a dual role. First, it accounts for the fact that a fork
which has not stalled during the analogue pulse will produce a rela-
tively high raw score approximately between 0.2 and 0.4 and rescales
this range closer to zero. Second, it creates more conservative esti-
mates of raw scores in the 0.6-0.9 range so that only high-confidence
fork pauses or stalls have stall scores near 1. Each fork call is annotated
with a stall score in DNAscent v3.1.2. To avoid erroneous results,
DNAscent declines to assign a stall score to forks where (i.) the fork
track runs off the read, (ii.) forks that come together in a termination
site during the pulse, and (iii.) forks where there is an insertion or
deletion longer than 100 bp in the read inside one of the 2 kbwindows.
These forks were excluded from the analysis in Figs. 3–4. Note that for
DNAscent v4.0.3, the cleaner BrdU and EdU calls meant that we tuned
α = 2.63 andβ = 1 toproduce consistent results acrossv3.1.2 and v4.0.3.

Replication stress signatures with DNAscent
The following eight features were measured for each fork: (i.) the total
length of the fork track (in bp), (ii.) the length of the EdU track (in bp),
(iii.) the length of the BrdU track (in bp), (iv.) fraction of thymidine
positions called as BrdU in the EdU segment, (v.) fraction of thymidine
positions called as EdU in the EdU segment, (vi.) fraction of thymidine
positions called as EdU in the BrdU segment, (vii.) fraction of thymi-
dine positions called asBrdU in theBrdU segment, (viii.) the stall score.
DNAscent v3.1.2 outputs these features as a bed file for ease of use.
Each of these eight features, across all forks, was rescaled to the
interquartile range and reduced to two dimensions using Uniform
Manifold Approximation and Projection (UMAP)38 with 25 nearest
neighbours, a minimum embedded point distance of 0, and the Che-
byshev metric. A total of 125 forks from each sequencing run (a total
250 forks per monotherapy, accounting for two biological repeats)

were used. Kernel density estimatesweremadeusing Seaborn (v0.11.2)
with the default settings.

Mapping forks to Trep
Gaussian smoothed and scaled high-resolution Repli-Seq data for
HCT116 cells was accessed from NCBI GEO (accession number
GSE137764) and Trep was calculated via sigmoid fitting as per the
authors’ instructions39 for each 50 kb bin across the human genome.
The Trep for each DNAscent fork call was computed using the Trep of
the 50 kb genomic region that the fork call mapped to.

Human training data for 10.4.1 chemistry
RPE1 cells were labelledwith 50 µMBrdU for 72 hours or 50 µMEdU for
24 hours. Genomic DNA was extracted using NEBMonarch HMWDNA
Extraction Kit for Cells & Blood (T3050L). Sequencing library was
prepared using the Native Barcoding Kit 24 V14 SQK-NBD114.24.

Human samples analysed with 10.4.1 chemistry
Human cells were labelled and sorted as above for R9. Genomic DNA
was extracted using R9method or NEBMonarchHMWDNA Extraction
Kit for Cells & Blood (T3050L). Sequencing library was prepared using
the Ultra-Long DNA Sequencing Kit V14 (SKU: SQK-ULK114) and sam-
ples were run on a MinION Flow Cell (R10.4.1) (SKU: FLO-MIN114.001).

Parasite test data for 10.4.1 chemistry
P. falciparum parasites were tightly synchronised via Percoll gradient,
as in our previous study23, then incubated at 36 h post-invasion in
20 µM EdU for 1 h or 200 µM BrdU for 1 h. Parasite DNA was harvested
and sequenced as above.

Model training on R10.4.1 chemistry
Our training procedure generally follows that of DNAscent v220 and
DNAscent v323. To create pore models for EdU- and BrdU-containing
9mers on R10.4.1 chemistry, we used the DNAscent (v4.0.3) align
subprogram on the BrdU-labelled, EdU-labelled, and untreated data-
sets to create a signal alignment between each possible 9mer and the
measured normalised current as that 9mer passes through the nano-
pore. This resulted in a Gaussian distribution of normalised current
measurements for eachpossible thymidine-containing9mer, similar to
the publicly available pore model for unlabelled 9mers released by
Oxford Nanopore (https://github.com/nanoporetech/kmer_models/
blob/master/dna_r10.4.1_e8.2_400bps/9mer_levels_v1.txt). Note that
while previous work18 used a two-component Gaussian mixturemodel
to identify the labelled and unlabelled distributions, the analogue
concentration used to prepare our training datasets was sufficiently
high thatwe assumed the labelled distributionwould be dominant.We
therefore fit a Gaussian distribution to the normalised current for each
9mer to create a pore models for unlabelled DNA as well as for EdU-
labelled and BrdU-labelled DNA on the R10.4.1 chemistry. We used
these pore models to perform hidden Markov-based detection18 to
determine the log-likelihood ratio of BrdU and EdU at each thymidine
position of each sequenced read. For BrdU-labelled and EdU-labelled
reads, a call was considered positive if the log-likelihood ratio at a
thymidine position was greater than 1.5. Reads were used for further
training if more than 30% of thymidine positions were called as EdU or
BrdU by the hidden Markov-based detection algorithm. Following the
labelling procedure outlined in the supplemental information for our
manuscript on DNAscent v220, we used the results of hidden Markov-
based detection to label each thymidine position on the read (TP =0.6;
C = 0.65; TN =0.9). Themodel architecture is detailed inFigureS12 and
Table S3. The training data was comprised of 50,000 2-kilobase read
segments for each of the EdU-labelled, BrdU-labelled, and unlabelled
conditions. After training the model for 10 epochs, we used the model
to call the probability of BrdU and EdU at each thymidine position
across every read in the original BrdU-labelled and EdU-labelled

Article https://doi.org/10.1038/s41467-025-63168-w

Nature Communications |         (2025) 16:7732 9

https://github.com/nanoporetech/kmer_models/blob/master/dna_r10.4.1_e8.2_400bps/9mer_levels_v1.txt
https://github.com/nanoporetech/kmer_models/blob/master/dna_r10.4.1_e8.2_400bps/9mer_levels_v1.txt
www.nature.com/naturecommunications


datasets. We set the probability threshold above which a BrdU or EdU
call is considered positive at 0.5 and pulled out reads for further
training if more than 30% of thymidine positions were called as EdU or
BrdU. This model was used to label the reads (TP =0.8; C =0.8; TN =
0.95). We then followed the data augmentation procedure outlined in
Figure S2 of ourDNAscent v2manuscript20 with the number of training
2-kilobase segments for each augmentation condition specified in
Table S5. This resulted in a total of 230,000 training segments, and we
trained themodel architecture in Figure S12 on thisdata for a totalof 15
epochs.

Model inputs for R10.4.1 chemistry
A key change between DNAscent v3 and DNAscent v4 is how inputs to
the neural network are handled. As shown in Figure S12, the signal
input is a tensor of normalised current signals that were aligned to
each base on the sequencedmolecule using an in-built hiddenMarkov
alignment. At each base position, these signals are encoded by a GRU
stack. To create the base sequence input, we determined that the
magnitude of the signal shift was primarily governed by the middle
5mer of each 9mer. Therefore, each 9mer was decomposed into a
middle 5mer and a flanking 4mer. For example, in 9mer given by bases
N1N2N3N4N5N6N7N8N9, the middle 5mer is N3N4N5N6N7 and the flank-
ing 4mer is N1N2N8N9. We then built embeddings for the middle 5mer
and embeddings for the flanking 4mer. A tensor of the 5mer embed-
dings, a tensor of the 4mer embeddings, and a tensor of the GRU-
encoded signal are concatenated and passed to the first
convolutional layer.

DNA fibre analysis
A2058 cells were labelled with IdU and CldU (50μM) for 20min each.
DNA fibres were prepared as previously described in ref. 49. Cells were
trypsinized and resuspended at 1 × 106 cells/ml in PBS. 2μl of cell sus-
pension was placed onto a glass slide and lysed in 10μL of lysis buffer
(200mM Tris-HCl (pH 7.4), 0.5% SDS, 50mM EDTA). After 6min, the
slides were tilted at 15° to allow the DNA to spread. Slides were air-
dried for 30min, fixed in methanol and acetic acid (3:1) for 2min, and
refrigerated overnight before immunolabeling. DNA was denatured
with 4M HCl for 20min. Slides were incubated in blocking buffer
(PBS + 0.1%TritonX-100 + 10%goat serum) for 1 h. IdU andCldUwere
detected using rat anti-BrdU (Abcam ab6326, 1:200) and mouse anti-
BrdU (BD 347580, 1:200). Secondary antibody staining was performed
using Alexa Fluor 488-labeled goat anti-mouse IgG antibody (Invitro-
gen A-11029 1:200) and Alexa Fluor 568-labeled goat anti-rat antibody
(Invitrogen A11036 1:200). Slides were mounted in Prolong Gold and
imaged on a DeltaVision Ultra. Replication track lengths were mea-
sured using Image J.

Treatment effect
We employed a hierarchical Bayesian model to estimate the posterior
distributionof the effect of agents/mutations on replication fork speed
and stall score, as well as determine whether the effect of this treat-
ment exceeded background variation between replicates. Fork data
from each replicate was modelled using a partial pooling structure to
determinewithin-groupvariability andbetween-groupdifferences. For
each group, replicate-level means were modelled as draws from a
group-level distribution, allowing for uncertainty at both the replicate
and condition levels. Replication fork speed was assumed to follow a
normal distribution and weakly informative priors were placed on
group means (µ=1.5, σ =0.5 for untreated and µ =0.7, σ = 0.5 for trea-
ted) with half-normal (σ =0.5) priors on standard deviations. Stall
score was assumed to follow a Beta distribution to reflect the score
being bound on [0,1]. These distributions were parametrised via a
group mean and shared precision. The prior on the group mean was
Beta-distributed (α = 2, β = 5 for both treated and untreated) and the
prior on precision was Gamma-distributed (α = 2, β =0.1). Posterior

inference was done using the No-U-Turn Sampler (NUTS) which drew
2000 posterior samples after 1000 tuning steps. For guidance, we
defined a Region of Practical Equivalence (ROPE) as ±0.05 for stall
score and ±0.1 kb/min for fork speed. We reported a treatment effect
(Δ1, the differencebetween groupmeanof treated and the groupmean
of untreated), control replicate variability (Δ2, the absolute value of the
difference between the untreated replicate means), treated replicate
variability (the absolute value of the difference between the treated
replicate means), and adjusted treatment effect (Δ1 -Δ2). These are
reported for fork speed and stall score in Figures S5, S7, and S11. We
considered an effect to be significant if at least 95% of the treatment
effect posterior lies outside the ROPE.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Nanopore sequencing data generated in this study have been
deposited in NCBI’s Gene Expression Omnibus under the GEO Series
accession number GSE216926 and the European Nucleotide Archive
under accession number PRJEB80561. Source data are provided with
this paper.

Code availability
The DNAscent software is available at https://github.com/MBoemo/
DNAscent under the GPL-3.0 open-source license50. DNAscent v3.1.2
was used for analysis on the R9.4.1 Oxford Nanopore chemistry while
DNAscent v4.0.3 was used for analysis on the R10.4.1 chemistry. Both
versions are available as Singularity images at https://cloud.sylabs.io/
library/mboemo/dnascent/dnascent.
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